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Resumo

Redes de anonimato como a rede Tor são ferramentas poderosas para aumentar a anonimidade e

segurança das comunicações entre os seus utilizadores. A popularidade da rede Tor muitas vezes

acaba por dar azo à sua utilização por parte de wistleblowers ou informantes, dispostos a revelar

informações confidenciais ou atividades usualmente envolvendo organizações privadas, públicas ou

governamentais. No entanto, devido à exposição de documentos confidenciais, estas pessoas podem

ser acusadas de crime por entidades poderosas por terem atuado em prol da transparência e liber-

dade. Nesta tese propomos uma tecnologia com vista a aumentar a privacidade da rede Tor através de

uma nova primitiva que permite proteger os seus utilizadores contra ataques iniciados por adversários

globais passivos. Em particular, introduzimos a ideia de permitir utilizadores a criar uma flashmob de

k-anonimato, i.e., um grupo que permite a cooperação de k−1 voluntários com intuito a proteger a liber-

dade de expressão se conectarem simultaneamente à Internet através do Tor e gerar tráfego dissimu-

lado que irá permitir o organizar da flashmob desaparecer na multidão assim gerada. De forma a mate-

rializar esta ideia, propomos construir um novo pluggable transport para o Tor chamado Moby. Através

da rede Moby, um adversário global passivo com a habilidade de intercetar todas as comunicações

ao redor do globo não terão a capacidade de desanonimizar as comunicações dos participantes da

flashmob mesmo utilizando o estado da arte das técnicas de correlação de tráfego.

Palavras-chave: Tor, K-Anonimato, Ataques de Interseção, Divulgação Estatı́stica
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Abstract

Anonymity networks such as Tor are powerful tools to increase the anonymity and security of user

communications. The popularity of Tor leads to its usage by whistleblowers or informants, willing to

reveal confidential information or activities often involving private, public or governmental organizations.

However, by exposing classified material, these people may face prosecution from powerful actors by

acting for the sake of liberty and freedom. In this work we propose a privacy-enhancing technology

that provides a new primitive for securing Tor users against attacks mounted by global passive adver-

saries. In particular, we introduce the idea of allowing users to convene a k-anonymous flashmob, i.e., to

leverage the cooperation of k − 1 freedom-fighting volunteers to connect simultaneously to the Internet

through Tor and generate covert traffic that will help the flashmob organizer blend into the crowd. To ma-

terialize this idea, we propose to build a new Tor pluggable transport named Moby. Using Moby, a global

passive adversary with the ability to intercept all the communications across the globe will not be able

to uniquely deanonymize the communications of flashmob participants even when using state-of-the-art

traffic correlation techniques.

Keywords: Tor, K-Anonymity, Intersection Attacks, Statistical Disclosure
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Chapter 1

Introduction

This thesis addresses the problem of intersection attacks and statistical disclosures on TorK and

implements an extension allowing whistleblowers to protect their real identities against global-level ad-

versaries performing passive long-term traffic analysis of network flows. Providing robustness against

intersection attacks implies that an adversary that has a global view of the entire network (clients, relays

and destination) should not, by any passive or active means, be able to find a link between clients and

their destinations. However, due to several practical limitations (e.g. performance, reliability, maintain-

ability), the problem of resisting intersection attacks and statistical disclosure in Tor has remained an

elusive goal.

1.1 Motivation

Whistleblowers or informants are people who reveal privileged information or activities within a pri-

vate, public, or government organization that are deemed illegal or fraudulent. To merely illustrate the

core scenario of our work picture Alice, a notorious whistleblower. By openly denouncing wrongdoing

through the publication of information on dedicated websites like WikiLeaks or Football Leaks, Alice

might expose herself to prosecution or harassment. To protect her identity, she can resort to state-of-

the-art anonymous communication networks such as Tor [1]. Tor’s onion routing scheme [2] allows Alice

to upload sensitive content on whistleblowing websites while hiding her true IP address [3].

However, over the years, the ever-present looming threat of deanonymization attacks launched at a

large scale by global state-level adversaries has been greatly increasing [4]. Such attacks constitute a

great risk to Tor users, like Alice, and emerge as a combination of four main different factors. Firstly,

a growing consolidation of the Internet infrastructure in the hands of a few global players like Google

and other large ISPs make it increasingly easier to collect large portions of Tor traffic from few vantage

points [5]. Second, Tor guard nodes – which act as entry-points to the Tor network – are skewed toward a

relatively small number of ISPs, making it even more practical to probe into the Tor network and intercept

Tor users’ communications [6]. Third, the sophistication of traffic analysis techniques is developing at a

fast pace due to the application of machine learning algorithms that concur to the building of accurate
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traffic classifiers that can be used for launching correlation attacks [7, 8]. Finally, with the advent of mass

surveillance efforts partially enabled and justified by anti-terrorism or the pandemic, states might use

their law enforcement agencies in upholding mandates to monitor anonymous communication networks,

therefore being able to deanonymize potential whistleblowers [9–11].

Over the last few years, there have been many proposals of anonymous communication systems [12–

17] that allow Alice to go incognito and hide her identity from the aforementioned major players. Although

providing strong anonymity properties, these systems are often vulnerable to correlation attacks [18].

Due to Tor being the most widely used anonymous communication network, recent works have proposed

systems to mitigate this family of attacks against onion routing, such as TorK [19], a pluggable transport

leveraging the notion of indistinguishable flows to ensure k-anonymity amongst multiple sources of Tor

connections. Still, resisting a global passive adversary – one that can see and correlate all traffic in

the network, but cannot modify or interact with it – able to perform intersection attacks and statistical

disclosure over a long period of time remains an open research challenge [20, 21]. Although there have

been some proposals to fix these everlasting issues [22, 23], none have been prototyped over onion

routing-based anonymity schemes, and only a few anonymity networks claim sturdiness against such

attacks [24–31].

In order to understand the prevalence of these attacks on Tor, imagine that Alice wants to publish

information about the violation of civil liberties by her employer, a state-level security agency. Alice can

connect to WikiLeaks using TorK and never reveal her personal information when exposing incriminating

data. However Mallory, the director of the security agency Alice is employed in, can order network

administrators to monitor WikiLeaks and Alice’s posting patterns over a long period of time. By observing

the user churn in the variable k-anonymity sets and performing the intersection of these, Mallory is

able to narrow sets down to one user, Alice. Furthermore, if Mallory focus her efforts in analysing the

accesses to WikiLeaks over this long-term passive analysis she will also be able to determine with some

probability p the chances for Alice to be the poster of incriminating data against her agency.

To mitigate these risks, we propose Moby, a new privacy-enhancing tool that provides resistance to

the pitfalls of TorK [19] such as client churn. Moby will also be the first available tool able to provide

resistance against intersection attacks and statistical disclosure on the Tor network. These issues are

solved through an abstraction that we have properly named flashmobs, building on the concept of a

spontaneous group of individuals bound by time performing a specific set of joint actions. By enforcing

multiple users to perform web browsing actions on a scheduled time period we allow whistleblowers to

go incognito, blending in with a group of individuals with a predetermined communication pattern. If

these flashmobs are scheduled to be performed in rounds with the same fixed set of k users accessing

the same websites, no global passive adversary can perform an intersection or statistical disclosure

attack against our system. The reason for this being that the intersection of flashmob user sets over

multiple rounds is the same as the original membership set since churn is not tolerated. Furthermore,

through this condition an attacker is not able to perform a statistical disclosure attack to distinguish the

traffic of each user from another.

With this being said we have extensively evaluated Moby. Using Raspberry Pi devices, we deployed
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Moby hubs in nine residential networks and measured the performance of our system while routinely

composing k-circuit flashmobs (with k = 9), with each round happening in 2h intervals over the course

of one week. In all this time, all the participating hubs were available, enabling users to access the

Tor network with performances varying between 1Mbps and 3Mbps. Finally, in order to resist against a

statistical disclosure attack, we studied several different configurations, to determine how Moby is able

to perform flashmobs that give users strong anonymity and plausible deniability guarantees.

1.2 Contributions

This thesis studies methods to make Tor sturdier against a global passive adversary, specifically,

strengthen TorK against intersection attacks and statistical disclosure. It presents Moby, an Add-On

for TorK responsible for leveraging a concept named flashmobs with the intent of coordinating TorK

users on anonymity sets to shield one another against this category of attacks and makes the following

contributions:

• Design of Moby including four components: (i) concept of flashmobs to resistic intersection attacks,

(ii) how to recruit clients and deal with churn, (iii) design of mesh of Moby bridges to balance

workloads, and (iv) how to deal with the traffic of flashmobs – mostly how to fake realistic browsing

patterns against a global adversary.

• Implementation of the Flashmob concept, allowing for creation, scheduling and performance of

traffic generation during a set amount of time for a predefined number of rounds.

• Integration of Moby with the previous anonymization mechanisms implemented on the TorK sys-

tem, mostly the aspects related with traffic shaping and the creation of k -circuits.

• Deployment of Moby in Internet of Things (IoT) devices scattered behind residential networks –

presenting a high availability real world scenario.

• Evaluation of Moby for performance metrics, both using a virtual test bench on Docker and actual

deployed microcomputers.

• Evaluation of Moby for statistical disclosure resistance against a global passive adversary.

Having stated our contributions, some of them, specifically, (iii) the design of a mesh of Moby bridges,

and (iv) faking realistic browsing scenarios, ended up not being implemented due to the shortage of time

and the fact that many parameters of our goals having to be readjusted due to challenges presented on

the deployment and evaluation of Moby.

1.3 Thesis Outline

The rest of the report is organized as follows. Section 2 introduces the required background. Next,

we discuss the related work in Section 3. In Section 4 we describe the design and architecture of Moby.
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In Section 5 we delve into the implementation of our system and its features. Section 6 describes how

we evaluated Moby and the following results. Finally, Section 7 presents the schedule of future work and

Section 7 concludes the report.
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Chapter 2

Background

In this chapter, we start by providing an overview of the current Tor system, and explain how it

provides sender and receiver anonymity. We discuss with more detail some Tor mechanisms that we

leverage for building TorK, namely bridges and pluggable transports. Then, we identify the main traffic

correlation attacks to the Tor network that can be launched by a state-level adversary.

2.1 The Tor Ecosystem

Tor is a circuit-based low-latency anonymous communication network [1] which implements a variant

of onion routing. The onion routing protocol implemented by Tor aims to provide sender anonymity for

TCP-based applications such as web browsing. Tor relies on nodes – designated by relays or Onion

Routers (OR) – which are maintained by volunteers and forward traffic along a circuit (see Figure 2.1).

Circuits are essentially composed of three relays: an entry, a middle and an exit relay (or node). Clients

choose relays when constructing circuits by selecting them from an available list. This list is available

at special relays that act as directory authorities. In a circuit, onion router relays only know their pre-

decessor and successor and no other relays. Data flows through circuits in fixed-size cells (512 bytes)

encrypted by symmetric keys previously exchanged with clients. Relays can multiplex multiple TCP

streams along each circuit to improve efficiency and anonymity.

To establish a circuit, clients obtain a list of current relays, and then exchange session symmet-

ric keys with each relay in a circuit, one at a time – referred to by telescoping path-build design [1].

These symmetric keys are valid during the session. Relays discards keys when the circuit is closed

providing perfect forward secrecy. Tor is compatible with the majority of TCP-applications without any

modifications or kernel requirements. By providing a SOCKS interface, it allows, for instance, an email

client application to be used on top of Tor without any modifications on the email client itself apart from

changing a proxy configuration.
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Web Server 2 
(e.g. NPR)

Web Server 1 
(e.g. BBC)

Relay 1

Alice

Bob

Charlie

Relay 2 Relay 3

Relay 4 Relay 5

Figure 2.1: Examples of vanilla Tor circuits. Alice constructs a circuit (1 ↔ 2 ↔ 3) to access BBC. Bob
constructs a circuit (1 ↔ 4 ↔ 5) in order to also access BBC. Charlie constructs a circuit (4 ↔ 5 ↔ 3) in
order to access NPR.

2.1.1 Bridges

Given that Tor is very popular as an Internet circumvention tool within countries ruled by repressive

regimes, Tor has become a major target of blocking by the ISPs of such countries. One way for blocking

Tor traffic is by blacklisting Tor relays. Since the relay list is public it is trivial to blacklist the IP addresses

of all Tor relays, preventing Tor clients from establishing circuits. To circumvent this attack, Tor employs

bridges. Bridges consist of unlisted proxies whose goal is to forward client’s traffic to an entry relay.

Thus, rather than connecting to some potentially blacklisted entry relay, clients connect instead to some

unlisted bridge (hopefully) unknown by the adversary. Some bridges are public, others private. Public

bridges are deployed by volunteers to be used by any Tor user. Private bridges are exclusively for those

who know about their existence [32].

