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Resumo

Viriato é um micro lançador de propulsão vetorial, cuja saı́da da atmosfera passa por várias condições

de voo, desde regime subsónico a supersónico, complicando o desenho de um controlador clássico com

o desempenho desejado em toda a trajetória. Deste modo, um controlador Robusto é desenvolvido que

garante uma resposta rápida e robusta a variações de massa, atrasos na atuação e rajadas de vento.

Como termo de comparação, desenvolveram-se controladores PD, LQG e NMPC.

Com o objetivo de construir e testar os algoritmos, a Spin.Works desenvolveu o VIRIATO Test Plat-

form, um protótipo semelhante a VIRIATO, com cerca de 1 metro de altura. De seguida, um ambiente

de simulação em MATLAB/Simulink é desenvolvido, utilizando as principais equações cinemáticas e

dinâmicas, os sensores e as suas especificações de ruı́do. Depois, o sistema é linearizado e as funções

de transferência são utilizadas para construir o controlador PD e as matrizes em espaço de estados os

controladores LQG e Robusto. Adicionalmente, por via das equações não lineares, formula-se um

controlador NMPC.

Os resultados das simulações indicam que o controlador H∞ é o mais rápido (juntamente com o

NMPCEKF) e é robusto a variações de massa de 20%, atrasos na atuação de 0.1 s e rajadas de

vento de 5 m/s. Verificou-se que consegue seguir trajetórias quadradas, em anel e em formato de oito,

enquanto aponta para o centro, com erro de posição inferior a 0.4 m e um atraso de 1 s, sendo que o

erro aumenta quando as referências de guinada variam abruptamente.

Palavras-chave: Controlo Por Empuxo Vetorial, Controlo Robusto, Filtro de Kalman, Ro-

bustez
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Abstract

VIRIATO is a thrust vectored launch vehicle, whose flight mode while leaving the atmosphere ranges

from subsonic to supersonic, such that it would be challenging to ensure a suitable performance through-

out all its trajectory using classical controllers. To overcome this difficulty, a Robust controller is devel-

oped that ensures a fast response, robustness to mass variations, actuation delays and wind gusts. To

benchmark the H∞ controller, PD, LQG and NMPC controllers are also derived.

In order to build and test these algorithms, Spin.Works developed the VIRIATO Test Platform, a

small scaled prototype of VIRIATO with 1 m height. A simulation environment in MATLAB/Simulink is

built, comprising the most significant kinematic and dynamic equations, the available sensors and their

noise specification. Then the system is linearized, the transfer functions are used to construct the PD

controller and the state space matrices the LQG and Robust controllers. Additionally, using the nonlinear

equations, the NMPCEKF controller is formulated.

The simulation results comparing the LQG, NMPCEKF and H∞ controllers indicate that the latter is

the fastest alongside the NMPCEKF and is robust to a mass variation of 20%, actuation delays of 0.1 s

and wind gusts of 5 m/s. The H∞ was able to follow square, loop and eight shaped trajectories, while

pointing at the center of the loops, with a position error below 0.5 m and a delay of 1 s. The position

error increased slightly when the yaw reference changed abruptly.

Keywords: Thrust Vector Control, Robust Control, Kalman Filter, H∞
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Chapter 1

Introduction

In this chapter the motivation, a brief overview and an outline of the thesis are described.

1.1 Motivation

SpaceX has sparked the interest of private companies in space exploration and launchers, having

done, as of this moment, 187 launches, 149 landings and 124 total reflights [1]. The aforementioned

success caused a considerable number of startups in this field of to appear over the years and more

precisely, since 2017, this trend has seen an even bigger increase [2].

VIRIATO is a project that aims to develop, integrate and operate a sub-orbital vehicle to validate and

test key technologies to the future development of a Portuguese microsatellite launcher, being launched

preferably in the planned space port in Santa Maria, Açores [3].

In the scope of VIRIATO, Spin.Works is responsible for the development of the GNC subsystem [4].

To implement and test the algorithms, a smaller scaled VIRIATO, the VIRIATO Test Platform, with an

height of 1 m was built. This thesis focus on the design and computational simulations of the GNC

system in MATLAB/Simulink, namely the development of Robust position controllers and guidance algo-

rithms that enable the vehicle to follow square, loop or eight shaped trajectories.

