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Abstract

JavaScript is the de facto language for implementing client side Web applications. It is specified in the
ECMAScript standard, a long and complex document written in English that is updated with every new
iteration of the language. Despite its popularity, JavaScript is not always coherent and understandable
semantically, and its dynamic paradigm makes it hard to statically analyse. ECMAScript reference inter-
preters are artifacts produced to reason about the language in a controlled environment. To this end, we
will leverage the ECMA-SL project, a research effort at IST whose goal is to build an executable version
of the standard. Currently, the ECMA-SL project comes with an interpreter, ECMARef5, for the 5th ver-
sion of the standard, which is now at its 12th version. We plan to assist with the transition of ECMARef5
to the 6th version of the standard, by aiding in the implementation effort of the built-in libraries of the
ECMAScript 6 Standard. Alongside other strategies employed in the ECMA-SL project, to guarantee the
quality of our implementation we test it against Test262, the official ECMAScript conformance test suite.

Keywords: ECMAScript, Specification Language, Reference Interpreters, Dynamic Languages,
Test262.
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Resumo

O JavaScript é a linguagem de facto para implementar aplicações clientes na Web. Ela é especi-
ficada no standard ECMAScript, um longo e complexo documento escrito em Inglês que é atualizado
com cada nova iteração da linguagem. Apesar da sua popularidade, o JavaScript nem sempre é co-
erente e compreensı́vel semanticamente, e o seu dinamismo faz com que a sua análise estática seja
difı́cil. Interpretardores de referência da linguagem ECMAScript são artifactos feitos para raciocinar so-
bre a linguagem num ambiente controlado. Com este fim, vamos tirar proveito do projecto ECMA-SL,
um projecto de investigação no IST cujo objectivo é construir uma versão executável da especificação
em oposição à versão textual feita pelo standard. Actualmente, o projecto ECMA-SL é composto de
um interpretador, ECMARef5, para a 5ª versão do standard que está agora na sua 12ª versão. A
nossa intenção é de apoiar com a transição do ECMARef5 para a 6ª versão do standard, ajudando no
esforço de implementação das bibliotecas built-in do ECMAScript 6. Para garantir a qualidade da nossa
implementação, conjuntamente com outras estratégias usadas no projecto ECMA-SL, testamo-la contra
a test suite oficial de conformidade do standard ECMAScript, a Test262.

Keywords: ECMAScript, Linguagem de especificação, Interpretadores de referência, Linguagens
dinâmicas, Test262

v





Contents

List of Tables viii

List of Figures xi

1 Introduction 1

2 Background 5
2.1 ECMA-SL Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ECMAScript Standard Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 ECMAScript Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 ECMAScript Built-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Relevant Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Formalizations of the ECMAScript language’s semantics . . . . . . . . . . . . . . . 16
3.2.2 Acquiring trust through closeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Reference Implementation of the ES6 Built-in Libraries 21
4.1 ArrayBuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Extending ECMA-SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 DataView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 TypedArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



4.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Reflect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.2 ECMAScript Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 ECMA-SL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Other Built-in Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Evaluation 63
5.1 Test262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Evaluation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Evaluation short-comings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions 69

Bibliography 70

viii



List of Tables

3.1 Reference interpreters and their adhesion the various strategies. (L-B-L signifies line-by-
line) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Built-in support by the other reference interpreters. (✳ signifies partial implementation) . . 16

4.1 Array operators added to ECMA-SL and their respective semantics. . . . . . . . . . . . . 31
4.2 Byte operators added to ECMA-SL and their respective semantics. . . . . . . . . . . . . . 32
4.3 Element types and their byte size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Internal methods and their Reflect object method counterparts. . . . . . . . . . . . . . . 59

5.1 Number of tests selected for each built-in library. . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Test results of the built-in libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix





List of Figures

1.1 Evolution of the number of pages describing the ECMAScript standard over time. . . . . . 2

1.2 Currently available (green), in development (yellow) and future (red) tools of the ECMA-SL
project. Arrows signify dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Comparison between the standard’s pseudo-code and the ECMA-SL language. . . . . . . 6

2.2 Currently available (green), in development (yellow) and future (red) tools of the ECMA-SL
project. Arrows signify dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Execution pipeline of a JavaScript program. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Diagram of an object and its internal properties. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Internal representation of an ordinary object and its property. . . . . . . . . . . . . . . . . 10

2.6 Graphical representation of the variation of internal state caused by changes in properties. 11

2.7 Internal state after the execution of Listing 2.2. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Overview of the built-in objects of ES6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 An ArrayBuffer object and its Data Block. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Illustration of the sharing of a prototype object by a constructor and its instances. . . . . . 23

4.3 Showcase of incorrect use of an ArrayBuffer object. . . . . . . . . . . . . . . . . . . . . 24

4.4 Example of an ArrayBuffer object being shared. . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Description of the GetValueFromBuffer abstract operation in the ES6 standard. . . . . . 26

4.6 Internal representation of an object in the reference interpreter. . . . . . . . . . . . . . . . 27

4.7 Internal representation of an ArrayBuffer object in the reference interpreter. . . . . . . . 27

4.8 Internal representation of the ArrayBuffer constructor and its isView method in the refe-
rence interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Comparison between the standard description of the ArrayBuffer.isView method its
implementation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.10 Comparison between the standard description of the GetValueFromBuffer operation and
its implementation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . . . 30

4.11 A DataView object after instantiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.12 Visualization of the implications of the [[ByteOffset]] and [[ByteLength]] internal pro-
perties of DataView objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.13 ES6 description of the getUint16 and getUint32 methods of DataView.prototype object. 34

4.14 ES6 description of the SetViewValue operation. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.15 Internal representation of a DataView object. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.16 Internal representation of the DataView constructor. . . . . . . . . . . . . . . . . . . . . . 36

4.17 Internal representation of the DataView.prototype object. . . . . . . . . . . . . . . . . . . 36

4.18 Comparison between the standard description of the getInt32 method and its implemen-
tation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



4.19 Comparison between the standard description of the GetViewValue operation and its im-
plementation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.20 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.21 ES6 description of the IntegerIndexedElementGet internal operation. . . . . . . . . . . . 41
4.22 Representation of the Int32Array object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.23 Representation of the Int8Array, Int16Array, Int32Array and %TypedArray% object. . . 42
4.24 ES6 description of the TypedArray constructors. . . . . . . . . . . . . . . . . . . . . . . . 42
4.25 Representation of the prototype-chain of Int16Array and Int32Array objects. . . . . . . 43
4.26 Section 22.2.3.21 of the standard which describes the reverse method of the TypedArray

prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.27 Diagram representing the full prototype-chain using Int16Array as a starting point. . . . 44
4.28 Internal representation of the chain of TypedArray constructors. . . . . . . . . . . . . . . 45
4.29 Comparison between the standard description of the TypedArray constructor and its im-

plementation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.30 Two Symbol primitive values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.31 Representation of a Symbol object (left) and Symbol value (right). . . . . . . . . . . . . . . 47
4.32 ES6 description of the Symbol constructor function. . . . . . . . . . . . . . . . . . . . . . . 48
4.33 Representation of the Symbol constructor object. . . . . . . . . . . . . . . . . . . . . . . . 48
4.34 Symbol values are unique and distinguished by their ID property. . . . . . . . . . . . . . . 49
4.35 Internal representation a Symbol object and value. . . . . . . . . . . . . . . . . . . . . . . 49
4.36 Object property assignment using string and Symbol values. . . . . . . . . . . . . . . . . 50
4.37 Internal property storage design that does not allow for proper integration of Symbol values

as property keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.38 Internal property storage design that allows for proper Symbol property keys integration. . 51
4.39 Representation of a Proxy object and its handler and target objects. . . . . . . . . . . . . 53
4.40 ECMAScript standard’s description of the [[Get]] internal method of Proxy exotic objects. 54
4.41 ECMAScript code implementation and diagram of an ArrayBuffer wrapped using a Proxy

object to allow utilization of bracket notation to read and write bytes. . . . . . . . . . . . . 56
4.42 Internal representation of a Proxy object and its target and handler objects in ECMARef6. 57
4.43 Comparison between the standard description of the Proxy.[[Enumerate]] internal method

and its implementation in the reference interpreter. . . . . . . . . . . . . . . . . . . . . . . 58
4.44 ECMAScript standard’s description of the Reflect.getOwnPropertyDescriptor method. 59
4.45 ECMAScript Standard specification of the getPrototypeOf method of the Reflect and

Object built-in objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.46 ECMAScript standard’s description and ECMA-SL implementation of the Reflect.getOwnPropertyDescriptor

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Example of a test file of the Test262 suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Test execution pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii





xiv



Chapter 1

Introduction

JavaScript is one of the most used programming languages in the world and the most commonly used to
develop client-side Web applications, such as e-mail clients or online banking platforms, and so the Web
has a big dependence on it. Recently it also has been gaining traction as a language for server-side
scripting, specially with the Node.js [1] runtime, and even as a language for the development of various
desktop applications, mainly using the Electron framework [2], such as Discord [3] and Visual Studio
Code [4]. However, these applications do not all use the same JavaScript engine. Although a lot of
them do use Google’s V8 [5] JavaScript engine, there are other alternatives and it is critical that they all
behave in the same manner. Should this not be the case, not only is it possible that some JavaScript
applications do not execute properly in certain runtime environments, but it could also lead to critical
security flaws. In order to mitigate this possibilities, it was deemed by Netscape [6], original creators of
JavaScript, that a standardization of the JavaScript language was necessary and so the ECMAScript
standard was created in collaboration with ECMA International [7].

The ECMAScript standard (ES) [8] consists of the specification of the ECMAScript language’s syntax
and semantics. The following of the standard’s specification by every JavaScript engine, should mean
that they all behave in the same manner regardless of how they handle some of the implementation-
dependant aspects in their implementation. This means that developers that build applications using the
ECMAScript language can be confident that their application will behave as expected, independently of
the engine it is run on. The ECMAScript standard is a long document written in English that describes
the behavior of the language as if it was the pseudo-code of an interpreter, giving detailed steps on how
to interpret each instruction. Over the years it has evolved substantially, regularly increasing in its size
and detail. Figure 1.1 illustrates this evolution and shows us that sometimes the standard can double
in size in a single iteration. Despite the large amount of iterations, the standard is not easy to maintain
or alter, with the process of adding features being extremely complex, requiring new features to uphold
the invariants of the language’s semantics and maintain backwards compatibility, guaranteeing that the
behaviour of older features remains unchanged. The document is managed and maintained by the TC39
committee [9] which is composed of JavaScript developers, browser representatives, academics, etc. As
of now, the committee has a well established methodology used to extend and update the standard’s
specification called “The TC39 Process” [10]. This process is divided into 5 stages: (1) proposal of
new features for the ECMAScript language; (2) selection of the best ideas and discussion on possible
solutions and what challenges they may entail; (3) describing their syntax and semantics using formal
specification language; (4) refinement using feedback from the committee, implementations and users;
(5) and eventually adding them to the standard in a polished state.

Naturally, not all implementations of the ECMAScript language follow the standard’s described be-
havior exactly. They can be built using different programming languages and it may be convenient to
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Figure 1.1: Evolution of the number of pages describing the ECMAScript standard over time.

represent some components of the standard in a different, although equivalent, manner. Most of the dis-
crepancies are due to performance reasons. In particular, the industrial JavaScript implementations use
JIT (just-in-time) compilation to guarantee the performance of their applications. If the JavaScript imple-
mentations do not follow the standard exactly, then how can it be determined that they are ECMAScript
compliant? Currently, this is done through exhaustive testing. Alongside the ECMAScript standard, the
TC39 committee also maintains an official test suite called Test262 [11] whose purpose is to measure
the conformity of a JavaScript interpreter to the official ECMAScript specification. However, testing is an
incomplete method for determining this, as there have already been multiple bugs found in JavaScript
engines that were not discovered by the test suite [12].

An alternative methodology is to maintain a reference implementation that follows the standard line-
by-line and use this implementation has an oracle to test the conformity of other implementations of the
language. This could be done by comparing the behavior of those implementations with the behavior
exhibited by the oracle on concrete programs. In this sense, multiple academic projects have cropped up
with the intent of producing a reference interpreter for JavaScript [13, 14, 15, 12, 16, 17, 18]. However,
most of these reference implementations do not support the standard’ built-in libraries, with those that
partially do it only doing it at a very small scale. In fact, we can fairly say that most ECMAScript reference
interpreters ignore the language’s built-ins. However, they are an essential part of the language and their
testing alongside the core of the language is critical to fully understand and reason about JavaScript
implementations.

With the goal of filling the void left by the absence of a complete reference interpreter the ECMA-SL
project [19, 20, 21] was created. The main goal of the project is to maintain a complete (with built-in sup-
port) executable specification of the standard written in an intermediate language specifically designed
to do so, the ECMA-SL language, which stands for ECMAScript-Specification Language. The semantics
and algorithms described in the ECMAScript standard are written as if they were the pseudo-code of
a reference interpreter (executable specification). The ECMA-SL language mimics this pseudo-code,
making the specification of a reference interpreter, almost a work of copying the semantics already de-
scribed in the English standard. From the specification of the standard in ECMA-SL, it is possible to
create numerous other artifacts, namely a natural language version of the standard structured as an
HTML document, similar to the original. Currently, the ECMA-SL project includes a full specification of
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ES5 [22] (the 5th version of the ECMAScript standard) and a partial implementation of ES6 [8] (the 6th
version of the ECMAScript standard). Also included in the ECMA-SL project, are multiple tools in devel-
opment that use the interpreter for many other purposes as Figure 1.2 shows. Some of the most relevant
of them are HTML2ECMA-SL [20] and ECMA-SL2English [19], whose purpose is, respectively, to con-
vert the standard’s HTML document written in English to ECMA-SL code and to convert the executable
specification of the standard back to its original form in natural language.

Compilation tools

JS2ECMA-SL ECMA-SL2CoreECMA-SL

Reference Interpreters

ECMARef5 ECMARef6

Natural Language Processing

HTML2ECMA-SL ECMA-SL2English

Testing and debugging

Double Debugger

Conformance Test Suite

Static Analysis

CoreECMA-SL Interpreter

Figure 1.2: Currently available (green), in development (yellow) and future (red) tools of the ECMA-SL
project. Arrows signify dependency.

The goal of this thesis is to build upon what already exists in the ECMA-SL project. We extend
the ECMARef6 reference interpreter, the executable specification of ES6, increasing its coverage of
the standard. This will be achieved through the implementation of built-in libraries of ES6 and their
dependencies using a line-by-line strategy to guarantee that our implementation is correct. In particular,
we will focus on the following built-in libraries:

• ArrayBuffer (Section 4.1) - the ArrayBuffer library introduces byte-level datatypes and opera-
tions;

• DataView (Section 4.2) - provides high-level abstractions to read and write bytes from ArrayBuffer

instances, using get and set methods;

• TypedArray (Section 4.3) - similar to the DataView library, but instead provides an array-like inter-
face to interact with ArrayBuffer objects;

• Symbol (Section 4.4) - introduces an entirely new type of property key;

• Proxy (Section 4.5) - provides a reflection mechanism used to override the semantics of the lan-
guage.

Besides the libraries stated above, I also coordinated the implementation of all the other built-in
libraries, being in charge of testing them, fixing eventual bugs, and making sure that they matched the
specification. The development of all libraries was jointly done by me, and a group of 6 undergraduate
students during a summer internship at INESC-ID.

From a technical point of view, the implementation of these libraries posed a few challenges. In order
to successfully implement the Symbol library, it was necessary to change the internal representation of
ECMAScript objects in ECMA-SL as the previous representation was not fit to handle Symbol property
keys. In the implementation of the ArrayBuffer library, the introduction of two new datatypes, arrays and
bytes, to the ECMA-SL language was required. Alongside the new types, new operators for manipulating
them were also implemented, with the most important ones being capable of converting a numerical
value to its representation as an array of bytes and vice-versa.
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In order to demonstrate that we attained our goals, we tested our reference implementation (EC-
MARef6) against the official test suite, placing special emphasis on the tests that target the 6th version
of the standard and the built-in libraries. Overall, we passed 93.99% out of 13253 tests relative to all
the built-in libraries and 95.44% out of 1857 tests relative to the ones we have emphasized. Although
we do not pass 100% of the tests, the large majority of the failing tests, fail due to missing features in
ECMARef6 that are part of the core of the ECMAScript language and not its built-in libraries.

This thesis is structured in the following way: in Chapter 2 we introduce all the background knowledge
pertinent to this thesis, more specifically, background on the ECMA-SL Project in Section 2.1 and on the
ECMAScript standard in Section 2.2; in Chapter 3 we present and discuss other projects related to
the work done in the context of this thesis, including other reference implementations; in Chapter 4 we
will present the main contribution of this thesis, analyzing the standard’s specification as well as the
implementation in ECMARef6 of the ArrayBuffer (Section 4.1), DataView (Section 4.2), TypedArray
(Section 4.3), Symbol (Section 4.4) and Proxy (Section 4.5) built-in libraries; in Chapter 5 present our
evaluation methodology in more detail as well as our results; finally in Chapter 6 we go over some
conclusions on the work performed as well as possible future endeavours.
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Chapter 2

Background

This chapter introduces the necessary background for this thesis. In Section 2.1, we explain the ECMA-
SL project and its main components. In Section 2.2, we give an overview of the ECMAScript standard
with a special focus on: (a) the representation of ECMAScript objects, which constitute the fundamental
datatype of the language (Subsection 2.2.2); (b) the ECMAScript built-in libraries (Subsection 2.2.3),
which are the main focus of this thesis.

2.1 ECMA-SL Project

The ECMA-SL project [19] is a project that aims to build the most complete ECMAScript reference inter-
preter to date and various tools to support the analysis and specification of the ECMAScript language.
The project is built around the ECMA-SL language, that stands for ECMAScript-Specification Language,
and was purposefully built to define the standard’s semantics.

The ECMA-SL language is a weakly-typed, imperative language that has some of the dynamic prop-
erties of JavaScript like dynamic function calls and the ability to create and delete object properties
and to evaluate code at runtime. The language was done with the goal of being as similar as possi-
ble to the standard’s pseudo-code and therefore adopts all its meta-constructs to allow a line-by-line
match of pseudo-code instructions to ECMA-SL instructions. An ECMA-SL program consists of only
top-level functions, with its entry point being the top-level function named “main”. Given that there are
only top-level functions, each one of them has its own scope.

In Figure 2.1, we can see a side-by-side comparison of the standard’s pseudo-code with the equiv-
alent ECMA-SL code. In this example, we can see that over each line of the ECMA-SL code there is a
comment with the corresponding line of the standard showing that there is indeed a line-to-line match
and also making it easy to see that they are similar. In lines 10 and 12, we see that values were assigned
to the variables constructorName and subclass without them being explicitly declared, because there
are no variable declaration statements in the ECMA-SL language. Consequently, there is also no way
to define variable types, making ECMA-SL a weakly typed language. In line 5 we can see the variable
|TypedArray| is referenced without a previous assignment to it. This is because it is a global variable
of the interpreter that had been initialized before the execution of this function. Global variables of the
interpreter are surrounded by pipe characters and inaccessible to ECMAScript programs.

Based of the ECMA-SL language and to support the specification and analysis of the ECMAScript
standard, the ECMA-SL project includes the following tools, which can be visualized in Figure 2.2:

1. ECMARef5 - a reference interpreter written in ECMA-SL which supports the entirety of the 5th
version the ECMAScript standard, meaning that it faithfully matches each line of pseudo-code with
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(a) Fragment of section 22.2.1.2.1 which describes the semantics of the allocation of TypedArray instances.

1 function AllocateTypedArray(newTarget , length) {
2 /* 1. Assert: IsConstructor(newTarget) is true. */
3 assert(IsConstructor(newTarget) = true);
4 /* 2. If SameValue (% TypedArray%, newTarget) is true , throw a TypeError exception */
5 if (SameValue (| TypedArray|, newTarget) = true) {
6 throw TypeErrorConstructorInternal ()
7 };
8 /* 3. NOTE %TypedArray% throws an exception when invoked via either a function call or the new

operator. It can only be successfully invoked by a SuperCall. */
9 /* 4. Let constructorName be undefined. */

10 constructorName := ’undefined;
11 /* 5. Let subclass be newTarget. */
12 subclass := newTarget;
13 ...
14 };

Listing 2.1: Fragment of the semantics of allocation of a TypedArray in ECMA-SL, as defined in the
ECMARef6 reference interpreter.