However, bridges are still vulnerable to traffic fingerprinting attacks. If a user connects to a bridge

using the vanilla Tor protocol, it becomes possible to identify Tor traffic and blacklist that bridge. Since

Tor uses fixed-size 512 byte cells, the resulting packet size distribution exhibits distinguishable patterns

that can help a threat actor to identify with high probability if a given flow carries Tor cells or not. Tor

traffic can be detected also based on TLS byte patterns. Tor communications (e.g., between relays)

are encrypted using TLS. Server Name Indication (SNI) is a TLS extension [33] that adds the domain

name to the TLS header in order to be used in the Client Hello handshake phase. However, the SNI is

not encrypted – since it occurs before the TLS handshake – allowing an eavesdropper to discover the

domain name that the client is trying to reach. Tor uses a fixed random string as a bogus domain name

(e.g. www.kf3iammnyp.com) and a specific cipher suite set [34]. These properties uniquely identify

encrypted traffic as Tor’s, enabling censors to block new bridges minutes after they have been deployed

by simply observing these two properties.
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2.1.2 Pluggable transports

To surpass identification, Tor bridges support pluggable transports (PT) [35] which are obfuscation

wrappers that shield the Tor traffic between a client and a bridge from traffic analysis. The most popular

PTs are meek [36] and obfs4 [37], which is based on obfs2 [38] and provides a level of obfuscation

for an existing authenticated protocol, like SSH or TLS. The obfs4 protocol encrypts all traffic using a

symmetric key shared between the bridge and the user derived from both client’s and bridge’s initial

key [34]. An attacker would see a randomly encrypted byte stream. meek uses a technique called

Domain Fronting [36]. This technique consists on using different domain names in the SNI and in the

HTTP Host. The idea is to encode a legitimate website domain name into the SNI (e.g. the address of a

public cloud) and use the Host field in the encrypted HTTP request to ask for access to the forbidden one.

meek requires a CDN (Content Delivery Network) like public cloud providers which supports domain

fronting. Bridges can support multiple PTs in order to serve a larger number of clients. However, bridges

that offer more than one PT may reduce the security of the most secure PTs they offer. Similarly, bridges

running non-Tor services (e.g. SSH) also reduce the level of security provided to users [32].

Snowflake is a recent pluggable transport which is composed of two major components: (i) volunteers

running Snowflake proxies, (ii) a broker delivering snowflake proxies to users interested in circumventing

censorship. Snowflake uses domain fronting to create a connection between a snowflake proxy run by a

volunteer and a censored Tor user. These proxies are lightweight, ephemeral, and easy to run, allowing

to scale Snowflake in the presence of thousands of users. For censored users, whenever a Snowflake

proxy gets blocked, a broker will find a new proxy for this user automatically.

2.2 Attacks Leveraging Malicious Tor Entities

One of the most powerful classes of attacks aimed at deanonymizing Tor circuits are the so called

correlation attacks. A correlation attack is an end-to-end attack where an adversary searches for a

correlation between two flows on a given entry and an exit relay, thus concluding that a client is accessing

a certain server. State-level adversaries find themselves in a particularly good standing for being able to

launch such attacks due to their privileged control over a country’s network. We briefly survey some of

the most effective correlation attacks to Tor known today that rely on the existence of malicious entities

in control of the adversary, such as clients, relays or directory authorities.

2.2.1 Timing attacks

These are end-to-end active attacks where an attacker attempts to determine the endpoints of a

circuit by correlating the time it takes for a flow to travel from the entry to the exit relay. Chakravarty et

al. [39] employ single-end bandwidth estimation for deanonymizing the source of a given Tor connection.

Pries et al. [40] presented a different timing attack based on the disruption of the AES-CTR counter used

to encrypt Tor cells. To mitigate timing attacks, Murdoch et al. [41] suggests some defensive strategies.

However, these techniques cannot be adopted in Tor as they would increase the communication latency
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beyond what can be tolerated for a low-latency anonymity network. Instead, Tor relays send cells from

different streams in a round-robin fashion.

2.2.2 Sybil attacks

The attacker deploys malicious relays in the Tor network, while creating the illusion of pertaining

to different entities. The idea is to obtain a large penetration in the network [42] giving the attacker

many vantage points to intercept user traffic. This level of control bolsters the attacker’s ability to launch

correlation or timing attacks [43]. Defenses against Sybil attacks are not trivial. One approach is to relay

on a central authority to endorse the relays that can join the network [44]. However, this introduces a

single point of control which defeats the very purpose of the Tor network. Another approach [45] is to

limit the number of new accepted relays by IP address subnet, forcing the attacker to control multiple

subnets in order to mount the attack. Both solutions do not directly stop sybil attacks but increase the

attacker’s startup cost.

2.2.3 Predecessor attacks

Repeated communication between two endpoints of a Tor circuit may open the door to vulnerabilities

that can be exploited by a traffic analysis-capable adversary [46]. In order to perform a predecessor

attack, an attacker must compromise an entry and an exit relay. The goal of this attack is to learn the

identity of a single or multiple senders when they are connected to a destination over time. Wright et

al. [47] present a defense against predecessor attacks assuming a static network model, i.e. nodes do

not leave the network. To defend against predecessor attacks, the authors propose to fix relays of onion

circuits in certain positions (e.g. entry, or exit). Tor uses the same approach by imposing guard rotation

restrictions [48], as further discussed in Section 3.1.

2.3 Attacks Leveraging Traffic Analysis

Correlation attacks per se are passive attacks which only require an adversary to be placed in a priv-

ileged position in the network and to observe incoming and outgoing network flows at Tor connections’

endpoints. Albeit such attacks do not require the compromise of nodes nor the perpetration of active

attacks, such attacks can provide an adversary with an advantage to perform correlation.

We detail several attacks that do not depend on the ability of the adversary to compromise Tor

entities, but are leveraged by traffic analysis techniques – mostly in a passive fashion – observing the

traffic in specific vantage points.

2.3.1 Circuit fingerprinting attack

Sun et al. [49] present an approach based on asymmetric traffic analysis allowing an adversary to

correlate and deanonymize a circuit’s endpoints, even if the attacker has access to different directions of
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the flow, e.g., from client to entry and server to exit. The rationale of this technique is based on the fact

that the Internet relies on asymmetric connections, i.e. the path from the client to the server may differ

from the same server back to the client, and that an adversary is still able to perform traffic correlation

by observing different directions of a given flow. To augment the possibility of an adversary to observe a

flow, authors additionally propose a BGP interception attack which can be launched by a malicious AS

in order to divert traffic, enable traffic analysis, and forward traffic to the original destination.

2.3.2 Correlation-based analysis

One of the first correlation attacks based on timing analysis was proposed by Shmatikov and Wang [50].

Inter-packet timing information is usually not carefully protected in mix networks since it would require

to delay packets to hide timing patterns. An attacker can exploit this timing property by correlating the

inter-packet time on both endpoint links, concluding that those links belong to the same circuit, which

would tie a source to the corresponding destination.

One of the machine learning algorithms used to conduct correlation attacks for Tor is DeepCorr [51].

DeepCorr uses advanced machine learning algorithms to conduct accurate flow correlation on Tor.

DeepCorr learns a correlation function which is able to link flow samples regardless of their destina-

tion, while accounting for the unpredictability of the Tor network. To protect against traffic correlation

attacks based on machine learning techniques, as in DeepCorr, Nasr et al. [51] propose that Tor should

enforce the use of pluggable transports across all relays, instead of just on bridges as in vanilla Tor.

However, this solution would incur in significant performance degradation. Alternative countermeasures

rely on employing AS-aware relay selection mechanisms [52–54] that effectively decrease the probability

of an adversary to be in the necessary position to observe traffic and perform a correlation attack.

As of the year of writing, DeepCoFFEA [55] is the state-of-the-art algorithm of traffic correlation on

Tor. It relies on end-to-end correlation of Tor flows using Deep Learning and an amplification technique

which divides flows into short windows and uses voting across these windows to significantly reduce

false positives. With the usage of windows, embedding networks can be used independently lower the

false positive rate, thus achievement great deanonymization results against Tor.

2.4 Attacks Leveraging Anonymity Sets

The next category of attacks takes a different angle and explores Tor’s limitations at maintaining large

anonymity sets for individual users. If at a given point in time, a passive adversary can enumerate the

IPs of every user accessing the Tor network (say, k users in total) and of all destinations being accessed

from every Tor relay, then the attacker can guess, with a probability of at most 1/k, that a given user

has visited a particular destination. The higher the size k of a user’s anonymity set K, the stronger the

anonymity will be. However, it is possible to attack Tor (and other existing anonymity systems) as a result

of a continuous erosion of users’ anonymity sets. Next, we cover two main attacks:
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r1
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Figure 2.2: Example of an intersection attack to anonymity set K. The attacker observes the online user
sets Oi and the traffic to WikiLeaks over multiple rounds ri. The intersection of all sets I allows to infer
the real identity of Alice.

2.4.1 Intersection attacks

Throughout the passive observation of communications, an attacker can determine which users are

online and the destination of their messages. Since typically the pool of destinations (e.g., websites) one

accesses when online is limited, through repeated observations an attacker can start differentiating the

traffic pattern of each user. For instance, a typical user tends to visit the same destinations over different

sessions. Intersection attacks leverage such patterns by intersecting different sets of users active at

any given moment in order to gain information and differentiate what websites a user is accessing.

Although modern anonymous communications networks offer security against powerful adversaries,

most systems of this type falter against a global passive adversary capable of pervasive network traffic

analysis in the presence of churn. With numerous users logging in and out and through the sending of

linkable messages users can quickly lose their anonymity. Intersection attacks are a well known open

problem and very difficult to solve in an efficient manner [4, 20].

To give a better intuition of how intersection attacks work, consider Figure 2.2. Let us assume Alice

wants to post meaningful information about the corruption in the national security firm she is working for

on the WikiLeaks website using an anonymity system. Alice will place her posts over multiple rounds r0

to ri. In each iteration, a global passive adversary takes note of the website accesses and its respective

online user anonymity sets O0 to Oi. The group of online clients varies in each iteration due to user

churn. Assuming the adversary monitors all accesses to WikiLeaks over a long period of time, the

intersection of all user sets I, allows for the singling out of Alice progressively reducing the anonymity

set size k to 1, i.e., Alice herself.

Most of the works providing intersection attack defenses agree on the usage of a fixed size anonymity

set whilst sensitive website are accessed. Wolinsky et. al. [22] provide the seminal work on intersection

attack defenses. The said defense consists in the creation of a fixed anonymity set to perform round-
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based posts on specific websites. A similar approach is also used by Hayes et. al. [23], the main

difference residing on the threshold used to contain user churn. Whilst the first uses an oracle to control

the threshold related to the user churn in order to prevent an intersection attack, the latter does not set

such threshold allowing for users to be deanonymized more easily. Despite this flaw, the authors argue

that whilst not providing strong anonymity their system provides less latency. One of our concerns is that

both of these approaches, in the presence of churn, after a few iterations require users to change their

identifiers. Such switch of user identifiers effectively deprecates the older instance prohibiting further

website accesses with the same identifier. We elaborate on both of these works further down in the next

section analysing their algorithms and system architecture.

2.4.2 Statistical disclosure attacks

As explained above, intersection attacks work in a deterministic fashion allowing for the intersection

of different user anonymity sets to link a client to a destination. A statistical disclosure attack, on the

other hand, is constructed probabilistically. Assuming that, after conducting multiple observations, an at-

tacker focuses on a specific destination, then it is possible to estimate the probability of those messages

pertaining to a specific sender using different strategies. Oya et al. [21] propose a compelling analysis

regarding the uniformization and comparison of the different categories of statistical disclosure attacks.

We base our mathematical analysis on the aforementioned work for easier reader comprehension and

will analyse three main statistical disclosure variants: (i) the original statistical disclosure attack, (ii) the

generalized statistical disclosure attack and (iii) the least squares statistical disclosure attack.

To present the mathematical models employed in each variant, we shortly review the notation used by

Oya et. al. relevant for our problem. Firstly, let j be a destination, i the sender, and b background users.

pj,i and pj,b represent the probabilities of traffic reaching j being from sender i and background users

b respectively. Messages sent and received respectively by users i and j in round r are represented

as ur
i and yrj . Furthermore, lowercase letters represent vectors. Let the superscript T represent the

algebraic transposing operation, the column vector containing all messages sent by user i from round 1

up to round ρ is represented by ui = [u1
i , u

2
i , ..., u

ρ
i ]

T . Reciprocally, the number of messages received by

destination j is defined as yj = [y1j , y
2
j , ..., y

ρ
j ]

T . Finally, the tilde mark “˜” placed on top of ũr
i denotes a

binary representation of ur
i disclosing whether there is at least one message sent by user i in round r

(ũr
i = 1) or not (ũr

i = 0). The vector notation of the aforementioned symbol is ũi = [ũ1
i , ũ

2
i , ..., ũ

ρ
i ]

T

1. Original statistical disclosure attack : Having analysed the required notation to understand the

probabilistic aspect of the attack, let us now analyse the original statistical disclosure proposed by

Danezis [56]. The author makes the assumption in his original paper that sender i does not send

more than one message in each communication round and other background traffic reaching j is

uniform, i.e. pj,b = 1
N for j = 1, 2, ..., N . The attack is thus modeled as:

ũT
i yj ≈ ũT

i 1ρ · pj,i + ũT
i (1ρ · t− 1ρ) · pj,b (2.1)
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2. Generalized statistical disclosure attack: The original statistical disclosure attack assumed that the

sender i would only send a message per communication round. Matthewson and Dingledine [57]

extend on the sender behavior and assume a scenario where i might send j more than one mes-

sage. This generalized statistical disclosure is more practical and closer to real world applications.

On their work the authors theorize their attack against mix networks and other anonymous net-

works [58]. The generalized statistical disclosure attack is defined as in the equation below. This

equation does not include the number of messages sent by user i each round – 1ρ. Instead, it

uses the number of actual messages sent by i, ui, with 1ρ · t− ui = ub.