1.2 Topic Overview

In this Thesis, control algorithms ranging from PD controllers with more than one hundred years to

more recent H2/H∞ are derived. The assumption is that PD controllers can deal with the problem, but

their performance might not be satisfactory enough, which is why more advanced controller structures

are also tested. As will be seen, the Robust and nonlinear controllers perform significantly better than

the PD controllers; however, the latter are useful due to their well studied behaviour. Having derived all

the controllers, the physical tests would be carried out starting with the simpler PD controllers, tuning

them properly and only then advancing to the more complex H∞ or NMPCEKF controllers.

A very similar project to the VIRIATO Test Platform, the EAGLE (Environment for Autonomous GNC
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Landing Experiments) project, from the German Aerospace Center has been able to successfully fly its

launch vehicle, having used algorithms as simple as PD controllers but also more sophisticated methods,

namely sliding-mode-controllers [5]. In this thesis, sliding mode controllers are not developed due to the

recurring chattering problems they have, which limit their performance and robustness. As was the case

for EAGLE, in the end the team opted for simpler PID controllers, which were able to make it fly. Building

on this knowledge, the first attempt to control the VIRIATO Test Platform is made with PD controllers and

the sliding mode controllers are not tested at all. Instead, LQR, robust H2/H∞ and a nonlinear model

predictive controller are designed and tested.

1.3 Objectives

The main objectives in this thesis are to design control laws that achieve certain performance speci-

fications and a guidance algorithm that enables tracking square, loop and eight shaped trajectories. To

be more specific, after deriving the dynamics, defining the actuator and sensor specifications, different

types of control laws are designed, namely linear, robust and nonlinear. Having obtained the design

results, the most promising controller of each mentioned category is tested in a nonlinear simulation

in SIMULINK against mass variations, actuation delays and wind gusts. Upon selection of the best

performing controller in the nonlinear simulations, a guidance algorithm is added that feeds position

references to the inner control loop.

This thesis will focus only on simulations, leaving work to be done in the implementation of the

algorithms in a microcontroller inside the VIRIATO Test Platform. Furthermore, the developed MATLAB

code split into the definition of the dynamics of the VIRIATO Test Platform and the different control

and guidance algorithms would allow to tune and build upon the developed controllers, ensuring the

scalability of this work.

1.4 Literature review

Several small scale launch vehicles project, similar to the VIRIATO Test Platform, have been de-

veloped and some even tested, such as EAGLE. The flight controllers developed in this thesis were

motivated to some extent by the aforementioned project. To decide what approaches to take, 3 publica-

tions were studied [6], [7] and [8] in years 2017, 2018 and 2019, respectively, which allowed to have a

better understanding of the advantages and disadvantages of each control or estimation technique and

also their limitations.

In the first year in [6], to estimate the position, velocity, Euler angles and angular velocity, a modular

approach was taken, having 2 separate filters working together, in which a faster, Strapdown filter, ran

at 100 Hz, performed the integration from accelerometers and gyroscopes, obtaining a state prediction

and a slower Kalman filter, ran at 10 Hz, did the error correction, using measurements from GPS,

altimeter and magnetometer. The control task was split into 4 categories, namely system identification,

yaw control (the rotation around the vertical axis), thrust vector control and position control. The thrust
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vector control is responsible for the attitude and altitude, receiving references from the outer loop position

control. External to these control loops, a guidance system is responsible for generating position and

velocity references. With this architecture, hand tuned PD controllers were used in the first place, but

were not further discussed and replaced by sliding mode controllers. Additionally, a model-reference

adaptive scheme, which feeds a nominal plant with the same inputs as the real plant, during flight,

computes the difference in inputs required to compensate for the verified output variations. Both the

inner and outer loops use sliding mode controllers (designed independently due to the difference in order

of magnitude of the closed loop bandwidth of each loop). The altitude controller produced a response

with a settling time of around 5-10 seconds and there is a constant 20 cm of error, which is expected

given that the sliding mode controllers had their integral component disabled to prevent the excessive

accumulation of error (windup). The position controllers have a settling time of about 10 seconds and

also show some static error. The yaw controller works quite well as expected, having a fast response

and very little error.