Figure 2.1: Comparison between the standard’s pseudo-code and the ECMA-SL language.

an ECMA-SL statement.

2. ECMARef6 - a reference interpreter of the 6th version the ECMAScript standard currently being
written in ECMA-SL which will in the future also support the entire standard.

3. JS2ECMA-SL - a compiler that parses a JavaScript program into its abstract syntax tree (AST) and
generates an ECMA-SL file with a single function called buildAST which will build the JavaScript
program’s AST in the ECMA-SL heap.

4. ECMA-SL2CoreECMA-SL - a compiler that transforms ECMA-SL code into its core version by
swapping some meta-constructs for equivalent ones, e.g turning every loop into a while loop, mak-
ing the code easier to interpret.

5. CoreECMA-SL interpreter - an interpreter of CoreECMA-SL code built in the OCaml [23] language.

6. HTML2ECMA-SL - a tool that converts a section of the standard’s HTML document into the cor-
responding ECMA-SL code, in an attempt to automate and accelerate the process of writing the
ECMAScript reference interpreters.

7. ECMA-SL2English - a tool that converts a section of the reference interpreters built in ECMAScript
into the corresponding HTML matching the format and structure of the standard’s HTML.

With these tools it is possible to execute JavaScript programs with one of the two reference inter-
preters. This process, demonstrated visually in Figure 2.3, has as its first step the building of the abstract
syntax tree (AST) of the JavaScript program, via the JS2ECMA-SL tool which will produce as output the
file ast.esl, an ECMA-SL file containing a single function called buildAST, that will build the JavaScript
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Compilation tools

JS2ECMA-SL ECMA-SL2CoreECMA-SL

Reference Interpreters

ECMARef5 ECMARef6

Natural Language Processing

HTML2ECMA-SL ECMA-SL2English

Testing and debugging

Double Debugger

Conformance Test Suite

Static Analysis

CoreECMA-SL Interpreter

Figure 2.2: Currently available (green), in development (yellow) and future (red) tools of the ECMA-SL
project. Arrows signify dependency.

program’s AST in the ECMA-SL heap. At this point we have two files, ast.esl and ESX interpreter.esl,
where X is replaced by 5 or 6 depending on the ECMAScript version wanted. The ES6 interpreter.esl
file is a bundled version of ECMARef6 that condenses the reference interpreter into a single ECMA-SL
file. Both of these files are imported into a single out.esl file, whose code calls the reference interpreter
on the result of a buildAST call. The next step is to compile this file into the Core version of ECMA-SL
using the ECMA-SL2CoreECMA-SL tool, generating a CoreECMA-SL file, core.cesl. The final step is
to use the CoreECMA-SL interpreter, built with the OCaml language, to run the core.cesl file.

input.js ast.esl ESX_interpreter.esl

out.esl

core.cesl

JS2ECMA-SL

ECMA-SL2CoreECMA-SLCoreECMA-SL interpreterprogram output

import

Figure 2.3: Execution pipeline of a JavaScript program.

In the two next subsections, we will give a more detailed account of the HTML2ECMA-SL and ECMA-
SL2English tools as their improvement will be the main focus of this thesis.

2.2 ECMAScript Standard Overview

In this section we will take a deeper look at the ECMAScript standard, beginning with the a more general
overview of its purpose and components. We will then present one of its most crucial datatypes, the
object. Finally, we will give a lightweight description of some of the built-in libraries in the final subsection.

2.2.1 General Description

The ECMAScript Standard describes the various iterations of ECMAScript language’s syntax and se-
mantics. In this project, we will specifically look at the 6th version of the standard. The ECMAScript
language is what the vast majority of web apps runs on and as such, all the major web browsers have
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adopted the standard to a certain extent, not following completely all the specifications in order to in-
crease their JavaScript engine’s performance. This means that although their output may be identical
to the expected, there are some inconsistencies between how that output is achieved between different
browsers and an implementation that followed the standard in its entirety. This complete adoption of
the standard into a formalization of its semantics is called a reference interpreter, which is what the
ECMA-SL project aims to accomplish with ECMARef6, relative to the 6th version of the ES standard.

The standard is divided into three main components: the sections related to grammar and syntax,
the sections that describe the semantics of the language’s core, and the sections that describe the
semantics of the built-in objects, which represent the language’s standard library.

Overall, the standard describes the ECMAScript language as being object-based, with objects being
collections of properties. Properties can in turn point to other objects, functions (callable objects) or
primitive values. The ECMAScript language includes a prototype-based mechanism for implementing
inheritance: each object has a “parent” object to which it refers to if it does not possess a property which
is looked up. The behavior of an object looking up a property on its prototype and it in turn looking up
that same property on its prototype until one of these objects contains the property is called prototype
chaining. On the version of the standard studied on this project, classes were introduced, however,
ECMAScript did not become a class-based language like C++ or Java. Classes serve merely as syntax
sugar for the definition of constructor functions and prototype objects.

In charge of developing and improving the standard is the TC39 committee which is composed of
JavaScript developers, ECMA members, web browser representatives, etc. This committee determines
the future of the ECMAScript language choosing what new features should be added and what old fea-
tures should be improved. However, this task is not easy as ECMAScript is a complex language with
lots of invariants which must be guaranteed at all times and it is mandatory that the features added or
modified do not unintentionally alter any previous behaviors, in order to guarantee backwards compat-
ibility and not “break the web”. To make matters worse, as web browsers do not completely follow the
standard, as mentioned before, their JavaScript engines cannot be used to test these new features. This
issue is something that many projects and teams have tried to solve, including the ECMA-SL project,
but without much success, at least from the perspective of adoption by the committee which is still not
accompanied by a reference implementation. These other projects and their reference implementations
will be explored in the Related Work chapter (3).

2.2.2 ECMAScript Objects

In this subsection, we will delve deeper into what is an object in the ECMAScript standard and introduce
the concept of Property Descriptor which is a crucial component of objects.

The ECMAScript standard defines various types which are organized into two categories:

• ECMAScript Language Types - this category represents the types available to ECMAScript pro-
grams, such as string, boolean, null and object;

• ECMAScript Specification Types - this category represents the types that are only available in-
side the ECMAScript interpreter and not accessible to ECMAScript programs, for example, the
Completion and List types.

We will focus on one of the ECMAScript Language Types, the object type. Object values, as men-
tioned before, consist of collections of properties. The properties of these objects can also be split into
two categories: internal properties; and named properties.
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Internal properties Internal properties, identified in the standard by being encased in double square
brackets ([[ ]]), are properties that hold values of either of the types mentioned above and are used to
describe some aspect of the object that contains them, i.e. metadata, or simply as “private” properties.
They are accessible only by the interpreter code and it should be impossible for JavaScript programs to
directly access or modify them. All objects have two internal properties and multiple internal methods
crucial for managing their properties. Their internal properties are the following:

1. [[Prototype]] - A value that can be either null or a reference to the object’s prototype object
that is used to implement prototype-inheritance.

2. [[Extensible]] - A boolean value that determines if properties can be added to the object. Even
though this property can be set from true to false, the opposite cannot happen, as a non-extensible
object remains so forever.

The internal methods of objects are what specifies their semantics and are called during the most
fundamental operations of the language. For example, the [[Get]] internal method, which retrieves
that value of a specified named property, is called every time a property of an object is accessed in
ECMAScript code, be it via bracket or dot notation. Every value of the object type has a fixed set of
internal methods that define its behavior, but they are polymorphic, meaning that different objects can
have different algorithms for methods with the same name. Each internal method has its own default
implementation and an object whose internal methods all follow their respective default implementation
are called ordinary objects. There are, however, some objects, called exotic objects, that require a
change from the default behavior and so have different implementations for their internal methods. For
example, some objects may have a specialized internal [[Get]] method to alter the way properties are
retrieved from them. The presence of internal properties does not mean an object is exotic, only the
deviation from the default internal methods puts the object in that category. Some noteworthy exotic
objects are String and Array objects. Function objects are an outlier, as they are the only objects
with more internal methods than the ones present in ordinary objects, nevertheless, they are not exotic
objects has they do not change the implementation of those methods.

Figure 2.4 shows a representation of an object created using the Object constructor that is assigned
to a dog variable. We can see that the object has the [[Prototype]] internal property, which references
Object.prototype since the Object constructor was used for its creation, and the [[Extensible]]

internal property with the default primitive value true. The object also has its internal methods, which
are not all represented in the diagram since an extensive listing of them is not relevant for this section. In
the case of the object created in the example, all the internal methods have their default implementations
as all objects instantiated via the Object constructor are ordinary objects.

1 const dog = new Object ();

Object.prototype[[Prototype]]:   

[[Extensible]]: true

[[Get]]: function

[[Set]]: function

[[Enumerate]]: function

...

dog: Object

Figure 2.4: Diagram of an object and its internal properties.
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Named properties Named properties are the properties in an object that will be directly accessed and
created by a JavaScript program during runtime and can be of two types: data properties or accessor
properties. These properties are described by a record called a property descriptor. A record is an ag-
gregate of named fields whose values can be of any type. As there are two different types of properties,
there are also two types of property descriptors to match them: data property descriptors and accessor
property descriptors.

In Figure 2.5, we have a piece of JavaScript code which, once again, contains an assignment of an
object to a dog variable. This object has a named property race with the value “Beagle”. As discussed
above, we can see that the object resulting of the evaluation of this statement has the two internal
properties, [[Prototype]] and [[Extensible]], the internal methods are omitted for the sake of clarity,
and a named property which is described by a property descriptor. In this case, the “race” property
would be a data property as the value was supplied and not described as a get function. The syntax for
defining accessor properties will be defined ahead. An interesting note to take is that even though all
named properties must be associated with a property descriptor, internal properties are not under the
same restriction, meaning that they may or may not be wrapped inside property descriptors. Figure 2.5
shows a simplified version a property descriptor which will be expanded on in the following paragraphs.

1 const dog = {

2 race: "Beagle"

3 };

Object.prototype

race:       

[[Extensible]]: true

[[Prototype]]:   

dog: Object

"Beagle"

Descriptor

Figure 2.5: Internal representation of an ordinary object and its property.

Data property descriptors As already mentioned, property descriptors are records, which are groups
of named fields. Data property descriptors are four-field records that hold an explicit data value and
information about the property itself. These fields are the following:

1. [[Value]] - The actual value of the property. This value’s type can be: undefined, null, boolean,
string, symbol, number or object.

2. [[Writable]] - A boolean value that determines if the value in the [[Value]] field can be changed.

3. [[Enumerable]] - A boolean value that determines if this property should be considered when
iterating through the properties of the object.

4. [[Configurable]] - A boolean value that determines if the rest of the fields in the property de-
scriptor can be altered. It also determines if the property can be removed from the object.

Figure 2.6 is an expansion of the example provided above in Figure 2.5. We can see that line 1 is the
same as the previous example, with Figure 2.6a representing the state after the evaluation of this line
of code. Here the property descriptor is complete and describes a data property, which we can assert
by the presence of the fields [[Value]] and [[Writable]] in the record. In line 2, the string value
“Pug” is assigned to the named property “race” of the “dog” object, which provokes a change only in the
[[Value]] field of the property descriptor, as can be seen in Figure 2.6b. From lines 3 to 6, the values
of the fields [[Writable]] and [[Configurable]] of the property descriptor are both set to false. In the
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final line, an assignment to the property “race” is done once again, however, since both [[Writable]]

and [[Configurable]] are set to false, the value in the [[Value]] field remains the same, as can
be observed in Figure 2.6c. Note that, as mentioned before, the ability to change the [[Value]] field
depends exclusively on the value of the [[Writable]] field. However, if the value of [[Configurable]]
is set to true, even if the value of [[Writable]] is false, we can still do the assignment by first setting
the [[Writable]] field to true. For this reason, when aiming to make a property read-only, one must set
both [[Writable]] and [[Configurable]] to false.

1 const dog = { race: "Beagle" };

2 dog.race = "Pug";

3 Object.defineProperty(dog , "race", {

4 configurable: false ,

5 writable: false

6 });

7 dog.race = "Beagle";

Object.prototype

race:       

[[Extensible]]: true

[[Prototype]]:   

dog: Object [[Value]]: "Beagle"

[[Writable]]: true

[[Enumerable]]: true

[[Configurable]]: true

Descriptor

(a) State after line 1.

Object.prototype

race:       

[[Extensible]]: true

[[Prototype]]:   

dog: Object [[Value]]: "Pug"

[[Writable]]: true

[[Enumerable]]: true

[[Configurable]]: true

Descriptor

(b) State after line 2.

Object.prototype

race:       

[[Extensible]]: true

[[Prototype]]:   

dog: Object [[Value]]: "Pug"

[[Writable]]: false

[[Enumerable]]: true

[[Configurable]]: false

Descriptor

(c) State after line 7.

Figure 2.6: Graphical representation of the variation of internal state caused by changes in properties.

Accessor property descriptors Accessor property descriptors also have four fields, two of which are
the [[Enumerable]] and [[Configurable]] fields, which maintain the same function they had in data
property descriptors. However, contrary to data property descriptors, these property descriptors do not
hold an explicit data value, they hold function references to getter and setter methods, using the [[Get]]

and [[Set]] fields respectively. These two fields can be defined as follows:

1. [[Get]] - A pointer value to a function object that will be called when an attempt is made to read
this property’s value. The return value of this function will be passed on as the property’s value. It
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can be undefined, in which case no call occurs. The function referenced by this field must have no
formal parameters.

2. [[Set]] - A pointer value to a function object that will be called when an attempt is made to change
this property’s value. It can be undefined, in which case no call occurs. The function referenced
must have exactly one formal parameter.

In Listing 2.2, we can see the definition of an object with a named accessor property called “height”
with both a setter and a getter method. The result of evaluating this code snippet can be seen in
Figure 2.7, where there is an object with the expected internal properties of an ordinary object and a
single named property, as both methods have the same name (height). We can see that the property
descriptor is an accessor property descriptor by the fact that the record possesses the fields [[Get]]

and [[Set]]. In this case, the value of those fields are references to function objects. It is important
to distinguish between an accessor property, which will result in user code being executed and a data
property whose value is a function object, like the one in Listing 2.3. In the case of these two examples,
the evaluation of the instruction dog.height, would resolve to 80 in the case of Listing 2.2 and a reference
to a function object in the case of Listing 2.3.

Listing 2.2: Definition of an object with an accessor property.
1 const dog = {

2 get height () {

3 return 80;

4 },

5 set height(value) {

6 this._height = value;

7 }

8 };

Object.prototype

height:

[[Extensible]]: true

[[Prototype]]:

getterdog: Object

Function

[[Get]]:

[[Set]]:

[[Enumerable]]: true

[[Configurable]]: true

Descriptor

setter

Function

Figure 2.7: Internal state after the execution of Listing 2.2.

Listing 2.3: Definition of an object with a named data property whose value type is a reference to a
function object.

1 const dog = {

2 height: function () {

3 return 80;

4 }

5 };

2.2.3 ECMAScript Built-ins

We have now seen the object type and some of its inner workings. In this subsection we will present the
built-in libraries of the standard, starting by what they are and how they are integrated into the language
and then we will do a brief description of some of the libraries, specifically the ones that were specifically
implemented in the context of this thesis.

Firstly, it is important to make a distinction between the object datatype and type of instances. Values
of the object datatype are collections of properties as presented and dissected previously. All the built-in
libraries have objects as entry points which are all values of the object datatype. Some of this objects
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are also constructors and create instances. These instances may or may not be values of the object
datatype, but they are instances of the constructor type. For example, the Symbol constructor is an object
that produces Symbol values, which are not objects, but are still of the Symbol type. The expression “an
Array object” would be referring to a value of the object datatype that was instantiated using the Array

constructor. Moving forward, the word type will usually refer to the instance type and not the datatype.

The Built-in libraries are objects that have already implemented functionality via their methods and
their prototype’s methods and are made available through properties of the Global Object which is
available in all scopes of execution. All of the built-in libraries populate a property of the global object
with an object of their own. Figure 2.8 shows all the built-in objects and their corresponding categories
in the standard. The libraries highlighted in a blue tint, like Symbol and TypedArray, are the ones that
were specifically implemented in the context of this thesis.

Figure 2.8: Overview of the built-in objects of ES6.

Built-in libraries can be split into two types based on the type of object that they make available
through the global object:

1. Most of the built-in libraries, use a constructor Function object, which is an object that has a
[[Construct]] internal method, to allow the creation of instances of that type. Instances created
by the same constructor will share a common prototype object which will give them their function-
ality. Nonetheless, the constructor may still have its own methods for operations not adequate to
the prototype object.

2. Some built-ins, like JSON and Reflect, use an ordinary object that does not permit the creation of
instances of their types and expose their functionality only through their methods.

In Chapter 4, we look in more detail at our implementation of some of the built-in libraries highlighted
before and therefore we now give a brief overview of the ones that are explored in the coming chapter:

• ArrayBuffer (Section 4.1) - the ArrayBuffer constructor produces objects that have an internal
byte array, that can only be manipulated using DataView and TypedArray objects.
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• DataView (Section 4.2) - the DataView constructor requires instances of ArrayBuffer to create its
instances. A DataView object is essentially a wrapper that provides methods such as getInt8 and
setFloat32 through its prototype, that will trigger the internal operations of the ArrayBuffer and
allow the reading and writing of values on its internal byte array.

• TypedArray (Section 4.3) - similar to the DataView instances, TypedArray instances are essentially
wrappers of ArrayBuffer instances. However, instead of the get and set methods, they provide an
array-like interface to the byte-array. The TypedArray library actually populates the global object
with multiple constructors, one for each possible element type (Int8Array, Int16Array, etc.), but their
instances end up sharing the same prototype regardless. Each instance will only be able to write
and read a certain amount of bytes per operation depending on the constructor used to create the
instance. An instance created via the Float32Array constructor will read or write always 4 bytes
interpreted as an IEEE 754-2008 [24] binary32 value. While one created via the Int8Array always
reads or writes 1 byte interpreted as a signed integer.

• Symbol (Section 4.4) - the Symbol constructor produces Symbol values which are primitive values
and can be used as keys for properties. Every Symbol value has an associated string value,
however, even those who share the same string value must still be differentiable.

• Proxy (Section 4.5) - the Proxy constructor takes in two arguments: a target and a handler. The
Proxy object produced will then act as the target in all regards. The only exception is when one
of its internal methods is replaced by a method of the handler object. For example, if the internal
[[Get]] method of the Proxy object is called, then it will search the handler object for a "get"

method. If it finds the method, it calls it and uses it as if it was the internal method. If there is no
method in the handler object, then the [[Get]] method of the target object is called instead. This
allows the use of ECMAScript code that bypasses the target’s internal method.
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Chapter 3

Related Work

There have been numerous works on the development of reference interpreters for JavaScript. We
will first look at the common trends amongst them, their coverage of the standard and their evaluation
results. Then we discuss these works individually, looking at their most relevant design decisions and
how they compare to the ECMA-SL project.

3.1 Overview

The need for a viable operation model of JavaScript was identified in 2008 with the work of Maffeis et
al. [25]. Ever since, multiple other formal models of the JavaScript language have been written in various
diverse languages such as Coq [26], K [27] and OCaml [23]. As these models appeared and took ideas
from their predecessors, some concepts prevailed:

1. The formal model should be executable;

2. The formal model should pass the tests of the Test262 test suite;

3. The formal model should follow a line-by-line strategy in its implementation in order to be as iden-
tical as possible to the specification.

Consider Table 3.1 that shows how the various existing formal models of the language can be char-
acterised with respect to the concepts stated above. Here we can see that more recent models tend to
follow the standard line-by-line, which is a good indicator that this methodology is effective and a well-
accepted approach to establishing trust in reference implementations. More recent models also tend to
design their own DSLs (Domain-Specific Languages), like ECMA-SL, meant for implementing reference
interpreters of the ECMAScript standard.