ũT
i yi ≈ ũT

i ui · pj,i + ũT
i ub · pj,b (2.2)

3. The least squares statistical disclosure attack: Finally, Pérez-Gonzalez [59] proposed a profiling

attack based on the maximum likelihood of estimating user profiles by solving the Least Squares

problem. Least Squares statistical disclosure ensures that the mean squared error between the

real and estimated user profiles is minimized. Let p̂j,k represent the estimator from all outputs

when estimating pjk , the equation of this attack is given as:

uT
i yj = uT

i

N∑
k=1

(uk · p̂j,k) , for i = 1, ..., N (2.3)

In summary, intersection and statistical disclosure attacks present a practical issue in existing anonymity

networks such as Tor, since a global passive adversary may be able to link the messages received by

a destination from a sender. As such, this makes it possible to debunk plausible anonymity of whistle-

blowers when accessing sensitive websites or posting leaked data.

Summary

This chapter introduces the notion of the Tor anonymity network and their main entities. As we can

observe there are three main types of vulnerabilities that can be used against Tor, mainly: (i) attacks

leveraging malicious Tor entities, (ii) attacks leveraging traffic analysis, (iii) attacks leveraging the compo-

sition of anonymity sets. Intersection and statistical disclosure attacks are implemented over the course

of repeated observations of anonymity sets, singling out a user possibly accessing sensitive content,

and thus defeating the concept of plausible deniability.

12



Chapter 3

Related Work

In this chapter, we introduce the main known defense strategies against traffic correlation attacks,

intersection attacks, and statistical disclosure. We also discuss their strengths and limitations when

facing a state-level adversary. Then we provide information on novel systems implemented to thwart

these attacks. We discuss how the techniques used in these systems were never implemented and how

to apply them for Tor.

3.1 Avoiding Unsafe Relay Nodes

As discussed above, by controlling the entry and exit nodes of existing Tor circuits, an adversary

may be able to deanonymize them, i.e., identify the IP addresses of the corresponding sender and

receiver, through multiple techniques. To mitigate adversary’s attempts to launch such attacks, clients

may attempt to avoid unsafe relay nodes by employing several strategies:

3.1.1 Run a co-located trusted relay node

Clients may run a co-located trusted relay node alongside the Tor client, and use that relay as entry

node to the Tor circuits created by the user. As a result, the downstream relay nodes will not be able to

determine whether the traffic forwarded by the trusted relay node was originally produced by the local

user or by another user that may be using that same relay node for building its own circuits. However, a

significant number of clients are located behind restrictive firewalls where they cannot relay traffic [60].

3.1.2 Scan and flag bad relay nodes

A second approach, currently used by Tor, is to scan and identify bad relay nodes to decrease the

possibility of clients selecting malicious relays, by detecting and reporting bad relay nodes. Generally,

a relay is considered to be bad if it is malicious, misconfigured, or unreliable. To mark relays, Tor uses

a set of labels designated as flags [61]. Tor maintainers run a service aimed at verifying the reports of

possibly unsafe relays [62] and also bad exit nodes, using a tool named exitmap [63]. Additional tools
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can be used for that purpose by the community in general, such as torscanner 1, and tortunnel 2. Some

of these tools use decoy traffic in order to detect bad relays [64].

3.1.3 Restrict the set of entry nodes used by a client

Lastly, Tor also restricts the set of entry nodes used by a client in an attempt to mitigate the guard

rotation weakness [48, 65]. If a client was unlucky and selected a malicious guard, he had the chance

of regaining anonymity when its current guard changed. However, such parameters were not strong

enough to hold a large AS-level adversary; this is described as guard rotation weakness [48]. Elahi et

al. [65] demonstrated that Tor’s time based guard rotation criteria led to clients switching guard relays

more often then they should, increasing the possibility of profiling attacks.

3.2 Avoiding Unsafe Autonomous Systems

Unfortunately, the techniques presented above may not be effective against an adversary that can

observe large fractions of the network. Such an adversary may not even need to control any specific

relay node to deanonymize Tor traffic, but only to possess the ability to eavesdrop on the inter-relay traffic

that crosses the network controlled by the adversary [8, 66]. To cope with this problem, several authors

have proposed new defensive approaches against AS-level adversaries, i.e., those with the ability to

access the network infrastructure of an entire Autonomous System (AS). Typically, such approaches

attempt to help Tor clients’ to choose paths away from the prying eyes of malicious ASes by leveraging

the analysis of the Internet topology boundaries and inter-relay latencies [67].

3.2.1 AS-level monitoring and tuning

As a way to prevent attacks based on traffic interception through BGP hijacking (see Section 2.3),

Sun et al. [49] have proposed a monitoring framework for detecting BGP changes. The use of such

framework allows Tor to inform vulnerable clients, which in turn can opt to suspend Tor communications

or use another relay. In order to have a robust solution it is necessary to accurately know which ASes

are traversed by a given circuit path. To this end, the proposed framework computes the traceroute of

every Tor relay daily. Based on these results, it is possible to observe AS-level path changes and detect

suspicious ASes.

3.2.2 AS-aware path-prediction

Several authors have proposed AS-aware path selection algorithms for decreasing the chance of

an AS-level attacker to observe traffic flowing between Tor circuits’ endpoints [49, 52–54]. Edman and

Syverson [54] suggest adding two new requirements to Tor’s path selection algorithm: i) mandates that

each node in a circuit must be located in a different country, and ii) instead of requiring unique countries,

1https://code.google.com/archive/p/torscanner/ Accessed: 2022-01-05
2https://moxie.org/software/tortunnel/ Accessed: 2022-01-05
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each node should be located in a different AS. While the two approaches decreased the probability of

an AS to eavesdrop in both ends of a connection, they did not sufficiently mitigate the possibility for a

malicious AS to perform traffic correlation. Akhoondi et al. [53] propose LASTor, an AS-aware Tor client

that selects safe paths between a client and a destination. Sun et al. [49] that each relay publishes, as

part of the Tor consensus document, the list of ASes it uses to reach a given relay or destination. Clients

can then use this information along their own measurements when constructing circuits to select relays

in a way that one AS will not appear on both the entry and the exit relay. Nithyanand et al. [52] further

developed an AS-aware variant of Tor, called Astoria, which avoids vulnerable circuits while employing

an efficient network management by load balancing circuits across secure paths. However, due to the

existence of active BGP interception attacks [49], Astoria’s Internet topology maps may become outdated

for short periods of time, allowing an attacker to still launch a successful correlation attack.

3.3 Avoiding Unsafe Geographical Regions

Other than avoiding specific ASes, related literature focuses on avoiding entire geographic regions

altogether, typically at the country-level granularity. The motivation is oftentimes the need to evade

censorship policies against Tor traffic implemented by repressive governments.

Tor allows users to select a set of countries to exclude from circuit selection [60] i.e. regions to where

it should not forward client’s traffic. DeTor [68] presents techniques to prove that a Tor circuit did not

travel within excluded regions. To provide the so called provable geographic locations, DeTor authors

borrow the idea of alibi routing [69] into Tor. Alibi routing (AR) uses the packets’ round trip time (RTT)

and the speed of the light as a constant to prove that a given packet did not travel within forbidden

regions. AR uses a single relay located outside the forbidden region to confirm that traffic is going

from that relay to the destination. While AR uses one single relay, DeTor [68] generalizes this approach

for three relays. However, there are a few limitations regarding DeTor which make it an unconvincing

solution for providing provable geographical avoidance. First, DeTor obtains the list of relays from the

Tor’s public database which contains several bits of information, such as: IP address, port, public key

and country. DeTor may also use IP geolocation services to find the exact location of Tor relays, but

without any further confirmation. This may hamper the accuracy of DeTor’s measurements [70, 71].

A second limitation involves handling links with high latency, where it is not possible to measure the

packets’ travel times accurately solely relying on RTT measurements. Another limitation is that DeTor

assumes a symmetric routing nature, i.e. assumes that the request and reply will traverse the same

geographical locations, something that may be unlikely to happen in practice.

A more recent piece of work by Kohls et al. [71] introduces the concept of empirical avoidance

and proposes new improvements to overcome DeTor’s main limitations. In their work, authors propose

TrilateraTor, a system introducing a new measurement technique that derives a circuit end-to-end timing

directly from the handshake in Tor’s circuit establishment procedure. To prevent the use of fake GeoIP

information in its measurements, TrilateraTor leverages a distributed measurement infrastructure so as

to perform trilateration and obtain accurate estimates of the physical location of Tor nodes.
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Figure 3.1: TorK architecture representing a k-circuit. All hops are observed by the attacker – dashed
red line. All the three members opened a Tor circuit.

3.4 Avoiding Global-Level Traffic Correlation Attacks

One of the main vulnerabilities of Tor is correlation-based traffic analysis (see Section 2.2). Nunes [19]

proposed TorK with the goal of providing a defensive measure against these attacks under a very strong

threat model, where the threat actor is assumed to impersonate a global passive adversary capable

of eavesdropping on the entire Tor network. Put simply, the central idea is to increase the anonymity

set associated with the source IP address of a given Tor circuit from one single user to k plausible

users. Figure 3.1 depicts the architecture of TorK which includes two components: a TorK client and

TorK bridge. Client and bridge implement a TorK-specific pluggable transport. As a result, TorK is fully

compatible with the existing Tor components and client-side applications.

Figure 3.1 also shows how Alice leverages TorK to communicate with a given web server through

a standard Tor circuit. As usual, this circuit is made up by three relays – entry, middle, and exit – and

the access from the client to the entry node is mediated by a bridge (the TorK bridge). Assuming the

existence of a global-level adversary that can observe all network packets exchanged in this communi-

cation, using simply a standard vanilla Tor circuit, the adversary would be able to deanonymize Alice’s

client by launching a flow correlation attack.

TorK prevents this attack by allowing k − 1 additional users (in the figure, just Bob and Charlie) to

collaborate with Alice so that the adversary will not be able to distinguish who amongst them is the real

originator of traffic associated with this circuit. To achieve this, prior to the circuit establishment phase,

all the k users use the local client to connect to the bridge. We call each of these channels a segment.

Each segment acts as a tunnel between the local client and the bridge such that the local client can

send arbitrary traffic through it. However, while Alice’s segment will be used to transmit real data –

i.e., the packets of the Tor circuit – the segments of the supporting users will transmit chaffing payload.

The bridge discards the chaff and only lets Alice’s actual traffic to be forwarded to the entry node and

delivered to the intended destination.

To prevent the adversary from distinguishing which segment carries the Tor circuit’s cells (this could

be achieved by observing differences in the volume and timing properties of the traffic), the traffic of
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all participating segments is encrypted and modulated according to a common traffic shaping function.

Thus, even though the attacker is able to capture and inspect the traffic from each of the three users

it cannot correlate the message to the original sender, i.e. from the three users discover the one that

is transmitting the messages due to indistinguishability between segments. The attacker can inspect

all hops in the network but he would have to randomly guess the sender having a 1/k probability of

succeeding. As a result, TorK provides k-anonymity by allocating groups of size k and introduces the

term k-circuit to refer to a coordinated setup of k segments for tunneling Tor circuits.

3.5 Avoiding Weaknesses for Anonymity Sets

Despite the anonymity improvements brought about to Tor by TorK, which can thwart traffic analysis

attacks whilst being able to preserve k-anonymity, TorK is still vulnerable to intersection and statistical

disclosure attacks.

With the possibility of clients connecting in and out of bridges, a global passive adversary is able to

keep track of the k-anonymity set and the websites being accessed correlating clients with their desti-

nations. The churn present in TorK, especially the fact that the system allows for recurrent connections

facilitates the intersection of i sets throughout a period of time effectively deanonymizing clients and

weakening its k-anonymity property. This section delves into general solutions that aim at shielding

anonymity sets from global passive adversaries.

Wolinsky et. al. proposed Buddies[22], the seminal work about intersection attack resistance. This
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system allows for strong anonymity properties [72] bulking anonymity sets in the face of a global passive

adversary. Figure 3.2 describes the proposed conceptual model of the Buddies system. Let us assume

Alice wants to access the WikiLeaks website and post information about her corrupt employer without

having her identity disclosed. Buddies will group Alice with a fixed set K of other k − 1 users with each

user accessing a predetermined sensitive content website in round robin fashion. Instead of using her

unique identifier, Alice will rely on a pseudonym dubbed Nym [73] essentially working as an anonymous

online handle. Buddies will attribute to Alice Nym N1 when she joins the system and further WikiLeaks

posts will be under her new handle instead of her real identity. Everytime Alice wants to post information

on WikiLeaks with her Nym N1 the users on her anonymity set – Bob and Charlie – will generate cover

traffic to be sent to the Anonymizer. The Anonymizer is simply a black box anonymous communication

network in the Buddies conceptual model focused on the secure and untraceable routing of traffic – the

authors based their prototype on Dissent [13, 74, 75]. However, before allowing the message to be sent,

the Anonymizer must first check whether it is still safe to use the same Nym. To this end, it queries the

Policy Oracle which computes how much group-intersection information would be leaked allowing an

adversary to mount an attack. If this information reaches a certain threshold, then that Nym is no longer

considered safe and the user is informed to adopt another Nym.

