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Abstract—Collision avoidance procedures have become es-
sential to all satellite operators. Current procedures rely on
the analysis of multiple collision warnings by human analysts,
but, with the continuous growth of the space population, this
manual approach may be an unfeasible task in the future. In
2019, the European Space Agency launched a machine learning
competition for the collision risk prediction problem and the
results showed that the naive forecast (considering the risk value
at cut-off day) is a strong predictor for this problem, suggesting
that the collision warnings may follow the Markov property.
This work investigates this theory by benchmarking the use of
hidden Markov models, using two different approaches. Firstly,
the time series of the risk contained in the conjunction data
messages is directly modeled and predicted and, in the second
approach, the position uncertainties are predicted and the risk is
computed from the predictions. To infer a joint distribution for
the parameters of each implemented model instead of obtaining
point-wise estimates, Bayesian inference is used, allowing the
development of probabilistic models that can incorporate prior
knowledge/beliefs about the problem and can provide prediction
intervals. Although the second approach yields poor results, the
first approach outperforms the baseline solution, despite the fact
that only one feature of the dataset was analyzed, which further
adds to the idea that the probability of collision may follow the
Markov property and suggests that this is a powerful method
that should be further explored.

Index Terms—hidden Markov models, Bayesian inference,
collision risk estimation, machine learning

I. INTRODUCTION

Since the beginning of the space age, with the launch of
Sputnik-1 in 1957, the amount of resident space objects in
Earth orbit has been steadily increasing, as shown in Figure 1,
which presents the evolution of the number of objects in space
from 1957 until today. The space environment is becoming
progressively crowded and space traffic is undergoing notable
changes fuelled by the development of commercial and private
space activities and the deployment of large constellations,
especially in the Low Earth Orbit (LEO) region, which further
adds to the growth of space population. This continuous
growth of the number of objects in space can pose a great
danger to all operational satellites since collisions between
resident space objects create large amounts of fragments that
are further released into orbit. These fragmentation events cre-
ate numerous debris that are spread into different directions at
different velocities and, over time, lead to a gradual pollution

Fig. 1. Count evolution of objects in space from 1957 to 2022 [1].

of a vast volume of space [2], eventually contaminating entire
orbital altitudes. If measures are not taken, collisions between
space objects can reach a cascading point, in which collisions
may cause a sequence of new impacts, due to the high density
of objects in orbit, posing a real threat to space missions and
endangering the whole space population. This effect is known
as the Kessler Syndrome [3]. For these reasons, the need to
consider collision avoidance as part of routine operations is
evident.

When an event between two space objects meets the con-
ditions for a close conjunction, in which the monitored space
object is referred to as target and the other object as chaser,
collision warnings in the form of conjunction data messages
(CDMs) are created and sent to the operators of the satel-
lites. These messages contain propagated information about
the event to the time of closest approach (TCA). However,
orbit determination and propagation cannot be modeled with
desired precision and have associated uncertainties making it
impossible to know for sure whether a collision will occur or
not. Hence, during the time span of the conjunction event,
both objects that generated the issue of warning messages
are routinely tracked, leading to the creation of more CDMs
that contain refined and more precise information about the
conjunction. Typically, a LEO satellite receives hundreds of
CDMs per week that, currently, require the analysis of human
experts/analysts, generating high operational costs [4]. With
the continuous growth of the space population, this approach
may be an unfeasible task in the future, highlighting the

1



importance of automation in risk assessment and estimation.
In 2019, ESA launched the Collision Avoidance Challenge

(CAC) [5] to study the feasibility of applying machine learning
(ML) methods in collision risk estimation and released a
dataset that contained sequences of CDMs received in support
of real close encounters. The competition aimed to develop
ML models capable of predicting the criticality of conjunction
events by analyzing the time series of CDMs received up to 2
days before the predicted TCA, which is considered the cut-off
time. The collision probability within the CDMs is computed
through the Alfriend-Akella algorithm [6] and the final risk
of each event is considered to be the risk contained in the
last released CDM, which is considered the best knowledge
about the outcome of the close approach. Figure 2 illustrates
the concept of ML in collision avoidance.

CDM CDM CDM CDM

TCA
Cut-off time

(2 days to TCA)

...

ML prediction

Time
...

Close encounter 
detection

Fig. 2. Concept of the ML approach in collision avoidance.

The competition showed that the naive/baseline approach
(using the risk contained in the last CDM received until the
cut-off time as the risk prediction) is a strong predictor for
this problem, with only 12 teams out of 97 managing to beat
the benchmark solution [7]. The team that presented the top
solution used a step-by-step statistical approach to optimize
the constitution of the test set and the competition metric.
Manhattan LSTMs [8] and Gradient boosting trees showed
good performance during the CAC.

After the competition, relevant work regarding the use of
ML in collision avoidance has been conducted. Metz [9] im-
plemented various models to predict the final chaser position
uncertainties for each event and used those predictions to
compute the risk using Akella’s and Alfriend’s algorithm [6].
Acciarini et al. [10] built a physics-based generative model
using probabilistic programming to simulate the generation of
CDMs, based on real data. Pinto et al. [11] used Bayesian deep
learning with recurrent neural network architectures to also
study the possibility of generating CDMs. Abay et al. [12]
benchmarked the results for the state-of-the-art ML models
that showed good results against the naive approach since the
beginning of the competition.