Although the wide adoption of these concepts results in more robust reference interpreters, there
are still no models that offer significant support for the ECMAScript built-in libraries. However, their
implementation is critical, for example, to reason about or test the implementation of the built-in libraries
of JavaScript engines. Overall, since most ECMAScript programs use at least some of the libraries, not
covering them greatly reduces the usefulness of the formal models of the language. Table 3.2 compares
the various models with respect to the built-in libraries they implement, showing us that they are mostly
ignored, while ECMARef6 is the most complete.
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Reference
interpreter

ES
version Exe. # of tests

passed # of tests Pass
Rate

Implementation
Language

L-B-L
Strategy

S5 [15] 5 ✓ 8157 11275 72.35% S5 Core Language ✕

JSExplain [18] 5 ✓ >5000 11275 44.35% Subset of OCaml ✓

KJS [16] 5 ✓ 2782 11275 24.67% K ✕

JSRef [12] 5 ✓ 3749 11275 33.25% Coq ✓

JS-2-JSIL [17] 5 ✓ 8797 11275 78.02% JSIL ✓

ECMARef5 [19] 5 ✓ 9556 11275 84.75% ECMA-SL ✓

ECMARef6 6 ✓ 18087 21662 83.50% ECMA-SL ✓

JISET [28] 10 ✓ 18064 29878 60.46% IRES ✓

Table 3.1: Reference interpreters and their adhesion the various strategies. (L-B-L signifies line-by-line)

Reference
Intepreter Object Function Boolean Symbol Error Number Math Date String RegExp Array JSON

KJS ✓ ✓ ✓ ✕ ✓ ✳ ✕ ✕ ✳ ✕ ✳ ✕

JSRef ✓ ✓ ✳ ✕ ✕ ✳ ✕ ✕ ✳ ✕ ✕ ✕

JS-2-JSIL ✓ ✓ ✳ ✕ ✳ ✳ ✕ ✕ ✳ ✕ ✕ ✕

ECMARef5 ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ECMARef6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2: Built-in support by the other reference interpreters. (✳ signifies partial implementation)

3.2 Relevant Papers

3.2.1 Formalizations of the ECMAScript language’s semantics

The formalization of the semantics of the ECMAScript language is a challenge that has been attempted
by multiple research projects. In this subsection, we chronologically review some of the most relevant of
these projects.

Maffeis et al. [25] were the first to see the need in designing an operational semantics for ECMAScript
that followed the standard truthfully. Their goal was to reason about the security of JavaScript applica-
tions in the browser, more specifically, what regions of the heap a certain program could or could not
reach. For example, if a secure web-page was loaded and it contained an insecure embedded ad-
vertisement could it reach the heap region allocated for the secure program? They looked to answer
this question through what they coined the reachability theorem. Their operational semantics were left
non-mechanised, described by semantic rules in a long text document.

Guha et al. (2010) [13] present λJS , a mechanised formalization of the semantics of the ECMAScript
standard done by reducing it to a core calculus in the form of a small-step operational semantics. Their
semantics cover some of ES3’s most fundamental features: prototype-inheritance, extensible objects
and dynamic function calls. However, features like some of the built-in libraries and the eval expression,
that performs dynamic code execution, were not included. They put a great emphasis on the desugaring
of the language’s syntax, as that not only simplifies λJS , but also makes some cases where the behavior
of a piece of JavaScript code is unexpected, even thought the syntax is familiar, much more apparent. An
example and a common source of errors in JavaScript is the this keyword, which is an implicit parameter
of every function and whose value is sometimes not very intuitive. As such, in λJS , this becomes an

16



explicit parameter and function calls must explicitly supply the this argument. The idea of desugaring is
also present in the ECMA-SL project, although not in the form of desugared JavaScript but in the form
of ECMA-SLCore; they still share the same goal. The correctness of the semantics was verified utilizing
the Mozzila JavaScript test suite. For that, they first built a λJS interpreter and then for the applicable test
cases of the test suite, desugared the original JavaScript and ran the test with the interpreter, comparing
the output of their interpreter with the output of running the test on V8, SpiderMonkey and Rhino and
verifying that the outputs were identical.

Politz et al. (2012) presented S5 [15] which builds upon λJS moving it from the 3rd version of the
standard to the 5th and adding the semantics of accessors (getters and setters) and the eval operator.
This project’s reference interpreter was built with the S5 core language, being one of the first projects to
design its own implementation language. Their reference interpreter includes some of the built-in objects
that make up the ECMAScript 5 standard library. Like in λJS , there is a desugaring process, although
in the S5 project it is more akin to compilation, that converts any non-implemented source-language
features into ones present in the S5 core language, allowing for the execution of any ES5 program. To
mechanise the semantics, a S5 core language interpreter was built in the OCaml language which makes
it possible to test the reference interpreter against the Test262 conformance suite of which they passed
8157 of 11606 or 70% of tests, with the lowest performance being in the built-in objects section, which
was expected given that they were not all implemented.

Park et al. (2015) developed KJS [16], the most complete formalization of JavaScript when it was re-
leased. It was done using the K framework [27], a powerful framework designed specifically for defining
language semantics that with the definition of a language’s syntax and semantics, can generate a parser,
an interpreter and formal analysis tools. With KJS, the authors were able to verify that the ECMAScript
5.1 conformance test suite did not completely cover all the behaviors defined in the standard and wrote
those missing tests, coming to the conclusion that most production JavaScript engines and other se-
mantic formalizations failed these new tests. KJS and Chrome’s V8 engine are the only implementations
of JavaScript that completely pass all the core language tests, even among other browser engines and
reference interpreters. When it comes to the language’s built-in libraries, they considered that they could
be built using traditional JavaScript as they had guaranteed the core semantics to be correct. As such,
there was not a big effort put into implementing these libraries as it was deemed outside the scope of the
project. Even though it seems like the K framework and KJS would be a great fit for a project like ours,
it is hard to work with the framework and its language is very distant from the standard’s pseudo-code,
since the K framework was not built specifically for the ECMAScript language, which is an important
aspect of the ECMA-SL approach.

3.2.2 Acquiring trust through closeness

As more reference interpreters were developed, a common method of generating trust in the implemen-
tation was to determine its closeness to the English and pseudo-code of the textual specification of the
standard, mostly by using a line-by-line strategy. In this subsection, we review some of the most relevant
projects in this aspect.

Bodin et al. (2014) developed JSCert [12] and JSRef for the 5th edition of the ECMAScript standard.
JSCert is a mechanised specification of ES5 that uses pretty-big-step semantics and is written in the
interactive proof assistant Coq. One of the goals of the JSCert was to make the argument that JSCert
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is an accurate formulation of the ES5 specification. With that goal in mind, JSCert was designed to fol-
low the ECMAScript standard as much possible, which makes it specially relevant to ECMA-SL project.
Alongside JSCert, they developed JSRef a reference interpreter also written in Coq. They used an
extraction technique on JSRef to generate executable OCaml code, that could be used to execute the
reference interpreter. Given that they were both written in Coq, it was easy for them to verify that JSRef
was correct in respect to JSCert. Given that JSCert was designed to follow the standard as closely
as possible, this correctness they gave them confidence that the reference interpreter’s behavior would
match the standard’s specification. The possession of an executable reference interpreter means that it
was possible to test it against the Test262 test suite, where they passed 1796 of the 2782 of the tests that
relate to chapters 8-14 of the ES5 standard, which excludes the built-in libraries. In order to measure
trust in JSCert, the English prose of the standard is put side-by-side with the formal rules and their close-
ness if “eyeballed”. In the ECMA-SL project, we also aim to measure the similarity of our mechanised
semantics to the standard’s prose, however our method involves the use of the HTML2ECMA-SL tool
and text similarity metrics to compare the generated document with the official one, which we consider
an improvement on the methodology as it is deterministic and completely objective. Regardless, the
authors were able to find several bugs present in all browser implementations, the ECMA standards and
the test suite. A year later, Gardner et al. [29] extended JSRef with an implementation of ES5 Arrays,
using Google’s own implementation in the V8 JavaScript engine [5]. They also assessed other improve-
ments made to JSCert, such as correcting some misinterpretations of the ES5 standard, and how they
and the implementation of the Array library impacted their performance against Test262.

Charguéraud et al. (2018) presented JSExplain [18], a reference interpreter for the 5th edition of the
ECMAScript standard. This interpreter was built using a subset of the OCaml programming language
in a purely functional programming style. However, they support the compilation of the OCaml source
code to two different languages: JavaScript, so that the reference interpreter can be executed in a
browser; and Pseudo-JS which is a custom language derived from the ECMAScript standard’s pseudo-
code, akin to ECMA-SL, to allow JavaScript developers to better understand the reference interpreter
even if they are unfamiliar with OCaml, as this was one of the many requests the TC39 committee
had for reference interpreter developers. The JSExplain reference interpreter passes over 5000 tests
of the Test262 test suite and also has debugging support, more concretely, double-debugging, allowing
developers to not only examine the program’s state in step-by-step execution, but also to examine the
reference interpreters internal state.

Jihyeok Park et al. presented JISET [28], a JavaScript IR-based semantics extraction toolchain. From
the specification of ECMAScript, it can automatically synthesize parsers and AST-IR translators which
allowed the authors to generate a partial implementation of ES10. These tools allow the compilation
of ECMAScript programs into an intermediate language that has its own interpreter. The authors were
able to synthesize parsers and compile the algorithm steps of the 10th, 9th, 8th and 7th versions of the
standard to great effect, passing all 18,064 tests relative to the core of the language. However, like most
of the literature, they ignore the built-in libraries, filtering out 6,532 tests related to the behaviour of these
libraries. In contrast, we believe the built-in libraries to be a fundamental piece of the specification.

Summary In this section we have seen that there have been multiple attempts to formalize the seman-
tics of the ECMAScript standard. Over the years, we see a greater emphasis on using the Test262 test
suite to gain trust in the validity of reference interpreters. For this reason, there is also a great incentive to
have them be executable as well. Another trust measure, repeatedly mentioned is the verbal closeness
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between the reference interpreters specification and the standard, with the line-by-line approach being a
common strategy to obtain it. However, most of the works focus on the core semantics of the language
and do not implement the language’s standard library which makes their coverage of the Test262 test
suite low.
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Chapter 4

Reference Implementation of the ES6
Built-in Libraries

This chapter describes the main contribution to the main goal of this thesis, which was the development
of a reference implementation of the ES6 built-in libraries, in this case in the context of ECMARef6.
This implementation was done in the scope of the ECMA-SL project which involves multiple students.
In particular, the development of the built-in libraries had contributions from 6 students1 coordinated by
me. Besides coordinating the implementation effort, I was personally responsible for the implementa-
tion of the TypedArray and Symbol built-ins which are described in this chapter. The implementation
of the ArrayBuffer and DataView libraries were done in collaboration with Nuno Policarpo, while the
implementation of the Proxy library was done in collaboration with Tomás Tavares.

For clarity, we structure the account of our built-in implementations in the following way: first we
describe how the built-in is used in practice by appealing to simple ECMAScript code snippets; then
we give a high-level description of the official built-in’s specification; next, we describe our ECMA-SL
implementation of the built-in, focusing on its connection to the standard; and, we conclude with a small
section outlining the implementation highlights.

4.1 ArrayBuffer

In this section we will discuss the standard’s definition of ArrayBuffer objects and our implementation
of them. In order to allow for the implementation of the ArrayBuffer built-in library we had to extend the
ECMA-SL language itself. The description of this extension is given in Subsection 4.1.4.

ArrayBuffer objects represent what many other languages would call a byte array. They serve
as an interface to interact with instances of the Data Block type. An ECMAScript Data Block can be
thought of as a simple array of bytes. However, this interface is not available in the ECMAScript language
and must be accessed via internal operations of the standard. These operations can be triggered in the
ECMAScript language only through the use of TypedArray and DataView objects.

4.1.1 Examples

In this subsection, we will explain how ArrayBuffer objects work in practice by appealing to several
ECMAScript code examples that interact with buffers either via the DataView interface or the TypedArray

interface. These two interfaces will themselves be revisited in two later sections.
1David Belchior, Nuno Policarpo, Leonor Barreiros, João Silveira, Manuel Costa, Tomás Tavares
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Consider the code snippet given in Listing 4.1. This program uses a DataView object to interact
with an ArrayBuffer. To begin, an ArrayBuffer object is created using the ArrayBuffer constructor.
Since the argument passed was 4, a Data Block of 4 bytes will be created as well. Then, the DataView

constructor is called with the ArrayBuffer instance to create the DataView object through which we
will interact with the ArrayBuffer. Finally, we use the setInt32 method of the DataView instance to
manipulate the bytes of the Data Block. In this specific case, since an element of the Int32 type
takes up 4 bytes, the value 9999 will be encoded into a 4 byte sequence as a signed integer. The byte
sequence will be big-endian, since we omitted the last argument when calling the setInt32 method.
Passing the value true would change the endianness of the byte sequence.

Listing 4.1: Use of an ArrayBuffer object via a DataView object.
1 var ab = new ArrayBuffer (4);

2 var dv = new DataView(ab);

3 dv.setInt32(0, 9999);

In contrast to the example given in Listing 4.1, the code snippet given in Listing 4.2 interacts with an
ArrayBuffer via the TypedArray interface. The instantiation of the objects occurs in a similar manner
to the previous example except that we now use the Int32Array constructor instead of the DataView

constructor. There is also a difference in the way that we use the wrapper. In the case of the Int32Array,
we use it as an Array, as opposed to calling the setInt32 method like before. It would not be wrong
to think of an instance of Int32Array as a DataView wrapper that only uses the methods getInt32

and setInt32 of the DataView object. It is important to note that the APIs of these objects are not
interchangeable, as dv.getInt32(1) is different from ta[1]. The expression dv.getInt32(0) fetches
bytes 0 to 3 while dv.getInt32(1) fetches bytes 1 to 4. However, ta[0] fetches bytes 0 to 3 and ta[1]

fetches bytes 4 to 7. The DataView objects allows us to read the bytes in a less structured way, while
the TypedArray instance will force the element size to be respected. Something else to note is that it is
not possible to specify endianness when using any of the TypedArray instances.

Listing 4.2: Use of an ArrayBuffer object via a Int32Array object.
1 var ab = new ArrayBuffer (4);

2 var ta = new Int32Array(ab);

3 ta[0] = 9999;

4.1.2 ECMAScript Specification

We will now give a detailed account of how the ECMAScript standard describes ArrayBuffer instances,
as well as the major operations associated with them. This will give context to the next subsection where
we will discuss our own implementation.

The ArrayBuffer built-in library makes available a constructor function in the global object. Be-
sides the ArrayBuffer constructor, the only method exposed by the ArrayBuffer API is the method
ArrayBuffer.isView, which is used to determine if an object passed to it is an instance of one of the
common ArrayBuffer wrappers like DataView and TypedArray. It is not surprising that the ArrayBuffer

interface only exposes a single method besides the constructor since interaction with ArrayBuffer ob-
jects always happen through either the TypedArray or the DataView interfaces, which do expose a
substantially larger number of methods.

The instances created via the constructor are ordinary objects, meaning that their internal methods
have the default implementation, but they do have two additional internal properties:

1. [[ArrayBufferData]] - a reference to the Data Block allocated to the ArrayBuffer object;

2. [[ArrayBufferByteLength]] - the number of bytes in the ArrayBuffer.

22



Data Blocks We have not yet given a proper description of Data Block values. However, they are
rather simple as they are not objects, meaning that do not have any properties or fields, they are a
primitive value which corresponds to a byte sequence. The fact that its metadata is present in the
ArrayBuffer instance in the [[ArrayBufferByteLength]] internal property demonstrates that. In Fig-
ure 4.1, we can see an instantiation of an ArrayBuffer object whose internal slot [[ArrayBufferData]]
holds the reference to a Data Block and [[ArrayBufferByteLength]] tells us that the Data Block is
of length 6. Upon instantiation, the allocated Data Block of objects created via the ArrayBuffer con-
structor, have all their bytes set to 0x002.

1 var ab = new ArrayBuffer (6);

0x00 0x00 0x00 0x00 0x00 0x00

Data Block

[[Extensible]]: true

[[Prototype]]:

[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 6

ab: Object

ArrayBuffer.prototype

Figure 4.1: An ArrayBuffer object and its Data Block.

ArrayBuffer.prototype The prototype of an object is the value referenced by its [[Prototype]] in-
ternal property. Usually, this will be an ordinary object with a set of methods that are shared through
prototype-inheritance. This object is referenced by all ArrayBuffer objects’ [[Prototype]] internal
property and also by the prototype of the ArrayBuffer constructor. Figure 4.2 illustrates this concept
which is repeated all over the standard and is how instances can share the same properties without
duplication. In this example, we have once again omitted all the internal methods from the diagram for
the sake of clarity, but we now have objects with named properties, like the ArrayBuffer constructor in
yellow and the ArrayBuffer.prototype object in the right, that are separated from their internal prop-
erties with a line to make the distinction between the two types of properties as clear as possible. From
the example we can also see that the prototype object has only two properties:

1 var ab1 = new ArrayBuffer (6);

2 var ab2 = new ArrayBuffer (4);

[[Extensible]]: true

[[Prototype]]:

[[ArrayBufferData]]: Data Block

[[ArrayBufferByteLength]]: 4

ab2: ArrayBuffer

[[Extensible]]: true

[[Prototype]]:

slice: function

byteLength: accessor

Object

Object.prototype
[[Extensible]]: true

[[Prototype]]:

isView: function

prototype:

ArrayBuffer: Function

[[Extensible]]: true

[[Prototype]]:

[[ArrayBufferData]]: Data Block

[[ArrayBufferByteLength]]: 6

ab1: ArrayBuffer

Function.prototype

Figure 4.2: Illustration of the sharing of a prototype object by a constructor and its instances.

2Byte values will be represented using the hexadecimal format.

23



1. byteLength - this is an accessor property that will retrieve the value of the ArrayBuffer’s internal
[[ArrayBufferByteLength]] property. It has no [[Set]] value so it is a read-only property.

2. slice - this is a data property that references a function object that was omitted from the example
to keep it simple. This method will create a new ArrayBuffer instance whose Data Block will be
a copy of a segment of the original one.

This means there is a lack of a method ab.setByte(index, value) or custom [[Get]] and [[Set]]

internal methods to allow the manipulation of the bytes. As mentioned before, in order to do so, one has
to create either a DataView or TypedArray object. However, unfamiliar JavaScript developers may not
know that and with a requirement to do byte-level operations might think that an ArrayBuffer object is
the best fit. Given what was discussed before, that would not be an inappropriate solution. To demon-
strate this, consider the example given in Figure 4.3. This code snippet uses an ArrayBuffer as a
typical Array producing unwanted results. Judging by lines 3 and 4, one might think that the first byte of
the Data Block associated with the object was set to 0x01. However, looking at the object diagram we
can see that instead a data property descriptor was associated with the key 0 and that the Data Block

remains with all its bytes equal to 0x00. We can also verify this programmatically, using the instructions
from line 6 onward, where we duplicate the ArrayBuffer object using the slice method and see now
that accessing the value associated with the key 0 returns undefined instead of 1.

1 var ab = new ArrayBuffer (4);

2
3 ab[0] = 1;

4 ab[0] === 1; // true

5
6 var ab2 = ab.slice(0, 4);

7
8 ab2 [0] === 1; // false

9 ab2 [0] === undefined; // true

[[Value]]: 1

[[Writable]]: true

[[Enumerable]]: true

[[Configurable]]: true

Data Block[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 4

[[Extensible]]: true

[[Prototype]]:

Descriptor

ArrayBuffer.prototype

0x00 0x00 0x00 0x00

[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 4

[[Extensible]]: true

[[Prototype]]:

ab: Object

Data Block

0x00 0x00 0x00 0x00

0:

ab: Object

Figure 4.3: Showcase of incorrect use of an ArrayBuffer object.