In the next year in [7], the same setup was used, with the addition of a saturation function replacing

the sign function, which is a very common technique to avoid chattering in sliding mode control. Ad-

ditionally, the model-reference adaptive scheme was removed. This time, it appears that the altitude

simulations were the same as in [6], having changed only the position controllers, which is understand-

able because these had the worst results. In this work, the attitude controller was tested independently

and exhibited 2◦ oscillations, which were attributed to inertial matrix uncertainties, wind gusts and slosh-

ing. The results of the position controller were very similar to [6] and the authors considered them to be

conservative and that more aggressive gains could be tested.

In the last studied attempt in [8], the sliding mode controllers were abandoned and replaced by

traditional PID controllers. The results were again similar to the ones obtained in the previous years.

The altitude controller had an offset of about 10%, which increased over time and was attributed to not

having real-time mass estimation and using a constant nominal feedforward thrust input, while the mass

of the vehicle was decreasing due to fuel consumption. The position controller had a settling time of

about 15 s and afterwards, while hovering, a maximum deviation of 0.2 m, under mild winds speeds

up to 5 m/s. In this work, a guidance system was designed, using a polynomial scheme to generate

a continuous reference for velocity and position. This includes the possibility of limiting the maximum

velocity and acceleration to reach the desired position. The results, including the guidance controller,

prove that tracking is being done and the controller is able, although with error oscillations of 0.2 m, to

track the position references.

From these 3 publications, some key ideas were derived, namely: a 2 phase prediction and correction

estimator should be derived, sliding mode controllers do not exhibit better performance than simpler PID

controllers and the control architecture of a guidance system, an outer and an inner loop, should be

adopted. In fact, to validate the assumption that the sliding mode controllers did not lead to exceptional

results, some exploratory simulations for VIRIATO were done using them, but the chattering problem

was so persistent that to avoid it, the performance was severely compromised.
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1.5 Thesis Outline

This thesis follows an intuitive approach to define the control and guidance algorithms for the VIRIATO

Test Platform. In chapter 2 the Newton-Euler equations are written, the inertial and body frames are

defined and a thorough description of the 4 inputs of the system is given. In the end, decoupled state

space representations for the longitudinal, lateral and vertical movements and transfer functions are

derived.

In chapter 3, linear control techniques are applied to control the VIRIATO Test Platform, namely, PD,

cascaded, LQR and MPC controllers. Firstly, trade-off requirements for bandwidth, damping and over-

shoot are specified, which will serve as tuning guidelines. To obtain the controllers, time and frequency

analysis are carried out with the help of several MATLAB functions. In addition to this, the robustness

of the closed loop system with each controller is also studied by using at first classical gain margins.

Then, in section 3.3.3 a detailed description of disk-margins is presented, which enables to take a much

more comprehensive approach for multi-input-multi-output MIMO systems. Lastly, in tables 3.2 to 3.5 an

overview of the design results is given.

In chapter 4 robust control methods are studied. First, a very brief explanation of the generalized

plant structure is given, which is the ground for the H2, H∞ and µ control problems. Then, the weighting

functions that enable tuning of the control design goals of the controllers are presented. Then, the

most important conditions, (A1) to (A5), for the correct computation of the robust controllers are defined,

the H2 and H∞ norms are shown and a brief description of the singular values is given. With the

theory settled, making use of engineering heuristics the weighting functions are defined and again using

MATLAB functions the H2, H∞ and µ controllers are computed.

In chapter 5 a nonlinear Model Predictive Controller is derived. The internal dynamical model of the

VIRIATO Test Platform is presented, augmented with the input dynamics and a mass state. The control

and prediction horizons, the cost function and the constraints are stated which comprise most of the

problem definition. Then, an extended Kalman filter is derived, explaining all its steps in detail and also

the definitions of the most important variables.

In chapter 6, the control algorithms are tested thoroughly. The most promising controllers from the

design in the previous sections, namely the LQG, H∞ and NMPCEKF controllers are tested extensively

in performance, disturbance rejection and robustness.