As mentioned, the naive forecast, as well as its variants,
are very strong predictors for collision risk assessment which
indicate that the time series of CDMs may follow the Markov
property [7], i.e., the information contained in the current
CDM only depends on the values of the previous CDM. In
this work, this property will be investigated by implementing
and benchmarking the use of hidden Markov model (HMM)
in the risk prediction problem, using Bayesian statistics. For
that, two datasets are used: the one that ESA released for

the CAC challenge and a real-world raw dataset provided by
Neuraspace.

II. BACKGROUND

In this Section, the necessary theoretical concepts about
Bayesian modeling and HMMs are provided. This section has
been kept as brief as possible while giving all the necessary
concepts. For more details, the reader is encouraged to read
the references provided throughout this Section.

A. Bayesian Modeling

In probabilistic models, the set of parameters θ of a prob-
abilistic model is typically obtained by finding the param-
eters that result in the best match between the model and
the observed data X, using e.g. the maximum likelihood
estimation. In this work, rather than estimating a single set
of parameters, an entire joint distribution for θ is inferred.
This is possible by adopting a Bayesian approach, in which
the unknown parameters are treated as random variables and
probability theory is used to update its values conditioned on
the observed data [13]. The Bayesian interpretation considers
that the associated randomness of θ encapsulates the prior
belief one holds about the problem and that the belief is
updated by some observed data X.

Bayesian modeling is based on the Bayes’ theorem, that
states that

p(θ|X) = p(X|θ) p(θ)/p(X), (1)

in which p(θ) denotes the prior distribution, p(X|θ) the
likelihood, p(X) the evidence and p(θ|X) the posterior distri-
bution. Once the posterior is defined, it can be used to obtain
predictions of the model for new input data.

However, computing the distribution p(θ|X) analytically
is usually an unfeasible problem since it depends on the
computation of the normalizing constant p(X):

p(X) =

∫
θ

p(X, θ) dθ =

∫
θ

p(X|θ)p(θ) dθ, (2)

where it is necessary to integrate over all the possible values of
θ. To address this issue, Markov chain Monte Carlo (MCMC)
methods are used. These methods approximate the posterior
distribution using samples, by evaluating the likelihood and
prior distributions at different parameter values. In this work,
Bayesian statistical models are implemented using a proba-
bilistic programming framework called PyMC [14] and, to
sample from the posterior, the No-U-Turn Sampler (NUTS)
[15] is used.

B. Hidden Markov Models

HMM is a type of directed graphical model and a tool
for representing probability distributions over sequences of
observations that are produced by an underlying stochastic
process, whose states cannot be directly observed, i.e., are hid-
den [16]. This hidden process that generates the observations is
a first-order finite state Markov chain and, hence, respects the
Markov property that states that “the probability distribution
of future states of the process conditioned on both the past
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and present states depends only on the present state” [17].
Throughout this work, the number of possible states that each
latent variable can take will be denoted as K, the sequences
of hidden states as Z = {z1, z2, ..., zN} and the sequences
of observations as X = {x1,x2, ...,xN}, where each hidden
state zn generates the corresponding observation xn (which
may be of different type or dimension [18]) and N represents
the number of observations.

A HMM with N observations is depicted as a graphical
model in figure 3.

...

...

Fig. 3. Graphical representation of a HMM for a sequence of N observations.

In HMMs, the latent variables Z follow a Markov chain
with transition matrix A ∈ RK×K : A ≥ 0, A1 = 1 (where 1
denotes a K-dimensional vector with elements equal to 1) and
initial distribution π ∈ RK : π ≥ 0, πT

1 = 1 that represent
the probability of transitioning from one hidden state to
another — p(zn|zn−1,A) — and the hidden state initialization
probability — p(z1|π) —, respectively. The i-th row of A,
which will be denoted as Ai ∈ RK : Ai ≥ 0, AT

i 1 = 1,
is a probability distribution that describes the probabilities of
transitioning to one of the K possible hidden states, given
that the chain is in state i, and each element Aij represents
the probability of transitioning from state i to state j. The
observations, that depend on the hidden states, are specified by
the emission distributions p(xn|zn,ϕ), where ϕ is the set of
parameters that rule the distribution, that can be either discrete
or continuous. Thus, a HMM is then completely specified by
the set of components θ = (A,π,ϕ) that must be learnt during
the training phase.

As previously described, in this work, a Bayesian approach
is adopted, in which current statistical procedures depend on
the likelihood distribution of the models. Hence, the likelihood
distribution p(X|θ) of HMMs is needed.

1) Likelihood distribution: The likelihood distribution
p(X|θ) describes the joint probability of the sequence of
observations X = {x1,x2, ...,xN} conditioned on the set of
parameters θ and it is given as follows [18]:

p(X|θ) =
∑
zN

α(zN ), (3)

where α(zn) = p(xn|zn,ϕ)
∑

zn−1
α(zn−1)p(zn|zn−1,A)

and α(z1) = p(z1|π)p(x1|z1,ϕ).