So far, it may seem that availability of the ArrayBuffer constructor to JavaScript developers is re-
dundant as there is no way of interacting with the objects created by it besides the slice method defined
in the ArrayBuffer.prototype object and therefore only the aforementioned DataView and TypedArray

built-in libraries should be available and they should internally create their ArrayBuffer instances. How-
ever, there is one use case where its availability becomes relevant. In Figure 4.4, we can see that
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the ArrayBuffer object created in line 1, is used as an argument for the instantiations in lines 3 and
4, meaning that the objects instantiated will share them same buffer. In line 6, we use the setInt32

method of the DataView object to write the value 9999 onto the first 4 bytes of the buffer and lines 8
and 9, serve to demonstrate that the write operation was successful and that the buffer is indeed being
shared by those two objects.

1 var buffer = new ArrayBuffer (4); // 32 bits

2
3 var dv = new DataView(buffer);

4 var ta = new Int32Array(buffer);

5
6 dv.setInt32(0, 9999);

7
8 dv.getInt32 (0) === 9999; // true

9 ta[0] === 9999; // true

10
11 ta[1] = 44;

12
13 dv.getInt32 (1) === 44; // true

14 ta[1] === 44; // true

Figure 4.4: Example of an ArrayBuffer object being shared.

Even though the interaction with ArrayBuffer objects must be mediated by the TypedArray and
DataView built-in objects, those objects make use of the internal operations defined as part of the
ArrayBuffer library. These internal operations include:

1. AllocateArrayBuffer - this operation will create an ArrayBuffer instance and a Data Block

of the length passed as argument. This operation is used in the ArrayBuffer and TypedArray

constructors, as well as in some other methods of TypedArray.prototype;

2. GetValueFromBuffer - this operation retrieves a value from an ArrayBuffer instance. Its param-
eters are an ArrayBuffer instance, a byte index, a type of value (Int8, Float32, etc.) and a flag to
symbolize little-endianness. This operation derives from the type parameter the number of bytes
that need to be extracted from the Data Block of the ArrayBuffer. It then uses the little-endian
boolean flag to determine if it is necessary to reorder the bytes. Finally, it interprets the byte
sequence according to the type parameter and return a value of the primitive number datatype;

3. SetValueInBuffer - this operation writes a value in an ArrayBuffer instance. Its parameters are
an ArrayBuffer instance, a byte index, a type of value (Int8, Float32, etc.), the value to write and
a flag to symbolize little-endianness. This operation derives from the type parameter the number
of bytes that will be written in the Data Block of the ArrayBuffer. Next, it converts the value
parameter from a number to a list of bytes, according to the type parameter. It then uses the little-
endian boolean flag to determine if it is necessary to reorder the bytes. Finally, it copies the values
from the list of bytes to the Data Block.

Consider the excerpt of the ECMAScript standard in Figure 4.5, that contains the standard’s descrip-
tion of GetValueFromBuffer internal operation. Instructions 1 to 3 perform some input sanitation and
instructions 4 to 8 retrieve the necessary bytes from the ArrayBuffer’s Data Blocks, ordering them
according to the specified endianness. The 9.a, 10.a, 11.a and 12.a instructions convert the obtained
sequence of bytes to a number of the corresponding type (e.g. 9.a converts the obtained sequence of
bytes to a "Float32"). After obtaining the number of the appropriate type, all the branches proceed to
convert the value interpreted from the byte sequence to a Number value. However, if type is "Float64"

no conversion occurs. This is because every Number value in ECMAScript is a floating-point value, more
specifically a “primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008
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value”, which is why no conversion is necessary. If type is "Int8", for instance, if the bytes read are
interpreted as the value 50, this operation will actually return the value 50.0.

Figure 4.5: Description of the GetValueFromBuffer abstract operation in the ES6 standard.

4.1.3 ECMA-SL Implementation

We are now at the position to fully explain our implementation of the ArrayBuffer library. In order to
explain the representation of ArrayBuffer objects in ECMA-SL, we must first give a brief description of
how all ECMAScript objects are represented in ECMA-SL. Following the description of the representation
of ECMAScript objects, we will then focus on the representation of ArrayBuffer objects and Data Block

values. We then describe how ECMAScript functions and their logic are represented in ECMA-SL, using
the ArrayBuffer constructor and its isView method as examples.

ECMAScript Objects We represent ECMAScript objects using ECMA-SL objects, with a very sim-
ilar schema to the ones used in the diagram examples. The main difference is that we map every
ECMAScript object to two separate ECMA-SL objects: one keeping the internal properties and one
keeping the named properties (the properties defined by the programmer). To better understand this
encoding, consider the example given in Figure 4.6. The execution of the code-snippet in the figure
generates the ECMAScript object given in Figure 2.5, which we represent in ECMA-SL as illustrated in
Figure 4.6. Compared to the previous diagram we can see that internal properties have lost the double
square bracket nomenclature and that the separation between named and internal properties is much
more explicit. Named properties now reside in an object that is referenced by the JSProperties internal
property and still reference Property Descriptors as before. The [[Extensible]] and [[Prototype]]
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internal properties still reside inside the parent object but no longer have the double square brackets.
Internal methods are also still inside the parent object, buy they hold string values now that contain
the name of ECMA-SL functions that implement their behavior. In the next paragraph we discuss how
ECMAScript functions are described in ECMA-SL and how these string values come into play.

1 const dog = {

2 race: "Beagle"

3 };

Extensible: true

Prototype:

JSProperties:

Get: "OrdinaryObjectGet"

...

Enumerate: "OrdinaryObjectEnumerate"

dog: Object

Object.prototype

Descriptor

Value: "Beagle"

Writable: true

Enumerable: true

Configurable: true

race:

Figure 4.6: Internal representation of an object in the reference interpreter.

ArrayBuffer Objects and Data Block Values Now that we have looked at how objects are repre-
sented in our implementation, let us look at ArrayBuffer objects specifically. Consider Figure 4.7
that describes how ArrayBuffer objects are represented in ECMA-SL. Here we can see that the
[[ArrayBufferData]] and [[ArrayBufferByteLength]] internal properties are present without the
double square brackets once again and that the JSProperties object is empty, as ArrayBuffer in-
stances have no named properties. The most noteworthy difference is the representation of the Data

Block, held by the ArrayBufferData property which is now an array of bytes. This array is an ECMA-SL
array that has nothing to do with ECMAScript arrays.

1 var ab = new ArrayBuffer (6);

Extensible: true

Prototype:

JSProperties:

Get: "OrdinaryObjectGet"

...

Enumerate: "OrdinaryObjectEnumerate"

ArrayBufferData: [0, 0, 0, 0, 0, 0]

ArrayBufferByteLength: 6

ab: ArrayBuffer

ArrayBuffer.prototype

Figure 4.7: Internal representation of an ArrayBuffer object in the reference interpreter.

ECMAScript Functions and the ArrayBuffer Constructor Another aspect of the language whose
representation is worth describing in more detail are the function objects. ECMAScript function ob-
jects are ordinary objects with one extra internal method [[Call]] that will make it execute its code.
Function objects that are constructors also have a [[Construct]] internal method that is called in-
stead of the [[Call]] method in new expressions. Their code is stored in an internal property called
[[ECMAScriptCode]]. Since ECMAScript functions are also objects, they are represented in ECMA-SL
through ECMA-SL objects. These objects have the extra internal methods Call and Construct, as
well as the Code property that holds the code of the function. The disparity in the property name is
a fragment from ES5 and ECMARef5 where function objects used the [[Code]] property instead. In
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our implementation, this property holds the name of the ECMA-SL function that captures its respective
logic. Consider Figure 4.8 where we illustrate the internal representation of the ArrayBuffer construc-
tor. In the constructor object, we can see that the Call, Construct and Code properties are all present.
We can also see that the JSProperties object has properties that point to its prototype property and
isView method. The isView descriptor points to another function object that also has the Call and Code

properties, with the value of the Code property being "ArrayBufferIsView".

Prototype:

JSProperties:

Call: "FunctionCall"

Construct: "FunctionConstruct"

Code: "ArrayBufferConstructor"

Extensible: true

ArrayBuffer: Function

Function.prototype

isView:

prototype:

Descriptor

Value:

ArrayBuffer.prototype

Prototype:

JSProperties:

Call: "FunctionCall"

Code: "ArrayBufferIsView"

Extensible: true

Function

Figure 4.8: Internal representation of the ArrayBuffer constructor and its isView method in the refer-
ence interpreter.

Consider now Figure 4.9 where we can see the comparison between the ArrayBufferIsView ECMA-
SL function mentioned in the Code property of the ArrayBuffer.isView method and its ES6 counterpart.
Starting from the top, we can spot a few differences:

1. Starting with the name, we can see that the naming in the standard makes it obvious that isView
is a method of ArrayBuffer being using dot notation. In ECMA-SL, function names cannot have
dots in them and so it is impossible to use the same nomenclature.

2. When it comes to the parameters, we can also see that the ECMA-SL version has many more than
its counterpart. This is because all ECMA-SL functions that can be called through ECMAScript
code, like the methods of the built-ins objects, share the same parameters. In the scope of this
section, the only that are significant are the this and args parameters. The this parameter will
be a reference to the object that holds the method, in this case the ArrayBuffer constructor. The
args parameter is a list of all the arguments used in the function call. In fact, the first line of the
ECMA-SL function body retrieves the arg argument from the list.

Contrary to the function signature, the body of the ECMAScript and ECMA-SL functions holds many
similarities. One can easily check that the ECMA-SL code mimics the pseudo-code of the standard
almost exactly, as we had discussed in Section 2.1 regarding the ECMA-SL project.

This kind of structuring of the objects and their properties and methods is identical in other the built-in
objects, so this subject will not be touched upon in further explanations unless it is necessary.

Internal Operations Finally, we come to the implementation of the internal operations that dictate the
core of the ArrayBuffer behavior. We will once again be comparing the standard’s description with
the ECMA-SL implementation with an example focused on the GetValueFromBuffer operation showed
earlier. This comparison is given in Figure 4.10 where the ECMA-SL excerpt does not have the initial
instructions of the operation as, once again, they are matched with equivalent ECMA-SL statements with
no nuances. However, we can see that instructions 9.a, 10.a, 11.a and 12.a are not perfectly matched.
The reason for that is that instruction is not typical and cannot be matched by a standard ECMA-
SL one-liner. It was actually necessary to extend the ECMA-SL language with these new operators
(float32 from le bytes, float64 from le bytes, uint from le bytes, int from le bytes)
in order to achieve this functionality, as previously to the introduction of the ArrayBuffer library, there
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(a) Standard description of the ArrayBuffer.isView method.

1 function ArrayBufferIsView(global , this , NewTarget , strict , args) {
2 arg := getOptionalParam(args , 0);
3 /* 1. If Type(arg) is not Object , */
4 if (!( Type(arg) = "Object")) {
5 /* return false */
6 return false
7 };
8 /* 2. If arg has a [[ ViewedArrayBuffer ]] internal slot , */
9 if ("ViewedArrayBuffer" in_obj arg) {

10 /* return true */
11 return true
12 };
13 /* 3. Return false. */
14 return false
15 };

(b) Implementation of the ArrayBuffer.isView method in the reference interpreter.

Figure 4.9: Comparison between the standard description of the ArrayBuffer.isView method its im-
plementation in the reference interpreter.

was no need for byte-level operations in ECMA-SL. Remember also, that we mentioned that the values
needed to be converted to floating-point numbers since number values are all 64-bit floating-point val-
ues. The reason why there are no explicit conversions in our implementation is because they happen
inside the newly added operators. To avoid the possibility of a stray integer value in the interpreter, it
was deemed safer that the operators do the conversion themselves. The semantics and implementation
of these new operators are discussed further in the next subsection.

4.1.4 Extending ECMA-SL

In this subsection we introduce the extensions that were made to the ECMA-SL language in order to
support the ArrayBuffer built-in library. This extension was made through two aspects: (1) arrays were
introduced alongside operators to create, read and write values to them; (2) the byte type and byte-level
operators were introduced that allow the conversion of a number value to a byte-array and vice-versa.

Before the introduction of the ArrayBuffer built-in library and the Data Block type, there were no
ECMAScript datatypes that required ECMA-SL arrays for their representation. Although ECMA-SL lists
already existed, since they are immutable they would not be an adequate representation of the Data

Block type, as changing the value of one of the bytes would require an entirely new list to be created.
The operators made available to the array type in ECMA-SL can be seen in Table 4.1 alongside their
parameters and semantics.

Alongside the array type and its operators, it was also necessary to create the byte type and operators
that could turn an ECMA-SL floating-point value into an ECMA-SL array of bytes and vice-versa. These
operators only take in and return float values because in ECMAScript all Number values are floats.
Trickling down this concept into the ECMA-SL language itself, means that there is a lesser likelihood
of existing stray integer values. A list of these operators, their parameters and semantics can be seen
in Table 4.2. Note that although there are operators for big-endian (be bytes suffix) and little-endian
(le bytes suffix) byte ordering, in the implementation of the reference interpreter it is only necessary
to use operators of one kind, regardless of what the endianness of the byte sequence is supposed to
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(a) Final instructions of the standard’s description of the GetValueFromBuffer operation.

1 function GetValueFromBuffer(arrayBuffer , byteIndex , type , isLittleEndian) {
2 /*
3 ...
4 */
5 if (type = "Float32") {
6 value := float32_from_le_bytes(rawValue);
7 if (is_NaN value) {
8 return NaN
9 };

10 return value
11 };
12 if (type = "Float64") {
13 value := float64_from_le_bytes(rawValue);
14 if (is_NaN value) {
15 return NaN
16 };
17 return value
18 };
19 if (s_nth(type , 0) = "U") {
20 intValue := uint_from_le_bytes(rawValue , elementSize)
21 } else {
22 intValue := int_from_le_bytes(rawValue , elementSize)
23 };
24 return intValue
25 };

(b) Implementation of the GetValueFromBuffer operation in the reference interpreter.

Figure 4.10: Comparison between the standard description of the GetValueFromBuffer operation and
its implementation in the reference interpreter.

be. The code of the reference interpreter will reorder the ECMA-SL array according to the required
endianness before (in the GetValueFromBuffer internal operation) or after (in the SetValueInBuffer

internal operation) using any of these operators.

4.2 DataView

In this section we will do a deep-dive on DataView objects, one of the possible ways to interact with
ArrayBuffer objects, as discussed in Section 4.1.

A DataView object behaves much like an ArrayBuffer wrapper that provides high-level operations
to JavaScript users. Like a relational database view can make it easier to interface with a complex table,
DataView instances provide the same level of abstraction for ArrayBuffer instances. These operations
are available through a set of getX and setX methods where the X is replaced by one of the existing
element types (Int8, Uint8, Float32, etc.).
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Operator Parameters Semantics

array make • length integer value
• init value

Creates a new array with the specified length with all its ele-
ments equal to the init value

a len • array Returns the number of elements of the array

a nth • array
• index integer value

Retrieves the element of the array in the specified position

a set
• array
• index integer value
• value

Sets the element of the array in the specified position to the
specified value

Table 4.1: Array operators added to ECMA-SL and their respective semantics.

Listing 4.3: Standard use of a DataView object.
1 var dv = new DataView(new ArrayBuffer (8));

2 dv.setInt8(0, 9);

3 dv.setInt16(4, 9);

4 dv.getInt32 (0);

4.2.1 Examples

Consider the example in Listing 4.3, where we explore a portion of the API made available through
DataView objects. Firstly, a DataView object is created using a new ArrayBuffer object of length 8.
Next, we use the setInt8 method to write the value 0x09 onto the first byte of the buffer. All the methods
of DataView objects take in a byte index as the first argument that specifies where to start the read or
write operation. Consequently, the next expression (dv.setInt16(4, 9)) writes the value 0x09 once
again, but now starting at the 4th byte. Since the Int16 type occupies two bytes, the 0x09 value will
be spread across the 4th and 5th byte. The 4th byte will have its value changed to 0x09 while the 5th
will remain 0x00 because these operations, by default, are big-endian (recall that in big-endian order
the most significant digits are stored on the right). However, we can use one extra boolean argument
to specify endianness. The expression dv.setInt16(4, 9, true) orders the bytes in a little-endian
fashion, meaning that the value of the 4th byte would be 0x00 and the value of the 5th would be 0x09.
Finally, we use one of the get methods, specifically getInt32. Since the Int32 type occupies 4 bytes
and the byte index specified was 0, this method will retrieve the 4 first bytes of the buffer and interpret
them as a signed integer. Considering the previous statements, the byte sequence expected to be
retrieved from the Data Block is 0x09000000. Interpreting this sequence as a big-endian signed integer,
we obtain the value 9.

4.2.2 ECMAScript Specification

We will now go over the ECMAScript standard’s specification of the DataView built-in library. The library
is exposed via the DataView constructor in the global object. The constructor has no methods of its own,
meaning its use is limited to the creation of new DataView objects. These objects allow ECMAScript
programs to call the get and set methods mentioned before through their prototype.

DataView objects DataView objects are used as ArrayBuffer wrappers and interact with their bytes
via method calls. They are created via the DataView constructor which has three parameters: (1) a
non-optional ArrayBuffer object, that if missing, will result in a TypeError being thrown; (2) an optional
number value for the byte offset that defaults to 0 if not present; and (3) an optional number value for the
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Operator Parameters Semantics

float to byte • float value Converts a float value between -128 and
127 to a byte value

float32 from le bytes • byte sequence Interprets a little-endian sequence of 4
bytes as a Float32

float32 from be bytes • byte sequence Interprets a big-endian sequence of 4 bytes
as a Float32

float32 to le bytes • float32 value Converts a Float32 value to a little-endian
sequence of 4 bytes

float32 to be bytes • float32 value Converts a Float32 value to a big-endian
sequence of 4 bytes

float64 from le bytes • byte sequence Interprets a little-endian sequence of 8
bytes as a Float64

float64 from be bytes • byte sequence Interprets a big-endian sequence of 8 bytes
as a Float64

float64 to le bytes • float64 value Converts a Float64 value to a little-endian
sequence of 8 bytes

float64 to be bytes • float64 value Converts a Float64 value to a big-endian
sequence of 8 bytes

int from le bytes • byte sequence
• length of sequence

Interprets the little-endian sequence of
bytes as a signed integer

int from be bytes • byte sequence
• length of sequence

Interprets the big-endian sequence of bytes
as a signed integer

int to le bytes • float value
• length of sequence

Converts the float value to an integer and
encodes it as a little-endian sequence with
the length specified

int to be bytes • float value
• length of sequence

Converts the float value to an integer and
encodes it as a big-endian sequence with
the length specified

uint from le bytes • byte sequence
• length of sequence

Interprets the little-endian sequence of
bytes as an unsigned integer

uint from be bytes • byte sequence
• length of sequence

Interprets the big-endian sequence of bytes
as an unsigned integer

uint to le bytes • float value
• length of sequence

Converts the float value to an unsigned in-
teger and encodes it as a little-endian se-
quence with the length specified

uint to be bytes • float value
• length of sequence

Converts the float value to an unsigned in-
teger and encodes it as a big-endian se-
quence with the length specified

Table 4.2: Byte operators added to ECMA-SL and their respective semantics.
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byte length that defaults to the length of the buffer it is not present. The values passed to the constructor
will be stored in internal properties exclusive to DataView objects. Their internal methods, however,
have the default implementation meaning they are ordinary objects. The extra internal properties of
these objects are the following:

1. [[DataView]] - which functions as a flag so that functions that expect an argument to be a
DataView object can verify if it is;

2. [[ViewedArrayBuffer]] - which is a reference to the ArrayBuffer object being wrapped;

3. [[ByteOffset]] - which holds an integer value that represents the byte offset associated with the
view, meaning that if the offset is 5, for instance, the first 5 bytes of the ArrayBuffer are ignored;

4. [[ByteLength]] - which is the byte length of the view, meaning that view may ignore the final
bytes of the ArrayBuffer if the view’s [[ByteLength]] internal property is smaller than the buffer’s
[[ArrayBufferByteLength]] internal property.

In order to visualize this object structure, we present Figure 4.11. Here we see that the internal
property [[ViewedArrayBuffer]] was populated with an ArrayBuffer object, as required. The optional
arguments were not passed, so the [[ByteOffset]] was set to 0 and the [[ByteLength]] was set to
the same value as the ArrayBuffer’s [[ArrayBufferByteLength]] internal property.