In chapter 7 a simple guidance algorithm is derived. The goal is to have an outer loop, external

to the control algorithms previously derived, which would feed position and yaw references to them,

contributing to a smoother flight. The results of the complete control and guidance algorithms are shown

for square, loop and one resembling the infinity symbol ∞ trajectories.
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Chapter 2

Dynamics

In this chapter the dynamics of the VIRIATO Test Platform, followed by linearization and representa-

tion in state space and transfer function are presented. In the end, the noise of the sensors is quantified.

2.1 Vehicle

The complete system is shown in figure 2.1.

Figure 2.1: VIRIATO Test Platform [4].

The system has 4 actuators, thrust T from the jet engine, the outer and inner gimbals, δ and ϵ

respectively and rotors that produce a torque τr, enabling to control 4 outputs simultaneously. In total,
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as it will be shown later, there are 12 states, which means it is an under-actuated system. To describe

the vehicle with Newton-Euler equations, two reference frames are defined: the inertial and body frames,

presented in figure 2.1. These allow for a complete description of the most important dynamics, without

too much error given that the majority of the mass is fixed when seen from the body frame. Another more

precise approach would be to use Denavit-Hartenberg parameters, defining more reference frames to

capture all the dynamics (for instance, the rotation of the gimbals).

The transformation from the inertial frame to the body frame is given by the rotation matrix

RBI =


cos θ cosψ cos θ sinψ − sin θ

cosψ sin θ sinϕ− cosϕ sinψ cosϕ cosψ + sin θ sinϕ sinψ cos θ sinϕ

sinϕ sinψ + cosϕ cosψ sin θ cosϕ sin θ sinψ − cosψ sinϕ cos θ cosϕ

 . (2.1)

2.2 Actuators

Here a thorough description of the actuators is given.

2.2.1 Gimbals and jet engine

The gimbals and thrust outlet are shown in figure 2.2.

Figure 2.2: Gimbals and thrust outlet system [4].

In figure 2.3, the distance l between the centre of mass CG and the centre of thrust Ct is displayed.

The rotation of the outer and inner gimbals δ, ϵ, respectively, can be seen in figure 2.4. The outer gimbal

rotates the motor along the roll axis (x) of the body frame, producing a roll moment and a force in the

transversal axis (y). The inner gimbal rotates the motor along the pitch axis (y) of the body, producing a

pitching moment and a force in the longitudinal axis (x).

The rotation matrix of the outer gimbal to the body frame B is

RBδ =


1 0 0

0 cos δ − sin δ

0 sin δ cos δ

 (2.2)
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Figure 2.3: Gimbals and thrust outlet lateral view [4].

(a) Outer gimbal δ (b) Inner gimbal ϵ

Figure 2.4: Outer, inner gimbals δ and ϵ [4].

and of the inner gimbal

RBϵ =


cos ϵ 0 sin ϵ

0 1 0

− sin ϵ 0 cos ϵ

 . (2.3)

Thus, the force due to the jet engine expressed in the body frame is

Tm = −RBδ RBϵ Tez =


−T sin ϵ

T cos ϵ sin δ

−T cos ϵ cos δ

 (2.4)

and the resulting motor torque τm

τm = lez ×T =


−T l cos ϵ sin δ

−T l sin ϵ

0

 . (2.5)
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2.2.2 Rotors

One of the 4 rotors around the VIRIATO Test Platform can be seen in figure 2.5.

Figure 2.5: One of the 4 rotors of the VIRIATO Test Platform [4].

The total force generated by these 4 rotors when paired is null, resulting only in a torque τrez.