2) Predictive distribution: In this work, another quantity of
interest is the predictive distribution p(xN+1|X, θ), in which
the observed data X = {x1,x2, ...,xN} is given and the goal

is to predict the next observation xN+1. This distribution is
given by [18]:

p(xN+1|X, θ) =
1

p(X|θ)
∑
zN+1

p(xN+1|zN+1, θ)

·
∑
zN

p(zN+1|zN , θ)α(zN ).
(4)

However, during a conjunction event, 3 CDMs are received,
on average, per day [7], and since the defined cut-off time is 2
days before the TCA, it could be advantageous to predict the
information contained in the next k collision warnings after
the last released CDM. Future work may test the performance
of predicting the next k observations of an event but, in this
work, this step is simplified, and only xN+1 is predicted and
is used to benchmark the performance of HMMs.

III. DATA ANALYSIS AND CLEANING

In this work, two datasets are used: the one released by
ESA during the CAC and one provided by Neuraspace, which
contains real-world raw data regarding collision avoidance
operations. The CAC dataset contains 162 634 samples/CDMs
(with 103 parameters each) and 13 154 unique conjunction
events. In the Neuraspace dataset there are 55 161 events
and 1 586 152 CDMs (each containing 231 features). In both
datasets, the CDMs are identified by an event ID and data
messages from the same conjunction event are grouped under
the same identifier. Hence, each event represents a time series
of CDMs that typically covers one week leading up to the
TCA. Note that the values of all parameters contained in each
CDM are propagated to the TCA.

However, not all events contained in the datasets are eligible
for the ML approach, since spacecraft operators need time to
make a decision regarding the performance of an avoidance
maneuver. Thus, the events must follow some constraints [7]:
(i) the events must have at least 2 CDMs, one to learn and one
to use as label; (ii) the first CDM has to be released before
the cut-off time (2 days until TCA); (iii) the last CDM has to
be released within 1 day of the TCA.

Since the goal of ML models in the collision risk assessment
is to analyze the sequence of the values of the collision risk
contained in the CDMs received until the cut-off time and
correctly identify whether an event is of high or low risk of
collision, the data can be divided into two categorical classes,
based on the risk that is present in the last CDM released in
each event: if the risk is lower than −6, the event is considered
of low risk, otherwise it is considered a high-risk event. The
proportion of these classes is 97.23% of low-risk and 2.77% of
high-risk, for the CAC dataset, and, for the Neuraspace dataset,
the proportion is 99.30% of low-risk and only 0.74% of high-
risk. The different proportions between the two datasets are
due to the fact that CAC data was slightly manipulated by
ESA before being released to the public in order to contain
a slightly higher percentage of CDMs containing high-risk
values, to be better explored during the competition [7]. The
data imbalance problem poses to be the main challenge in
collision risk estimation.
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By performing an exploratory data analysis (EDA) on the
datasets, some anomalies can be found. There are parameters
that contain extreme outliers or even physically impossible
values — for example, negative ballistic coefficients or energy
dissipation rates. In addition, in some collision warnings, the
position standard deviations (along-track, radial, and trans-
verse) of the target and chaser take values larger than the Earth
radius, which is unrealistic from a physical point of view and
affects the value of the collision probability.

During the data preparation and cleaning phase, in this
work, both datasets are kept as close to the original as possible,
in order to benchmark the performance of HMMs with data
that is representative of real collision avoidance missions.
Hence, only the CDMs that contain unrealistic or physically
impossible values (like negative ballistic coefficients or posi-
tion errors larger than the radius of the Earth) are removed. In
addition, the events that don’t follow the previously described
constraints are also discarded. In the Neuraspace dataset, two
additional cleaning steps must be taken. The Neuraspace data
contains events in which a collision avoidance maneuver was
performed. An avoidance maneuver is an external factor that
influences and alters the natural evolution of the values of
the parameters, which can affect the training of the ML
models. Thus, the maneuvered conjunctions are not considered
in this work. In addition, the collision warnings within the
Neuraspace dataset have different originators, but only the
ones released by the 18th Space Control Squadron [19] are
kept, because they represent the rawest version of the data.

IV. METHODOLOGY

In collision avoidance, it is extremely important to identify
high-risk conjunctions in order to prevent catastrophic colli-
sions between space objects that can damage and lead to the
destruction of operational spacecraft. However, as presented
in Section III, both datasets are extremely imbalanced with
only a very small percentage of the events having a final
risk higher than −6. In addition, the CAC results [7] have
shown that the risk can have an unpredictable and complex
evolution within the events, highlighting the difficulty of using
the risk of collision as the prediction target. These problems
encouraged Metz [9] to explore another approach: using the
chaser position uncertainties as the prediction label and then
recomputing the probability of collision with the predictions,
using Akella’s and Alfriend’s equation [6]. With this approach,
one does not solely depend on the rare occurrence of high-risk
conjunctions and can explore the most important component
of the computation of the risk: the covariance matrix that
represents the position errors of the target and chaser, and can
be visualized as an error ellipsoid centered on each object.
The work done by Metz [9] showed that this method yields
good results and should be further explored. Therefore, in this
work, in addition to directly predicting the risk of collision
between two space objects, the position covariances will also
be used as prediction targets, using HMMs.

