
Enhancing the Tor Anonymity Network with K-Anonymous Flashmobs
(extended abstract of the MSc dissertation)

José Brás
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Nuno Santos
Advisor: Professor Diogo Barradas

Abstract—Anonymity networks such as Tor are powerful
tools to increase the anonymity and security of user com-
munications. The popularity of Tor leads to its usage by
whistleblowers or informants, willing to reveal confidential
information or activities often involving private, public or
governmental organizations. However, by exposing classified
material, these people may face prosecution from powerful
actors by acting for the sake of liberty and freedom. In this
work we propose a privacy-enhancing technology that provides
a new primitive for securing Tor users against attacks mounted
by global passive adversaries. In particular, we introduce the
idea of allowing users to convene a k-anonymous flashmob,
i.e., to leverage the cooperation of k − 1 freedom-fighting
volunteers to connect simultaneously to the Internet through
Tor and generate covert traffic that will help the flashmob
organizer blend into the crowd. To materialize this idea, we
propose to build a new Tor pluggable transport named Moby.
Using Moby, a global passive adversary with the ability to
intercept all the communications across the globe will not be
able to uniquely deanonymize the communications of flashmob
participants even when using state-of-the-art traffic correlation
techniques.

I. INTRODUCTION

Whistleblowers or informants are people who reveal priv-
ileged information or activities within a private, public, or
government organization that are deemed illegal or fraud-
ulent. To merely illustrate the core scenario of our work
picture Alice, a notorious whistleblower. By openly de-
nouncing wrongdoing through the publication of information
on dedicated websites like WikiLeaks or Football Leaks,
Alice might expose herself to prosecution or harassment.
To protect her identity, she can resort to state-of-the-art
anonymous communication networks such as Tor [1]. Tor’s
onion routing scheme [2] allows Alice to upload sensitive
content on whistleblowing websites while hiding her true IP
address [3].

However, over the years, the ever-present looming threat
of deanonymization attacks launched at a large scale by
global state-level adversaries has been greatly increasing [4].
Such attacks constitute a great risk to Tor users, like Alice,
and emerge as a combination of four main different factors.
Firstly, a growing consolidation of the Internet infrastructure

in the hands of a few global players like Google and
other large ISPs make it increasingly easier to collect large
portions of Tor traffic from few vantage points [5]. Second,
Tor guard nodes – which act as entry-points to the Tor
network – are skewed toward a relatively small number
of ISPs, making it even more practical to probe into the
Tor network and intercept Tor users’ communications [6].
Third, the sophistication of traffic analysis techniques is
developing at a fast pace due to the application of machine
learning algorithms that concur to the building of accurate
traffic classifiers that can be used for launching correlation
attacks [7, 8]. Finally, with the advent of mass surveillance
efforts partially enabled and justified by anti-terrorism or the
pandemic, states might use their law enforcement agencies in
upholding mandates to monitor anonymous communication
networks, therefore being able to deanonymize potential
whistleblowers [9, 10, 11].

Over the last few years, there have been many proposals of
anonymous communication systems [12, 13, 14, 15, 16, 17]
that allow Alice to go incognito and hide her identity
from the aforementioned major players. Although providing
strong anonymity properties, these systems are often vulner-
able to correlation attacks [18]. Due to Tor being the most
widely used anonymous communication network, recent
works have proposed systems to mitigate this family of
attacks against onion routing, such as TorK [19], a pluggable
transport leveraging the notion of indistinguishable flows
to ensure k-anonymity amongst multiple sources of Tor
connections. Still, resisting a global passive adversary –
one that can see and correlate all traffic in the network,
but cannot modify or interact with it – able to perform
intersection attacks and statistical disclosure over a long
period of time remains an open research challenge [20, 21].
Although there have been some proposals to fix these
everlasting issues [22, 23], none have been prototyped
over onion routing-based anonymity schemes, and only
a few anonymity networks claim sturdiness against such
attacks [24, 25, 26, 27, 28, 29, 30, 31].

In order to understand the prevalence of these attacks on
Tor, imagine that Alice wants to publish information about

1



the violation of civil liberties by her employer, a state-level
security agency. Alice can connect to WikiLeaks using TorK
and never reveal her personal information when exposing
incriminating data. However Mallory, the director of the
security agency Alice is employed in, can order network
administrators to monitor WikiLeaks and Alice’s posting
patterns over a long period of time. By observing the user
churn in the variable k-anonymity sets and performing the
intersection of these, Mallory is able to narrow sets down
to one user, Alice. Furthermore, if Mallory focus her efforts
in analysing the accesses to WikiLeaks over this long-term
passive analysis she will also be able to determine with
some probability p the chances for Alice to be the poster
of incriminating data against her agency.

To mitigate these risks, we propose Moby, a new privacy-
enhancing tool that provides resistance to the pitfalls of
TorK [19] such as client churn. Moby will also be the first
available tool able to provide resistance against intersec-
tion attacks and statistical disclosure on the Tor network.
These issues are solved through an abstraction that we have
properly named flashmobs, building on the concept of a
spontaneous group of individuals bound by time performing
a specific set of joint actions. By enforcing multiple users to
perform web browsing actions on a scheduled time period
we allow whistleblowers to go incognito, blending in with
a group of individuals with a predetermined communication
pattern. If these flashmobs are scheduled to be performed
in rounds with the same fixed set of k users accessing the
same websites, no global passive adversary can perform
an intersection or statistical disclosure attack against our
system. The reason for this being that the intersection of
flashmob user sets over multiple rounds is the same as
the original membership set since churn is not tolerated.
Furthermore, we also allow a whistleblower to summon
flashmob users – mobbers – to participate in the system,
Finally, we have implemented a real-world scenario of the
usability of Moby using 9 Raspberry Pi 4 (RPi) devices
with flashmobs scheduled within 2h intervals over the course
of one week. In all this time, all the participating devices
were available, enabling users to access the Tor network with
performances varying between 1Mbps and 3Mbps.

II. RELATED WORK

In this chapter, we start by providing an overview of types
of attacks that one might utilize to deanonymize TorK and
that we plan on mitigating with Moby.

A. Attacks Leveraging Anonymity Sets

This category of attacks focus solely on the analysis of
anonymity sets of users connected to the Tor network and
the usage of passive analysis methods to correlate traffic
between the users of an entry and exit relay.

If at a given point in time, a passive adversary can
enumerate the IPs of every user accessing the Tor network

r0

r1

ri

Figure 1. Example of an intersection attack to anonymity set K. The
attacker observes the online user sets Oi and the traffic to WikiLeaks over
multiple rounds ri. The intersection of all sets I allows to infer the real
identity of Alice.