1 var ab = new ArrayBuffer (4);

2 var dv = new DataView(ab);

[[Prototype]]:

[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 4

ab: Object

ArrayBuffer.prototype

[[ViewedArrayBuffer]]:

[[ByteLength]]: 4

[[ByteOffset]]: 0

[[DataView]]: true

[[Prototype]]:

dv: Object

DataView.prototype

Data Block

0 0 0 0

Figure 4.11: A DataView object after instantiation.

To make clearer the role of the [[ByteOffset]] and [[ByteLength]] properties, consider Fig-
ure 4.12. In this example, we create 3 DataView objects which share the same ArrayBuffer of length
4. We can see that the DataView object created in line 2 with no offset and length arguments, uses their
default values, which are respectively set to 0 and 4 (to match the entire length of the DataBlock of the
ArrayBuffer). In line 4, we create a DataView object with offset 1 and length 2, meaning that operations
using this object will only be capable of accessing the second and third bytes of the Data Block. We
can corroborate this via the value returned by the getInt8 method in line 5, where although we used the
argument 0, the value returned was 2 and not 1, since the second byte was retrieved instead of the first
one. The code in line 6 throws a RangeError exception since the sum of the offset and length equals 5
which is larger than the value of the [[ArrayBufferByteLength]] internal property of the ArrayBuffer.

DataView.prototype The prototype object of DataView is where most of its functionality resides. This
object exposes a series of get and set methods, shared across all DataView objects, to handle instances
of ArrayBuffer. As these methods perform the same operation, but with differing element types, to
eliminate duplicated logic, they all call an internal operation that takes the element type as a parame-
ter. Read methods call GetViewValue while write methods call SetViewValue. Consider Figure 4.13
where this shared behavior is visible. In particular, we can see that both the getUInt16 and getUInt32
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1 var ab = new ArrayBuffer (4);

2 var dv1 = new DataView(ab);

3 dv1.setInt32(0, 0x01020304);

4 var dv2 = new DataView(ab, 1, 2);

5 dv2.getInt8 (0); // 2

6 var dv3 = new DataView(ab, 1, 4); // RangeError

Data Block

0x01 0x02 0x03 0x04

dv1: (0, 4)

dv2: (1, 2)

dv3: (1, 4)

Figure 4.12: Visualization of the implications of the [[ByteOffset]] and [[ByteLength]] internal prop-
erties of DataView objects.

call the internal method GetViewValue, with the only difference being the last argument passed onto
the GetViewValue internal operation. The getUnit16 method passes the string "Uint16", while the
getUnit32 method passes the string "Uint32".

Figure 4.13: ES6 description of the getUint16 and getUint32 methods of DataView.prototype object.

Internal Operations Considering that all the methods of the DataView.prototype object call an inter-
nal operation we know that it is in these operations that the wrapped ArrayBuffer objects are accessed.
The GetViewValue and SetViewValue operations begin by performing some input sanitation and then
proceed to call the GetValueFromBuffer and SetValueInBuffer operations discussed in the previous
section. In fact, the GetViewValue and SetViewValue operations are so similar that only differ in their
final instruction. This can be seen in Figure 4.14, where in the bottom, there is a note explicitly saying
that the algorithms are identical up to their final instruction. The final line of GetViewValue would instead
call GetValueFromBuffer(buffer, bufferIndex, type, isLittleEndian).

4.2.3 ECMA-SL Implementation

In this subsection we explain how the DataView built-in library was implemented in ECMARef6. Firstly,
we will look at the structure of DataView objects. We will then look at the structure of the DataView con-
structor and prototype objects. We will conclude the subsection by looking at the internal implementation
of a method and an internal operation of the DataView library.
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Figure 4.14: ES6 description of the SetViewValue operation.

DataView Objects DataView objects have no named properties like ArrayBuffer objects, so their
JSProperties object is not populated. They have the same internal properties mentioned in the spec-
ification: [[ViewedArrayBuffer]]; [[DataView]]; [[ByteOffset]]; and [[ByteLength]]. Consider
Figure 4.15, where a DataView object is created to wrap an ArrayBuffer of 4 bytes. As there are no
properties like the Data Block that are not matched by an ECMA-SL primitive value, the structure of the
internal representation and the one in the specification is almost identical.

1 var ab = new ArrayBuffer (4);

2 var dv = new DataView(ab);

Extensible: true

Prototype:

JSProperties:

Get: "OrdinaryObjectGet"

...

Enumerate: "OrdinaryObjectEnumerate"

ViewedArrayBuffer:

ByteLength: 4

ByteOffset: 0

DataView: true

dv: DataView

DataView.prototype

Extensible: true

Prototype:

JSProperties:

Get: "OrdinaryObjectGet"

...

Enumerate: "OrdinaryObjectEnumerate"

ArrayBufferData: [0, 0, 0, 0]

ArrayBufferByteLength: 4

ab: ArrayBuffer

ArrayBuffer.prototype

Figure 4.15: Internal representation of a DataView object.

DataView constructor The DataView constructor object has the internal properties of a typical func-
tion object, such as [[Call]] and [[Construct]], and its [[Code]] internal property has the name of
the ECMA-SL function that contains the implementation of the DataView constructor. In terms of named
properties, the constructor has only the prototype property which will point to the prototype object of
all DataView instances. An illustration of the constructor and its properties can be seen in Figure 4.16,
where we can see that the object’s only contribution to the library is the construction of DataView objects
as there are no methods associated with it.

DataView.prototype As we discussed before and considering the lack of methods in the construc-
tor, the prototype object is expected to hold most of the functionality of this library. To do that, its
JSProperties object is filled with all the different get and set methods of the different element types.
Consider Figure 4.17 that shows the graph of ECMA-SL objects connected to the prototype object.
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Prototype:

JSProperties:

Code: "DataViewConstructor"

Extensible: true

Call: "FunctionCall"

Construct: "FunctionConstruct"

DataView: Function

Function.prototype

prototype: DataView.prototype

Figure 4.16: Internal representation of the DataView constructor.

The prototype object has the getInt8 property of its JSProperties object pointing to a property

descriptor that in turn points to a Function object. This Function object’s Code internal property
contains the name of the ECMA-SL function that implements the getInt8 method. The remaining meth-
ods of the prototype were omitted to make a more concise diagram, but they will also be present in the
JSProperties object and will have their own descriptors and corresponding Function objects.

Code: "DataViewConstructor"

JSProperties:

Prototype:

DataView: Function

prototype: Descriptor

Value:

Writable: true

Enumerable: true

Configurable: true

Extensible: true

Prototype:

JSProperties:

Get: "OrdinaryObjectGet"

...

Enumerate: "OrdinaryObjectEnumerate"

DataView.prototype: Object

Object.prototype

getInt8:

...

Descriptor

Value:

Writable: true

Enumerable: true

Configurable: true

Function

Code: "DataViewPrototypeGetInt8"

Function.prototype

Figure 4.17: Internal representation of the DataView.prototype object.

As most of the ECMA-SL code shown so far in this document, the statements in the code of the
ECMA-SL functions that implement the methods of DataView.prototype mimic the standard’s pseudo-
code. To make that comparison, consider Figure 4.18 where we compare the standard’s description of
the getInt32 method to our own implementation in ECMARef6. In our implementation of the method, we
were once again able to keep the similarity between our statements and the pseudo-code instructions
of the standard.

Internal Operations Contrary to methods, the internal operations of the library have no ECMAScript
Function objects and exist only as ECMA-SL functions. Consider Figure 4.19 where we explore if in the
internal operations our implementation remains truthful to the standard. We can see that the strategy
of matching line-by-line keeps paying dividends as the implementation is little more than a copy of the
specification. Although it would be possible to add a sanitizeInputs function to our implementation to
reduce duplicated logic in the GetViewValue and SetViewValue operations, it would break the line-by-
line philosophy we employed in the rest of the implementation so we opted to not to do so.

Overall, the similarities between the standard’s specification and our implementation in terms of data
structures and algorithms, contribute to establish a sense of trust and security in our implementation of
the DataView built-in library.
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(a) Standard description of the getInt32 method of the DataView.protoype object.

1 function DataViewPrototypeGetInt32(global , this , NewTarget , strict , args) {
2 byteOffset := getOptionalParam(args , 0);
3 littleEndian := getOptionalParam(args , 1);
4 /* 1. Let v be the this value. */
5 v := this;
6 /* 2. If littleEndian is not present , */
7 if (littleEndian = null) {
8 /* let littleEndian be undefined */
9 littleEndian := ’undefined

10 };
11 /* 3. Return GetViewValue(v, byteOffset , littleEndian , "Int32"). */
12 return GetViewValue(v, byteOffset , littleEndian , "Int32")
13 };

(b) Implementation of the getInt32 method of the DataView.prototype object in the refer-
ence interpreter.

Figure 4.18: Comparison between the standard description of the getInt32 method and its implemen-
tation in the reference interpreter.

4.3 TypedArray

In this section we present both the ECMAScript specification as well as the ECMARef6 implementa-
tion of the TypedArray built-in library. The TypedArray library provides another way to interface with
ArrayBuffer objects and their byte arrays.

4.3.1 Examples

Typical usage of TypedArray objects is similar to the usage of Array objects. It is possible to use
bracket notation and integer values to index these objects. As demonstration, consider the example
in Listing 4.4. An instance of TypedArray is first created via the Int8Array (all the constructors made
available by the TypedArray library are listed in the next subsection). Using the argument 4, makes it
so the constructor code allocates its own ArrayBuffer instance to use. In line 2, we assign the value 1

to the property 0 of the object. In another object, this would associate a property descriptor with the
key 0. However, the semantics of TypedArray objects make it so this assignment writes in its underlying
buffer instead. Since the object is of the Int8Array type, it interprets the value 1 as a signed integer of
1 byte and change the value of the first byte of the buffer accordingly. In line 3, we see more parallels
with the Array API of ECMAScript, as we use the map method to create a new Int8Array object with
the value of all its bytes doubled.

Listing 4.4: Example of the use of a TypedArray object.
1 var ta = new Int8Array (4);

2 ta[0] = 1;

3 var doubled = ta.map(x => x * 2);

4.3.2 ECMAScript Specification

The previous built-in libraries we analyzed, exposed a single object, namely a constructor. In the case
of the TypedArray library, various constructors are exposed through the global object. Each constructor
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(a) Standard description of the GetViewValue internal operation.

1 function GetViewValue (view , requestIndex , isLittleEndian , type) {
2 /* 1. If Type(view) is not Object , throw a TypeError exception. */
3 if (!( Type(view) = "Object")) {
4 throw TypeErrorConstructorInternal ()
5 };
6 /* 2. If view does not have a [[ DataView ]] internal slot , throw a TypeError

exception. */
7 if (!( "DataView" in_obj view)) {
8 throw TypeErrorConstructorInternal ()
9 };

10 /* 3. Let numberIndex be ToNumber(requestIndex). */
11 numberIndex := ToNumber(requestIndex);
12 /* 4. Let getIndex be ToInteger(numberIndex). */
13 getIndex := ToInteger(numberIndex);
14 /* 5. ReturnIfAbrupt(getIndex). */
15 @ReturnIfAbrupt(getIndex);
16 /* 6. If numberIndex != getIndex or getIndex < 0, throw a RangeError exception.

*/
17 if ((!( numberIndex = getIndex)) ||| (getIndex < 0.)) {
18 throw RangeErrorConstructorInternal ()
19 };
20 /* 7. Let isLittleEndian be ToBoolean(isLittleEndian). */
21 isLittleEndian := ToBoolean(isLittleEndian);
22 /* 8. Let buffer be the value of view ’s [[ ViewedArrayBuffer ]] internal slot. */
23 buffer := view.ViewedArrayBuffer;
24 /* 9. If IsDetachedBuffer(buffer) is true , throw a TypeError exception. */
25 if (IsDetachedBuffer(buffer) = true) {
26 throw TypeErrorConstructorInternal ()
27 };
28 /* 10. Let viewOffset be the value of view ’s [[ ByteOffset ]] internal slot. */
29 viewOffset := view.ByteOffset;
30 /* 11. Let viewSize be the value of view ’s [[ ByteLength ]] internal slot. */
31 viewSize := view.ByteLength;
32 /* 12. Let elementSize be the Number value of the Element Size value specified

in Table 49 for Element Type type. */
33 elementSize := getElementSize(type);
34 /* 13. If getIndex +elementSize > viewSize , throw a RangeError exception. */
35 if (( getIndex + int_to_float(elementSize)) > viewSize) {
36 throw RangeErrorConstructorInternal ()
37 };
38 /* 14. Let bufferIndex be getIndex + viewOffset. */
39 bufferIndex := getIndex + viewOffset;
40 /* 15. Return GetValueFromBuffer(buffer , bufferIndex , type , isLittleEndian). */
41 return GetValueFromBuffer(buffer , int_of_float(bufferIndex), type ,

isLittleEndian)
42 };

(b) Implementation of the GetViewValue internal operation in the reference interpreter.

Figure 4.19: Comparison between the standard description of the GetViewValue operation and its im-
plementation in the reference interpreter.
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produces objects that represent byte sequences of different element types. The existing element types
and their size are listed in Table 4.3.

Types Int8 UInt8 UInt8C Int16 UInt16 Int32 UInt32 Float32 Float64
Size in bytes 1 1 1 2 2 4 4 4 8

Table 4.3: Element types and their byte size.

TypedArray Objects Considering the large number of different constructors made available by the
library, it may seem odd that we keep referencing the objects built from the constructors as TypedArray

objects, instead of Int8Array objects for example. However, regardless of the constructor used to create
the objects they all share the same prototype object and internal methods, meaning that they can be
used in the same way without any issues. As we will see further into this section, the only difference
between the different types of TypedArray is how many bytes they handle at a time and how those bytes
are interpreted.

Integer Indexed Exotic Objects In the previous paragraph, we mentioned that all TypedArray objects
share the same internal methods. These methods are not the default methods, however, meaning that
TypedArray objects are exotic objects. More concretely, they are Integer Indexed exotic objects. The
standard defines Integer Indexed exotic objects as “an exotic object that performs special handling of
integer index property keys”. To accommodate this functionality, integer indexed exotic objects, and
by extension TypedArray objects, have 4 additional internal properties:

1. [[ViewedArrayBuffer]] - a reference to an ArrayBuffer object;

2. [[ByteOffset]] - this property serves the same purpose has the [[ByteOffset]] property of
DataView objects. It indicates the a certain amount of bytes of the buffer should be skipped. It
must be 0 to take full advantage of the size of the buffer;

3. [[ArrayLength]] - the number of elements that the buffer can contain. Given that different ele-
ments have different byte sizes, [[ArrayLength]] = bufferSize−byteOffset

elementSize , with bufferSize be-
ing the size of the buffer in bytes and byteOffset being the value of [[ByteOffset]]. For in-
stance, if the element is Int16 which takes up 2 bytes and the buffer has 4 bytes in length, the
[[ArrayLength]] property has the value 2 if the offset is 0 and 1 if the offset is 2;

4. [[TypedArrayName]] - the name of the TypedArray constructor that instantiated this object.

Since the default implementation of most of the internal methods is based around reading and writing
the keys and values of named properties, some of them had to be changed to instead interact with the
ArrayBuffer when the property name is a number. When the property name is not a number, the
methods fallback to the default implementation. The following is a brief description of what the altered
internal methods perform when the property name is a number:

1. [[GetOwnProperty]] - fetches a value from the buffer and wraps it in a new data property

descriptor. Since the value is not stored in a named property, a new property descriptor

must be created every time this method is called;

2. [[HasProperty]] - returns true if the index is in the bounds of the array;

3. [[DefineOwnProperty]] - if the property descriptor has its [[Writable]], [[Enumerable]]
and [[Configurable]] equal to true, then it writes the value in the [[Value]] field in the buffer;
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4. [[Get]] - retrieves a value from the buffer;

5. [[Set]] - writes a value in the buffer;

6. [[OwnPropertyKeys]] - includes the keys from 0 to [[ArrayLength]] before any of the keys of its
named properties. This makes it so a for statement can be used to iterate over its values.

Consider the code-snippet and object diagram in Figure 4.20 that displays the structure of an instance
of TypedArray, created through an Int16Array object. An object created by any of the other constructors
would have the same structure but different values for the [[ArrayLength]], [[TypedArrayName]] and
[[Prototype]] properties. The various constructors of TypedArray behave in different ways depending
on the first argument passed. Passing a number, equates to passing the length of the array which means
two things: (1) the [[ArrayLength]] property will have the same value as the one that was passed; and
(2) that a new ArrayBuffer object will be created with the number of bytes necessary to support the
array’s length. In our example, since Int16 elements occupy 2 bytes and length of the array is 2,
the buffer has 4 bytes. This newly created ArrayBuffer is referenced by the [[ViewedArrayBuffer]]

internal property. The [[ByteOffset]] property is set to 0 by default, but it can be changed if the
constructor is used in a different manner, which will be discussed later. Finally, the [[TypedArrayName]]

property has the value "Int16Array" since the object was created by the constructor with that name.

1 var ta = new Int16Array (2);

[[Extensible]]: true

[[Prototype]]:

[[ViewedArrayBuffer]]:

[[ArrayLength]]: 2

[[ByteOffset]]: 0

[[TypedArrayName]]: "Int16Array"

ta: Int16Array

Int16Array.prototype

[[Extensible]]: true

[[Prototype]]:

[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 4

ab: ArrayBuffer

ArrayBuffer.prototype

Data Block

0 0 0 0

Figure 4.20: Caption

We now present some details of the internal methods of TypedArray objects and how they interact
with their buffers. The methods that do read operations, [[GetOwnProperty]] and [[Get]], have in
their instructions a call to an internal operation named IntegerIndexedElementGet while the ones that
do write operations, [[DefineOwnProperty]] and [[Set]], call IntegerIndexedElementSet. These
operations are similar in concept to the GetViewValue and SetViewValue of the DataView library. Con-
sider the excerpt of the standard in Figure 4.21, that describes the IntegerIndexedElementGet oper-
ation, where, like in GetViewValue, we start by performing some input sanitation. Then the internal
[[TypedArrayName]] property is used to determine the element type and size. With the element size,
calculations are done to determine the byte index to use when accessing the buffer. Finally, we use the
GetValueFromBuffer operation, as we did in GetViewValue, to obtain the value. All higher-level meth-
ods of the TypedArray objects that access the buffer, do so through their internal methods and therefore,
these internal operations.

TypedArray constructors As we have established, there is a constructor for each type of element,
but there is one more constructor that we have not yet mentioned. That is because this construc-
tor is not available through the global object and is not meant to be used directly in ECMAScript pro-
grams. It is named %TypedArray% in the standard and it acts a super constructor of all other types of
TypedArray. The way to achieve this in ECMAScript is by making the [[Prototype]] internal property of
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Figure 4.21: ES6 description of the IntegerIndexedElementGet internal operation.

the TypedArray constructors point to the %TypedArray% constructor. This relationship forms an intricate
network of constructor and prototype objects that we will present in an iterative manner. TypedArray

constructors have the following two properties that are not present in typical constructors:

1. BYTES PER ELEMENT - this is a named property that holds the byte size of the element represented
by the constructor. In the Float64Array object, this property’s value is 8, as Float64 elements
have a byte size of 8;

2. [[TypedArrayConstructorName]] - this is an internal property that holds a string value with the
name of the constructor. In the Float64Array object, this property’s value is "Float64Array".

To explore the network of constructor and prototype objects, let us first consider the diagram in
Figure 4.22 that shows the representation of the Int32Array constructor. Property descriptors were
omitted from the diagram to highlight the most important aspects. The Int32Array constructor has the
named property BYTES PER ELEMENT with value 4 and [[TypedArrayConstructorName]] with value
"Int32Array", as expected. It also has the named property prototype, present in all constructors,
that points to an ordinary object Int32Array.prototype. Unlike most constructors however, its internal
[[Prototype]] property does not reference the Function.prototype object. It instead points to the
super %TypedArray% constructor.

Int32Array: Function

BYTES_PER_ELEMENT: 4

prototype:

[[Extensible]]: true

[[Prototype]]:

Int32Array.prototype

%TypedArray%

[[TypedArrayConstructorName]]: "Int32Array"

Figure 4.22: Representation of the Int32Array object.