In real-life operations, there is a lot more available informa-
tion regarding the target object (operating spacecraft), which

leads to more accurate orbit determinations and propagated
position estimates with lower uncertainties, meaning that it
can be assumed that the last CDM released before the cut-off
time offers a good estimation of the orbital state parameters
of the target, at the TCA. The orbital states at the TCA of
the chaser object (which can be of multiple types, sizes, and
origins) are much more difficult to estimate, and, hence, it
can be advantageous to predict them, using ML methods.
Just like in Metz’s work, only the three chaser standard
deviations σchaser

R , σchaser
T , and σchaser

N that represent the position
uncertainties in the radial, transverse and normal components
of the chaser RTN reference frame are used as the prediction
targets and the rest of the necessary parameters to compute
the collision probability using Akella’s and Alfriend’s equation
(relative position vector, the other components to compute the
combined covariance matrix and the object sizes) are taken
from the last released CDM before the cut-off time. The three
components of the position errors of the chaser define the
diagonal entries of the chaser covariance matrix and express
the “length” of each component of the error ellipsoid, so
these parameters are considered the main contributors to the
collision probability.

In summary, this work presents two approaches for predict-
ing the criticality of each event:

• Approach A: directly model and predict the risk of
collision contained in the CDMs.

• Approach B: model the chaser uncertainties and use the
predictions to compute the collision probability, taking
the other necessary parameters from the last released
CDM, before the cut-off time.

The nomenclature Approach A and Approach B shall be
used hereafter in order to identify and distinguish the two
methods used in this work.

However, it is important to note that the CAC dataset cannot
be used in Approach B. The position errors of the target and
chaser are given in each object RTN reference frame, so the
respective covariance matrices are defined in different coordi-
nate systems and cannot be summed directly. To combine the
covariance matrices it is necessary to transform them into the
same reference frame, but, for that, the position and velocity
vectors of the objects are needed, which are parameters that
are not available in the CAC dataset.

When the naive forecast predicts the final risk value of an
event as −30 (the risk values are truncated at that lower bound),
99.34% of the predictions are correct, in the CAC dataset,
and, in the Neuraspace dataset, 99.93% of the predictions
are accurate. Hence, in this work, it is assumed that the
−30 predictions by the naive forecast are trustworthy and,
consequently, it is considered that those events don’t require
the application of ML models. So, those events are not used for
training and, during the test phase, are directly predicted with
a final risk of −30. With this approach, a significant amount
of low-risk conjunctions are removed, which can help deal
with the data imbalance problem, and the volume of training
data is reduced, resulting in lower memory requirements and
a lower computational time. However, it is important to note
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that this method is not perfect, because, in the Neuraspace
dataset, two high-risk conjunctions are predicted as −30 by
the naive forecast, suggesting that future work should focus
on the development of a better and more robust model that
can detect the −30 events without any miss classifications of
high-risk conjunctions.

Furthermore, since the goal of this work is to benchmark
the performance of Bayesian HMMs in risk estimation, each
HMM will only learn the evolution of one single feature of
the dataset. In other words, in Approach A, only the risk
sequences contained in the CDMs will be analyzed by the
HMM and, in Approach B, three separate HMMs will be used
to learn the evolution of the three components of the position
errors of the chaser object. This way, this work provides a
foundation for future research regarding the implementation of
HMMs, with Bayesian statistics, in collision risk estimation.

V. DATA PREPARATION AND SETUP

Taking into consideration the methodology followed in this
work, it is necessary to prepare the data in order to be analyzed
by the models. After the data cleaning described in Section
III, the CDMs of each event are arranged in descending order
regarding the time to the predicted TCA, and the parameters
of each collision warning that are not necessary for the
risk prediction process of each approach are removed. For
Approach A, only the risk contained in each collision warning
is considered, and, for Approach B, the three chaser position
errors and the other necessary parameters to recompute the
collision probability are considered. Then, a stratified split is
performed in both datasets to preserve the same proportion
of samples of each class, and the data is divided into train
and test sets. For the CAC dataset, a ratio of 80:20 is used
and for the Neuraspace dataset, since it contains more data, a
75:25 split is performed. The test set is only used at the end
to evaluate the performance of the final model and, in each
test event, only the CDMs released before the cut-off time can
be used as input of the models, in order to simulate real-life
operations, in which ML algorithms must predict the risk of
collision with the available information until 2 days of the
TCA. The training set is used to infer the parameters of the
HMMs and, as previously described, only the events that have
a baseline risk different from −30 are used for training.

However, at this point, a challenge arises. To infer the
parameters of each model, current MCMC samplers require
the evaluation of the log-likelihood density at each set of
observations for each proposed set of parameters θ to be
sampled. But, each event has a different number of CDMs,
hence, to obtain the log probability of the model, it would
be necessary to separately compute, in a loop, the logarithm
of equation (3) for every set of observations of each event
and then sum the result to obtain the joint log probability
of the model. This would make the training of the model
extremely slow and inefficient since this process would have
to be repeated for every θ to be sampled. A solution is
to vectorize the sequences of CDMs and compute the log-
likelihood density for each sequence at once and then sum the

result. To vectorize the sequences of collision warnings, an
approximation must be done regarding the data setup of the
training set. Typically, in real collision events, 3 CDMs are
released per day [7] during the week leading up to the TCA,
where the latest CDM available is always considered the best
knowledge about the outcome of the close approach. Thus,
an approach to ensure that all input sequences (events) have
the same number of observations (CDMs) is to verify whether
3 CDMs are received each day and, if less than 3 collision
warnings are received, the latest CDM received is repeated
until there are 3 on that day. If there are no CDMs received
prior to that day, the first observation received is repeated. This
process is done for all days during the week leading up to the
TCA and, after this, the events that don’t match the highest
number of observations are, again, manipulated by repeating
the first released CDM. This data setup process is schematized
in Figure 4.