(say, k users in total) and of all destinations being ac-
cessed from every Tor relay, then the attacker can guess,
with a probability of at most 1/k, that a given user has
visited a particular destination. The higher the size k of
a user’s anonymity set K, the stronger the anonymity will
be. However, it is possible to attack Tor (and other existing
anonymity systems) as a result of a continuous erosion of
users’ anonymity sets. Next, we cover two main attacks:

1) Intersection attacks:: Throughout the passive obser-
vation of communications, an attacker can determine which
users are online and the destination of their messages. Since
typically the pool of destinations (e.g., websites) one ac-
cesses when online is limited, through repeated observations
an attacker can start differentiating the traffic pattern of each
user. For instance, a typical user tends to visit the same desti-
nations over different sessions. Intersection attacks leverage
such patterns by intersecting different sets of users active
at any given moment in order to gain information and
differentiate what websites a user is accessing. Although
modern anonymous communications networks offer security
against powerful adversaries, most systems of this type
falter against a global passive adversary capable of pervasive
network traffic analysis in the presence of churn. With
numerous users logging in and out and through the sending
of linkable messages users can quickly lose their anonymity.
Intersection attacks are a well known open problem and very
difficult to solve in an efficient manner [4, 20].

To give a better intuition of how intersection attacks
work, consider Figure 1. Let us assume Alice wants to
post meaningful information about the corruption in the
national security firm she is working for on the WikiLeaks
website using an anonymity system. Alice will place her
posts over multiple rounds r0 to ri. In each iteration, a global
passive adversary takes note of the website accesses and its
respective online user anonymity sets O0 to Oi. The group
of online clients varies in each iteration due to user churn.
Assuming the adversary monitors all accesses to WikiLeaks
over a long period of time, the intersection of all user sets I,
allows for the singling out of Alice progressively reducing

2



the anonymity set size k to 1, i.e., Alice herself.
Most of the works providing intersection attack defenses

agree on the usage of a fixed size anonymity set whilst
sensitive website are accessed. Wolinsky et. al. [22] provide
the seminal work on intersection attack defenses. The said
defense consists in the creation of a fixed anonymity set to
perform round-based posts on specific websites. A similar
approach is also used by Hayes et. al. [23], the main
difference residing on the threshold used to contain user
churn. Whilst the first uses an oracle to control the threshold
related to the user churn in order to prevent an intersection
attack, the latter does not set such threshold allowing for
users to be deanonymized more easily. Despite this flaw, the
authors argue that whilst not providing strong anonymity
their system provides less latency. One of our concerns is
that both of these approaches, in the presence of churn, after
a few iterations require users to change their identifiers. Such
switch of user identifiers effectively deprecates the older
instance prohibiting further website accesses with the same
identifier. We elaborate on both of these works further down
in the next section analysing their algorithms and system
architecture.

2) Statistical disclosure attacks: : As explained above,
intersection attacks work in a deterministic fashion allowing
for the intersection of different user anonymity sets to link
a client to a destination. A statistical disclosure attack, on
the other hand, is constructed probabilistically. Assuming
that, after conducting multiple observations, an attacker
focuses on a specific destination, then it is possible to
estimate the probability of those messages pertaining to a
specific sender using different strategies. Oya et al. [21]
propose a compelling analysis regarding the uniformization
and comparison of the different categories of statistical
disclosure attacks. We base our mathematical analysis on
the aforementioned work for easier reader comprehension
and will analyse three main statistical disclosure variants:
(i) the original statistical disclosure attack, (ii) the general-
ized statistical disclosure attack and (iii) the least squares
statistical disclosure attack.

To present the mathematical models employed in each
variant, we shortly review the notation used by Oya et. al.
relevant for our problem. Firstly, let j be a destination, i the
sender, and b background users. pj,i and pj,b represent the
probabilities of traffic reaching j being from sender i and
background users b respectively. Messages sent and received
respectively by users i and j in round r are represented as
ur
i and yrj . Furthermore, lowercase letters represent vectors.

Let the superscript T represent the algebraic transposing
operation, the column vector containing all messages sent
by user i from round 1 up to round ρ is represented by
ui = [u1

i , u
2
i , ..., u

ρ
i ]

T . Reciprocally, the number of messages
received by destination j is defined as yj = [y1j , y

2
j , ..., y

ρ
j ]

T .
Finally, the tilde mark “˜” placed on top of ũr

i denotes a
binary representation of ur

i disclosing whether there is at

least one message sent by user i in round r (ũr
i = 1) or not

(ũr
i = 0). The vector notation of the aforementioned symbol

is ũi = [ũ1
i , ũ

2
i , ..., ũ

ρ
i ]

T

1) Original statistical disclosure attack: Having analysed
the required notation to understand the probabilistic
aspect of the attack, let us now analyse the original
statistical disclosure proposed by Danezis [32]. The
author makes the assumption in his original paper that
sender i does not send more than one message in each
communication round and other background traffic
reaching j is uniform, i.e. pj,b = 1

N for j = 1, 2, ..., N .
The attack is thus modeled as:

ũT
i yj ≈ ũT

i 1ρ · pj,i + ũT
i (1ρ · t− 1ρ) · pj,b (1)

2) Generalized statistical disclosure attack: The original
statistical disclosure attack assumed that the sender i
would only send a message per communication round.
Matthewson and Dingledine [33] extend on the sender
behavior and assume a scenario where i might send
j more than one message. This generalized statistical
disclosure is more practical and closer to real world
applications. On their work the authors theorize their
attack against mix networks and other anonymous
networks [34]. The generalized statistical disclosure
attack is defined as in the equation below. This equa-
tion does not include the number of messages sent by
user i each round – 1ρ. Instead, it uses the number of
actual messages sent by i, ui, with 1ρ · t− ui = ub.

ũT
i yi ≈ ũT

i ui · pj,i + ũT
i ub · pj,b (2)

3) The least squares statistical disclosure attack: Finally,
Pérez-Gonzalez [35] proposed a profiling attack based
on the maximum likelihood of estimating user profiles
by solving the Least Squares problem. Least Squares
statistical disclosure ensures that the mean squared
error between the real and estimated user profiles
is minimized. Let p̂j,k represent the estimator from
all outputs when estimating pjk , the equation of this
attack is given as:

uT
i yj = uT

i

N∑
k=1

(uk · p̂j,k) , for i = 1, ..., N (3)

In summary, intersection and statistical disclosure attacks
present a practical issue in existing anonymity networks such
as Tor, since a global passive adversary may be able to link
the messages received by a destination from a sender. As
such, this makes it possible to debunk plausible anonymity of
whistleblowers when accessing sensitive websites or posting
leaked data.