Therefore, the total force of the inputs expressed in the body frame is FB = T and the torque in the

body frame τB is

τB = τm + τrez =


−T l cos ϵ sin δ

−T l sin ϵ

τr

 (2.6)

Finally, the dynamics of the actuators are approximated by first order systems. This approximation is

common for gimbals (controlled by servos) or rotors; however, the engine could benefit from proper

system identification. Nonetheless, choosing a first order system is an usual first approach.

h(s) =
1

stu + 1
. (2.7)

2.3 Newton-Euler equations of motion

The equations of motion are derived using the Newton-Euler equations , which combine the transla-

tional and rotational dynamics of a rigid body [9].

d

dt


pB

vB

λ

Ω

 =


−Ω× p+ v

−Ω× v + FB
m +RBI gez

Q(λ)Ω

J−1(τB −Ω× JΩ)

 (2.8)

with λ the Euler angles and Q(λ) the transformation from angular velocities to Euler rates

Q(λ) =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 (2.9)

As previously stated, these comprise twelve (12) equations, as following
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d

dt



pBx

pBy

pBz

vBx

vBy

vBz

ϕ

θ

ψ

wx

wy

wz



=



vBx + pBy wz − pBz wy

vBy − pBx wz + pBz wx

vBz + pBx wy − pBy wx

vBy wz − vBz wy − g sin θ − T sin ϵ
m

vBz wx − vBx wz + g cos θ sinϕ+ T cos ϵ sin δ
m

vBx wy − vBy wx + g cos θ cosϕ− T cos ϵ cos δ
m

wx + wz cosϕ tan θ + wy tan θ sinϕ

wy cosϕ− wz sinϕ

wz cosϕ sec θ + wy sinϕ sec θ

−Jzzwywz−Jyywywz+Tl cos ϵ sin δ
Jxx

−Jxxwxwz−Jzzwxwz+Tl sin ϵ
Jyy

τr+Jxxwxwy−Jyywxwy
Jzz



(2.10)

2.4 Linearization

Linearization of nonlinear systems is a powerful to gain insight about the system. It allows for time

and frequency analysis, which in most cases are enough to produce a fast and robust controller.

This system is linearized around the hovering point with pB , vB , λ, Ω = 0.

2.4.1 State space

The linearized model is

f(x) = Ax+Bu (2.11)

When evaluating at the hovering point the matrices A and B are

A =



pBx pBy pBz vBx vBy vBz ϕ θ ψ wx wy wz

˙pBx 0 0 0 1 0 0 0 0 0 0 0 0

˙pBy 0 0 0 0 1 0 0 0 0 0 0 0

˙pBz 0 0 0 0 0 1 0 0 0 0 0 0

˙vBx 0 0 0 0 0 0 0 −g 0 0 0 0

˙vBy 0 0 0 0 0 0 g 0 0 0 0 0

˙vBz 0 0 0 0 0 0 0 0 0 0 0 0

ϕ̇ 0 0 0 0 0 0 0 0 0 1 0 0

θ̇ 0 0 0 0 0 0 0 0 0 0 1 0

ψ̇ 0 0 0 0 0 0 0 0 0 0 0 1

ẇx 0 0 0 0 0 0 0 0 0 0 0 0

ẇy 0 0 0 0 0 0 0 0 0 0 0 0

ẇz 0 0 0 0 0 0 0 0 0 0 0 0



(2.12)
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and

B =



T δ ϵ τr

˙pBx 0 0 0 0

˙pBy 0 0 0 0

˙pBz 0 0 0 0

˙vBx 0 0 −g 0

˙vBy 0 g 0 0

˙vBz − 1
m 0 0 0

ϕ̇ 0 0 0 0

θ̇ 0 0 0 0

ψ̇ 0 0 0 0

ẇx 0 −mgl
Jxx

0 0

ẇy 0 0 −mgl
Jyy

0

ẇz 0 0 0 1
Jzz



(2.13)

Furthermore, the system can be decoupled into the longitudinal (x), lateral (y) and vertical (z) linear

and angular movements. However, the decoupled state space matrices will only be derived for the

longitudinal (x) and lateral (y) movements (Ax, Bx and Ay, By, respectively). In the case of the vertical

movement, with respect to the z position pBz and yaw ψ the system is a double integrator, so it is easier

to work with a transfer function model.