CDM 1

CDM 2

CDM 3

Missing

CDM 4

Missing

CDM

CDM

CDM

...Event 1

CDM 1

CDM 2

CDM 3

CDM 4

CDM

CDM

CDM

...Event 2 Missing

Time until TCA [days]...7 6 0

Missing

Fig. 4. Data Setup schematization.

VI. BAYESIAN MODELS

After the data preparation, the training sequences of obser-
vations are used to infer the parameters of the models. In this
work, it is believed that the risk/position errors generated by
each latent variable of the HMM should be near a specific
value and the occurrence of risk/position errors far from that
value is less frequent. However, it is important to note that
the variables to model must follow some constraints: the
risk is truncated at a lower bound of −30 and cannot be
greater than 0, because the risk is defined as the log10 of
the collision probability; and the positional standard deviations
are restricted to be greater than zero because they define the
diagonal entries of the covariance matrix, which has to be
positive semi-definite. To take these constraints into account,
univariate Truncated Normal distributions are used as the
emission distributions of the HMMs of both Approach A and
Approach B, with lower and upper bounds of −30 and 0 for
the HMM of the risk evolution, and lower bound of 0.01 m for
the HMMs of the standard deviation evolution (where it is to
assumed that the position uncertainties caused by measurement
and/or propagation errors have a minimum value of 1 cm).
Therefore, the parameters that must be inferred for each
implemented HMM are the following, where K represents the
number of possible hidden states: (i) the transition probabilities
represented by the matrix A ∈ RK×K : A ≥ 0, A1 = 1;
(ii) the initial probability distribution represented by the vector
π ∈ RK : π ≥ 0, πT

1 = 1; (iii) the mean values µ ∈ RK
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of the emission distributions; (iv) the standard deviations
σ ∈ RK

+ of the emission distributions. The parameters µ
and σ denote the set of mean values and standard deviations
of the emissions, respectively, as µ = [µ1, µ2, ..., µK ] and
σ = [σ1, σ2, ..., σK ], in which µk and σk represent the mean
and standard deviations of the Truncated Normal emission
generated by the hidden state k. To find the best value for
K, in each approach, a stratified cross-validation with 5 folds
is performed.

To perform Bayesian inference on the HMMs, it is essential
to define the prior distributions for each of the parameters θ =
(A,π,µ,σ) of the models of Approach A and Approach B.

Notice that the parameters of the priors presented in this
section were chosen via a trial-and-error process (taking into
consideration the constraints of the variables), so they are not
unique and can be further improved.

A. Priors for HMM of Approach A

Regarding the parameters π and Ai ∈ RK : Ai ≥
0, AT

i 1 = 1, that define the initial state distribution and the
rows of the transition matrix (with i ∈ {1, ...,K}) a natural
choice of priors is the Dirichlet distribution, that is is confined
to a simplex, i.e., all elements of the random variable belong to
the interval [0, 1] and sum up to one. The Dirichlet distribution
is parameterized by the vector α ∈ RK : α > 0 whose
elements must be positive real numbers and, in the case where
all elements of α are equal to one, the distribution is equivalent
to a uniform distribution over the simplex. In this work, there
is no prior knowledge about the first state that generates the
risk in each event nor about the hidden state transitions, so a
Dirichlet distribution with elements of α equal to one is used
as prior for π and Ai.

Since the risk can only take values between −30 and
0, the mean values of the emission distributions are also
restricted to be within the −30 to 0 range, so Truncated Normal
distributions are also used as the prior distributions of µ,
with lower and upper bounds of −30 and 0, respectively.
To have good coverage of all the possible values that the
observations can take, the mean of the prior distributions
for the elements of µ are equally spaced within the range
of −30 to 0 and the standard deviations are set to 4. For
example, if K = 3, the priors for the elements of µ will be:
µ1 ∼ T N (µ = −30, σ = 4), µ2 ∼ T N (µ = −15, σ = 4)
and µ3 ∼ T N (µ = 0, σ = 4), in which the values of the
lower and upper bounds of the Truncated Normal distribution
are not shown, because these are fixed throughout.

As for the priors of σ, it is necessary to choose a distribution
that can only take positive values, because standard deviations
are constrained to be greater than zero. The chosen distribution
for the priors of the elements of σ is the inverse gamma
distribution with parameters α and β equal to 40 and 80,
respectively (these values were chosen through a trial and error
process).

In summary, the priors for the HMM of Approach A are
given by:

π ∼ Dir(α = 1);

Ai ∼ Dir(α = 1), ∀ i ∈ {1, ...,K};
µ ∼ T N

(
µ = m, σ = 4, L = −30, U = 0

)
;

σi ∼ IG(α = 40, β = 80), ∀ i ∈ {1, ...,K},

in which m ∈ MK(−30, 0), where MK(a, b) is the set of
K evenly spaced numbers between a and b. In addition, L
and U denote the lower and upper bounds of the distributions,
respectively, and 1 denotes a K-dimensional vector with all
the elements equal to one.