3



Alice

Bob

Charlie

Anonymizer

Policy
Oracle

Online/Offline Secrets
Inputs

Public

Outputs

Adversary sees who
is/isn't online but not

secret inputs

Adversary sees
public outputs

Nym N1

Nym N2

Nym Ni

Figure 2. Conceptual Design of Buddies. The adversary observes both the
secret inputs and outputs but cannot determine whether users are online or
offline. The public output might be either (i) an actual message or (ii) a
null message.

B. Avoiding Weaknesses for Anonymity Sets

Despite the anonymity improvements brought about to Tor
by TorK, which can thwart traffic analysis attacks whilst
being able to preserve k-anonymity, TorK is still vulnerable
to intersection and statistical disclosure attacks.

With the possibility of clients connecting in and out of
bridges, a global passive adversary is able to keep track of
the k-anonymity set and the websites being accessed corre-
lating clients with their destinations. The churn present in
TorK, especially the fact that the system allows for recurrent
connections facilitates the intersection of i sets throughout
a period of time effectively deanonymizing clients and
weakening its k-anonymity property. This section delves into
general solutions that aim at shielding anonymity sets from
global passive adversaries.

Wolinsky et. al. proposed Buddies[22], the seminal work
about intersection attack resistance. This system allows for
strong anonymity properties [36] bulking anonymity sets in
the face of a global passive adversary. Figure 2 describes
the proposed conceptual model of the Buddies system. Let
us assume Alice wants to access the WikiLeaks website
and post information about her corrupt employer without
having her identity disclosed. Buddies will group Alice with
a fixed set K of other k − 1 users with each user accessing
a predetermined sensitive content website in round robin
fashion. Instead of using her unique identifier, Alice will
rely on a pseudonym dubbed Nym [37] essentially working
as an anonymous online handle. Buddies will attribute to
Alice Nym N1 when she joins the system and further
WikiLeaks posts will be under her new handle instead of
her real identity. Everytime Alice wants to post information
on WikiLeaks with her Nym N1 the users on her anonymity
set – Bob and Charlie – will generate cover traffic to be
sent to the Anonymizer. The Anonymizer is simply a black
box anonymous communication network in the Buddies
conceptual model focused on the secure and untraceable

routing of traffic – the authors based their prototype on
Dissent [13, 38, 39]. However, before allowing the message
to be sent, the Anonymizer must first check whether it is
still safe to use the same Nym. To this end, it queries the
Policy Oracle which computes how much group-intersection
information would be leaked allowing an adversary to mount
an attack. If this information reaches a certain threshold,
then that Nym is no longer considered safe and the user is
informed to adopt another Nym.

Claiming that Buddies induces excessive communication
latency and may prevent users from posting messages, Hayes
et al. developed TASP [23], a system with the goal of pro-
tecting anonymity networks from intersection attacks while
providing strong anonymity and lower latency. Similar to
Buddies, TASP preserves fixed anonymity sets. Differently
from Buddies, however, it groups users into anonymity sets
based on their traffic patterns allowing the generation of
more effective cover traffic. To group clients into such sets
it uses machine learning-based traffic analysis algorithms
working in two phases of operation, a learning phase and a
working phase. Imagine that Alice has an interest in whistle-
blower websites such as WikiLeaks. During the learning
phase she will be grouped with users with similar finger-
prints which have either accessed Wiki-Leaks or exhibited a
related traffic pattern. During the working phase the subset
of online users O will provide cover traffic routed to an
Anonymizer that will send Alice’s posts to the WikiLeaks
web servers. In contrast to Buddies, TASP has no threshold
for user churn effectively allowing for the deanonymization
of clients thus dropping its strong anonymity requirement.
Whilst TASP’s authors argue that the performance of their
technique can outperform Buddies, incurring into a reduced
latency and achieving higher throughput for online posts, the
reality is that it does not offer long term protection against
a state-level adversary nor it offers an elegant solution for
the usage of user pseudonyms.

III. DESIGN & IMPLEMENTATION

In this Section we address the our implemented work
for Moby. Mainly, we will focus on how this system
was designed to defeat intersection attacks and statistical
disclosure, how Moby is implemented on top of TorK as
an add-on, and on the real-world implementation of Moby
using microcomputers.

A. System Overview

To offer Tor users stronger anonymity guarantees, we
introduce the concept of k-anonymous flashmobs (henceforth
simply referred as flashmobs). Drawing this analogy from
real world flashmobs, the idea is to allow a Tor user to
schedule an event where a community of other k − 1 users
(designated mobbers) is summoned to connect to the Inter-
net, around the same time, and generate covert Tor traffic
that will allow the flashmob organizer to “blend in with the

4



Middle

Relay

Alice

Bob

Moby
Bridge


Middle

Relay

Exit
Relay

Exit
Relay Webserver

(e.g. BBC)

Webserver 

(e.g. NPR)

Moby
Gateway

Moby
Gateway

Tor Browser Tor Client

Charlie

Moby
Gateway

Middle

Relay

Exit
Relay Webserver 


(e.g. Wikileaks)

Tor Browser

Moby Agent

Tor Client

Tor Client

Tor ClientMoby Agent

Figure 3. Moby architecture. Alice, Bob, and Charlie form a flashmob
that can access BBC, NPR, or WikiLeaks websites. A global adversary can
observe the network traffic exchanged by every node.

crowd” and access an intended website through Tor with
k anonymous protection. Similar to TorK, flashmobs will
also ensure traffic pattern indistinguishably, thus protecting
against traffic correlation attacks. However, differently from
TorK, flashmobs will also prevent intersection and statistical
disclosure attacks by forcing the set K of k participants and
the set M of m accessible websites to be locked, preventing
these sets from changing for each specific flashmob. If a
flashmob is instantiated multiple times in the future, this
invariant ensures that the anonymity sets will always remain
constant. As a result, a global passive adversary will not be
able to erode k-anonymity by taking advantage of anonymity
set fluctuations.