More specifically, the Policy Oracle works as follows. Each round Alice wants to access Nym N1, the

encrypted messages sent from the subset of online users O will be routed from the Anonymizer to the

oracle. The other users in O generate cover traffic when not accessing their attributed Nym. The Policy

Oracle mimics an intersection attack based on the current subset O, Alice is included in, and the several

online users O subset data gathered over multiple rounds. Buddies allows for the configuration of a

threshold essentially dictating whether the size of O shields Alice when posting to N1. If N1 has been

compromised, under the current threshold values, Alice is forced to abandon N1 and switch to a new

Nym for further accesses. The Policy Oracle thus acts as a filter, removing Alice from subset O if she

risks having her identity disclosed. The Policy Oracle filtered subset is represented by P. As such, if no

filtering was done P = O, whilst if Alice was removed from the subset we have P ⊆ O. If Alice is removed

from the subset, when trying to post under N1, instead of her post being routed to the destination, one

of the cover messages from P is sent instead. This essentially obfuscates an adversary vision in two

ways: (i) with cover traffic being sent the adversary cannot tell whom N1 owner (Alice) actually is and

(ii) it is not obvious whether Alice was online but filtered or actually offline. Despite having garnered a

significant attention from the research community, Buddies remains to be prototyped and evaluated on

onion routing-based anonymity networks, most notably Tor.

Claiming that Buddies induces excessive communication latency and may prevent users from posting

messages, Hayes et al. developed TASP [23], a system with the goal of protecting anonymity networks

from intersection attacks while providing strong anonymity and lower latency. Similar to Buddies, TASP

preserves fixed anonymity sets. Differently from Buddies, however, it groups users into anonymity sets

based on their traffic patterns allowing the generation of more effective cover traffic. To group clients into

such sets it uses machine learning-based traffic analysis algorithms working in two phases of operation,

a learning phase and a working phase. Imagine that Alice has an interest in whistleblower websites
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such as WikiLeaks. During the learning phase she will be grouped with users with similar fingerprints

which have either accessed Wiki-Leaks or exhibited a related traffic pattern. During the working phase

the subset of online users O will provide cover traffic routed to an Anonymizer that will send Alice’s

posts to the WikiLeaks web servers. In contrast to Buddies, TASP has no threshold for user churn

effectively allowing for the deanonymization of clients thus dropping its strong anonymity requirement.

Whilst TASP’s authors argue that the performance of their technique can outperform Buddies, incurring

into a reduced latency and achieving higher throughput for online posts, the reality is that it does not

offer long term protection against a state-level adversary nor it offers an elegant solution for the usage

of user pseudonyms.

In order to mitigate statistical disclosure attacks, it is necessary to preserve the following invariant:

Let Alice be one of the users in a fixed anonymity set K and #K = k. The probability of Alice accessing

WikiLeaks at any given round ri must equal 1/k. In Buddies, it is assumed that if the filtered anonymity

set Pi does not change over all rounds i when accessing a specific Nym N, statistical disclosure is

mitigated. Picture Alice and Bob having been included in every round’s Pi when Alice’s Nym N1 is to be

accessed. Under statistical disclosure of N1 the adversary must assign identical probabilities to Alice

and Bob owning the Nym. That is, if for every round i, it holds that (A ∈ Pi) ⇔ (B ∈ Pi), then

Alice and Bob are probabilistically indistinguishable from each other, hence equally likely to own N1.

TASP also ensures that the same properties are achieved. Assuming the anonymity set in TASP does

not change during the working phase each user has the same probability of accessing any destination.

Both these systems only falter when the churn in the membership set K changes over time. In other

words, with user churn and mutable anonymity sets under long term passive analysis we can observe

that Alice accesses a specific website a substantial amount of times when compared to her peers.

3.6 Discussion

As presented above, Tor is vulnerable to three main forms of traffic analysis attacks: (i) traffic flow

correlation, (ii) intersection attacks and (iii) statistical disclosure. Although the work of Nunes solves

the first [19] it falters against the last two. Buddies and TASP present solutions for intersection attacks

and statistical disclosure, but so far no onion routing network has implemented the algorithms featured

in these systems. Moreover, the enhancement of real-world anonymity systems to integrate defensive

strategies such as Buddies’ and TASP’s, gives rise to several interesting challenges such as the creation

of churn handling algorithms or balancing strong anonymity, high throughout, or lower latency [72].

To the best of our knowledge, we are the first to tackle the threats of intersection attacks and statistical

disclosure attacks for Tor considering a global passive adversary. For securing against traffic correlation

attacks, we borrow the ideas from TorK, so that when a client accesses a certain web domain any of

the k users in the anonymity set might have been equally responsible for initiating a circuit. Further, to

resist against intersection and statistical disclosure attacks, we will require the usage of fixed k users’

anonymity sets accessing, with equal probability, a set of m predefined websites, whilst preventing any

form of churn. We plan to achieve this by developing an add-on system to Tor that does not require the
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modification of existing Tor protocols or software components.

Summary

This chapter addresses the proposed solutions to mitigate traffic correlation attacks, intersection

attacks and statistical disclosure. For the first the main approaches rely on preventing users from se-

lecting unsafe relays or autonomous systems entirely, for the latter two on the utilization of a persistent

anonymity set of users and a threshold for the minimal amount of users tolerated in a group. Fur-

thermore, we detail the most important works providing efficient resistance mechanisms against these

attacks. Finally, we discuss the drawbacks of each solution and how to augment TorK using the tech-

niques described for strengthening anonymity sets. In the following chapters we are going to present

the design of Moby, our proposed system to enhance TorK against intersection attacks and statistical

disclosure.
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Chapter 4

Design

In this section, we present the design of Moby, our proposal for enhancing the security of Tor against

a global passive adversary. We start by providing an overview of our system, and then present how we

propose to overcome several technical challenges of materializing it on top of the existing TorK network.

4.1 System Overview

To offer Tor users stronger anonymity guarantees, we introduce the concept of k-anonymous flash-

mobs (henceforth simply referred as flashmobs). Drawing this analogy from real world flashmobs, the

idea is to allow a Tor user to schedule an event where a community of other k−1 users (designated mob-

bers) is summoned to connect to the Internet, around the same time, and generate covert Tor traffic that

will allow the flashmob organizer to “blend in with the crowd” and access an intended website through Tor

with k anonymous protection. Similar to TorK, flashmobs will also ensure traffic pattern indistinguishable,

thus protecting against traffic correlation attacks. However, differently from TorK, flashmobs will also pre-

vent intersection and statistical disclosure attacks by forcing the set K of k participants and the set M of

m accessible websites to be locked, preventing these sets from changing for each specific flashmob. If

a flashmob is instantiated multiple times in the future, this invariant ensures that the anonymity sets will

always remain constant. As a result, a global passive adversary will not be able to erode k-anonymity

by taking advantage of anonymity set fluctuations.

To materialize this idea into a concrete flashmob service for Tor users, we present a system named

Moby. Represented in Figure 4.1, Moby itself consists of two main components: bridge and client. Taken

together, these components implement a new pluggable transport for Tor. Bridges are responsible for

managing flashmobs and relaying the Tor traffic generated by the client software running on users’

devices. Bridges are interconnected to enable the enrolment in the same flashmob of a large number of

clients, possibly connecting from various regions of the world. Clients run a software bundle comprised of

two subcomponents: gateway and agent. The gateway regulates the transmission of Tor traffic between

the local client and the bridge. The local source of this traffic can be either a standard Tor browser or

an agent: the former is used by the flashmob organizer to access the intended website, and the latter is
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Figure 4.1: Moby architecture. Alice, Bob, and Charlie form a flashmob that can access BBC, NPR,
or WikiLeaks websites. A global adversary can observe the network traffic exchanged by every node.
Each gateway is manages traffic generated by several Moby users.

used by a mobber for generating covert traffic in the background every time the flashmob takes place.

To illustrate these concepts, imagine Alice wants to access WikiLeaks and post incriminating infor-

mation about her national security agency employer – a notorious global passive adversary – whilst

covering her tracks. She will only connect to Moby when wanting to leak information. In other words,

Alice will not use Moby for regular everyday website accesses but only sporadic whistleblowing actions.

As such, in our design, Alice is able to connect and engage with trustworthy freedom-loving participants

to help her process of blending in with a crowd. Figure 4.1 illustrates how Alice can publish this content

while covering her tracks with the help of two mobbers: Bob and Charlie. At a predefined time scheduled

by Alice, these three participants must connect to Moby’s bridges. When the flashmob starting time is

reached (all users are online), Alice, Bob, and Charlie will access the web servers of BBC, NPR and

WikiLeaks. Whilst Bob and Charlie are merely aiding Alice by providing cover traffic (generated by the

local agents), Alice will post relevant whistleblowing information instead, using her Tor browser instance.

By requiring our fixed membership set K of k mobbers, to access the same fixed set M of m websites

we are allowing for two specific defenses. (i) First, by requiring every user to remain online over multiple

flashmob rounds ri we will essentially resist every intersection attack. Let Oi be the set of online users

for some round i, if this set remains immutable over all rounds ri we resist any intersection attack. In

other words if Oi = K no global passive adversary can infer a whistleblower’s identity because the

intersection of all online user sets I equals K. (ii) Second, by requiring every user to access every

website in M we make it impossible to statistically disclose Alice’s identity. Let ki be a randomly picked

user from K and mi a randomly chosen site from M. The probability pki,mi
of ki accessing mi essentially

equals 1
k . In other words, the probability of any of k accessing a random website of m is the same. Next,

we discuss some important design challenges we need to overcome when building Moby.
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4.2 Managing Flashmobs

To provide a k-anonymous flashmob service for Tor, we need to characterize the stages that consti-

tute the life cycle of a particular flashmob. We also need to specify how various actors will be engaged

at each stage and what their expected behavior will be. In addition, we need to determine the meta-data

required to coordinate the flashmob throughout its life cycle. From this analysis, we will draw the nec-

essary information to design the security protocols responsible for managing flashmobs in our system.

Based on our preliminary study, we present our first insights on how flashmobs will be managed in Moby.

4.2.1 Flashmob life cycle

Taking Alice’s scenario as example, our preliminary protocol for bringing a k-anonymous flashmob

into existence consists in four stages:

1. User registration: Initially, Alice will sign up and log into the system. Signing up is an anonymous

action and only Moby will know her IP address. She is attributed a secret and transient token that

serves as a user identifier. Alice logs in by establishing a connection with a bridge. Alice can

switch the bridge she connects to at any time during her session’s lifetime.

2. Flyer generation: Next, Alice announces her intention to organize a flashmob and creates a flyer.

A flyer is a manifest that establishes the size of the flashmob k Alice wants to blend into and the

list of websites necessary to provide cover traffic m. During this generation phase, Alice is able

to hand pick which users she wants to include in her flashmob. Several recruitment policies are

possible, e.g., Alice can invite mobbers from a pool of “freedom fighters” willing to help cover her

tracks for free or in exchange for money.

3. Event scheduling: During this phase, Alice will schedule the performance of a flashmob for a

specific period of time. Let ti and tf be the initial and final timestamps of a performance, it is

expected for every mobber to be present throughout the performance until its completion. As

such, Alice will also establish a waiting room where the system will wait for every mobber to be

present before starting the flashmob. Let twr be the starting time instant for the waiting room, it is

expected for twr ≤ ti.

4. Flashmob gathering: Lastly, the flashmob must be put in motion. Every mobber is expected to

connect to the waiting room between twr and ti. If a single one of the k users is not online by ti,

the flashmob will be canceled. At moment ti every mobber k starts the cover traffic generation.

Reciprocally, at tf every one of the k mobbers will cease traffic generation. During ti and tf , Alice

will get to access to a sensitive-content website of her choosing without a global passive adversary

being able to pinpoint which of the k users is accessing any of the m websites. Assuming there

is no churn on the anonymity set over every flashmob round ri, no global passive adversary can

deanonymize Alice. Moreover, if k users keep on accessing m with equal probability, we nullify any

statistical disclosure attack to our flashmob.
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4.2.2 Flashmob flyer

The flyer for a flashmob is constructed as the four phase flashmob creation protocol is run. Figure 4.2

depicts the flyer advertising Alice’s flashmob. Having broadcast her intention to create a flashmob in

phase 2, Moby will define a unique identifier as the flashmob’s name. Furthermore, this is the phase

where Alice hand picked her colluding mobbers generating her anonymity set. The system registers

the mobbers in a set consisting of their user identifiers. Having chosen BBC, NPR and the WikiLeaks

websites for set M, these are also represented in the flyer in the next field. During phase 3, Alice

scheduled the duration of every flashmob and the dates for their performances. Alice chose three

different UNIX time dates and defined the performance and waiting room periods, for every performance,

to be 600 and 1200 seconds respectively. Every user in the system possesses an updated version of this

data structure. Every update to this data structure is broadcast to users pertaining to flashmob 1024.

4.3 Managing Users

We need to overcome several challenges involving the management of users, especially dealing with

churn and mobber recruitment. We discuss them briefly.

4.3.1 Dealing with churn

flashmob_name: <1024>

flashmob_members: { 
alice_token,  
bob_token, 

charlie_token}

websites_set:
{BBC,NPR,Wikileaks}

dates:  
{1670400000,  
1671004800, 
1671609600}

duration: <600 s>

waiting_period: <1200 s>

Figure 4.2: Flyer advertising flashmob

#1024 proposed by Alice.