B. Priors for HMMs of Approach B

The priors for the parameters of the three HMMs of
Approach B are very similar to the ones presented in Section
VI-A, only changing the parameters of some prior distribu-
tions.

As in the HMM of Approach A, the chosen priors for
π and the rows of A of the three HMMs of Approach B
are Dirichlet distributions with elements of α equal to one,
since there is neither any prior knowledge regarding the first
state that generates the first observation of any of the three
position uncertainties nor any belief about the probability of
transitioning from one hidden state to another.

For µ and σ of the emissions of each HMM, the chosen
priors are Truncated Normal distributions (with lower bound
of 0.01 m) and Inverse Gamma distributions, respectively. The
CDMs containing values above 100 000 m, 1 000 m and 450 m
for σchaser

T , σchaser
R , and σchaser

N are considered errors [20]. Hence,
the mean values of the prior distributions for the elements
of µ (Truncated Normals) of the three HMMs are equally
spaced within the range from 0.01 m to the respective upper
threshold of the variable to model. The standard deviations
of those priors are defined as 10 000 m, 400 m and 100 m
for the HMMs of σchaser

T , σchaser
R , and σchaser

N , respectively. The
parameters α and β of the Inverse Gamma priors for σ are
defined such that the density areas of the distribution can cover
a large number of possible values. For the HMM of σchaser

T the
parameters of the Inverse Gamma are α = 4.5 and β = 28 480,
for σchaser

R are α = 7 and β = 545, and for σchaser
N are α = 6

and β = 500.

C. Inferences

With the likelihood and prior distributions, it is possible
to infer the parameters of the implemented models, using the
NUTS. As previously described, a stratified cross-validation
with five folds is performed in order to find the best value
for K of each HMM and the best models for Approach A
and Approach B are then trained using the entire training
set. During cross-validation, 3 chains of 2 000 iterations are
sampled for each model and, for the inference of the final
HMMs of both Approach A and Approach B on the entire
training set, 5 chains of 2 000 iterations are sampled. The
number of warm-up/tuning iterations per chain is set to 1 000
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and, after sampling, the samples used for tuning in each
chain are discarded. In each sampling procedure, the target
acceptance rate is set to a value of 0.8.

In this work, after sampling, it is necessary to deal with the
label switching problem [21] — the label of the parameters
switch between or within chains, due to the invariance of the
likelihood and priors in the permutations of θ. In this work,
this is solved by relabelling the chains according to statistical
analysis. Then, the convergence and autocorrelation of the
sampled chains of each model are checked by visualizing
the trace plots and by analyzing some of the convergence
diagnostics criteria provided by PyMC, such as the Potential
Scale Reduction (R̂) [22] and the Effective Sample Size
(ESS) [23]. If the inferences pass all the requirements, the
samples of the posterior distribution can be used to obtain
predictions.

VII. RESULTS

This section presents the results obtained with Approach
A and Approach B, comparing the predictions with the naive
solution. In this section, only part of the results of the complete
work are presented. For more details, the reader is encouraged
to read the full document of the thesis.

To obtain predictions, in all HMMs, 400 draws are randomly
taken from each sampled chain of the posterior distribution
and are given as input to equation 4 (in this work, the
performance of HMMs is benchmarked by predicting only
xN+1), outputting a distribution that reflects the prediction
uncertainty. The final predicted value of the desired parameter
of each event is the mean of the corresponding distribution.
The metrics used to evaluate the models are the root mean
squared error (RMSE), the mean absolute error (MAE), pre-
cision, recall, and F1 and F2 scores. In addition, confusion
matrices are also used.

A. Results of Approach A

In this approach, two datasets are used: the CAC and the
Neuraspace data. Thus, the results are divided into two parts.

1) CAC dataset: To choose the best number of possible
hidden states (K), cross-validation is performed and K is
iterated between 4 and 10 states. For a lower number of K,
it is considered that the HMMs have poor coverage of all
the possible values of the desired parameter, and, for a higher
number of K, the chains start converging into different values,
indicating that the posterior distribution is multimodal with
sharp density regions, and the NUTS cannot explore the den-
sity areas of the desired distribution. Future work may tackle
this issue by using/developing an efficient sampler that can
handle multimodality, but, in this work, this step is simplified.
Note that only 3 chains are sampled during cross-validation,
due to the large computing time during Bayesian inference, so
it is possible that, even if the chains converge, the sampler may
only be exploring part of the posterior distribution. Although
this is not ideal, it still offers good information regarding the
posterior distribution, since it explores the density regions

near a mode of the desired distribution, in contrast to the
maximum likelihood estimation or maximum a posterior that
only provide point estimates.

After cross-validation, the performance of the best model of
Approach A (in this case, a HMM with 8 states is chosen) is
then tested using the test set (recall that the events with a naive
forecast of −30 are directly predicted as having a final risk
of −30). Table I shows the performance metrics for both the
complete model of Approach A and the baseline predictions.

Metrics
Model RMSE MAE Precision Recall F1 F2

Approach A 8.40 4.32 17.5% 70.0% 0.280 0.438
Baseline 8.88 4.43 14.6% 70.0% 0.241 0.398

Confusion Matrix (Model | Baseline)
Pred. Low-Risk Pred. High-Risk

True Low-Risk 1406 | 1398 33 | 41
True High-Risk 3 | 3 7 | 7

TABLE I: Performance metrics and confusion matrix for the model of
Approach A and baseline solution, using the CAC dataset.