Represented in Figure 3, Moby itself consists of two main
components: bridge and client. Taken together, these compo-
nents implement a new pluggable transport for Tor. Bridges
are responsible for managing flashmobs and relaying the Tor
traffic generated by the client software running on users’
devices. Bridges are interconnected to enable the enrolment
in the same flashmob of a large number of clients, possibly
connecting from various regions of the world. Clients run a
software bundle comprised of two subcomponents: gateway
and agent. The gateway regulates the transmission of Tor
traffic between the local client and the bridge. The local
source of this traffic can be either a standard Tor browser
or an agent: the former is used by the flashmob organizer
to access the intended website, and the latter is used by a
mobber for generating covert traffic in the background every
time the flashmob takes place.

To illustrate these concepts, imagine Alice wants to access
WikiLeaks and post incriminating information about her
national security agency employer – a notorious global
passive adversary – whilst covering her tracks. She will only
connect to Moby when wanting to leak information. In other
words, Alice will not use Moby for regular everyday website
accesses but only sporadic whistleblowing actions. As such,
in our design, Alice is able to connect and engage with
trustworthy freedom-loving participants to help her process
of blending in with a crowd. Figure 3 illustrates how Alice
can publish this content while covering her tracks with the

help of two mobbers: Bob and Charlie. At a predefined time
scheduled by Alice, these three participants must connect
to Moby’s bridges. This mesh of TorK bridges happens so
flashmobs can span different geographical regions which
also eases the recruitment of users for our anonymity set.
When the flashmob starting time is reached (all users are
online), Alice, Bob, and Charlie will access the web servers
of BBC, NPR and WikiLeaks. Whilst Bob and Charlie are
merely aiding Alice by providing cover traffic (generated
by the local agents), Alice will post relevant whistleblowing
information instead, using her Tor browser instance.

By requiring our fixed membership set K of k mobbers, to
access the same fixed set M of m websites we are allowing
for two specific defenses. (i) First, by requiring every user
to remain online over multiple flashmob rounds ri we will
essentially resist every intersection attack. Let Oi be the
set of online users for some round i, if this set remains
immutable over all rounds ri we resist any intersection
attack. In other words if Oi = K no global passive
adversary can infer a whistleblower’s identity because the
intersection of all online user sets I equals K. (ii) Second,
by requiring every user to access every website in M we
make it impossible to statistically disclose Alice’s identity.
Let ki be a randomly picked user from K and mi a randomly
chosen site from M. The probability pki,mi

of ki accessing
mi essentially equals 1

k . In other words, the probability of
any of k accessing a random website of m is the same. Next,
we discuss some important design challenges we need to
overcome when building Moby.

B. Managing Flashmobs

To provide a k-anonymous flashmob service for Tor,
we need to characterize the stages that constitute the life
cycle of a particular flashmob. We also need to specify
how various actors will be engaged at each stage and what
their expected behavior will be. In addition, we need to
determine the meta-data required to coordinate the flashmob
throughout its life cycle. From this analysis, we will draw
the necessary information to design the security protocols
responsible for managing flashmobs in our system. Based
on our preliminary study, we present our first insights on
how flashmobs will be managed in Moby.

1) Flashmob life cycle:: Taking Alice’s scenario as ex-
ample, our preliminary protocol for bringing a k-anonymous
flashmob into existence consists in four stages:

1) User registration: Initially, Alice will sign up and
log into the system. Signing up is an anonymous
action and only Moby will know her IP address. She
is attributed a secret and transient token that serves
as a user identifier. Alice logs in by establishing a
connection with a bridge. Alice can switch the bridge
she connects to at any time during her session’s
lifetime.

5



2) Flyer generation: Next, Alice announces her intention
to organize a flashmob and creates a flyer. A flyer is
a manifest that establishes the size of the flashmob
k Alice wants to blend into and the list of websites
necessary to provide cover traffic m. During this
generation phase, Alice is able to hand pick which
users she wants to include in her flashmob. Several
recruitment policies are possible, e.g., Alice can invite
mobbers from a pool of “freedom fighters” willing
to help cover her tracks for free or in exchange for
money.

3) Event scheduling: During this phase, Alice will sched-
ule the performance of a flashmob for a specific
period of time. Let ti and tf be the initial and final
timestamps of a performance, it is expected for every
mobber to be present throughout the performance until
its completion. As such, Alice will also establish a
waiting room where the system will wait for every
mobber to be present before starting the flashmob. Let
twr be the starting time instant for the waiting room,
it is expected for twr ≤ ti.

4) Flashmob gathering: Lastly, the flashmob must be put
in motion. Every mobber is expected to connect to
the waiting room between twr and ti. If a single one
of the k users is not online by ti, the flashmob will
be canceled. At moment ti every mobber k starts the
cover traffic generation. Reciprocally, at tf every one
of the k mobbers will cease traffic generation. During
ti and tf , Alice will get to access to a sensitive-content
website of her choosing without a global passive
adversary being able to pinpoint which of the k users
is accessing any of the m websites. Assuming there
is no churn on the anonymity set over every flashmob
round ri, no global passive adversary can deanonymize
Alice. Moreover, if k users keep on accessing m with
equal probability, we nullify any statistical disclosure
attack to our flashmob.

2) Flashmob flyer:: The flyer for a flashmob is con-
structed as the four phase flashmob creation protocol is
run. Figure 4 depicts the flyer advertising Alice’s flashmob.
Having broadcast her intention to create a flashmob in phase
2, Moby will define a unique identifier as the flashmob’s
name. Furthermore, this is the phase where Alice hand
picked her colluding mobbers generating her anonymity set.
The system registers the mobbers in a set consisting of
their user identifiers. Having chosen BBC, NPR and the
WikiLeaks websites for set M, these are also represented in
the flyer in the next field. During phase 3, Alice scheduled
the duration of every flashmob and the dates for their
performances. Alice chose three different UNIX time dates
and defined the performance and waiting room periods, for
every performance, to be 600 and 1200 seconds respectively.
Every user in the system possesses an updated version of

flashmob_name: <1024>

flashmob_members: {

alice_token, 

bob_token,


charlie_token}

websites_set:
{BBC,NPR,Wikileaks}

dates: 

{1670400000, 

1671004800,

1671609600}

duration: <600 s>

waiting_period: <1200 s>

Figure 4. Flyer advertising flashmob #1024 proposed by Alice.

this data structure. Every update to this data structure is
broadcast to users pertaining to flashmob 1024.

C. Managing Users

We need to overcome several challenges involving the
management of users, especially dealing with churn and
mobber recruitment. We discuss them briefly.