Longitudinal (x) movement

Ax =



pBx vBx θ wy

˙pBx 0 1 0 0

˙vBx 0 0 −g 0

θ̇ 0 0 0 1

ẇy 0 0 0 0

, Bx =



ϵ

˙pBx 0

˙vBx −g

θ̇ 0

ẇy
−mgl
Jyy


Lateral (y) movement

Ay =



pBy vBy ϕ wx

˙pBy 0 1 0 0

˙vBy 0 0 g 0

ϕ̇ 0 0 0 1

ẇx 0 0 0 0

, By =



δ

˙pBy 0

˙vBy g

ϕ̇ 0

ẇx
−mgl
Jxx


2.4.2 Transfer function

From the linearized system in 2.11, the transfer functions are obtained.
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pBx =
vBx
s

(2.14)

pBy =
vBy
s

(2.15)

pBz =
vBz
s

(2.16)

vBx = −g θ
s
− g

1

s(tss+ 1)
ϵ (2.17)

vBy = g
ϕ

s
+ g

1

s(tss+ 1)
δ (2.18)

vBz = − 1

m

1

s(tms+ 1)
T (2.19)

ϕ =
wx
s

(2.20)

θ =
wy
s

(2.21)

ψ =
wz
s

(2.22)

wx = −mgl
Jxx

1

s(tss+ 1)
δ (2.23)

wy = −mgl
Jyy

1

s(tss+ 1)
ϵ (2.24)

wz =
1

Jzz

1

s(trs+ 1)
τr (2.25)

2.5 Sensors

To observe the position, Euler angles and angular velocity states, the Xsens mti-680 was selected

[10]. This unit has a sensor suite that provides inertial position, velocity, orientation and angular velocity

estimates. The horizontal position is obtained from a GPS antenna, the vertical position a barometer,

the velocities from GPS, the Euler angles from combining the gyroscope and the accelerometers and

the angular velocities are obtained mainly from the gyroscopes.

Although this unit can provide velocity measurements, in this work it is considered that they are not

available, so their noise is not going to be quantified. From the datasheet [11], the sensor specifications

are shown in table 2.1. The acceleration rms values were included because, as it can be seen, the

position measurements are too noisy, specially the vertical one, so 3 kalman filter to combine these

signals are going to be derived. The values with asterisks (*) in the aforementioned table indicate that

the root mean square values (RMS or standard deviation σ) were obtained from the power spectral

density (PSD) of the noise, assuming measurements at a frequency of 100 Hz.

RMS(σ) = PSD
√
frequency (2.26)

For example, in the case of the angular velocity,
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PSD = 0.007 º/s/
√

Hz = 0.00012 rad/s/
√

Hz

RMS = 0.00012
√
100 = 0.0012 rad/s

(2.27)

Table 2.1: Sensor specification of the Xsens mti-680 in SI units.
Horizontal Pos. Vertical Pos. Roll/Pitch Yaw Angular Vel. Acceleration

RMS 1 2 0.0035 0.0175 0.0012* 0.0059*
*Obtained from the PSD of the noise at 100 Hz.

In the simulations in chapters 6 and 7, the sensors are approximated by unbiased measurements

with noise variance specified in table 2.1.

2.6 Pre Kalman filtering

To overcome these noisy signals, a Kalman filter is derived, combining the inertial positions and

accelerations using kinematic laws. The Kalman filter is analogous to the LQR controller, which will be

presented and derived in section 3.3.1, and uses the same matrices and cost function, namely

ẋ = Ax+Bu

z = Cx,
(2.28)

with x the states, u the known inputs and z the outputs. For a steady state Kalman filter, the gain can

be computed once by solving the associated Ricatti equation [12] with the aforementioned matrices and

the costs Q and R.

The cost Q refers to the process noise, so the bigger it is, the less we trust the model. On the

contrary, the R matrix corresponds to the measurement noise, being usual to make experimental tests

to quantify sensor noise variance to populate the elements of the R matrix. Just as the Q matrix, the

bigger the R, the less we trust the measurements and so their noise is reduced.

The state space matrices for the position Kalman filter KFP are

AKFP =


p v

ṗ 0 1

v̇ 0 0

, BKFP =


acc

ṗ 0

v̇ 1

, CKFP =
[ p v

y 1 0
]

(2.29)

with p the position, v the velocity and acc the known acceleration. The output position and the input

acceleration are obtained directly from the Xsens mti-680 unit.