The implemented model outperforms the baseline solution
in all metrics (with the exception of the recall) and signifi-
cantly reduces the number of miss-classified low-risk events.
The results show that, despite the approximations made to
build the model, the complex behavior of the risk updates
within the events, the data imbalance problem, and the fact
that only one feature is used, the implemented model manages
to outperform the naive forecast, which is considered a very
strong predictor for this problem. The miss-classified low-risk
events are the same for both models, but, to analyze the source
of these errors, more data would be needed, since that three
events are not a sufficiently large sample to take conclusions
from.

Figure 5 shows the predicted values of the risk against the
true risk values. The predictions tend to be arranged in 8
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Fig. 5. Predicted vs True risk values, using Approach A and the CAC data.

steps, which correspond to the sampled mean of the emission
distributions of the HMM. It can also be seen a large over-
prediction of the −30 events. All of these over-predicted events
share the same behavior: the risk updates evolve at high-risk
values, but, after the cut-off time, there is a big risk transition,
from high-risk values to −30.

As previously mentioned, an entire distribution is obtained
for each prediction, so prediction intervals can be provided
for each event. Figure 6 shows the 95% Highest Density
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Interval (HDI) associated with each prediction for the true
high-risk events of the test set. It can be seen that the prediction
intervals have poor coverage of the true high-risk values and
that the predictions seem to be “truncated” at an upper bound.
It is important to highlight that this is a simple model that
only analyzes one feature of the dataset - the risk, which
is extremely imbalanced. To improve the results, it could be
beneficial to train the model with a larger dataset containing
more high-risk conjunctions and explore the impact of other
features.

Fig. 6. Representation of the true risk values of each event (green), the HMM
predictions (red) and the 95% HDI area (area shaded in blue), for all the high-
risk events of the CAC dataset, following Approach A.

2) Neuraspace dataset: For the Neuraspace dataset, the
number of possible hidden states is iterated between 4 and
9 states in each cross-validation fold. A higher number of
states causes the sampled chains to converge into different
values, meaning that the posterior is multimodal with sharp
density curvatures, as previously explained. Notice that K is
iterated between different ranges for the HMMs of Approach
A using the CAC and Neuraspace datasets. The CAC data
was prepared and slightly manipulated by ESA in order to be
publicly released, whereas the Neuraspace dataset contains raw
and unmanipulated data regarding real-life close approaches.
Hence, using the CAC and Neuraspace data are two distinct
problems, which justifies the different ranges tested for K, for
the HMMs. After cross-validation, the HMM with K equal
to 9 is chosen, because it has better scores in all metrics.
This result suggests that future work should tackle the problem
of sampling from multimodal posterior distributions, in order
to test the performance of HMMs with a higher number
of possible hidden states. The performance metrics of the
complete model with the final HMM are presented in Table
II.

Metrics
Model RMSE MAE Precision Recall F1 F2

Approach A 2.54 0.40 31.5% 62.5% 0.417 0.521
Baseline 2.66 0.41 29.4% 62.5% 0.400 0.510

Confusion Matrix (Model | Baseline)
Pred. Low-Risk Pred. High-Risk

True Low-Risk 6851 | 6850 11 | 12
True High-Risk 3 | 3 5 | 5

TABLE II: Performance metrics and confusion matrix for the models, using
the Neuraspace dataset.

It can be verified that the complete model of Approach A
outperforms the baseline in all metrics, also using the Neuras-
pace dataset. It is important to highlight that the Neuraspace
dataset contains real data, which further increases the difficulty
of the problem. Even so, the implemented model manages
to outperform the naive forecast, which is currently used
as the risk predictor in most collision avoidance operations,
emphasizing the good results obtained in this Section and
further adding to the idea that this method should be further
explored.

The plot of Figure 7 presents the predicted values of the
risk against the true risk values. It can be seen, again, that the
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Fig. 7. Predicted vs True risk values, using Approach A and the Neuraspace
data.

predictions tend to be arranged in 9 steps that correspond to
the mean values of the emission distributions. The predictions
are not completely aligned with the dashed diagonal line but
tend to be close to the corresponding true risk values. It can
also be concluded that the HMM would benefit from more data
containing a more high-risk values since the HMM predictions
seem to be truncated at an upper threshold. Figure 7 also
shows that the implemented model largely over-predicts the
−30 events. As in the CAC dataset, these over-predicted events
have a risk evolution in high-risk values, but after the cut-off
threshold experience a big risk transition to −30.

Figure 8 presents the 95% HDI associated with each pre-
diction and the true risk, for the true high-risk events in the
dataset. The prediction intervals capture the large majority

Fig. 8. Representation of the true risk values of each event (green), the HMM
predictions (red) and the 95% HDI area (area shaded in blue), for all the high-
risk events in the Neuraspace dataset, following Approach A.

of the high-risk values and, in one of the two cases where
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the HMM fails to identify the high-risk conjunction, the risk
interval captures the true risk value. Notice that, in the test
set, there are 8 true high-risk conjunctions, but in the plot
of Figure 8 only 7 are represented. This is due to the fact
that one of the high-risk conjunctions did not go through the
prediction process of the HMM (because its baseline solution
is −30) and its risk was directly predicted as −30, meaning that
a prediction interval could not be provided. This emphasizes
that future work should focus on the development of a robust
model that can identify −30 conjunctions without any miss-
classifications of high-risk events.