One of the main concerns with our system, naturally,

is mobber churn. In Moby, differently from other sys-

tems [22, 23], churn is by no means tolerated. If a user

does not show up for a flashmob gathering at time instant ti,

the flashmob is canceled. However, the incentive and usage

model Moby users fall into, differs from those of other sys-

tems, such as TorK[76]. Mobbers, for the most part, are pas-

sive users that are idle in the background generating traffic

and willing to help a whistleblower blend in with a crowd. For

example, news agencies, or freedom activists could have a

network server or device running Moby on background. As

such, the risk of users connecting and disconnecting as they

perform their everyday online routines, enabling an intersec-

tion attack, is largely reduced. However, there is still the risk

that users do not connect to the waiting room during twr and

ti or disconnecting between ti and tf . Next, we also discuss

how we propose to tackle this issue.
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4.3.2 Mobber recruitment

Moby allows for the hiring of individuals to increase the size of anonymity sets. Fundamentally, we

propose two main methods for hiring additional mobbers: (i) the usage of monetary compensation where

each participating user would be rewarded with some form of stake, such as cryptocurrency [77, 78].

As such, every mobber would essentially be mining when participating in a flashmob. (ii) The usage of

gamification where users would grind reputation for different factions that simulate distinct system-set

traffic patterns. As such, a user would have the desire to grind rating through flashmob participation

as a way to display trustworthiness to potentially mobbers looking for a group [79, 80]. It is worth

mentioning that both approaches are not mutually exclusive. Furthermore, in order to prevent mobbers

with malicious intent to join the waiting room and leave in the midst of a flashmob gathering, we devised

a proof-of-stake solution to incentivize users from abruptly leaving. Since every user is compensated

with stake in the system, every time a mobber joins a flashmob they essentially put their stake into

that flashmob gathering. If they disconnect during the period of the flashmob event or do not show up

either stake is taken from them and redistributed to mobbers who have shown up, or they lose flashmob

participation rating revealing them to be less trustworthy to peers.

4.3.3 Resisting Sybil attacks

An adversary with significant computation power might own several devices acting like malicious

mobbers, a realistic scenario in modern times with surveillance agencies creating bridges in anonymity

networks [81]. This would decrease the anonymity of a set or even allow to infer the identity of a user

(if all the mobbers in a flashmob are sybil actors). To address this problem, Moby currently allows

for “closed” groups where every mobber is invited by the flashmob organizer therefore establishing a

trusted group. Each user would be defined by a static-roster of identifier tokens listing all members. A

downside of this approach is that it reduces the chances of finding mobbers to participate in flashmobs.

To support “open” groups we could build upon Sybil-resistant schemes such as those based on social

networks [82, 83] – or limit the rate of users joining the system via some “barrier to entry” e.g., requiring

users to solve a CAPTCHA or requiring a phone number to “sign up” into the system.

4.4 Managing Flashmob Traffic

To ensure that our system is robust against both traffic analysis attacks and intersection/statistical

disclosure attacks, we need to take particular caution at how the participants of a flashmob generate

traffic. We discuss two main aspects involving traffic shaping and generation of mobbers’ dummy re-

quests:
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4.4.1 Traffic shaping

One of the main features we retain from TorK is the ability to shape traffic and resist correlation

attacks. In TorK, clients and bridges implement a traffic shaping protocol that obfuscates the real patterns

of the Tor payload traffic in such a way that the k participants of a k-circuit are indistinguishable from

each other in the eyes of a global network eavesdropper. This is an essential characteristic to preserve

k anonymity that we also borrow into our system. In Moby, the participants of a flashmob connect to

a bridge and all the traffic that they generate will be modeled according to the same traffic shaping

function.

Another key feature inspired by TorK is throughput leveling. This feature is used to prevent the cor-

relation of TorK traffic with the Tor circuit by observing varying bursts in the traffic of clients. The main

idea is the usage of a contiguous traffic flow by each client when accessing destination websites. For

instance, two Tor cells received by different clients within the same k-circuit having different uplink ca-

pacity (e.g. 200Kbit/s and 1Mbit/s) are drained to the Tor network at the speed of the slowest client.

In this way, an attacker cannot correlate a client to its Tor circuit based on timing properties even when

delaying clients connections deliberately. Likewise, in Moby we will need to implement a similar tech-

nique to ensure that the traffic exiting the bridges into the Tor network is homogeneous across all the

participants in a flashmob.

4.4.2 Mimicking realistic browsing

Every time that a flashmob takes place, the k − 1 participating mobbers helping the flyer creator

to attain k-anonymity, need to generate HTTP requests to the web sites indicated in flashmob’s flyer.

To preserve robustness against traffic analysis attacks, it is necessary to generate realistic website

accesses, otherwise a global passive adversary might notice the automatic generation of cover traffic

by pattern inference. Lorimer et. al. have implemented a web-based traffic simulator that browses

the web as a human would [84]. We propose to leverage this work to help us emulate realistic cover

traffic generation. Furthermore, our system also allows for mobbers to manually access a website of

their choosing, provided it is part of the M websites list advertised by the flashmob creator on the flyer,

and the access patterns do not leak information that may be leveraged to launch statistical disclosure

attacks. This would give mobbers extra incentives to engage in flashmob events.

4.5 Managing Bridges

Lastly, we discuss design challenges involving bridges, namely how to guarantee their proper coor-

dination and detect the deployment of malicious bridges.
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4.5.1 Bridge coordination and load distribution

In Moby, we build our bridge infrastructure by extending the original bridge architecture proposed

in TorK by interconnecting bridges with each other forming a global mesh architecture. Each of these

bridges will distribute traffic across different middle relays of Tor. In turn, these middle relays will route

traffic to exit relays and their destinations. Differently from TorK, we assume a global network of users,

as such mobbers can be connected to different bridges across the globe and still pertain to the same

flashmob. As a result, bridges will also include mechanisms to securely share potentially sensitive meta-

data about users or flashmobs.

Users can choose which bridge they want to connect to and authenticate with the unique and tran-

sient identifier attributed to them upon registration. For load balance purposes, when users connect

to a bridge the traffic may be routed to several middle relays. Differently from TorK, Moby is designed

under the assumption that, once a flashmob is in its course – i.e., all the participants are currently online

and generating traffic as specified in the flashmob’s flyer – the users currently joining the flashmob are

stable, i.e., no new users are allowed to join. As long as there are k connections to a bridge these will

persist until the end of the flashmob event. This way we keep on ensuring k-anonymity whilst providing

resistance against intersection and statistical disclosure attacks.

4.5.2 Ensuring the correct execution of Moby bridges

Similar to TorK, we will also need to deal with the possibility of malicious bridges trying to infiltrate

into Moby’s bridge infrastructure and compromise the security of the system, e.g., leaking information

about the actual source and destination of the Tor circuits going past the bridge. To protect against these

attacks, we also inherit TorK’s ideas of securing bridge state using Intel SGX enclaves [85], and verifying

the software integrity of ingressing bridges through hardware-based remote attestation.

Summary

This chapter detailed Moby overall architecture, main entities and threat model. Next we described

the flashmob concept, their proccess of coordinating k-users and ensure resistance against intersection

attacks and statistical disclosure. Next, it is discussed measures to deal with user churn, the recruitment

of users to a flashmob performance and resistance against Sybil attacks. Following, we the thwarting of

correlation attacks and possible strategies of emulating realistic participant actions when accessing web-

sites. Lastly, it was discussed measures against malicious bridges and clients which can be deployed

and launched by an attacker.
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Chapter 5

Implementation

This chapter addresses the implementation details of our Moby prototype. Section 5.1 describes an

overview of the implementation. Then, we provide several details about the implementation of flashmobs

in Section 5.2. We address the Moby CLI used to schedule flashmobs in Section 5.3. For the real-world

deployment of Moby we elaborate on the hardware that was used on Section 5.4. In Section 5.5, we

address how the devices were monitored. Section 5.6 refers to the plug-and-play implementation of

Moby. Lastly, Section 5.7 demonstrates how we got Moby to properly work behind residential networks.

5.1 Implementation Overview

In this section, we brief the reader on the main components of our work. We will mostly focus on how

the Moby add-on interacts with the components of TorK, how does TorK leverage Tor, and how a client

can use Moby.

Figure 5.1 depicts the major internal subcomponents of the Moby add-on and the TorK implementa-

tion, which comprises hub and bridges. To route Tor traffic through TorK, the hub must be set up to use

the TorK pluggable protocol and run Tor. Upon starting, Tor spawns the TorK hub service, the Moby add-

on and a SOCKS [86] proxy to receive Tor traffic. Henceforth, Tor cells generated by the client can then

be received by the hub service, packed into TorK frames and sent to the bridge according to a specific

traffic shaping function. Conversely, TorK bridges extract the Tor cells embedded into TorK frames and

deliver these cells to the Tor network.

Since TorK is a Tor pluggable transport, any TCP/IP application that places requests through Tor can

reap the benefits of our system. To entirely control a Tor circuit, TorK instrumentally reroutes streams to

a given circuit only when authorized by bridges. To perform this rerouting operation, we leverage the Tor

Controller specification [87] to build a Tor controller that exposes functions capable of creating, closing,

and attaching streams to circuits.

Once initialized Moby, will leverage a CLI interface allowing the user to send commands to the bridge

the client is currently connected to, and create a flashmob that future users, once connected to this same

bridge might be interested in joining. The Moby component for the bridge not only receives commands

29



SOCKS Proxy Tor Protocol

PT Protocol Controller Endpoint

PT Tor 
Controller

Hub Service

Client 
Controller

Traffic
Shaper

TorK+Moby
Bridge

Tor Protocol

Bridge Service

TorK+Moby
Hub

SOCKS 
Proxy

SOCKS 
Proxy

Traffic
Shaper

Bridge
Controller

PT

PT Protocol

Moby 
Add-on

Moby 
Client

Moby 
Add-on

Middle 
Relay 

R

Figure 5.1: Overview of Moby’s components with TorK

to instantiate a flashmob, but is the responsible process to coordinate mobbers to start traffic generation

and block traffic if the number of messages does not match the total number of users for the instanced

flashmob.

We implemented our Moby prototype on top of TorK for GNU/Linux. Moby includes both a Client and

Bridge (Server) component. The prototype was written in C++ using OpenSSL1 and Boost2 libraries.

Moby leverages the six main components of TorK. Each component aims at implementing a Tor API,

in which TorK can use to setup Tor or implements TorK architectural components as described in Sec-

tion 4: indistinguishable and unlinkable channels, k-anonymity through k-circuits, the TorK protocol, and

finally, measures to withstand against active attacks. The following subsections present implementation

details, issues and challenges faced for each component.

5.2 The Moby Add-On

As an Add-on, Moby extends the functionalities offered by TorK, either by including extra-commands

that allow for the coordination of clients or by implementing security measures, such as minimum thresh-

olds for the number of connected users, intended on mitigating intersection and statistical disclosure

attacks. In other words, Moby leverages existent functionalities implemented by TorK such as setting the

minimum number of users required to instance a k -circuit – blocking traffic routing if the current number

of connected users is less than k – and adds coordination features to deploy mobbers when a flashmob

is happening.

Moby’s protocol is based on text streams which can be implemented by TCP sockets. Usually,

all messages exchanged from the Moby client and bridge modules are replies to mobber commands

previously sent. Moby also includes assynchronous commands which are sent from the bridge to clients

when a flashmob is scheduled to start or terminate.

Moby is implemented on the bridge by two threads. The main thread, is responsible from receiving

Moby commands, such as the creation of a flashmob and storing in a hash table for the purpose of

retrieving the flashmob data structure by identifier once a flashmob is scheduled to begin. The flashmob

1https://www.openssl.org/
2https://www.boost.org/
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name, introduced in Section 4.3 is used as the hash table key, and the hash table value is a data structure

implementing the “flyer” fields. The other thread, is the “Scheduler” thread, being used solely to check

on the dates of the flashmob flyers stored in the hashtable. Once the current clock matches the dates

of flashmobs stored in the hash table, the “Scheduler” thread will instantiate a temporary sub thread to

monitor the current flashmob. These “Scheduler” sub threads will constantly uphold more specific fields

such as checking the number of users connected during the “waiting period” and “flashmob duration”

– picking the action of starting and ending flashmobs based on these connections. Once a flashmob

concludes, this thread is responsible for cleaning the current date from the flyer.

On the other hand, the client sends commands to the bridge through the “Client Controller”. Moby’s

Add-On extends the possible commands that can be used by a mobber. Once Tor starts running, it will

instantiate as a sub process the main Moby thread. This thread is responsible for receiving commands

from the Moby bridge “Scheduler” sub thread. Specifically, it will receive the asynchronous commands

to be run on the “Client Controller” leveraging TorK to configure the current Tor streams. It is important

to mention that the size of the k -circuit is still configured by the client, similarly to TorK. This happens

because it allows the Moby bridge to count the number of connections during the waiting room and order

the correct size of k min to be selected by the mobbers.

5.3 Moby Controller Interface (CLI)

Moby exposes a controller to configure the flashmob “Flyer” and tune TorK settings such as the size

of the k -circuit being used by a flashmob. Moby essentially extends the functionalities of the TorK text

based stream protocol (CLI). Moby allows users to select the flashmob participants, the websites being

accessed, the duration of each round, the dates for future rounds, and the waiting room period as shown

in the “Flyer” in Section 4.3.