1) Dealing with churn:: One of the main concerns with
our system, naturally, is mobber churn. In Moby, differently
from other systems [22, 23], churn is by no means tolerated.
If a user does not show up for a flashmob gathering at time
instant ti, the flashmob is canceled. However, the incentive
and usage model Moby users fall into, differs from those of
other systems, such as TorK[40]. Mobbers are not passive
but active users willing to help a whistleblower blend in
with a crowd. As such, the risk of users connecting and
disconnecting as they perform their everyday online routines,
enabling an intersection attack, is largely reduced. However,
there is still the risk that users do not connect to the waiting
room during twr and ti or disconnecting between ti and tf .
Next, we also discuss how we propose to tackle this issue.

2) Mobber recruitment:: Moby allows for the hiring of
individuals to increase the size of anonymity sets. Funda-
mentally, we propose two main methods for hiring additional
mobbers: (i) the usage of monetary compensation where
each participating user would be rewarded with some form
of stake, such as cryptocurrency [41, 42]. As such, every
mobber would essentially be mining when participating in
a flashmob. (ii) The usage of gamification where users
would grind reputation for different factions that simulate
distinct system-set traffic patterns. As such, a user would
have the desire to grind rating through flashmob participation
as a way to display trustworthiness to potentially mobbers
looking for a group.

3) Resisting Sybil attacks:: An adversary with significant
computation power might own several devices acting like
malicious mobbers, a realistic scenario in modern times

6



SOCKS Proxy Tor Protocol

PT Protocol Controller Endpoint

PT Tor

Controller

Hub Service

Client

Controller

Traffic
Shaper

TorK+Moby
Bridge

Tor Protocol

Bridge Service

TorK+Moby
Hub

SOCKS

Proxy

SOCKS

Proxy

Traffic
Shaper

Bridge
Controller

PT

PT Protocol

Moby

Add-on

Moby

Client

Moby

Add-on

Middle

Relay


R

Figure 5. Overview of Moby’s components with TorK

with surveillance agencies creating bridges in anonymity
networks [43]. This would decrease the anonymity of a set or
even allow to infer the identity of a user (if all the mobbers
in a flashmob are sybil actors). To address this problem,
Moby may allow “closed” groups where every mobber is
invited by the flashmob organizer therefore establishing a
trusted group. Each user would be defined by a static-roster
of identifier tokens listing all members. A downside of this
approach is that it reduces the chances of finding mobbers to
participate in flashmobs. To support “open” groups we could
build upon Sybil-resistant schemes such as those based on
social networks [44].

D. Architectural Components

Figure 5 depicts the major internal subcomponents of
the Moby add-on and the TorK implementation, which
comprises hub and bridges. To route Tor traffic through
TorK, the hub must run set up to use the TorK pluggable
protocol and run Tor. Upon starting, Tor spawns the TorK
hub service, the Moby add-on and a SOCKS [45] proxy to
receive Tor traffic. Henceforth, Tor cells generated by the
client can then be received by the hub service, packed into
TorK frames and sent to the bridge according to a specific
traffic shaping function. Conversely, TorK bridges extract
the Tor cells embedded into TorK frames and deliver these
cells to the Tor network.

Since TorK is a Tor pluggable transport, any TCP/IP
application that places requests through Tor can reap the
benefits of our system. To entirely control a Tor circuit, TorK
instrumentally reroutes streams to a given circuit only when
authorized by bridges. To perform this rerouting operation,
we leverage the Tor Controller specification to build a Tor
controller that exposes functions capable of creating, closing,
and attaching streams to circuits.

Moby, once instanced will leverage a CLI interface al-
lowing the user to send commands to the bridge the client
is currently connected to, and create a flashmob that future
users, once connected to this same bridge might be interested
in joining. The Moby component for the bridge not only
receives commands to instantiate a flashmob, but is the
responsible process to coordinate mobbers to start traffic
generation and block traffic if the number of messages
reaching the bridge is below a pre-configured anonymity

threshold.
We implemented Moby prototype on top of TorK for

GNU/Linux. Moby includes both a Client and Bridge
(Server) component. The prototype was written in C++ using
OpenSSL1 and Boost2 libraries.

Moby leverages the six main components of TorK. Each
component whether aims at implementing an Tor API, in
which TorK can use to setup Tor or implements TorK
architectural components: indistinguishable and unlinkable
channels, k-anonymity through k-circuits, the Moby proto-
col, and finally, measures to withstand against active attacks.
The following subsections present implementation details,
issues and challenges faced for each component.

E. Moby and the Internet of Things (IoT)

Since the main cause of deanonymization for Moby is the
churn of mobbers, to protect Alice in the advent of sensitive
website accesses, we have performed a practical deployment
of Moby using RPi microcomputers acting as Moby hubs.
These devices are intended to function as mobbers being
deployed behind the residential network of Moby users and
generating traffic once a flashmob begins.

The reason behind this deployment was that differently
from desktop, laptop computers and mobile phones, Internet
of Things (IoT) devices such as RPis are meant to be
online during long periods running relatively simple, non-
intensive computational tasks whilst being available almost
24/7. Differently from computation servers, RPis offer low
energy consumption and are practical to deploy, in an almost
plug-and-play fashion.

Through the usage of RPis, deployed in residential homes,
intended to be online and running Moby client 24/7, the
availability of mobbers is highly increased. The main reason
for this being clients that run Moby on their personal devices
and have signed up for a future flashmob might be offline
during the time period of the performance. Lest the occasion
of power outtages and network failures the probability of
churn resides on the client willingly quit the flashmob the
node was signed for.

For Moby to be functional behind the Network Address
Translation (NAT) of residential routers some adjustments
were made. In order for the Moby bridge to instruct mobbers
to start generating cover traffic, these devices have to be
reachable from outside the NAT. For this goal, we have made
use of Tailscale [46] – a plug-and-play secure VPN service
– allowing mobbers to expose a public virtual IP address
accessible to the Moby bridge.

With Tailscale, every user will now expose an extra virtual
network interface to the outside world. These virtual network
interfaces will act as a regular interface, thus giving these
machines a reachable IP. Not only that, but it facilitates

1https://www.openssl.org/
2https://www.boost.org/

7

https://www.openssl.org/
https://www.boost.org/


Device ISP Modem Wired Avg. Tput. (Mbps) Avg. Latency (ms)

rpi01 ISP1 Fiber WiFi 85.51 ± 2.48 46.24 ± 1.77
rpi02 ISP1 Fiber Ethernet 194.96 ± 2.43 44.69 ± 0.30
rpi03 ISP2 Fiber Ethernet 203.43 ± 3.42 41.91 ± 1.35
rpi04 ISP3 Coaxial Ethernet 17.13 ± 2.35 49.18 ± 7.26
rpi05 ISP3 Coaxial Ethernet 21.38 ± 0.82 52.07 ± 25.70
rpi06 ISP2 Fiber Ethernet 117.90 ± 0.84 49.01 ± 3.37
rpi07 ISP2 Fiber Ethernet 92.92 ± 1.94 57.58 ± 165.15
rpi09 ISP1 Fiber WiFi 92.71 ± 0.78 118.94 ± 339.71
rpi10 ISP2 Fiber Ethernet 119.01 ± 0.48 42.49 ± 4.91

Table I
CONNECTIVITY CHARACTERISTICS AND NETWORK PERFORMANCE OF

THE DEPLOYED RPI MOBY NODES.

reaching any of these devices, no matter where they are
located, let the goal be to SSH into the RPis or use them
for a distribution application such as Moby.