B. Results of Approach B

In this approach, the chaser positional standard deviations
are modeled and predicted, and risk is computed using
Akella’s and Alfriend’s equation. Hence, this Subsection
is divided into two parts: covariance prediction and risk
computation. As previously explained, to test the performance
of Approach B, only the Neuraspace dataset can be used.

1) Covariance prediction: To find the best number of
hidden states for the three separate HMMs, K is iterated
between 4 and 8 states, for each HMM. After cross-validation,
the performance of the final HMMs for the covariance predic-
tion is tested using the test set. In Approach B, the three
components of the chaser position errors are predicted, but
only the prediction results for σchaser

T are presented in the
following, as an example.

Figure 9 shows the predicted along track position errors of
the chaser against the true values for that parameter.
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Fig. 9. Prediction results for the along-track position uncertainty σchaser
T

against the true values.

The results show that the along-track position errors get
largely over-predicted for events with final values of σchaser

T

lower than, approximately, 10 000 m. The evolution of the
chaser along-track position uncertainty for those events is
depicted in Figure 10. All events have a chaser along-track
standard deviation greater than approximately 30 000 m before
the cut-off time and, after this threshold, the position error
evolves into much lower values, which could not be captured
by the HMM. In addition, it can be seen that, in some events,
the σchaser

T updates stay almost at a constant value and, after the
cut-off threshold, experience a significant drop, which cannot
be foreseen by the HMM that predicts the position error to stay

at that value. The events with this type of σchaser
T evolution are

rare within the Neuraspace dataset and, consequently, their
behavior cannot be forecast by the implemented model. To
account for these events, more data would be needed.
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Fig. 10. Time series evolution of the chaser along-track prediction errors for
the largely over-predicted events by the complete model of Approach B.

2) Risk Computation: After predicting the chaser positional
standard deviations, the risk of collision is computed using
Alfriend’s and Akella’s equation [6].

Table III presents the obtained performance metrics and the
confusion matrix.

Metrics
Model RMSE MAE Precision Recall F1 F2

Approach B 2.88 0.46 18.5% 62.5% 0.286 0.424
Baseline 2.66 0.41 29.4% 62.5% 0.400 0.510

Confusion Matrix (Model | Baseline)
Pred. Low-Risk Pred. High-Risk

True Low-Risk 6840 | 6850 22 | 12
True High-Risk 3 | 3 5 | 5

TABLE III: Performance metrics and confusion matrix for the risk
predictions of Approach B and baseline, using the Neuraspace dataset.

Table III shows that the complete model of Approach B is
outperformed by the baseline solution in all metrics (with the
exception of the recall). To improve these results, it could
be useful to train the models with more data and test the
performance of the HMMs with a higher number of possible
hidden states. As future work, it could also be advantageous
to use more informative priors that take into consideration the
physics of the problem.

Figure 11 shows the prediction results against the true risk
values and it is possible to verify that with this method there
is also a large over-prediction of the −30 events. In addition,
for true risk values smaller than −15, the predictions tend to
be far from the true regression line.

By taking random draws from the positional standard devi-
ation prediction distributions, it is possible to obtain a credible
interval for the final risk prediction of each event. Figure 12
represents the 95% HDI associated with each risk prediction,
as well as the true risk values, for the high-risk events on the
test set. The Figure shows that the majority of the high-risk
events are captured by the 95% HDI and the high true risk
values that are not covered by the risk intervals are predicted
as high-risk, anyway. Notice, again, that there are 8 true high-
risk conjunctions in the Neuraspace test set, but in the plot of
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Fig. 11. Prediction results of the model of Approach B against the true
values.

Figure 12 only 7 are represented, which can be justified by
the fact that one of the high-risk conjunctions has a baseline
solution of −30 and, consequently, did not go through the
prediction process of the HMM, meaning that a prediction
interval could not be provided.
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Fig. 12. Representation of the true risk values of each event (green), the
HMM predictions (red) and the 95% HDI area (area shaded in blue), for the
high-risk events in the Neuraspace test set, following Approach B.

VIII. CONCLUSIONS

One of the conclusions taken from the CAC results was
that the naive forecast is a very strong predictor for the col-
lision risk, indicating that the CDMs may follow the Markov
property. This work tested this theory by benchmarking the
performance of Bayesian HMMs, following two approaches:
directly model and predict the risk of collision (Approach
A); and predict the chaser position errors and compute the
risk using Akella’s and Alfriend’s formula (Approach B).
On the one hand, the second approach yields poor results
in comparison with the baseline solution, indicating that the
models should be trained with more data and that, in future
work, more informative priors that take the physics of the
problem into account should be used. On the other hand, the
model of Approach A managed to outperform the baseline
solution in all metrics, despite all the approximations made,
the data imbalance problem, the fact that only the risk feature
was used, and the complex behavior of the risk updates within
the events. These promising results further add to the idea
that the CDMs may follow the Markov property and suggest
that this method should be further explored. In addition,
this work provides a foundation for future research regarding

the implementation of Bayesian HMMs to the challenge of
applying ML in collision avoidance.
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