CLI is implemented as a simple socket server, receiving commands, passing them to the Bridge/-

Client Controller handler which take a certain action depending whether we have a Moby bridge or Moby

client gateway, and processes a reply back to the user. CLI is used primarily by clients. We also de-

veloped a Bridge CLI which was used for flashmob testing functions (such as manually start or end a

flashmob). For instance, the main Moby CLI commands available are:

• flashmob name: defining the identifier of a flashmob

• flashmob users: gives a list of the IP addresses of the possible connected mobbers

• flashmob websites: defines a list of websites to be randomly accessed

• flashmob duration: sets the duration of the scheduled flashmob

• flashmob dates: schedules the list of dates for future performances

• flashmob waiting period: sets the duration for the waiting room period
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(a) Top view of the RPi4 deployment (b) Side view of the RPi4, notice the numbering labels on the
case

Figure 5.2: Pictures of the actual deployment of RPi4 running Moby flashmobs

5.4 Venturing into the Internet of Things (IoT)

Since the main cause of deanonymization for Moby is the churn of flashmob participants, to protect

Alice in the advent of sensitive website accesses, we have performed a practical deployment of Moby

using Raspberry Pi (RPis) microcomputers acting as Moby hubs. These devices are intended to function

as mobbers being deployed behind the residential network of Moby users and generating traffic once a

flashmob begins.

The reason behind this deployment was that, differently from desktop, laptop computers and mobile

phones, Internet of Things (IoT) devices such as RPis are meant to be online during long periods running

relatively simple, non-intensive computational tasks whilst being available almost 24/7. Differently from

computation servers, RPis offer low energy consumption and are practical to deploy, in an almost plug-

and-play fashion.

Through the usage of RPis, deployed in residential homes, intended to be online and running Moby

client 24/7, the availability of mobbers is highly increased. In comparison, assuming we would have run

Moby on a personal desktop, laptop, or mobile phone the availability might not be the same. This is

due to the fact that clients often do not leave their devices up and running and, as such, even if having

signed for a future flashmob, a client might be offline during the time period of the flashmob performance.

Lest the occasion of power outtages and network failures the probability of churn resides on the client

willingly quitting the flashmob the node was signed for.

Although offering many advantages and being quite simple to tinker with, we went through several

phases of testing. Initially we experimented with Moby on a RPi3 Model B, which posed several issues.

The main issues of this implementation were the hardware specifications of the third version of Rasp-

berry Pis. Not only was the clock frequency quite low at 1.2 GHz, but the RAM offered was 1 GB. After

conducting some experimentalMoby runs we concluded that the performance of the RPi was quite poor.

Not only it had trouble instantiating Docker machines with only 1 GB of RAM, but when using Moby
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Figure 5.3: Statistics for one of the deployed RPi devices for the entire duration of August, 2022

through the command line, accessing a website with curl3 was quite slow from an usability standpoint.

As such, we redeployed Moby for the RPi4 Model B version of these micromputers. Not only did this

version offer a higher clock rate at 1.5 GHz, but also higher RAM possibilities – 1 GB, 2 GB, 4 GB, and

8 GB. Although testing Moby with a RPi4 with 4 GB of RAM, either with Docker or native through the

command line, we ended up choosing the RPi4 Model B with 2 GB of RAM. The reason for this, was that

the performance in both applications was quite close from an usability stand point and the 2 GB version

was widely accessible on consumer electronic stores.

As such, after having picked the RPi4 (2 GB) and comparing the performance to the RPi3 (1 GB), the

Moby experience was enhanced because, having more RAM we could easily run several Moby clients

on docker containers within the RPi44. In the end, we ended up running Moby without the usage of

virtualization or deployment software since these features would penalize the performance of Moby.

Once the RPi4 devices were deemed sufficient and able to run Moby flashmobs, a batch of these

micromputers was ordered from electronic retailers. It did not help that, as of the year of writing, we

are in the middle of a semiconductor shortage. Not only did this shortage affect the Raspberry Pi

production [88], but finding a store capable of delivering a batch of these devices within a reasonable

deadline was a feat in itself. Even though the experimental setup was delayed, at the end with ended up

getting our RPis from a major retailer which received a new batch in August.

Figure 5.2 shows the deployment of RPi devices ready to be distributed through the members of

our research group. These devices would later be used for throughput testing of Moby flashmobs in

Section 6.3.

5.5 Monitoring the Pis

As the RPis devices were to be deployed across different locations, we would require a way to monitor

these microcomputers remotely. As such, we leveraged technologies such as Grafana5, InfluxDB6, and

3https://man7.org/linux/man-pages/man1/curl.1.html
4https://www.docker.com/blog/happy-pi-day-docker-raspberry-pi/
5https://grafana.com/
6https://www.influxdata.com/
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Figure 5.4: Monitoring of the RPi devices through InfluxDB and Grafana

Telegraf7 for this purpose.

Grafana was deployed on a Google Cloud [89] machine, which would essentially act as the main

hub for gathering statistics from every RPi device. Since Grafana works as a interactive visualization

interface for a multitude of systems and already has dashboard profiles meant to be used for monitoring

of IoT devices, it served as the perfect fit for our deployment. With the Grafana application and web

client installed on our machine, the stage was set for having the RPis send their data to this hub.

InfluxDB was deployed in the same Google Cloud machine with the intent of being the main database

responsible for gathering the statistics to be displayed in Grafana. As such, every RPi device was

configured to run a Telegraf script meant to, every 10 seconds, send updates to the Google Cloud

InfluxDB database of each microcomputer CPU temperature, memory and network usage, swap space,

number of active processes and threads.

Figure 5.3 displays the graphical user interface used to remotely monitor the microcomputers de-

ployed behind the residential network of Moby users. Figure 5.4 displays the network architecture of

the monitoring web interface. The Grafana and InfluxDB applications are instanced on a Google Cloud

server located in Frankfurt, Germany (europe-west3). Each RPi from rpi01 to rpi10 will send updates

of resource utilization, recurring to Telegraf, to the InfluxDB server. The Grafana IoT Dashboard will

connect to the InfluxDB database, holding an entry for every RPi and instantiate a dashboard to monitor

each of the devices.

5.6 Plug-and-play implementation

Considering the RPis devices were to be deployed behind user networks, we had to find a way to

reach them, either for remotely operating the devices or for the scheduling of flashmobs. Initially, we

started using Reverse SSH Forwarding. That is, each RPi would establish a SSH connection with a

Google Cloud server intended to host the reverse SSH connections of every RPi and establish a tunnel

on a different port for each device. This approach lead to several practical issues: (i) once the RPi was

disconnected, the connection would not be re-established with the server, (ii) only the ports that were

7https://www.influxdata.com/time-series-platform/telegraf/
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forwarded were able to route traffic.

The first problem mentioned above posed the biggest issue for Moby. We wanted that, once config-

ured, the RPi could be deployed in any client home and establish a SSH tunnel with the Google Cloud

machine so that traffic could be routed through the server and behind the NATs of Moby users. To solve

this we utilized autossh8 reverse port forwarding. This program is implemented as a systemctl service

and it allows to, once the autossh monitor detects the current SSH connection to be down, to reestablish

it with the Google Cloud host.

The second problem mentioned was dealt with the establishment of several connections reverse

SSH connections with our Google Cloud server. Each connection would create an SSH Tunnel in a

different port. As such, this allowed to reverse SSH into any of the devices that were placed behind user

NATs. Although this initially worked to remotely operate each RPi, the biggest problem was that some

of the SSH connections were quite unstable, and even when using autossh it was common for a RPi to

be down. Furthermore, not only we wanted to administer the machines, but we also had to use these

forwarded ports for traffic being routed through Moby.

As such, this approach was deemed cumbersome and unpractical. Thus, we performed some ad-

justments in our approach for making Moby to be functional behind the Network Address Translation

(NAT) of residential routers. In order for the Moby bridge to instruct mobbers to start generating cover

traffic, these devices have to be reachable from outside the NAT. For enabling this task, we have made

use of Tailscale [90] – a plug-and-play secure VPN service – allowing mobbers to expose a public virtual

IP address accessible to the Moby bridge.

With Tailscale, every user will now expose an extra virtual network interface to the outside world.

These virtual network interfaces will act as a regular interface, thus giving these machines a reachable

IP. Not only that, but it facilitates reaching any of these devices, no matter where they are located, let the

goal be to SSH into the RPis or use them for a distribution application such as Moby.

Nevertheless, it is important to mention that, although the Moby bridge used the Tailscale IP ad-

dresses to contact mobbers, once the flashmob starts, the client nodes will route traffic regularly (through

the bridge and relays). As such, Tailscale is used exclusively for the process of broadcasting flashmob

management instructions (start and finish) to otherwise unreachable nodes behind a home network.

Not only, did Tailscale provide public addresses for mobbers behind NATs, now reachable from Moby

bridges outside of this VPN, but it allowed for every device connected to the same Tailscale network

instance to also communicate with one another. As such, the members of our research group could

simply power the device and connect it to the Internet and ping (or even SSH) into any member of the

flashmob. This implementation helped to shape the concept of plug-and-play Moby-ready device.

Differently from reverse autossh, which required configuration of systemctl background services and

would not work properly when changing IP addresses, Tailscale allowed for a simple installation that

could be done in a different IP address than the one the Moby-ready device would be deployed to. As

such, when connecting the device to a home network router, each RPi would pop-up in the Tailscale

administration console, truly bypassing the NAT and being reachable from the outside Internet, including

8https://linux.die.net/man/1/autossh
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Figure 5.5: Update of RPis through Taiscale using Ansible

members of the flashmob, for users with knowledge of this IP.

5.7 Updating Torklets behind NATs

Having the RPis connected in a virtual network to one another and deployed on residential homes,

we had to find a way to remotely operate these devices and provide them with the Moby software stack.

Since adding a new node to the Tailscale network is very easy (one installs Taiscale and opens the

resulting http link on the browser) it was simple enough to add a Google Cloud machine into the network.

This machine would act as an entry gateway into the Tailscale, allowing an user, once connected, to SSH

into any of the devices.

The reason we had to add a gateway server to the Tailscale network was twofold: (i) a user can only

SSH into another Tailscale node if the current instance is also part of network, and (ii) we needed a

publicly accessible server to SSH into. For challenge (ii) the other option would be to have our personal

devices also instanced in the Tailscale network, which in our opinion was not a realistic scenario since

we wanted to separate the flashmob members from other unrelated devices.

Furthermore, with the need to remotely operate a substantial amount of microcomputers with the

Moby software stack and provision other administration needs to the RPis, we had this same gateway

node acting as Ansible [91] master node. Since Ansible requires its master node to be able to SSH into

any of the Ansible clients, and Tailscale provides a SSH service9, it was natural to exploit the synergy of

these two applications.

Figure 5.5 depicts the components and how they interact in the real-world deployment of Moby. The

Ansible master node hosted on Google Cloud provisions the RPis with the software pre-requirements,

installation of Tor, TorK, and Moby. Once a flashmob starts the Moby bridge broadcasts the start flash-

mob command to Tailscale IP of each mobber. The mobbers start the website accesses through the

Moby bridge. Every node on the system implements both a Tailscale network interface with SSH en-

abled, and also acts as an Ansible client. These configurations allow both for instancing flashmobs and

providing updates on the Moby system despite any network placement of the mobbers.

Despite updates for Moby nodes being provided with Ansible through a Google Cloud server con-

nected in the same Tailscale network as the RPi devices, we observe these properties as intruding in

9https://tailscale.com/tailscale-ssh/
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the privacy of users. The usage of Tailscale was needed so that even when a mobber does not have

Tor running on its machine, the Moby bridge can reach the client and start an instance of Moby. For

future work, Moby should be updated through a packet manager instead of Ansible, and nodes should

be responsible in provisioning a IP reachable, even behind NATs.

Summary

This chapter has described the implementation details of Moby prototype. The setup of the Moby

Add-on, how it is implemented on top of TorK and the functionalities implemented, mainly scheduling of

flashmobs and resistance against statistical disclosure attacks. We also delve into how the real-world

deployment of Moby was conceived mainly utilizing the correct hardware devices, the monitoring of their

resources, the plug-and-play implementation for Moby devices, and the updating procedure required to

deploy the Moby software stack amongst devices behind NATs.
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Chapter 6

Evaluation

This chapter describes the evaluation of our system. We start by explaining our methodology (Sec-

tion 6.1). Then, we study and analyze Moby’s performance under different settings (Section 6.2). Next,

we demonstrate how a real-world deployment of Moby achieves high-levels of availability for the com-

position of flashmobs. Lastly, considering instances where our system performs in less reliable environ-

ments, we examine Moby’s resistance to statistical disclosure attacks under high availability conditions.

6.1 Methodology

This section describes our evaluation methodology. First, we describe the goals and approach of our

evaluation. Then, we present the laboratory testbed that we designed for performing our experiments

with Moby and the metrics used to assess the quality of our solution. Lastly, we explain our choice of

Moby’s traffic shaping parameters for our experiments.

6.1.1 Evaluation Goals and Approach

Our main evaluation goals are twofold: (i) assess the performance of our Moby prototype, and (ii)

measure its resistance against statistical disclosure. In particular, regarding Moby’s resistance against

statistical disclosure attacks, we wish to assess how: (i) availability of mobbers protects Alice, (ii) how

Alice’s absence from flashmobs enables an adversary to profile Alice’s probability of accessing sensitive

websites, (iii) an oracle implemented on the Moby bridge would affect system performance.