Nevertheless, it is important to mention that, although the
Moby bridge used the Tailscale IP addresses to contact mob-
bers, once the performance starts the client nodes will route
traffic regularly (through the bridge and relays) devoided
of any VPN tamper. As such, Tailscale is used exclusively
for the process of broadcasting flashmob management in-
structions (start and finish) to otherwise unreachable nodes
behind a home network.

Not only, did Tailscale provide public addresses for mob-
bers behind NATs, now reachable from Moby bridges out-
side of this VPN, but it allowed for every device connected
to the same Tailscale network instance to also communicate
with one another. This helped shaping the idea of plug-
and-play Moby-ready device which one would connect to
the network and be instantly reachable from every other
flashmob member.

IV. EVALUATION

In this section we show the experimental work we have
conducted. We split the experimental work in two: (i) the
real world deployment of Moby using microcomputers, and
(ii) evaluation of Moby against statistical disclosure attacks.

A. Availability in Real-World Deployment

To mimic a set of people interested in using Moby, we
performed a practical deployment of Moby using 9 RPi
devices acting as TorK hubs, each provisioned with a 4-core
Broadcom BCM2711 CPU and 2GB of RAM. These devices
were distributed among different members of our research
group and installed in households across the metropolitan
area of Lisbon. This distribution enabled us to gather a
representative sample of the variety of ISPs and Internet
connections’ performance expected to be found in the homes
of individuals interested in using Moby.

1) Raw network performance: Table I details the con-
nectivity characteristics of each RPi machine. The table
also shows the average throughput and latency obtained by
each node over the course of a week-long measurement
where throughput and latency statistics were obtained every
two hours. These statistics were obtained by reaching out
to a public server under our control, hosted in Frankfurt,

29 Sept 30 Sept 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

bp
s)

5th percentile
median
95th percentile
rpi03

Figure 6. Weekly Moby throughput as experienced by rpi3.

using the httping and the iperf3 utilities, respectively.
We did not send traffic through Tor or Moby during these
measurements, i.e., we intended to measure the raw network
performance of these devices. As seen in the table, our
measurements reflect an heterogeneous landscape of network
performances, where the throughput of RPi nodes ranges
from 17 Mbps to 203 Mbps. Interestingly, we see that even
the low performance nodes achieve a sufficient throughput to
sustain bandwidth-hungry applications, like video streaming.

2) Moby performance: We used our RPi deployment to
run periodic Moby rounds based on a k-circuit (k=9) while
using a traffic shaping rate of ≈5 Mbps, i.e., equivalent to
720p video streaming. Every two hours, the RPis engaged in
a flashmob where device rpi3 sent real data, in the form of
an iperf3 measurement, and all other nodes sent chaff. In
this experiment, all RPi nodes were connected via the same
Tor circuit; we selected the nodes composing this circuit by
picking a Tor middle relay and exit relay with an uptime
larger than 40 days and a total advertised throughput over
20 Mbps.

Figure 6 shows our weekly throughput measurements
conducted over TorK. The figure reveals that Moby traffic
was rather stable, achieving a median throughput of 2.3
Mbps. Some of the more meaningful throughput drops we
were able to observe (e.g., in September 30th), may be
explained by the fact that the operator of rpi3 was working
from home and attending back-to-back videoconferencing
meetings throughout the day, using another machine. This
suggests that the congestion caused by other bandwidth-
hungry applications’ traffic in the network adds to the
variability of Moby’s performance.

B. Resistance Against Statistical Disclosure

One of the main components of our work is to evaluate
flashmobs composed within Moby against possible inter-
section attacks and statistical disclosure on the anonymity
sets. Since with the RPi experiment we have concluded that
Moby devices work under high availability scenario, the next
sections will focus on: (i) evaluating the original statistical
disclosure attack against a theoretical scenario with node
failure rates similar to the ones of real-world deployment,
and (ii) evaluating the same attack for Moby using a bridge
oracle.

8



Figure 7. Highly available users with 100% chance of failures being
permanent

1) High Availability Scenario: Figure 7 shows a highly
available scenario for flashmob compositions. Each square
on the map will represent the attacker’s probability of
inferring Alice’s website accessing profile to a sensitive
destination – WikiLeaks. Each member of the flashmob –
K – will pick a website at random from the fixed website
set – M – during rounds and access it until the round is
over. The x axis, represent the failure rate of mobbers using
the number of nines. The y axis, represents the probability
of Alice accessing WikiLeaks with a higher probability than
any website from M. The number of #K is 100, and the
number of #M is also 100.

As we can observe for a failure rate of 10% (1 Nine),
and with a probability of 100% of failure resulting in a user
not coming back, the attacker infers with a ≈10% difference
the WikiLeaks accessing profiling of Alice, when compared
to her real accessing profile. However, even if every failure
means permanent churn in the flashmob, for (2 Nines) the
attacker can barely infer the probability of Alice accessing
the sensitive website being monitored.

As such, we can conclude that highly available scenarios
can concur in great protection for flashmob participants as
long as mobber failure probability is no more than 10%.
Furthermore, as shown, not only does the failure probability
of mobbers influence the attacker readings, but the analysis
for temporary versus permanent churn, has shown us that,
the lower the probability of permanent churn, the better
Alice is protected against a global passive adversary.

2) Oracle and Minimum Threshold: We can observe
from the previous experiment that the amount of offline
mobbers not only conditions the plausible deniability of
Alice, but also for greater probabilities of permanent churn,
the attacker is able to greatly approximate the real accesses
profile with the estimated one. As such, and inspired by
Wolinksy [22], when traffic is routed through a Moby bridge,
this component can access how many messages it did receive
and implement a minimum threshold of online mobbers – O
– to prevent the deanonymization of users, thus acting like

Figure 8. Highly available users with 100% chance of failures being
permanent

an Oracle.
Figure 8 implements a minimum flashmob threshold of

O = 4 for a flashmob. If during a certain communication
round the Moby detects that no more than 4 messages were
sent to the destination websites no traffic will be routed. Fol-
lowing the evaluation on previous sections, the parameters
remain the same for the K, websites being accessed M and
probability of a failure resulting in permanent churn.