Expanding the network objects, we now add the %TypedArray% constructor, as well as the Int8Array

and Int16Array constructors, as shown in Figure 4.23. They all have a [[BYTES PER ELEMENT]] prop-
erty with the appropriate value and a prototype property that points to the respective prototype object.
The [[Prototype]] internal property is equal in all constructors and points to the super constructor,
meaning they all share its from and of methods.

The code of the %TypedArray% constructor is also called by the code of the other constructors, as
the excerpt of the standard in Figure 4.24 shows. When writing the standard, to avoid duplication of
text, the authors use the word “TypedArray” italicized to symbolize any of the TypedArray constructors
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Int16Array: Function

BYTES_PER_ELEMENT: 2

prototype:

[[Extensible]]: true

[[Prototype]]:

Int16Array.prototype

%TypedArray%: Function

prototype:

[[Extensible]]: true

[[Prototype]]:

%TypedArray%.prototype

Int8Array: Function

BYTES_PER_ELEMENT: 1

prototype:

[[Extensible]]: true

[[Prototype]]:

Int8Array.prototype

Function.prototype

Int32Array: Function

BYTES_PER_ELEMENT: 4

prototype:

[[Extensible]]: true

[[Prototype]]:

Int32Array.prototype

from: function

of:  function

[[TypedArrayConstructo...

[[TypedArrayConstructorName]]: "Int16Array"

[[TypedArrayConstructorName]]: "Int32Array"

Figure 4.23: Representation of the Int8Array, Int16Array, Int32Array and %TypedArray% object.

that are not %TypedArray%. The code of these objects obtains the %TypedArray% constructor by calling
their own [[GetPrototypeOf]] internal method. With it, it then calls the Construct operation which
executes the code of the super constructor to build the appropriate TypedArray object. In order to know
what is the appropriate type, it uses the NewTarget value it receives as argument. This value repre-
sents the constructor function that started the chain of constructor calls. If the ECMAScript expression
new Int8Array(20) was executed, then the value of NewTarget is the Int8Array constructor. With this,
the super constructor can obtain the element type and size from the [[TypedArrayConstructorName]]

property of the NewTarget.

Figure 4.24: ES6 description of the TypedArray constructors.

%TypedArray%.prototype Object Although there are multiple types of TypedArray, the logic they
use is identical. For this reason, their prototype chain culminates in a single prototype object shared
amongst all TypedArray instances, commonly referred to in the standard as %TypedArrayPrototype%

or %TypedArray%.prototype. It is this object that holds all the methods available to TypedArray ob-
jects. A fragment of this prototype-chain can be visualized in Figure 4.25. The execution of the code-
snippet creates two TypedArray objects: one Int16Array and one Int32Array. Because they were
created using different constructors, the [[Prototype]] property of these objects points to different
objects. These objects have a copy of the BYTES PER ELEMENT named property of the constructors
and their own [[Prototype]] property. Contrary to the ta1 and ta2 objects, that have different proto-
types, the Int16Array.prototype and Int32Array.prototype objects have the same one. This object
is the %TypedArray%.prototype object. This prototype-chain, makes all the named properties of the
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%TypedArray%.prototype object available to all objects that come before it in the chain, including all the
TypedArray objects. The pattern observed here of the immediate prototype of TypedArray instances
having a single named property BYTES PER ELEMENT and %TypedArrayPrototype% as its prototype
holds true for all other types of TypedArray that were not mentioned and not just for the Int16Array and
Int32Array types.

1 var ta1 = new Int16Array (2);

2 var ta2 = new Int32Array (1);

[[ViewedArrayBuffer]]: ...

[[ArrayLength]]: 2

[[ByteOffset]]: 0

[[TypedArrayName]]: "Int16Array"

[[Extensible]]: true

[[Prototype]]:

ta1: Int16Array

Int16Array.prototype: Object

BYTES_PER_ELEMENT: 2

[[Extensible]]: true

[[Prototype]]: %TypedArray%.prototype: Object

[[Extensible]]: true

[[Prototype]]: Object.prototype

copyWithin: function

entries: function

...

[[ViewedArrayBuffer]]: ...

[[ArrayLength]]: 1

[[ByteOffset]]: 0

[[TypedArrayName]]: "Int32Array"

[[Extensible]]: true

[[Prototype]]:

ta2: Int32Array

Int32Array.prototype: Object

BYTES_PER_ELEMENT: 4

[[Extensible]]: true

[[Prototype]]:

Figure 4.25: Representation of the prototype-chain of Int16Array and Int32Array objects.

Not only do the different types of TypedArray share the same methods, there are also some al-
gorithms shared between the Array and the TypedArray libraries. Figure 4.26 shows the standard’s
description of the reverse method, where we can see that simply by changing the way in which we look
up the length of the object, in this case by accessing the [[ArrayLength]] internal property instead
of calling [[Get]]((”length”)), the reverse algorithm becomes reusable. The ease with which some
algorithms can be reused comes from the fact that TypedArray and Array objects both specialize in the
handling of properties whose keys are integer indexes.

Figure 4.26: Section 22.2.3.21 of the standard which describes the reverse method of the TypedArray

prototype.

To showcase the full depth of the prototype-chain in a single diagram, we present Figure 4.27. Ex-
plaining this diagram would be to duplicate our explanation of the previous two diagrams, so we refrain
from it. However, since this diagram is a narrower (contains only the Int16 type), but deeper represen-
tation of the chain, it might be a clearer to visualize it.
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Int16Array.prototype: Object

BYTES_PER_ELEMENT: 2

[[Extensible]]: true

[[Prototype]]: %TypedArray%.prototype: Object

[[Extensible]]: true

[[Prototype]]:

Object.prototype

Int16Array: Function

BYTES_PER_ELEMENT: 2

prototype:

[[Extensible]]: true

[[Prototype]]: %TypedArray%: Function

prototype:

[[Extensible]]: true

[[Prototype]]:

from: function

of:  function

Function.prototype

copyWithin: function

entries: function

...

[[TypedArrayConstructorName]]: "Int16Array"

ta: Int16Array

[[ViewedArrayBuffer]]: ...

[[ArrayLength]]: 2

[[ByteOffset]]: 0

[[TypedArrayName]]: "Int16Array"

[[Extensible]]: true

[[Prototype]]:

Figure 4.27: Diagram representing the full prototype-chain using Int16Array as a starting point.

4.3.3 ECMA-SL Implementation

In the coming subsection, we present our own implementation of the TypedArray library. When it comes
to the internal representation of the TypedArray objects, much like the DataView objects, we achieve
an almost identical object structure to the one described in the standard. For this reason, our focus is
shifted towards the implementation of the chain of constructors.

TypedArray Constructors The way we implemented the various constructor objects does not dif-
fer greatly from standard’s description, however, we managed to use only one ECMA-SL function for
the TypedArray constructors besides %TypedArray%. Consider the diagram in Figure 4.28 that con-
tains the representation of the Int8Array, Int16Array, Int32Array and %TypedArray% constructors.
The first three have the JSProperties object populated with the BYTES PER ELEMENT and prototype

properties that point to their respective property descriptors. The latter has different properties in its
JSProperties object, namely the from and of method, which point to data property descriptors that
were omitted to make the diagram more digestible. The most important property in all the constructors
is the Code property which has the same value in the Int8Array, Int16Array, Int32Array constructors.
The %TypedArray% constructor has its own Code value, "TypedArrayConstructor", because it is meant
to be called by all the other constructors via the execution of the TypedArraySubConstructor ECMA-SL
function. This is how the various TypedArray types share instantiation logic.

However, we did not achieve this behavior as cleanly as we would have liked. Consider Figure 4.29,
which contrasts our TypedArraySubConstructor function against the standard’s description. The first
difference comes in the form of the name, that we cannot match as font styling is not possible in ECMA-
SL. Still in the signature of the function, we can see that the parameters are different as well. All
ECMA-SL functions exposed in function objects, have this same signature except for the here parameter.
Looking at line 8 of our implementation, helps to understand this extra parameter. Since ECMARef6
was built on top of ECMARef5 and the ES5 had no mention of “the active function” in any instruction
there was no need to support this functionality in the reference interpreter. To date, the ECMARef6
reference interpreter still does not have this feature, but there is work being done on it by other students.
Nevertheless, it leaves our implementation a bit “hacky”, as only in this specific function call, an extra
argument is passed. The here parameter will contain the function object whose code is currently being
executed. As with previous comparisons between the standard and our implementation, the rest of the
statements of the function mimic the standard’s pseudo-code instructions.

44



prototype: %TypedArray%.prototype

Int8Array: Function
BYTES_PER_ELEMENT:

prototype:

Extensible: true

Prototype:

Int8Array.prototype

Function.prototype

from: function

of:  function

TypedArrayConstructorName: "Int8Array"

Descriptor

Value: 1

Writable: false

Enumerable: false

Configurable: false

Descriptor

Value:

Writable: false

Enumerable: false

Configurable: false

JSProperties:

Code: "TypedArraySubConstructor"

Int16Array: Function
BYTES_PER_ELEMENT: ...

prototype: ...

Extensible: true

Prototype:

TypedArrayConstructorName: "Int16Array"

JSProperties:

Code: "TypedArraySubConstructor"

Int32Array: Function
BYTES_PER_ELEMENT: ...

prototype:     ...

Extensible: true

Prototype:

TypedArrayConstructorName: "Int32Array"

JSProperties:

Code: "TypedArraySubConstructor"

%TypedArray%: Function

Extensible: true

Prototype:

JSProperties:

Code: "TypedArrayConstructor"

Figure 4.28: Internal representation of the chain of TypedArray constructors.

4.4 Symbol

In this section, we present the ECMAScript specification and our ECMA-SL implementation of the Symbol

built-in library. The purpose of the Symbol library and its objects is to provide another type of property
key besides string values.

4.4.1 Examples

To demonstrate the use of Symbol values consider Listing 4.5. In this code-snippet, we see the use of the
Symbol constructor to create two separate Symbol values. Although the arguments used in their creation
were identical, they are still distinguishable. In line 4 we create an ECMAScript object using the object
literal expression and then use our Symbol values sym1 and sym2 to add some properties to the newly
created object. We associate the string "xpto" with the property key sym1. On the left-hand side of the
assignment expression, we use bracket notation, as that is the only way to use Symbol values. The final
instruction of our code-snippet does another assignment, this time using the other Symbol value. Since
both the Symbol values were created with the same arguments, one may think that this last instruction
essentially overwrites what was done in the previous one, by replacing "xpto" with "abc". However,
since Symbol values are always unique from each other, the last instruction will instead create a new
property associated with the key sym2. In the end, we end up with an object we two properties: one
associated with the sym1 key; and another associated with the sym2 key.

Listing 4.5: Example of the creation and use of Symbol values as property keys.
1 var sym1 = Symbol("example");

2 var sym2 = Symbol("example");

3
4 var obj = {};

5
6 obj[sym1] = "xpto";

7 obj[sym2] = "abc";
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(a) Standard description of the TypedArray constructor.

1 function TypedArraySubConstructor(ctx , this , NewTarget , strict , argumentsList ,
here) {

2 /* 1. If NewTarget is undefined , */
3 if (NewTarget = ’undefined) {
4 /* throw a TypeError exception */
5 throw TypeErrorConstructorInternal ()
6 };
7 /* 2. Let here be the active function. */
8 /* TODO: Instruction not yet implemented. */
9 /* 3. Let super be here .[[ GetPrototypeOf ]](). */

10 super := {here.GetPrototypeOf }(here);
11 /* 4. ReturnIfAbrupt(super). */
12 @ReturnIfAbrupt(super);
13 /* 5. If IsConstructor (super) is false , */
14 if (IsConstructor(super) = false) {
15 /* throw a TypeError exception */
16 throw TypeErrorConstructorInternal ()
17 };
18 /* 6. Let argumentsList be the argumentsList argument of the [[ Construct ]]
19 internal method that invoked the active function. */
20 argumentsList := argumentsList;
21 /* 7. Return Construct(super , argumentsList , NewTarget). */
22 return Construct(ctx , null , super , argumentsList , NewTarget)
23 }

(b) Implementation of the TypedArray constructor in the reference interpreter.

Figure 4.29: Comparison between the standard description of the TypedArray constructor and its imple-
mentation in the reference interpreter.

4.4.2 ECMAScript Specification

The entry point of the Symbol library in the ECMAScript specification is the Symbol constructor. This
constructor creates Symbol values, which are primitives, unlike most constructors that create objects.
In this subsection we first explain the difference between Symbol values and objects and how each is
created and used. Afterwards, we present the Symbol constructor and its named properties, which are
the main contribution of the Symbol library to the ECMAScript language. Finally, we dive into some of
the methods available to Symbol objects through their prototype object.

Symbol Values A Symbol value is a “primitive value that represents a unique, non-String Object prop-
erty key”. They are immutable and, even though they are not objects, have an internal property called
[[Description]] that can be either undefined or a string value. In order to visualize their representa-
tion consider Figure 4.30. We start by creating two Symbol values using the same Symbol("example")

expression. Note that the new keyword is not used when creating Symbol values and using it will throw
a TypeError exception. Looking at the diagram, they look indistinguishable, except for the fact that they
are two separate identical values. However, the sym1 !== sym2 comparison in line 3 evaluates to true.
This is because Symbol values are unique and therefore the result of the equality and inequality operators
always indicates that two Symbol values are different. Even if they possess the same [[Description]]

as in this example.
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1 var sym1 = Symbol("example");

2 var sym2 = Symbol("example");

3 sym1 !== sym2; // true

[[Description]]: "example"[[Description]]: "example"

sym1: Symbol sym2: Symbol

Figure 4.30: Two Symbol primitive values.

Symbol Objects As we have seen, Symbol values are primitive values and not the typical objects used
in the rest of the built-in libraries. They have no [[Prototype]] internal property or named properties,
so what is supposed to happen when the expression Symbol("xpto").toString() is evaluated? Using
dot notation to access a property creates what is called a Property Reference. These have two compo-
nents: (1) the expression before the dot, called the base; and (2) the expression after the dot, called the
reference name. When the base of a property reference is not an object, it is converted to one by call-
ing the ToObject internal operation of the ECMAScript standard. The ToObject internal operation is the
only way to create Symbol objects. To compare Symbol values and objects, consider the code-snippet
and diagram in Figure 4.31. In the first line of code, we create a Symbol value, using the constructor
without the new keyword, with "example" as the value of [[Description]]. In the second line, we cre-
ate the Symbol object by executing a type conversion. While using the Object constructor with the new

keyword creates an object, calling it as a function makes it so the argument is converted to an object
by using the ToObject internal operation. In the diagram, we can see that the conversion to an object,
creates a wrapper that stores the Symbol value in its [[SymbolData]] internal property. This wrapper is
an ordinary object that also has a [[Prototype]] property that allows the Symbol("xpto").toString()

expression to execute successfully.

1 var symValue = Symbol("example");

2 var symObject = Object(sym);

Symbol.prototype

[[Extensible]]: true

[[Prototype]]:

[[SymbolData]]:

symObject: Object

[[Description]]: "example"

symValue: Symbol

Figure 4.31: Representation of a Symbol object (left) and Symbol value (right).

Symbol Constructor The Symbol constructor, like all other constructors, has two important compo-
nents: (1) the structure of the object that represents the constructor function with all its internal and
named properties; and (2) the pseudo-code description of its behaviour. Consider the ES6 excerpt in
Figure 4.32 that contains the descriptions of the Symbol constructor function. As we had noted, using the
new keyword will make it so the value of NewTarget is not undefined, causing a TypeError exception to
be thrown. Then the description argument is converted to a string value using the ToString internal
operation. Finally, the string is used to create the Symbol value that is returned.

Although the Symbol constructor allows the creating of new Symbol values, most ECMAScript pro-
grams do not need to create new ones and just use ones that are made available through the named
properties of the constructor. Consider the object diagram in Figure 4.33 where the constructor is dis-
played alongside some of its named properties, namely iterator and toPrimitive. These proper-
ties’ descriptors are immutable, as all their properties that are not [[Value]] are set to false. Their
[[Value]] property points to Symbol values that are created before any ECMAScript code is executed.
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Figure 4.32: ES6 description of the Symbol constructor function.

There are 11 of these Symbol values made available through the named properties of the construc-
tor Symbol. They do not allow any behavior that was not possible before, but it makes it unequivocal
the type of property being accessed. For example, the TypedArray prototype object makes an iter-
ator method available through the TypedArray.prototype[Symbol.iterator] property instead of the
TypedArray.prototype.iterator property. But if it did use the iterator string value as the property
key, it would still retain its functionality, changing only the way it is accessed.

Symbol: Function

prototype:

[[Extensible]]: true

[[Prototype]]:

iterator:

toPrimitive:

...

Descriptor

[[Value]]:

[[Writable]]: false

[[Enumerable]]: false

[[Configurable]]: false

[[Description]]: "Symbol.toPrimitive"

Symbol

Descriptor

[[Value]]:

[[Writable]]:   false

[[Enumerable]]:  false

[[Configurable]]: false

Function.prototype

[[Description]]: "Symbol.iterator"

Symbol

Symbol.prototype

Figure 4.33: Representation of the Symbol constructor object.

Symbol.prototype Object Since Symbol values have no prototype and Symbol objects are only rel-
evant in niche cases, the Symbol.prototype object does not have many methods. It has the three
following methods:

1. toString - Returns the string value resultant from the concatentation of "Symbol (", the sym-
bol’s [[Description]] and ")".

2. valueOf - If the this value is a Symbol object it returns this.[[SymbolData]]. If the this value is
a Symbol value, it simply returns that value.

3. Symbol.toPrimitive - This method does the exact same as the valueOf method.

4.4.3 ECMA-SL Implementation

We are now in a position to introduce and explain our implementation of the Symbol built-in library in
ECMARef6. First, we present the internal representation of Symbol values and objects. To conclude, we
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explain the changes that needed to be made to the structure of ECMA-SL objects to support the use of
Symbol values as property keys.

Symbol Values In ECMARef6, Symbol values are represented using ECMA-SL objects. Contrary to
the ECMA-SL objects used to represent ECMAScript objects, Symbol values in ECMA-SL do not have
a JSProperties property. Recall that a characteristic of Symbol values was that they were unique and
compared through their values and not the value of their [[Description]]. In ECMA-SL, two Symbol

values can be compared correctly using the = operator. However, it was still necessary for us to add
the ID property to distinguish between Symbol values. The ID property holds an integer value that is
different for every Symbol value. Why this was necessary, will be addressed later in this subsection.
As an illustration of the structure just described, consider the object diagram in Figure 4.34. Here, the
Symbol values created can be distinguished by their ID property, which has different values.

1 var symValue1 = Symbol("example");

2 var symValue2 = Symbol("example");

3 symValue1 === symValue2; // false

Description: "example"

ID: 1

sym1: Symbol

Description: "example"

ID: 2

sym2: Symbol

Figure 4.34: Symbol values are unique and distinguished by their ID property.

Symbol objects In the case of Symbol objects, they now have their own JSProperties property, al-
though it is not populated. The object structure of Symbol objects can be seen in Figure 4.35, where we
can see that the SymbolData property points to an ECMA-SL object that represents a Symbol value and
its Prototype property points to the Symbol.prototype object.

1 var symValue = Symbol("example");

2 var symObj = Object(symValue);

Description: "example"

ID: 1

symValue: SymbolSymbolData:

Extensible: true

Prototype:

JSProperties:

symObj: Object

Symbol.prototype

Figure 4.35: Internal representation a Symbol object and value.

Symbol Values As Property Keys Of particular importance is the actual use of symbols. Symbols are
meant to be used as property keys alongside strings. Since the Symbol built-in library was introduced
in ES6, the previous version of ECMARef, ECMARef5, had no support for Symbol values. Therefore, it
was necessary to adapt the reference interpreter to accommodate this new property-key type.

ECMA-SL objects are collections of string-value pairs, meaning that it was not possible to just use the
Symbol values as keys for our internal objects. Our first alternative was to just use the string value in
the Description property of Symbol values. An example of this configuration can be seen in Figure 4.36
where an Object a and a Symbol value sysValue with Description "example" are created. In line 4,
we assign the value "b" to object a, using the string value "example" as property key. The effect of
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this line can be seen in the JSProperties object, where there is a property descriptor with value "b"

mapped to the property example. In line 5, we do a similar process but use symValue as the property key
and set the value to "c". We can see that another property descriptor with Value "c" is associated
with the property Symbol(example).