Recent literature aimed at deanonymizing anonymity sets has focused on profiling the websites being

accessed by different users within anonymity sets. Typically, existing approaches for statistical disclosure

are analytical, such as the original statistical disclosure attack proposed by Danezis [56], the generalized

statistical disclosure improvement introduced by Mathewson and Dingledine [57], and the least squares

statistical disclosure attack by Pérez-Gonzalez [59]. For our analysis, we leverage the original statistical

disclosure attack. We relegate the usage of the generalized and least squares statistical disclosure for

future work.
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Figure 6.1: Performance metrics of the average Tor circuit combinations

6.1.2 Experimental Testbed

Our laboratory testbed is composed of a Tor bridge and 25 clients, where each node runs an instance

of Moby (leveraging Tor v0.4.2.8). Our nodes are executed within Docker containers, provisioned either

with 2 vCPU and 2GB of RAM in the case of the bridge node, or 1 vCPU and 1GB RAM for client nodes.

The bridge and client nodes run in separate physical hosts equipped with 2 Intel Xeon CPU E5506

vCPUs.

Each client was configured to use a specific Tor circuit throughout our experiments. We manually

selected all relays comprising each Tor circuit based on Tor’s TopRelays list [92], and chose different

nodes according to these conditions: (i) nodes have to be located in Europe, (ii) have a throughput

above 5 Mbps, and (iii) have an uptime above 10 days.

For conducting the above experiment, we build a representative dataset of multiple connections

between clients and a bridge, and, respectively, between the bridge and the Tor network. We perform

the experiments in two phases: (i) the 25 clients will generate chaff traffic towards the bridge, and (ii) the

25 clients will fetch files with sizes, ranging from 32 MB to 64 MB, hosted in a private server, over Moby.

6.1.3 Metrics

In this section, we define the metrics used to evaluate Moby’s performance and its resistance against

traffic correlation attacks:

Performance Metrics: To measure performance we studied the throughput and latency for the chunk

size of 536 B. The traffic shaper rate function was modified to maintain the same minimum and maximum

throughput. Thus, the rate function selected was Rate(t, n) = 10 × t × n µs, where t is the number of

maximum Tor cells that fit one chunk and n the number of connected clients.

Statistical Disclosure Metrics: For statistical disclosure, the main metrics we have utilized were: (i)

the probability of an attacker profiling Alice from her peers, and (ii) the difference between Alice’s real

website accessing probability and the probability observed by the attacker. Furthermore, we apply these

metrics against a generalized availability scenario (i.e. a scenario where failure of nodes ranges from
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Figure 6.2: Throughput of a Moby flashmob using an average circuit

0% to 100%, in 5% increments), a high availability scenario, an absence-tolerant implementation, and

an approach where an oracle featured on Moby bridges has a minimum threshold for the users in an

anonymity set, i.e., an implementation similar to Buddies [22] where no traffic is routed if an anonymity

set has less than a predefined minimum amount of users.

6.2 Performance

In this section, we evaluate the performance of using different flashmob sizes for Moby. Before

performing this evaluation, we sought to assess what the performance for an average circuit is, i.e., by

gathering data of multiple possible circuits around Europe, we determined which circuits would hold the

most realistic results.

6.2.1 Determining the Circuit

To determine which would be the ideal circuit to run our experiments we gathered information re-

garding a total of 32 middle relays and 32 exit relays. The conditions for picking a relay were stated in

Section 6.1.2. Afterwards, we analysed every possible combination between our chosen middle and exit

relays. It is important mentioning that the Moby bridge acts as an entry relay, and as such, it is the only

Tor relay that stays the same.

Figure 6.1 displays our evaluation for the latency and throughput for a total 1024 circuits (32 middle

and exit relay combinations) using a cumulative distribution function. From this study, we could gather

the following conclusions, starting with the throughput: (i) the median is 7.32 Mbps, (ii) the 5% percentile

corresponds to 532.43 Kbps, (iii) the 95% percentile corresponds to 14.64 Mbps, (iv) the minimum

throughput is 0 (corresponding to circuits that could not route traffic), and (v) the maximum throughput

is 19.37 Mbps.

For the latency we gathered: (i) the median is 102.89 ms, (ii) the 5% percentile corresponds to 64.01

ms, (iii) the 95% percentile corresponds to 370.15 ms, (iv) the minimum latency is 52.45 ms, and (v) the
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Figure 6.3: Latency of a Moby flashmob using an average circuit

maximum latency is 3203.67 ms.

Having studied the average throughput and latency of 1024 circuit combinations, in the next sections

we will evaluate how different flashmob sizes in the Moby perform under a median performing circuit.

The reasons for this being: (i) by using a random circuit we will not have a realistic reading of the possible

latency and throughput, i.e., we might have very pessimistic or optimistic experiment results that do not

reflect reality, and (ii) we need to properly assess which combinations of circuit possess these median

characteristics in order to reuse them in the future for several experiments allowing us to have the most

neutral test bench to compare different results.

6.2.2 Throughput

To quantify the performance of the system an experiment was conducted to measure the covert

channel throughput using a fixed size frame allow us to provide a indistinguishable channel but also will

incur in an overhead. We set Moby to use 536 B frames, each frame containing 1 chunk, over a dynamic

rate interval Rate(n) = n×10µs, where n is the number of connected clients.

To measure the channel throughput, we used IPERF31. The client runs an instance of the iperf3

client through Moby and consequently through a specific Tor circuit performing measurement towards

an iperf3 server.

Figure 6.2 depicts the achieved throughput based on the average bandwidth of 3 runs according to

the increasing number of connected users K receiving chaff and data. Our results show a client can

achieve up to, approximately, 10 Mbps maximum achieved by these relays when using Moby. With

a higher number of connected clients, Moby decreases the rate thus reducing the throughput. This

reduction is more critical when most clients are, in fact, receiving useful data instead of chaff. This

behavior is inline with Moby’s expected behavior. Processing chaff frames is less burdensome than data

frames since the former are discarded upon reception and the latter require receiving all chunks and

deliver the content to Tor.

1https://iperf.fr/
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Figure 6.4: CPU usage of a Moby flashmob using an average circuit

6.2.3 Latency

To measure the latency of the channel, we conducted a RTT measure over the channel. The use of

ICMP to measure the RTT, through PING tool over the Tor network was not possible since Tor does not

route any other packets apart from TCP. Thus, the HTTPING2 tool was used. This tool performs a HTTP

request and measures the time it takes to receive the first byte of the header – header time to first byte.

Figure 6.3 depicts the average latency of 3 runs according to the increasing number of connected

users K receiving chaff and data. An increase in the number of connected users causes the latency to

increase. Furthermore, data frames causes slightly higher increases in latency than chaff frames. As

one might notice, for a k of 18, 19 and 23 users, standard deviation spikes are greater when compared

to other entries, specifically those where k is lesser or equal than 17. It is important to mention that most

of these performance measurements were run starting in April 2022 when the Tor network was under

constant denial-of-service attacks which resulted in unstable results during our experiments [93, 94].

6.2.4 CPU Usage

Figure 6.4 depicts the bridge CPU utilization in percentage of one core utilization. All experiments

were conducted using the hardware limitations of the baseline experiment. Thus, bridges can use up

to 2 cores under a 2GB as the chunk size increases CPU utilization decreases due to the traffic shaper

rate value. These results show the difference between processing chaff frames and data frames under

the 536 B chunk size. Since chaff frames do not need any CPU processing apart from receiving and

discarding them, processing chaff frames is a lightweight task in comparison with data frame processing.

In comparison, packets carrying actual data require more CPU processing.
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Device ISP Modem Wired Avg. Tput. (Mbps) Avg. Latency (ms)

rpi01 ISP1 Fiber WiFi 85.51 ± 2.48 46.24 ± 1.77
rpi02 ISP1 Fiber Ethernet 194.96 ± 2.43 44.69 ± 0.30
rpi03 ISP2 Fiber Ethernet 203.43 ± 3.42 41.91 ± 1.35
rpi04 ISP3 Coaxial Ethernet 17.13 ± 2.35 49.18 ± 7.26
rpi05 ISP3 Coaxial Ethernet 21.38 ± 0.82 52.07 ± 25.70
rpi06 ISP2 Fiber Ethernet 117.90 ± 0.84 49.01 ± 3.37
rpi07 ISP2 Fiber Ethernet 92.92 ± 1.94 57.58 ± 165.15
rpi09 ISP1 Fiber WiFi 92.71 ± 0.78 118.94 ± 339.71
rpi10 ISP2 Fiber Ethernet 119.01 ± 0.48 42.49 ± 4.91

Table 6.1: Connectivity characteristics and network performance of the deployed RPi Moby nodes.

6.3 Availability in Real-World Deployment

For a flashmob to be schedule Moby requires every user to be online at the time of the performance.

As such, in this section, we present a real-world deployment of Moby using Raspberry Pi4 (RPis) de-

vices. The reason for the usage of these microcomputers is that IoT devices are meant to be running

for long periods of time, therefore offering a high availability service, something that we would require in

order to mitigate intersection attacks and statistical disclosure.

The microcomputers act as Moby hubs, each provisioned with a 4-core Broadcom BCM2711 CPU

and 2GB of RAM. These devices were distributed among different members of our research group and

installed in households across the metropolitan area of Lisbon. This distribution enabled us to gather

a representative sample of the variety of ISPs and Internet connections’ performance expected to be

found in the homes of individuals interested in using Moby.

The intended use of these devices would be to mimick flashmob users contributing to the genera-

tion of anonymity sets. As explained in Section 5.4 these RPi devices were set up in users residential

networks behind the NAT of home modems. With this deployment we intend on measuring the perfor-

mance of Moby in two dimensions: (i) throughput and latency of each device without usage of Moby, (ii)

throughput and latency using Moby flashmobs.

Table 6.1 details the connectivity characteristics of each RPi machine. The table also shows the

average throughput and latency obtained by each node over the course of a week-long measurement

where throughput and latency statistics were obtained every two hours. These statistics were obtained

by reaching out to a public server under our control, hosted within a different European country, using the

httping and the iperf3 utilities, respectively. We did not send traffic through Tor or Moby during these

measurements, i.e., we intended to measure the raw network performance of these devices. As seen

in the table, our measurements reflect an heterogeneous landscape of network performances, where

the throughput of RPi nodes ranges from 17 Mbps to 203 Mbps. Interestingly, we see that even the low

performance nodes achieve a sufficient throughput to sustain bandwidth-hungry applications, like video

streaming.

2https://www.vanheusden.com/httping/
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Figure 6.5: Weekly raw throughput as experienced by all nodes.

6.3.1 Raw Throughput

We used our RPi deployment to run periodic iperf3 throughput experiments to measure the through-

put without the usage of Moby. Every RPi device would, hourly, connect to a remote server on Google

Cloud and measure its throughput. We utilized a different port, on the same machine, for the 9 RPi in our

deployment. To determine the throughput we had the iperf3 run 30 iterations of measurements which

we used to determine the median and standard deviation.

Figure 6.5 displays our throughput results for Moby-less iperf3 testing spanning the course of 24

hours, starting noon and ending noon the day after. As we cab observe the 9 RPi offer greatly differing

bandwidths between devices, and some variability in the sustained throughput over the course of a

day. Not only this figure shows the heterogeneity of our environment – considering the different ISPs,

Modems, and connection types – but also allows to observe that the most high-performing devices are

also the most volatile when it comes to throughput variability.

6.3.2 Raw Latency

The same logic used for throughput measurement is also applied to the raw latency evaluation for

our deployment of the RPi devices. For this experiment, every RPi would, once every 2 minutes, use

httping on the same Google Cloud machine used for the previous experiments. To determine the latency

we had httping run 30 iterations of measurements allowing us to determine the median and standard

deviation.

Figure 6.6 displays our latency results for Moby-less httping testing spanning the course of 24 hours,

starting noon and ending noon the day after. As we can observe, the latency for every RPi was about

the same, ranging from 40 to 50 ms. This is explained by the fact that every device is located around the

metropolitan area of Lisbon, and our Google Cloud testing server is located in Frankfurt.

Since the distance between every device located in Lisbon to Frankfurt is roughly the same (≈2315
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Figure 6.6: Weekly raw latency as experienced by all nodes.
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Figure 6.7: Weekly Moby throughput as experienced by rpi3.

km) the interesting observations would be the latency spikes observed on rpi05 and rpi10. These

observed spikes, reaching out the frame, are mostly due to temporary failures of connection. The users

of this study were queried about the nature of these failures with the prevalent answer being faulty

network service. During the duration of this study no power outages were observed thus allowing for a

high availability observation across our 9 RPis.

6.3.3 Flashmob Throughput

Following the previous raw evaluation, we now run the same testing procedures for throughput but

using Moby flashmobs. We used our RPi deployment to run periodic Moby rounds based on a k -circuit

(k=9) while using a traffic shaping rate of ≈5 Mbps, i.e., equivalent to 720p video streaming. Every two

hours, the RPis engaged in a Moby round where device rpi3 sent real data, in the form of an iperf3

measurement, and all other nodes sent chaff. In this experiment, all RPi nodes were connected via the
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(a) Standard distribution with 100% chance of failures being
permanent

(b) Standard distribution with 25% chance of failures being per-
manent

Figure 6.8: Original statistical disclosure for a generic scenario

same Tor circuit. We selected the nodes composing this circuit by picking a Tor middle relay and exit

relay with an uptime larger than 40 days and a total advertised throughput over 20 Mbps.

Figure 6.7 shows our weekly throughput measurements conducted over Moby. The figure reveals

that Moby’s traffic was rather stable, achieving a median throughput of 2.3 Mbps. Some of the more

meaningful throughput drops we were able to observe (e.g., in September 30th), may be explained by

the fact that the operator of rpi3 was working from home and attending back-to-back videoconferencing

meetings throughout the day, using another machine. This suggests that the congestion caused by other

bandwidth-hungry applications’ traffic in the network adds to the variability of Moby’s performance.