In Figure 8 we can observe that for a failure rate of 10%
(1 nine), with every failure resulting in permanent churn,
regardless of Alice’s sensitive website accessing tendencies,
barely any message is being routed through Moby. Although
the attacker cannot profile Alice, this poses an usability
issue. Nonetheless, for a mobber failure rate of 1% (2 Nines)
the results are much more encouraging. Not only, does the
attacker have trouble profiling Alice’s WikiLeaks accesses
(compared to her real probability) but many more rounds
are not being blocked by the Moby bridge Oracle.

As such, we can conclude that for Moby flashmobs to pro-
vide usability a degree of usability, the flashmob users have
to possess highly availability (above 90% per round) and
a low probability of failures resulting in permanent churn.
With these conditions known, we can greatly vary the size
of the flashmob sizes and the O online mobber threshold.
We leave for future work evaluating the correlation between
flashmob sizes, availability and the minimum flashmob
threshold necessary to route traffic between bridges.

V. CONCLUSIONS

Nowadays, attacking anonymity networks is becoming
easier for state-level adversaries. Although recent works
such as TorK add k-anonymity and prevent traffic flow
correlation on Tor (the most popular anonymity network
in usage as the time of writing), such system remains
vulnerable to intersection attacks and statistical disclosure
against a global passive adversary. In this work, we pre-
sented Moby, aimed at providing Tor a network of Moby
bridges protecting whistleblowers from intersection attacks

9



and statistical disclosure. This is achieved by introducing k-
anonymous flashmobs scheduled once a user wants to protect
herself from global passive adversaries.

ACKNOWLEDGMENTS

We are grateful to Vı́tor Nunes and Kevin Gallagher
for the fruitful discussions and valuable insights during the
preparation of this report.

REFERENCES
[1] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-generation

onion router,” in Proceedings of the 13th USENIX Security Symposium, August
9-13, San Diego, California, USA, 2004.

[2] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous Connections
and Onion Routing,” IEEE Journal on Selected Areas in Communications, 1998.

[3] Tor Project, “Tor FAQ,” https://2019.www.torproject.org/about/
overview.html.en, accessed: 2021-09-10.

[4] J. Raymond, “Traffic Analysis: Protocols, Attacks, Design Issues, and Open
Problems,” in Proceedings of the International Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, California, USA, July 25-26, 2000.

[5] S. J. Murdoch and G. Danezis, “Low-Cost Traffic Analysis of Tor,” in Proceed-
ings of the 2005 IEEE Symposium on Security and Privacy (S&P 2005), 8-11
May, Oakland, California, USA, 2005.

[6] J. Barker, P. Hannay, and P. Szewczyk, “Using Traffic Analysis to Identify
the Second Generation Onion Router,” in Proceedings of the 9th IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, Melbourne,
Australia, October 24-26, 2011.

[7] Tor Project, “Traffic Correlation Using Netflows,” https://blog.torproject.org/
traffic-correlation-using-netflows?page=1, accessed: 2021-10-29.

[8] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users Get Routed:
Traffic Correlation on Tor by Realistic Adversaries,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, Berlin,
Germany, November 4-8, 2013.

[9] K. Gallagher, “How Tor helped catch the Harvard bomb threat suspect,” https:
//www.dailydot.com/crime/tor-harvard-bomb-suspect/, 2016, accessed : 2021-
11-02.

[10] R. Lakshmanan, “Russia Blocks Tor Privacy Service in Latest Censorship
Move,” https://amp.thehackernews.com/thn/2021/12/russia-blocks-tor-privacy-
service-in.html, accessed: 2021-12-12.

[11] Wired, “Russia’s Internet Censorship Machine Is Going After Tor,” https://
www.wired.com/story/russia-block-tor-censorship/amp, accessed: 2021-12-12.

[12] D. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Scalable Anonymous
Group Communication in the Anytrust Model,” in Proceedings of the 5th ACM
European Workshop on Systems Security, April 10, 2012.

[13] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable Anonymous Group
Messaging,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, Chicago, Illinois, USA, October 4-8, 2010.

[14] L. Barman, I. Dacosta, M. Zamani, E. Zhai, A. Pyrgelis, B. Ford, J. Feigenbaum,
and J. Hubaux, “PriFi: Low-Latency Anonymity for Organizational Networks,”
Proceedings on Privacy Enhancing Technologies, 2020.

[15] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and C. Troncoso,
“TARANET: Traffic-Analysis Resistant Anonymity at the Network Layer,” in
Proceedings of the 2018 IEEE European Symposium on Security and Privacy,
London, United Kingdom, April 24-26, 2018.

[16] A. Kwon, D. Lu, and S. Devadas, “XRD: Scalable Messaging System with
Cryptographic Privacy,” in Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation, Santa Clara, California, USA,
February 25-27, 2020.

[17] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An Efficient Communi-
cation System With Strong Anonymity,” Proceedings of the Privacy Enhancing
Technologies, 2016.

[18] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. F. Syverson, “Users Get
Routed: Traffic Correlation on Tor by Realistic Adversaries,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communications Security,
Berlin, Germany, November 4-8, 2013.

[19] V. Nunes, “Hardening Tor against State-Level Traffic Correlation Attacks with
K-Anonymous Circuits,” Master’s thesis, Instituto Superior Técnico, Universi-
dade de Lisboa, 2021.

[20] G. Danezis and A. Serjantov, “Statistical Disclosure or Intersection Attacks on
Anonymity Systems,” in Proceedings of the 6th International Conference on
Information Hiding, Toronto, Canada, May 23-25, 2004.

[21] S. Oya, C. Troncoso, and F. Pérez-González, “Meet the Family of Statistical
Disclosure Attacks,” Computing Research Repository, 2019.

[22] D. I. Wolinsky, E. Syta, and B. Ford, “Hang With Your Buddies to Resist
Intersection Attacks,” in Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, Berlin, Germany, November 4-8, 2013.

[23] J. Hayes, C. Troncoso, and G. Danezis, “TASP: Towards Anonymity Sets that
Persist,” in Proceedings of the 2016 ACM Workshop on Privacy in the Electronic
Society, Vienna, Austria, October 24-28, 2016.