1 var a = {};

2 var symValue = Symbol("example");

3
4 a.example = "b";

5 a[symValue] = "c";

JSProperties:

Extensible: true

Prototype:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "c"

Object.prototype

Figure 4.36: Object property assignment using string and Symbol values.

However, this represents two big problems:

1. how do we distinguish between Symbol value keys with the same Description value;

2. how can we distinguish between the string "Symbol(example)" and the a Symbol value with
Description "example" when they are both used as property keys.

The example in Figure 4.37 shows this exact scenario where the assignment done in line 6, is
overridden by the ones in line 7 and 8, which is not the intended behavior. The intended behavior is that
the assignments in lines 6, 7 and 8 all create their own property descriptors.

1 var a = {};

2 var symValue1 = Symbol("example");

3 var symValue2 = Symbol("example");

4
5 a.example = "b";

6 a[symValue1] = "c";

7 a[symValue2] = "d";

8 a["Symbol(example)"] = "e";

JSProperties:

Extensible: true

Prototype:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "e"

Object.prototype

Figure 4.37: Internal property storage design that does not allow for proper integration of Symbol values
as property keys.

In order to solve these issues, a new property called JSPropertiesSymbols was added to our
ECMA-SL representation of ECMAScript objects. This property is meant to hold the named proper-
ties of the ECMAScript object that use Symbol value keys, while JSProperties now holds only the
named properties that use string value keys. This solves the issue of using string values that match
the Description of Symbol values. However, at this stage, this solution still suffers from collisions of
Symbol values with identical Description values. To fix this issue, instead of the properties of the
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JSPropertiesSymbols object being the Description of the symbols, they are now the Symbols’ ID. The
ID property of Symbol values is converted to a string and used as a key (recall that ECMA-SL objects
are string-value pairs) to allow the distinction between all symbols, since each has a unique ID. This is
illustrated in Figure 4.38, where the a object now has a JSPropertiesSymbols property that points to an
object that maps the IDs 1 and 2 of the symbols to the appropriate property descriptors. Although the
current solution is enough to handle any reading or writing of properties usingSymbol values in objects,
an additional property [[SymbolKeys]] had to be added. This property allows the mapping of ID values
to the correspondent Symbol values, enabling the retrieval of both the Symbol and string property keys
of an object when methods like Object.keys() are called.

1 var a = {};

2 var symValue1 = Symbol("example");

3 var symValue2 = Symbol("example");

4
5 a.example = "b";

6 a[symValue1] = "c";

7 a[symValue2] = "d";

8 a["Symbol(example)"] = "e";

JSProperties:

Extensible: true

Prototype:

JSPropertiesSymbols:

SymbolKeys:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "e"

Object.prototype

1:

2:

Descriptor

Value: "c"

Descriptor

Value: "d"

1:

2:

Description: "example"

ID: 1

symValue1: Symbol

Description: "example"

ID: 2

symValue2: Symbol

Figure 4.38: Internal property storage design that allows for proper Symbol property keys integration.

4.5 Proxy

In this section we explore the Proxy built-in library. A Proxy object is an exotic object composed of
two other objects: a target and a handler. The internal methods of the Proxy object allow the partial
substitution of the internal methods of the target object by ECMAScript user-code present in the methods
of the handler object.
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4.5.1 Examples

Like most built-ins, the entry point of the Proxy library is its constructor. The Proxy constructor takes
in two arguments: a target object and an handler object. Consider the ECMAScript code in Listing 4.6
where, in the first line, a target object is created with the property a equal to "xpto". The next statement
is the declaration the handler variable which references another object. This object has a single property
named get whose value is a function that returns the "not xpto" value. The next statement declares
the proxy variable which is initialized with a Proxy object created using the Proxy constructor with the
objects in the target and handler variables as arguments. The assignment in the line 9 is where we
can start exploring the possibilities created by the Proxy library. The assignment statement does not
modify the named properties of the proxy object, but instead those of the target object, meaning that
after line 9 the target object has two named properties: a and example. So far, we have seen that the
Proxy object can pass on its duties to its target object. However this does not occur when accessing
the a property of proxy. In this case, the expression causes the [[Get]] internal method of the Proxy

object to run, that does not have the default behavior. Instead of retrieving its named property a as
expected, it first checks if its handler object has a method named get and if it does, the code of that
method takes over the execution of the [[Get]] internal method of the Proxy object. This means that
the proxy.a expression of the final line of the code-snippet evaluates to "not xpto", as that is what the
get method of the handler object returns.

Listing 4.6: Example of the use of a Proxy object to override the property retrieval semantics of an
object.

1 var target = { a: "xpto" };

2
3 var handler = {

4 get: function () { return "not xpto"; }

5 };

6
7 var proxy = new Proxy(target , handler);

8
9 proxy.example = 123;

10 proxy.a;

4.5.2 ECMAScript Specification

Proxy Objects A Proxy object is an exotic object that allows the partial substitution of some of the
internal methods of a given object by ECMAScript user-code. All proxy objects have two internal slots:

1. [[ProxyTarget]] - the object whose internal methods are to be replaced;

2. [[ProxyHandler]] - the object whose methods hold the ECMAScript code that is called instead
of the internal methods of the target object.

Contrary to all other ECMAScript objects, Proxy objects do not have a [[Prototype]] internal prop-
erty. The [[Prototype]] of a Proxy object is, by proxy, in most cases the [[Prototype]] of their target
object. Consider the visualization of this uncommon object structure in Figure 4.39 where we can check
the lack of the [[Prototype]] and [[Extensible]] internal properties as well as the lack of any named
properties in the Proxy object.

Besides the extra internal properties of Proxy objects, their most important aspect is their internal
methods which differ from the internal methods of ordinary objects. All these methods have the following
execution pattern:
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1 var target = { a: "xpto" };

2
3 var handler = {

4 get: function () { return "not xpto"; }

5 };

6
7 var proxy = new Proxy(target , handler);

[[ProxyTarget]]:

[[ProxyHandler]]:

proxy: Proxy

target: Object

Object.prototype

Descriptor

[[Value]]: Anonymous Function

[[Prototype]]:

a:

handler: Object

get:

[[Prototype]]:

Descriptor

[[Value]]: "xpto"

Figure 4.39: Representation of a Proxy object and its handler and target objects.

1. Fetch both the [[ProxyTarget]] and [[ProxyHandler]] internal properties and make sure that
the handler is not null;

2. Attempt to retrieve the appropriate method from the handler object, for example, in the execution
of the [[Get]] internal method, the method with key get is fetched;

3. If there was no method in the handler object, then there is no substitution to be made. In this
occurrence, the Proxy internal method uses the target’s internal method and finishes execu-
tion, returning the result if necessary. For example, in the execution of the [[Get]] method, the
target.[[Get]] method would be called;

4. Else, if the handler object possesses the appropriate method, then that method is called with the
adequate arguments;

5. Since unknown ECMAScript code was executed, it is necessary to check if some applicable invari-
ants are being upheld;

6. If all necessary invariants are upheld, then the method finishes, returning the appropriate value.

To verify this execution flow, consider Figure 4.40 that contains the ECMAScript standard’s descrip-
tion of the [[Get]] internal method of Proxy exotic objects. Instructions 2 to 5 correspond to the first
step, where the internal properties of the Proxy object are accessed and tested. The second step, which
corresponds to the method retrieval, is done in instructions 6 and 7 using the GetMethod function which
returns either a function or undefined. The third step is done in instructions 8 and 8.a which call the
[[Get]] method of the target if the result of the GetMethod call was undefined. Instructions 9 and 10
correspond to step 4 where the handler’s method is finally called. Step 5 takes place from instruction 11
to 13 where the invariants are enforced. Conveniently, in the “NOTE” section below the final instruction,
the standard lists all the invariants that are being enforced in this method. Finally, the sixth step occurs
in the final instruction.

Proxy Constructor Besides the ability to create Proxy objects, the Proxy constructor exposes an
additional method that creates revocable Proxy objects, called revocable. While using the construc-
tor in a typical new Proxy(target, handler) expression creates a regular Proxy object, using the
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Figure 4.40: ECMAScript standard’s description of the [[Get]] internal method of Proxy exotic objects.

Proxy.revocable(target, handler) method returns an object with two named properties: a prop-
erty named proxy which contains a newly created Proxy object; and a property named revoke that
contains a Function object with a reference to the Proxy object in a [[RevocableProxy]] internal prop-
erty. Calling this function sets the value of the [[ProxyTarget]] and [[ProxyHandler]] properties of
the Proxy object to null, making it unusable. Since Proxy objects do not have a [[Prototype]] internal
property, the constructor does not have a prototype named property. This means that there is no Proxy

prototype object either.

Advanced Example Recall the example given by Figure 4.3, where an ArrayBuffer object was being
used incorrectly as the user was trying to manipulate the underlying Data Block using bracket notation
which is incorrect since the ArrayBuffer object is not an exotic object with specialized [[Get]] and
[[Set]] internal methods that allow it to be used in that way. However, as we have been discussing, the
purpose of Proxy objects is to substitute an object’s internal method with an ECMAScript function. This
means that using a Proxy and proper handler objects, we can wrap an ArrayBuffer object and make it
so the previous incorrect example now works properly.

That is exactly what the code-snippet and diagram in Figure 4.41 demonstrate, as we start out by
creating an ArrayBuffer object and wrapping it with a DataView instance that is used in our custom
[[Get]] and [[Set]] methods. In line 4, we define the function isInteger which determines if a string

contains only digits. We then create the Proxy object in line 8, using the ArrayBuffer as target and an
object created inline as handler. The handler object has a get method which is called in the execution of
the [[Get]] internal method of the Proxy object. This method receives as arguments: the target, which
is the value of the [[ProxyTarget]] internal property; the property name used; and a receiver which is
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not relevant to this example. The method starts by determining if the property name used is a string

containing only digits, and therefore, that can be converted to an integer. The reason why the expression
typeof p == "number" is not used instead is because property names can only be string or Symbol
values. If the property name can be converted to an integer, then it is converted and the getInt8 method
of the DataView object that is wrapping the ArrayBuffer is called to get the value. If the property name
cannot be converted to an integer, then the ArrayBuffer is accessed using standard bracket notation on
the target. The handler object also has a set method that is called during the execution of the [[Set]]

internal method of the Proxy object. This method receives the same arguments as the get method,
with the addition of the value used for the assignment. It also starts by attempting the conversion of the
property name into an integer, but proceeds to call the setInt8 method of the DataView object instead if
it succeeds in the conversion. Should the conversion fail, then once the assignment is done in the typical
fashion using bracket notation on the target. Finally, the method returns true, since set methods are
meant to return a boolean flag to represent success. In line 22, we perform an assignment on the Proxy

object, that triggers the call of the [[Set]] internal method which in turn, calls the set method of the
handler object and write in the Data Block of the ArrayBuffer. Finally, the last two lines, test the value
of the first byte of the Data Block. First, using the DataView object, which guarantees that the 100 value
was written in the block and not as a named property in the Proxy or its target. Then, using the Proxy

object itself, which confirms that the substitution for the get method of the handler object was successful
and returned the expected value.

4.5.3 ECMA-SL Implementation

We now present the ECMARef6 implementation of the Proxy library. Since the Proxy objects and their
internal methods are the most important aspect of the library, our focus will be on the implementation of
those components.

Proxy Objects Most of the ECMAScript objects in ECMARef6 reference interpreter are created using
the NewECMAScriptObject ECMA-SL function, that initializes the JSProperties, JSPropertiesSymbols
and SymbolKeys properties. However, Proxy objects do not and cannot have any named properties
making this initialization redundant. Therefore, Proxy objects are creating using an ECMA-SL object
literal which creates an ECMA-SL object with no properties. This object is then populated with its
internal methods and the ProxyTarget and ProxyHandler properties. Consider Figure 4.42 where it is
possible to visualize our representation of Proxy objects. We can see that the Proxy object on right,
lacks the usual internal properties of ECMAScript objects and that its internal methods are all different
from their defaults.

Internal Methods Much like in the case of the DataView built-in library, the Proxy library does not add
anything that was not previously supported by the reference interpreter. Therefore, our implementation
did not require extending the ECMA-SL language or changing the structure of all ECMAScript objects,
like the Symbol library did, which allowed us to copy the specification. As we can see in Figure 4.43,
both the specification and our implementation of the [[Enumerate]] internal method follow the pattern
mentioned above and there is a high degree of resemblance between the instructions of both of them.
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1 var ab = new ArrayBuffer (4);

2 var dv = new DataView(ab);

3
4 function isInteger(str) {

5 return typeof str == ’string ’ ? /^\d+$/.test(str) : false;

6 }

7
8 var abProxy = new Proxy(ab, {

9 get: function (t, p) {

10 return isInteger(p) ? dv.getInt8(parseInt(p)) : t[p];

11 },

12 set: function (t, p, v) {

13 if (isInteger(p)) {

14 dv.setInt8(parseInt(p), v);

15 } else {

16 t[p] = v;

17 }

18 return true;

19 }

20 });

21
22 abProxy [0] = 100;

23 dv.getInt8 (0) === 100; // true

24 abProxy [0] === 100; // true

[[ArrayBufferData]]:

[[ArrayBufferByteLength]]: 4

ab: Object[[ViewedArrayBuffer]]:

[[ByteLength]]: 4

[[ByteOffset]]: 0

[[DataView]]: true

dv: Object

Data Block

[[ProxyTarget]]:

[[ProxyHandler]]:

px: Object

get:

set:

handler: Object

Descriptor

[[Value]]: Anonymous Function

Descriptor

[[Value]]: Anonymous Function

000100

Figure 4.41: ECMAScript code implementation and diagram of an ArrayBuffer wrapped using a Proxy

object to allow utilization of bracket notation to read and write bytes.

4.6 Reflect

In this section we will introduce the Reflect built-in library and why some of its functionality seems a bit
redundant.

The Reflect built-in library is meant to allow ECMAScript code to more directly call internal methods
of objects. While all internal methods are indirectly called via nested function calls, without the Reflect

library it is impossible to call them in isolation. However, as we will see there are some cases where the
Reflect library is not necessary.

4.6.1 Examples

Listing 4.7: Example of the use of the Reflect object.
1 var obj = {

2 a: "xpto"

3 };

4
5 var iterator = Reflect.enumerate(obj);

6
7 var result = iterator.next();
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ProxyTarget:

ProxyHandler:

Get: "GetProxy"

Set: "SetProxy"

...

Enumerate: "EnumerateProxy"

Delete: "DeleteProxy"

OwnKeys: "OwnKeysProxy"

proxy: Proxy

Object.prototype

handler: Object

get: ...

Prototype:

JSProperties:

Extensible: true

JSPropertiesSymbols:

SymbolKeys:

target: Object

a: ...

Prototype:

JSProperties:

Extensible: true

JSPropertiesSymbols:

SymbolKeys:

Figure 4.42: Internal representation of a Proxy object and its target and handler objects in ECMARef6.

4.6.2 ECMAScript Specification

In the ECMAScript specification, the Reflect library is accessed through the Reflect property of the
global object. The value of this property is an ordinary object in contrast to most other built-in libraries
that provide constructors. This means there are no Reflect objects or a Reflect.prototype object. As
such, all the functionality of this library is accessed through the methods of Reflect object. Each of its
methods represents one of the internal methods of objects present in the standard. Like most reflection
features of other languages, these methods allow ECMAScript programs to directly call the internal
methods instead of them being indirectly called via the constructs of the language. To that effect, the
Reflect object has 14 methods, with 12 of them matching the 12 internal methods of non-function
objects and the other 2 being matching the [[Call]] and [[Construct]] internal methods of functions.
Table 4.4 matches all the methods of the Reflect object with its corresponding internal method. Much
like the internal methods of Proxy objects, there is common pattern of behavior in the Reflect methods.
This pattern is the following:

1. Validation of the inputs. For example, when calling Reflect.construct the first argument must be
a constructor or a TypeError exception will be thrown;

2. Conversion of inputs to internal data types. For example, when calling the Reflect.construct

method, the second argument is an Array of the arguments to be passed on to the construc-
tor function. However, the Construct internal operation which this method calls, receives those
arguments in a List instead of an Array object. Since, List values cannot be created by the
ECMAScript program calling Reflect.construct, the array must be converted;

3. The internal method or an internal operation that calls the internal method is called;

4. Similarly to the inputs, the outputs of internal methods can sometimes be values of types internal
to the interpreter and therefore need to be converted to ECMAScript equivalent. For example,
the [[OwnPropertyKeys]] internal function called by the Reflect.ownKeys method returns a List

value with the property keys which needs to be converted to an ECMAScript Array object.
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(a) Standard description of the Proxy.[[Enumerate]] internal method.

1 function EnumerateProxy (O) {
2 /* 1. Let handler be the value of the [[ ProxyHandler ]] internal slot of O. */
3 handler := O.ProxyHandler;
4 /* 2. If handler is null , throw a TypeError exception. */
5 if (handler = ’null) {
6 throw TypeErrorConstructorInternal ()
7 };
8 /* 3. Assert: Type(handler) is Object. */
9 assert(Type(handler) = "Object");

10 /* 4. Let target be the value of the [[ ProxyTarget ]] internal slot of O. */
11 target := O.ProxyTarget;
12 /* 5. Let trap be GetMethod(handler , "enumerate "). */
13 trap := GetMethod(handler , "enumerate");
14 /* 6. ReturnIfAbrupt(trap). */
15 @ReturnIfAbrupt(trap);
16 /* 7. If trap is undefined , then */
17 if (trap = ’undefined) {
18 /* a. Return target .[[ Enumerate ]](). */
19 return {target.Enumerate }( target)
20 };
21 /* 8. Let trapResult be Call(trap , handler , [target ]). */
22 trapResult := Call(null , null , trap , handler , [target ]);
23 /* 9. ReturnIfAbrupt(trapResult). */
24 @ReturnIfAbrupt(trapResult);
25 /* 11. If Type(trapResult) is not Object , throw a TypeError exception. */
26 if (!( Type(trapResult) = "Object")) {
27 throw TypeErrorConstructorInternal ()
28 };
29 /* 12. Return trapResult. */
30 return trapResult
31 };

(b) Implementation of the Proxy.[[Enumerate]] internal method in the reference interpreter.

Figure 4.43: Comparison between the standard description of the Proxy.[[Enumerate]] internal method
and its implementation in the reference interpreter.

Consider the ECMAScript standard excerpt in Figure 4.44, where we can observe the aforemen-
tioned pattern in the description of the Reflect.getOwnPropertyDescriptor method. This method has
two parameters, target and propertyKey, and its purpose is to retrieve the property descriptor as-
sociated with the propertyKey key of the target object. In the first line, it checks if the target argument
is an object. If it is not an object, then a TypeError exception is thrown because only objects have inter-
nal methods. In the next line, the propertyKey argument is coerced into a string or Symbol value using
the ToPropertyKey internal operation, since those are the types accepted by [[GetOwnProperty]]. In
line 4, the call to [[GetOwnProperty]] is done and the property descriptor returned is stored in the
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Internal method Reflect method

[[Call]] apply

[[Construct]] construct

[[DefineOwnProperty]] defineProperty

[[Delete]] deleteProperty

[[Enumerate]] enumerate

[[Get]] get

[[GetOwnProperty]] getOwnPropertyDescriptor

[[GetPrototypeOf]] getPrototypeOf

[[HasProperty]] has

[[IsExtensible]] isExtensible

[[OwnPropertyKeys]] ownKeys

[[PreventExtensions]] preventExtensions

[[Set]] set

[[SetPrototypeOf]] setPrototypeOf

Table 4.4: Internal methods and their Reflect object method counterparts.

desc variable. This value cannot be returned as is, since ECMAScript programs have no mechanisms
to deal with property descriptors directly. Consequently, the FromPropertyDescriptor internal op-
eration is used to create an object whose named properties mimic the fields of the descriptor passed.
This value is now a standard ECMAScript object and can be returned.

Figure 4.44: ECMAScript standard’s description of the Reflect.getOwnPropertyDescriptor method.