6.4 Resistance Against Statistical Disclosure

One of the main components of our work is to evaluate flashmobs composed within Moby against

possible statistical disclosure on the anonymity sets. The analysis of this topic will follow these steps:

(i) first, we theorize how the original statistical disclosure attack and the improved generalized version

affects the profile of Alice; (ii) second, we evaluate the performance of flashmobs under a high availability

scenario, (iii) third, we observe how the omission of Alice from a flashmobs makes it more difficult for an

attacker to profile Alice’s website accesses; and (iv) fourth, it is inferred how the usage of an oracle on

Moby bridges with a minimum threshold for the anonymity sets would influence Alice’s anonymity.

6.4.1 Expected Results

To measure Moby’s resistance to statistical disclosure attacks we implemented the original attack

introduced by Danezis in 2003 [56]. In this section, we set the stage for the scenarios presented in the

next sections and more closely resembling possible real-world scenarios such as the setting presented

in Section 6.3.

Figure 6.8 shows an heatmap for the original statistical disclosure probability attack against Alice

when profiling her website accessing under the guise of a flashmob. We consider a total of 100 mobbers
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(a) Highly available users with 100% chance of failures being
permanent

(b) Highly available users with 25% chance of failures being
permanent

Figure 6.9: Original statistical disclosure for highly available users

– K – and 100 websites – M – any member of the flashmob, can access to. Although for statistical

disclosure, one takes the entire vector of accessed websites, for these heatmaps we only display the

probability of accessing a single sensitive website – WikiLeaks. We assume the mobbers in a flashmob

each have the same probability of accessing each of the websites in M in any of the communication

rounds. As such, the naive approach for determining the probability of a single user accessing any of

the websites in the set would be 1
#K .

This heatmap was generated following 365 rounds (assuming a flashmobs scheduled daily for one

year). On the x axis we present the failure rate of the peers of Alice in a flashmob. We vary this rate

from 0% (never failing) to 100% (failing every round). On the y axis we present the probability of Alice

accessing the sensitive website more often than her peers. Assuming her peers have 1
#M probability of

accessing any website in the list, Alice has x probability of accessing WikiLeaks and 1−x
#M−1 probability

of accessing any of the remaining websites.

For every heatmap the bar on right-side presents the observed probability of the attacker compared

with Alice’s real probability of WikiLeaks. What we can observe is that, assuming a failure results in

permanent churn 6.8(a), with no defense mechanism deployed, the observed probability by the attacker

would, after 365 rounds, match the real probability of Alice’s WikiLeaks accesses on column y.

Furthermore, in the following heatmaps we evaluate the variation of the probability of failures result-

ing in permanent churn, i.e., if in 6.8(a) we assumed the churn for 100 users was permanent (100%

probability of no user returning upon failure), in 6.8(b) the probability of not returning when failing de-

creases to 25% and hence it greatly decreases the profiling of Alice. What essentially this shows us is

that as long as we have a certain threshold in the minimal amount of users showing up to a flashmob it

will greatly hamper the adversary’s perception of Alice’s WikiLeaks access probability.

6.4.2 High Availability Scenario

Following our evaluation for a theoretical availability of flashmob users, which includes hypothesized

lower-availability scenarios, we now evaluate the flashmob composition for the opposite – high availabil-
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(a) Highly available users with 100% chance of failures being
permanent

(b) Highly available users with 25% chance of failures being
permanent

Figure 6.10: Original statistical disclosure for Alice’s 50% absence rate with high-available mobbers

ity. In Section 6.3 we demonstrate that real-world deployments of Moby are capable of high availability,

thus providing strong protection against statistical disclosure.

Figure 6.9 shows a highly available scenario for flashmob compositions. Although similar to the

heatmaps shown in the previous Section 6.4.1 on figure 6.8, the main difference is that for the x axis,

we vary the failure rate of mobbers using the number of nines [95]. Despite a different variation of the x

axis, the number of #K continues to be 100, and the number of #M stays also at 100.

As we can observe, in Figure 6.9(a) for a failure rate of 10% (1 Nine) and with permanent churn of

every user (100% probability of not return upon failure), assuming Alice accesses WikiLeaks 100% of

the time, the attacker infered probability is ≈70%. As such, the attacker infers with a ≈30% the difference

of the WikiLeaks accessing profiling of Alice. However, even if every failure means permanent churn in

the flashmob, for (2 Nines) the attacker can barely infer the probability of Alice accessing the sensitive

website being monitored.

For Figure 6.9(b) for a failure rate of 10% (1 Nine) and with 25% probability of a mobber failure

meaning permanent churn, the attacker has a great difficulty of profiling Alice’s probability of accessing

WikiLeaks. Even when Alice accesses WikiLeaks, due to high availability of mobbers and low permanent

churn probability, for the scenario where Alice accesses WikiLeaks 100% of the time, the attacker infers

the probability of Alice as ≈35%. As such, the difference between the real probability and the observed

by the attacker is ≈75%.

As such, we can conclude that highly available scenarios can concur in great protection for flashmob

participants as long as mobber failure probability is no more than 10%. Furthermore, as shown, not only

does the failure probability of mobbers influence the attacker readings, but the analysis for temporary

versus permanent churn, has shown us that, the lower the probability of permanent churn, the better

Alice is protected against a global passive adversary.
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(a) Highly available users with 100% chance of failures being
permanent

(b) Highly available users with 100% chance of failures being
permanent

Figure 6.11: Original statistical disclosure for high-available mobbers with Oracle

6.4.3 Absences in Flashmobs

From the observations shown in the previous sections, we concluded that for flashmobs to be effec-

tive three main factors must be balanced: (i) the number of clients in a flashmob, (ii) the availability of

mobbers, and (iii) the probability of failures being temporary. Taking these factors into account the next

step of our study evaluates how Alice absenting herself from some communication rounds will affect the

profiling of Alice by the attacker.

Figure 6.10 evaluates how Alice being offline 50% of the scheduled rounds affects her profiling. The

parameters used are the same as in previous rounds, the only difference being that Alice will be offline

for half of the daily scheduled rounds. Figure 6.10(a) shows Alice’s profiling when churn is permanent

with her flashmob peers. Comparing the observed probability with Alice’s real probability of accessing

a website in K, when Alice accesses WikiLeaks 100% of the time, the attacker infers a probability of

≈40%. As such, we can observe that this approach lowers the attackers inference in about ≈60%.

In Figure 6.10(b) we observe that when capping the probability of failures being permanent at 25%,

Alice being offline for 50% of the time and accessing WikiLeaks every round she is online, the attacker

perception is that Alice accesses WikiLeaks ≈20% of the time. As such the difference between the

calculated and the actual probability is ≈80%.

6.4.4 Oracle and Minimum Threshold

We can observe from previous experiments that the amount of offline mobbers not only conditions

the plausible deniability of Alice, but also for greater probabilities of permanent churn, the attacker is

able to greatly approximate the real accesses profile with the estimated one. As such, and inspired

by Wolinksy [22], when traffic is routed through a Moby bridge, this component can access how many

messages it did receive and implement a minimum threshold of online mobbers – O – to prevent the

deanonymization of users, thus acting like an Oracle.

In Figure 6.11 we implement a minimum flashmob threshold of O = 4 for a flashmob. If during a cer-

tain communication round the Moby detects that no more than 4 messages were sent to the destination
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(a) SDA with failure rate of 10% and max. of 1 message per
round.

(b) ISDA with failure rate of 1% and max. of 100 messages per
round.

Figure 6.12: Numero de noves para 100 gajos com churn permanente variavel.

websites no traffic will be routed. Following the evaluation on previous sections, the parameters remain

the same for the K, websites being accessed M and probability of a failure resulting in permanent churn.

In Figure 6.11(a) we can observe that for a failure rate of 10% (1 nine), with every failure resulting

in permanent churn, regardless of Alice’s sensitive website accessing tendencies, barely any message

is being routed through Moby. Although the attacker cannot profile Alice, this poses an usability issue.

Nonetheless, for a mobber failure rate of 1% (2 Nines) the results are much more encouraging. Not only,

does the attacker have trouble profiling Alice’s WikiLeaks accesses (compared to her real probability)

but rounds are not being blocked by the Moby bridge Oracle. For , assuming that Alice accesses Wik-

iLeaks 100% of the time, the attacker perceives Alice’s probability of accessing WikiLeaks as ≈5%. The

difference between the actual probability and the perceived one is ≈95%.

On the other hand, Figure 6.11(b) shows that for a failure rate of 10% (1 nine) with only 25% of the

failures resulting in permanent churn, the attacker cannot differentiate the instance where Alice accesses

WikiLeaks from the naive scenario where her probability would be 1
M . What is meant by this, is that for

any of the x axis parameters, for any WikiLeaks access probability by Alice’s, the attacker perceives the

probability of accessing this website as ≈1%, the same probability as accessing any of the M websites

at random.

As such, we can conclude that for Moby flashmobs to provide usability a degree of usability, the

flashmob users have to possess highly availability (above 90% per round) and a low probability of failures

resulting in permanent churn. With these conditions known, we can greatly vary the size of the flashmob

sizes and the O online mobber threshold. We leave for future work evaluating the correlation between

flashmob sizes, availability and the minimum flashmob threshold necessary to route traffic between

bridges.

Finally, we present on Figure 6.12 a corner case of the Moby bridge oracle implementation. As

shown in Section 6.4.3, the possibility of Alice absenting herself from the flashmob performances, when

the Oracle is implemented, makes it more difficult for the attacker to properly profile Alice. Through the

combination of Alice being offline 50% of her rounds with Moby bridge oracle requiring O ≥ 4 to route

traffic, figure 6.12(a) shows us that for 10% failure of mobbers and permanent churn, Alice cannot be

51



profiled. This mostly happens because of a combination of: (i) Alice being offline, (ii) not enough users

being able to constitute a flashmob of 4 users after 365 rounds.

Since the above requirements are very strict and make Moby performance falter, figure 6.12(b) as-

sumes a more lenient parameter of instead 25% of failures resulting in permanent churn. We observe

the attacker is unable to distinguish Alice’s accessing profile from a random distribution of website ac-

cesses, even for the case where every available round Alice accesses WikiLeaks.

Summary

This chapter presented our experimental evaluation of Moby. It showed that Moby is able to pro-

vide a reasonable throughput and latency needed for typical network activities (e.g. browsing or video

streaming) even when behind residential NATs. Moby has shown to be resilient against statistical dis-

closure specifically in the presence of a state-level adversary analysing traffic flows and correlating with

anonymity sets. However, depending on the configuration parameters, specifically the anonymity set

size, and the threshold to avoid deanonymization, usability might be compromised. The next chapter

concludes this document by reviewing the key points of this thesis and introduce the future work.
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Chapter 7

Conclusions

Nowadays, attacking anonymity networks is becoming easier for state-level adversaries. Although

recent works such as TorK add k-anonymity and prevent traffic flow correlation on Tor (the most popular

anonymity network in usage as the time of writing), such system remains vulnerable to intersection

attacks and statistical disclosure against a global passive adversary. In this work, we presented Moby,

aimed at providing Tor a network of Moby bridges protecting whistleblowers from intersection attacks

and statistical disclosure. This is achieved by introducing k-anonymous flashmobs.

7.1 Achievements

With this work our major achievements were the design and implementation of Moby, a Tor pluggable

transport and controller which offers additional protection against intersection attacks and statistical

disclosure. By leveraging TorK and scheduling a k -anonymous flashmob whistleblowers are provided

plausible deniability since an attacker is not able to correlate traffic flows during the period the anonymity

set is active. Furthermore, we have deployed Moby across a major European city metropolitan area

using IoT devices in order to study how a high availability scenario would perform against a global-

passive adversary. Finally, for intersection attacks and statistical disclosure we have studied how Moby

would resist against these types of attacks and what are the ideal features to strengthen flashmobs,

mostly: (i) the size of anonymity sets, (ii) the probabilities of mobber churn, (iii) the permanent user

churn, (iv) and the usage of an oracle implementing a minimum user threshold to mitigate disclosure.

7.2 Future Work

Our work on Moby allows us to identify multiple interesting directions for future work. First, the

implementation of Moby should support a global mesh of bridges in order for flashmobs to be distributed

across different relays and balance the induced load. Second, we an interesting point to study would

be to infer how to attribute specific browsing patterns to mobbers instead of just having these retrieve

webpages or emitting chaff. A third challenge would be the recruiting of clients for flashmobs. Currently
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we have utilized a model where the flashmob creator knows which are the clients that she wants to

recruit. Furthermore, no incentive is given to mobbers in order for them to participate in anonymity

sets. For future due to participation in flashmobs, the usage of smart contracts, cryptocurrency, or even

reputation gains could be used to reward mobbers for their participation. A fourth interesting challenge

would be the advertising of flashmobs for users in the real world. As such, one could explore the

possibilities of having clients join flashmobs based on the anonymity guarantees that could be given

to the user. These parameters could for example be, the advertise minimum number of users for a

flashmob to occur, the average number of users and churn rate of past flashmobs, and the dates and

durations for the anonymity set rounds, and the types of websites one is able to access during flashmob

performances. To this end, it is important for mobbers to query bridges for the characteristics of the

currently stored flashmobs. A fifth and final challenge would be to analyse the probabilities of users

in Moby using the generalized statistical disclosure attack and the least squares statistical disclosure

attack, to determine the correct parameters
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