[24] E. G. Sirer, S. Goel, M. Robson, and D. Engin, “Eluding Carnivores: File Sharing
With Strong Anonymity,” in Proceedings of the 11st ACM SIGOPS European
Workshop, Leuven, Belgium, September 19-22, 2004.

[25] L. Melis, G. Danezis, and E. D. Cristofaro, “Efficient Private Statistics with
Succinct Sketches,” in Proceedings of the 23rd Annual Network and Distributed
System Security Symposium, San Diego, California, USA, February 21-24, 2016.

[26] D. Lazar and N. Zeldovich, “Alpenhorn: Bootstrapping Secure Communication
without Leaking Metadata,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation, Savannah, Georgia, USA,
November 2-4, 2016.

[27] N. Gelernter, A. Herzberg, and H. Leibowitz, “Two Cents for Strong Anonymity:
The Anonymous Post-Office Protocol,” in Proceedings of the 16th International
Conference on Cryptology and Network Security, Hong Kong, China, November
30-December 2, 2017.

[28] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A Scalable and Efficient
Protocol for Anonymous Communication,” Technical Report, Cornell University,
2003.

[29] S. L. Blond, D. R. Choffnes, W. Caldwell, P. Druschel, and N. Merritt, “Herd:
A Scalable, Traffic Analysis Resistant Anonymity Network for VoIP Systems,”
in Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, London, United Kingdom, August 17-21, 2015.

[30] M. J. Freedman and R. T. Morris, “Tarzan: A Peer-to-peer Anonymizing
Network Layer,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security, Washington DC, USA, November 18-22, 2002.

[31] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An Anonymous
Messaging System Handling Millions of Users,” in Proceedings of the 2015
IEEE Symposium on Security and Privacy, San Jose, California, USA, May 17-
21, 2015.

[32] G. Danezis, “Statistical Disclosure Attacks,” in Proceedings of the International
Conference on Information Security on Security and Privacy in the Age of
Uncertainty, Athens, Greece, May 26-28, 2003.

[33] N. Mathewson and R. Dingledine, “Practical Traffic Analysis: Extending and
Resisting Statistical Disclosure,” in Proceedings of the 4th International Work-
shop on Privacy Enhancing Technologies, Toronto, Canada, May 26-28, 2004.

[34] A. Serjantov, R. Dingledine, and P. F. Syverson, “From a Trickle to a Flood:
Active Attacks on Several Mix Types,” in Proceedings of the 5th International
Workshop on Information Hiding, Noordwijkerhout, The Netherlands, October
7-9, 2002.

[35] F. Pérez-González and C. Troncoso, “Understanding Statistical Disclosure: A
Least Squares Approach,” in Proceedings of the 12th International Symposium
on Privacy Enhancing Technologies, Vigo, Spain, July 11-13, 2012.

[36] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity Trilemma:
Strong Anonymity, Low Bandwidth Overhead, Low Latency - Choose Two,”
in Proceedings of the 2018 IEEE Symposium on Security and Privacy, San
Francisco, California, USA, 2018.

[37] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a Type
III Anonymous Remailer Protocol,” in Proceedings of the 2003 IEEE Symposium
on Security and Privacy, Berkeley, California, USA, May 11-14, 2003.

[38] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent in
Numbers: Making Strong Anonymity Scale,” in Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation, Hollywood,
California, USA, October 8-10, 2012.

[39] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proactively Accountable
Anonymous Messaging in Verdict,” in Proceedings of the 22th USENIX Security
Symposium, Washington DC, USA, August 14-16, 2013.

[40] P. Samarati and L. Sweeney, “Generalizing Data to Provide Anonymity when
Disclosing Information,” in Proceedings of the 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Seattle, Washington,
USA, June 1-3, 1998.

[41] A. Biryukov and I. Pustogarov, “Proof-of-Work as Anonymous Micropayment:
Rewarding a Tor Relay,” in Proceedings of the 19th International Conference
on Financial Cryptography and Data Security, San Juan, Puerto Rico, January
26-30, 2015.

[42] T. Dinh, F. Rochet, O. Pereira, and D. S. Wallach, “Scaling Up Anonymous
Communication with Efficient Nanopayment Channels,” Proceedings on Privacy
Enhancing Technologies, 2020.

[43] E. Snowden, “Tor Stinks,” https://edwardsnowden.com/docs/doc/tor-stinks-
presentation.pdf, accessed: 2021-11-04.

[44] D. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-Resilient Online Content
Voting,” in Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, Boston, Massachusetts, USA, April 22-24, 2009.

[45] M. Leech, M. Ganis, Y.-D. Lee, R. Kuris, D. Koblas, and L. Jones, “Rfc 1928:
Socks protocol version 5,” https://tools.ietf.org/html/rfc1928, 1996, accessed:
2022-01-05.

[46] Tailscale Inc., “Tailscale - best vpn service for secure networks,” https://
tailscale.com/, accessed: 2022-10-25.

10

https://2019.www.torproject.org/about/overview.html.en
https://2019.www.torproject.org/about/overview.html.en
https://blog.torproject.org/traffic-correlation-using-netflows?page=1
https://blog.torproject.org/traffic-correlation-using-netflows?page=1
https://www.dailydot.com/crime/tor-harvard-bomb-suspect/
https://www.dailydot.com/crime/tor-harvard-bomb-suspect/
https://amp.thehackernews.com/thn/2021/12/russia-blocks-tor-privacy-service-in.html
https://amp.thehackernews.com/thn/2021/12/russia-blocks-tor-privacy-service-in.html
https://www.wired.com/story/russia-block-tor-censorship/amp
https://www.wired.com/story/russia-block-tor-censorship/amp
https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf
https://edwardsnowden.com/docs/doc/tor-stinks-presentation.pdf
https://tools.ietf.org/html/rfc1928
https://tailscale.com/
https://tailscale.com/

	Introduction
	Related Work
	Attacks Leveraging Anonymity Sets
	Intersection attacks:
	Statistical disclosure attacks: 

	Avoiding Weaknesses for Anonymity Sets

	Design & Implementation
	System Overview
	Managing Flashmobs
	Flashmob life cycle:
	Flashmob flyer:

	Managing Users
	Dealing with churn:
	Mobber recruitment:
	Resisting Sybil attacks:

	Architectural Components
	Moby and the Internet of Things (IoT)

	Evaluation
	Availability in Real-World Deployment
	Raw network performance
	Moby performance

	Resistance Against Statistical Disclosure
	High Availability Scenario
	Oracle and Minimum Threshold


	Conclusions