Duplicated Behavior With the introduction of the Reflect library, some of the functionality already
present in the standard, was made redundant or repeated. When of those cases is the getPrototypeOf

method of the Reflect object. As we can see in Figure 4.45, the equivalent method for the Object built-
in object is almost identical. The only difference being that the Reflect version will throw a TypeError

exception if the argument is not an object and the Object version will coerce the argument into an object
instead. They both then return the result of calling the [[GetPrototypeOf]] internal method.

The reason why we consider at least one of these methods redundant is because a simple EC-
MAScript instruction before a call to any of these methods would equalize their functionality. One could
argue that the existence of methods this similar could even be a source of confusion for developers. List-
ing 4.8 and Listing 4.9, demonstrate how with an extra line of ECMAScript code it is possible to obtain
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Figure 4.45: ECMAScript Standard specification of the getPrototypeOf method of the Reflect and
Object built-in objects.

the behavior of one method while using the other one. In the first one, the use of the Object constructor
without the new keyword is used to perform a type conversion and guarantee that the value of “obj” is
an object. In the second snippet, we perform a type check using the typeof operator to guarantee that
Object.getPrototypeOf is never called with a non-object argument. The getPrototypeOf method is
used as an example here, but there are other methods that fall into the same pattern.

Listing 4.8: Equivalent to the Object.getPrototypeOf method.
1 var obj = Object(notObj);

2 Reflect.getPrototypeOf(obj);

Listing 4.9: Equivalent to the Reflect.getPrototypeOf method.
1 if (typeof obj != "object") throw TypeError("Must be an object");

2 Object.getPrototypeOf(obj);

Regardless of how redundant these methods may or may not be, after considering the end goal of
the Reflect built-in library and some constraints of the standard as a whole it is possible to understand
that the existence of these almost repeated methods is mandatory.

Considering that the objective of the Reflect library is to provide a access to an object’s internal
methods, the most obvious way to supply that functionality is by mapping each internal method to a
method of an object accessible at the JavaScript level, in this case, the Reflect object. This is the route
taken by the authors of the ECMAScript standard and Table 4.4 shows how the methods were mapped.
However, applying this thought process in a consistent manner, does mean that some functionality will
end up being duplicated.

Why not add the Reflect.getPrototypeOf method and remove the Object.getPrototypeOf then?
This would solve the issue of duplicated functionality, however, as we mentioned in Section 2.2, there
is a high priority attributed to maintaining backwards compatibility when expanding the ECMAScript
standard. Since the Object built-in library existed in ES5 with all the conflicting methods and the Reflect

built-in library was a new addition to ES6, this sort of change would make all ECMAScript code that used
the Object built-in methods fail when executed.
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4.6.3 ECMA-SL Implementation

We can now present our implementation of the Reflect built-in library in ECMARef6. Much like the other
libraries we implemented, here we were able to maintain the similarity between the specification and the
implementation.

Consider Figure 4.46 where we compare our implementation of the Reflect.getOwnPropertyDescriptor

method to the specification. In the ECMA-SL implementation, the arguments have to be retrieved from
the args list using the l nth operator, as we had discussed before. The other significant difference
occurs in the call of the internal method. In ECMA-SL, the this value in methods is not implicit and
therefore must be passed as the first argument.

1 function ReflectGetOwnPropertyDescriptor(global , this , NewTarget , strict , args) {
2 target := l_nth(args , 0);
3 propertyKey := l_nth(args , 1);
4 /* 1. If Type(target) is not Object , */
5 if (!( Type(target) = "Object")) {
6 /* throw a TypeError exception */
7 throw TypeErrorConstructorInternal ()
8 };
9 /* 2. Let key be ToPropertyKey(propertyKey). */

10 key := ToPropertyKey(propertyKey);
11 /* 3. ReturnIfAbrupt(key). */
12 @ReturnIfAbrupt(key);
13 /* 4. Let desc be target .[[ GetOwnProperty ]](key). */
14 desc := {target.GetOwnProperty }(target , key);
15 /* 5. ReturnIfAbrupt(desc). */
16 @ReturnIfAbrupt(desc);
17 /* 6. Return FromPropertyDescriptor(desc). */
18 return FromPropertyDescriptor(desc)
19 };

Figure 4.46: ECMAScript standard’s description and ECMA-SL implementation of the
Reflect.getOwnPropertyDescriptor method.

4.7 Other Built-in Libraries

My role in the development of ECMARef6 was to coordinate the implementation of all the built-in libraries.
In that capacity, I was in charge of their evaluation and correction. Meaning that I tested and corrected
bugs across all the built-in libraries, whose code totals 26275 LoC.

Besides the built-in libraries described in this chapter, I was the main developer of the Reflect

library. The Reflect library exposes no constructors or prototypes, just an ordinary object. This ob-
ject has one method for each of the internal methods present in ECMAScript objects. Every one of
these methods receives an object as its first argument and calls its internal method that matches the
Reflect method. For instance, the expression Reflect.getPrototypeOf(new Int8Array()) would call
the [[GetPrototypeOf]] internal method of the Int8Array object passed as argument and return the
value obtained. Since objects are the only type with internal methods, if a value of another type is
used as the first argument, then the method call will throw a TypeError exception. I did not include a
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description of the implementation of this library in this thesis due to time constraints.
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Chapter 5

Evaluation

This chapter presents the evaluation of our implementation of the ES6 built-in libraries. In a nutshell,
we evaluate our implementation by testing it against Test262, the ECMAScript official test suite. Even
though we focus the evaluation on the built-in libraries discussed in Chapter 4, we present our testing
results for all built-in libraries.

5.1 Test262

The evaluation process of the ECMARef6 reference interpreter is straightforward given the existence
of Test262 [11]. Since our main goal is to conform to the ECMAScript standard and the test suite’s
purpose is to test the conformity of an implementation to the standard, we can evaluate the extent
and correctness of our implementation quantitatively, by checking the number of passing tests for each
implemented library and contrasting that with the total number of tests for that library.

The tests that compose the Test262 test suite are JavaScript files with a set of instructions and the
necessary assertions to verify that the state produced by the execution matched the tests’ expectations.

Figure 5.1 is an example of a test file, which we can see is just a JavaScript file. It is also important to
note the three distinct sections of the test file: the copyright section which has information related to the
authors of the test; the metadata section where some important characteristics of the test are defined;
and the body section where the JavaScript code resides. When it comes to ES6 tests, the metatadata
section has a key-value structure with following keys:

• es6id: this value refers to the section of the standard targeted by the test;

• description: a succinct description of the feature being tested;

• info: information about the specific pseudo-code instruction of the standard that captures the core
functionality being tested;

• includes: a collection of JavaScript files that need to be evaluated before executing the test code;

• features: the features of the standard that are being tested.

For instance, the test given in Figure 5.1 tests the behavior defined in Section 22.2.2.2 of the stan-
dard, which defines the %TypedArray%.of function. More concretely, the instruction in the 4th line is
supposed to throw a TypeError exception since ““of” cannot be invoked as a function”. On line 20, there
is an assert object and a call to its throws method neither of which is defined in the standard and there-
fore should not be accessible since they are not defined before line 20. This means that they are defined
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1 // Copyright (C) 2016 the V8 project authors. All rights reserved.

2 // This code is governed by the BSD license found in the LICENSE file.

3 /* ---

4 es6id: 22.2.2.2

5 description: >

6 "of" cannot be invoked as a function

7 info: |

8 22.2.2.2 %TypedArray %.of ( ... items )

9
10 ...

11 3. Let C be the this value.

12 4. If IsConstructor(C) is false , throw a TypeError exception.

13 ...

14 includes: [testTypedArray.js]

15 features: [TypedArray]

16 ---*/

17
18 var of = TypedArray.of;

19
20 assert.throws(TypeError , function () {

21 of();

22 });

Figure 5.1: Example of a test file of the Test262 suite.

somewhere else, more concretely, the Test262 harness. The harness is a collection of JavaScript files
composed of function and variable definitions, some of which must be executed before the test, more
specifically the ones mentioned in the includes value of the metadata section.

5.1.1 Test Selection

Although, we use the Test262 suite to perform our evaluation, some of its tests are meant to target fea-
tures of the newer versions of ECMAScript. Naturally, some tests targeting ES12, the newest version of
the standard, are expected to fail when run against ECMARef6. Including these tests in our evaluation
would pollute our results and prevent us from getting a clear idea of how well our implementation per-
formed relative to the version of the standard that we target. This means that in order to get a correct
assessment of the state of our implementation we need to filter out a portion of these tests.

Selecting tests is not trivial because not all of them come annotated with a flag that indicates their
version. Up to 2016, tests included a flag indicating whether they target version 5 (es5id) or version 6
(es6id). These flags have deprecated. Hence, if a test comes with either the es5id or the es6id flags,
then it should be included. However, the opposite does not hold. There might be tests without these
flags that should also be included. The test filtering problem is a highly complex problem that cannot
be systematically addressed in the context of this thesis. Our solution was to filter the unlabeled tests
manually. More concretely, our selection methodology for unlabeled tests was simple: when testing
our implementation, tests that failed were analyzed to determine the source of the error. If the error
source was a missing feature that the test case expected to be present, but was only introduced in an
ECMAScript version posterior to ES6, then the test was discarded as it was not applicable to ECMARef6.
In theory, this approach means that although we discard some tests relative to the built-in libraries, these
target more recent versions of the ECMAScript standard and our selection still contains all the tests
meant for the 6th version.

Table 5.1 presents the results for the test selection process. For each built-in library, we show its
corresponding section in the standard, the number of tests in the current test suite and the number of
selected tests. It is worth noting that there is a smaller selection ratio in the TypedArray, ArrayBuffer
and DataView sections relative to the other ones. This is due to the introduction of the BigInt primitive
type in ES11 that added the element types Int64 and Uint64 to byte-level operations. This resulted in
the addition of new TypedArray constructors and DataView methods that needed to be tested.
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ES6 Section # of tests in the Test262 suite # of tests selected

18 - 26 22996 13253
19.4 (Symbol) 92 81
22.2 (TypedArray) 2012 962
24.1 (ArrayBuffer) 150 79
24.2 (DataView) 505 327
26.1 (Reflect) 153 152
26.2 (Proxy) 311 259

Table 5.1: Number of tests selected for each built-in library.

5.2 Evaluation Pipeline

The test execution pipeline is similar to the one explained in section 2.1 except that the JavaScript
file would be the test that we intend to run and the output of the CoreECMA-SL interpreter needs to
be evaluated to determine the outcome of the test. There are 4 possible test outcomes which are
determined by the exit code of the CoreECMA-SL interpreter:

• 0: Ok - the test passed;

• 1: Fail - the test failed because some of the assertions made in the test file were not true;

• 2: Error - the test failed because there was an internal error in the ECMARef6 interpreter, such
as accessing a property of an undefined value or calling an internal function that does not exist or
with the incorrect number of arguments;

• 3: Unsupported - the test failed because it requires some feature which is currently not imple-
mented, such as one of the built-in libraries or a language feature like template literals, and so is
expected to fail.

As discussed in Section 5.1, the Test262 harness must be executed before the body of the test so
that the auxiliary testing functions can be defined. To fulfill this requirement we simply prepend the
harness’s code to the test’s code.

Putting it all together, our testing pipeline, illustrated in Figure 5.2, starts with the concatenation of
the harness and test to be executed. That JavaScript file will then be parsed and compiled to ECMA-SL
so that the ECMARef6 interpreter can be imported into it, creating the out.esl file of the diagram. This
file is then compiled to CoreECMA-SL using the ECMA-SL2CoreECMA-SL tool, so that the code can be
evaluated by the CoreECMA-SL interpreter and test’s outcome determined.

5.3 Results

Considering that the measure we are using to evaluate the results obtained during this thesis is the
conformity to the ECMAScript standard using the Test262 test suite, the various test outcomes described
in Section 5.2 can be considered irrelevant, as fail, error and unsupported test results all represent the
same result in the evaluation context, that the interpreter does not conform.

Grouping all the negative test results and looking specifically at the tests that are related to the built-in
libraries, we can do a proper assessment of the work performed during this thesis. Consider Table 5.2
that summarizes the results across all the built-in libraries of the ECMAScript standard and the ones
where I was personally involved. Here we can observe that although we employ strategies to guarantee
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ast.esl ESX_interpreter.esl

out.esl

core.cesl

JS2ECMA-SL

ECMA-SL2CoreECMA-SLCoreECMA-SL interpreter

0 Ok / 1 Fail / 2 Error / 3 Unsupported

import

test.js

harness.js

Figure 5.2: Test execution pipeline.

that the reference interpreter is as close to the specification as possible, there are still some errors
present. It is important to split these errors into categories based on where they occurred. There are 3
possible categories they can be placed into:

1. The error comes from a flaw in the implementation of the built-in library being tested. This type of
error is the least common, but the most serious.

2. The error comes from a flaw in the implementation of one of the dependencies of the built-in
library being tested. For instance, a DataView test that fails due to a flaw in the ArrayBuffer

implementation.

3. The error comes from the lack of an implementation of one of the dependencies of the built-in
library being tested.

The reasons for these errors are the following:

• Symbol - The errors in the Symbol tests fall into the 3rd category. These stem from the use of
ECMARef5 code inside of ECMARef6. ES6 introduced the concept of Realm which is something
that encapsulates all ECMAScript code. It contains the global object and the language’s intrinsic
objects. The tests that are failing test if the different Symbol values that are named properties of the
Symbol constructor are equal across all realms. Since they are not yet supported by ECMARef6,
the tests fail;

• ArrayBuffer - The first error is equal to the Symbol errors, suffering from the lack of the Realm

implementation. The other test falls into the 2nd category and fails because there is an error in
the implementation of the constructor of ECMAScript classes. Classes that extend other classes
but do not define their own constructor. For example, in class A extends B{} class A gets a
default constructor that simply passes all the arguments it receives to the constructor of B. The
default constructor function in this scenario currently does not provide the appropriate arguments
to the constructor of the super class it extends. Using the constructor with the expression new A(),
would make it call the B constructor with one argument with value undefined, the equivalent of
B(undefined), instead of using no arguments;

• DataView - There are two separate reasons why some of the DataView tests fails: (1) one of the
tests fails because of the lack of a Realm implementation; (2) the other 2 tests fail because there is
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an error in the representation of the NaN value in ECMA-SL. These 2 tests are the only ones that
fail because of errors in the implementation done in the context of this thesis.

• TypedArray - In the case of the TypedArray tests, the errors come from the NaN and Realm issues
mentioned above;

• Reflect - The Reflect tests that are failing have to do with the way properties are defined in
ECMA-SL objects. Internal methods of ECMAScript objects like [[OwnKeys]], should return the
keys sorted by creation order. ECMA-SL objects do not keep track of the creation of their prop-
erties and so the test cannot pass. Currently, this functionality is being added to the ECMA-SL
representation of ECMAScript objects by another student;

• Proxy - The Proxy tests are all failing because of different reasons: (1) one test uses a Bound

Function which are not yet completely implemented; (2) another test uses an import statement
which the reference interpreter does not yet support; (3) another test uses a generator function
which the reference interpreter does not yet support; (4) and the final test fails because of the lack
of property order preservation, as in the Reflect tests.

Section # of tests Passed Failed Passed Percentage

19.4 (Symbol) 81 68 13 83.95%
22.2 (TypedArray) 959 942 17 98.22%
24.1 (ArrayBuffer) 79 77 2 97.46%
24.2 (DataView) 327 324 3 99.08%
26.1 (Reflect) 152 149 3 98.02%
26.2 (Proxy) 259 255 4 96.53%
19.1 (Object) 2942 2926 16 99.46%
19.2 (Function) 399 378 21 94.74%
19.3 (Boolean) 51 51 0 100.00%
19.5 (Error) 41 41 0 100.00%
20.1 (Number) 348 303 45 87.07%
20.2 (Math) 341 337 4 98.83%
20.3 (Date) 750 741 9 98.80%
21.1 (String) 1014 973 41 95.96%
21.2 (RegExp) 1410 885 525 62.77%
22.1 (Array) 2701 2675 26 99.04%
23.1 (Map) 156 154 2 98.72%
23.2 (Set) 197 196 1 99.49%
23.3 (WeakMap) 93 91 2 97.85%
23.4 (WeakSet) 79 78 1 98.73%
24.3 (JSON) 150 138 12 92.00%
25.1 (Iteration) 4 4 0 100.00%
25.2 (GeneratorFunction) Not Implemented
25.3 (Generator) Not Implemented
25.4 (Promise) 384 375 9 97.66%
26.3 (Module Namespace) Not Implemented
Total 13253 12457 793 93.99%

Table 5.2: Test results of the built-in libraries.
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5.4 Evaluation short-comings

Besides the goal of our interpreter conforming the ECMAScript standard, there is also the goal of it
being capable of being used as a reference. To evaluate our success in the pursuit of this goal, it would
be necessary to compare the written ECMA-SL code to the original standard and determine a level of
closeness. With a tool meant to convert between the two mediums (that we initially proposed to build
in this thesis), this kind of comparison might have been possible at a quantitative level and given us
more metrics to gauge the value of the work done. However, given that the goal of the thesis changed
after the proposal, the tool never materialized and therefore our evaluation can be considered shallow or
insufficient. Although we do not have the tools to evaluate this aspect, we still believe that our line-to-line
matching strategy between ECMA-SL statements and standard pseudo-code instructions would have
guaranteed a satisfying result.
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Chapter 6

Conclusions

In this thesis we have worked in the context of the ECMA-SL project with the goal of extending its more
up-to-date reference interpreter (ECMARef6) with support for the built-in libraries of the 6th version of the
ECMAScript standard. This was done using the ECMA-SL language which was specifically designed
to be similar or identical to the standard’s pseudo-code. This similarity allowed us to use a line-by-
line strategy, where we matched each pseudo-code instruction of the specification with an ECMA-SL
statement in the implementation. This strategy gives us confidence that our implementation can be
used as a reference for the ECMAScript standard, and serve as its own executable specification.

As the complexity of the ECMAScript standard increases, it becomes progressively more relevant the
existence of a complete reference interpreter that can be used to reason about other implementations
and as a testing mechanism. We believe ECMARef6 to be the reference interpreter with the most
complete implementation of the built-in libraries of the standard, making its use as a testing oracle
possible, since the built-in libraries are a large part of the ECMAScript language and most ECMAScript
programs use them during their execution.

In the journey to attaining we had to extend the ECMA-SL language itself and change fundamental
design decisions related to the core representation of ECMAScript objects. More concretely, we needed
to extend the ECMA-SL language with two types, byte and array, and operators to create and manipulate
them. This was necessary as with the previous version of the ECMA-SL language, it was impossible
to represent the Data Block type introduced with the ArrayBuffer library. In the implementation of
the Symbol library, we had to update the internal model of ECMAScript objects to support the use of
Symbol values as property keys. The most impactful of these changes is the latter, but since there
are abstractions set in place when accessing the named properties of objects, it was possible to avoid
changing the entire ECMARef6 codebase. However, this approach may have to be revised if other types
of property keys are added in further versions.

Future Work As a continuation of the work done in this thesis, future work could be done to complete
the implementation of the ECMARef6 reference interpreter. Core language functionality is not yet imple-
mented, such as execution context switching, which is required for the implementation of the Generator

and GeneratorFunction built-in libraries. Having a complete reference interpreter opens up a great
many number of other possibilities for future work. The following are examples of possible projects:

1. A tool capable of generating the HTML document corresponding to the specification using the
reference interpreter’s code;

2. A tool with the inverse function can be done. It would use the specification to generate a reference
implementation. A tool that was actually able to perform this function at a high level would signif-
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icantly reduce the implementation time of future reference implementations, such as ECMARef7,
ECMARef8, etc;

3. With a complete reference interpreter one could employ automatic test generation techniques to
automatically create a conformance test suite, that could potentially complement Test262 as the
official test suite of the standard.

Even without an automatic translation tool to generate reference implementations, future work could
still be done to keep updating the current reference interpreters to the more recent versions of the
standard, even if by hand.
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[20] D. Gonçalves, “A reference implementation of ecmascript built-in objects,” Master’s thesis, Instituto
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