Computing the Kalman filter with the function kalman [13] having

Q = 1× 10−8andR = 1 (2.30)

leads to the gain
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L =

0.0811 0.0033

0.0033 0.0003

 . (2.31)

The Q and the gains are very small, which is expected because the position measurements are very

noisy and by having a small Q compared to R there is a small trust in these measurements.

With these specifications, a setup of a PD controller to control the KFP system was developed, so

the filtering could be tested and the results are presented in figure 2.6. In short, the cost Q should not

be increased because that would lead to a higher reliance in the position measurements and thus more

noise; however, it could also not be decreased due to the increase in drift.

The position and velocity errors are on average around 10−3 m and 10−5 m/s in the beginning of the

simulation, but could increase up to 0.035 m and 10−4 m/s due to drift, respectively.

(a) Position transient of the step. (b) Long simulation time drift of the position.

(c) Velocity transient of the step. (d) Long simulation time drift of the velocity.

Figure 2.6: Position filtering results of the KFP.
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Chapter 3

Linear Control and Estimation

In this section several linear control laws are derived. As a guideline in the control design, design

specifications obtained empirically were defined and are presented in table 3.1.

Table 3.1: Design specifications,

pBz vBz pBx , pBy vBx , vBy λ Ω

Bandwidth [Hz] 1 1 to 2 1 1 to 2 5 to 10 20 to 30

ξ 1 1 0.707 to 1 1 0.707 to 1 0.707 to 1

Overshoot [%] <20 <20 <20 <20 <20 <20

3.1 PD control

In this section PD (proportional derivative) controllers are derived for the positions x, y, z in the body

frame, pBx , pBy , pBz and the Euler angles roll, pitch, yaw ϕ, θ, ψ, respectively. There are 4 loops, the

longitudinal pBx and θ, the lateral pBy and ϕ, the vertical pBz and the yaw ψ loops. In the longitudinal loop,

the outer PD controller will control the position x in the body frame pBx , feeding pitch θ references to the

inner pitch PD controller. The lateral loop is analogous to the longitudinal and the vertical position and

yaw loops are independent.

The derivation in the horizontal plane is only presented for the x, pitch and angular velocity in the y

axis, wy because the other loop of the position y, roll and wx is analogous.

3.1.1 Position Along z pBz control

Starting with the vertical loop, the transfer function between the input thrust T and the z position is

pBz = − 1

m

T

s2(tms+ 1)
= − 0.0727

s2(0.1s+ 1)
(3.1)

The pole at s = −10 is due to the time constant of the motor, the s2 is the double integration from

vertical force to position and the negative gain is due to the upward direction of the thrust along the
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negative z axis (the z axis points downwards). Using the function pidTuner of MATLAB it is possible to

define the gains according to the given specifications.

The PD controller structure is:

PDz = Kpz +
Kdzs

azs+ 1
(3.2)

with Kpz = −30, az = 0.00139,Kdz = −50.

The closed loop transfer function is:

clz =
2.811s+ 1.685

0.000139s4 + 0.1014s3 + s2 + 2.811s+ 1.685
(3.3)

with poles at s = −719.4641,−5.1048,−4.0381,−0.8176.

The bode plot of the loop gain is presented in figure 3.1 a), displaying gain and phase margins of

45.5 dB and 60.7◦ , respectively.

GMPDz = 45.5dB

PMPDz = 60.7◦
(3.4)

The closed loop bode plot is shown in figure 3.1 b), displaying a closed loop bandwidth of 5.56 rad/s.

The step response of the closed loop system is available in figure 3.2.

(a) Loop gain. (b) Closed loop.

Figure 3.1: Bode plots with PDz.
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Figure 3.2: Step response with PDz.

3.1.2 Pitch θ control

The transfer function between the inner gimbal ϵ and pitch is

θ = −mgl
Jyy

ϵ

(tss+ 1)s2
=

−33.06

s2(0.005s+ 1)
ϵ (3.5)

The PD controller is:

PDθ = Kpθ +
Kdθs

aθs+ 1
(3.6)

with Kpθ = −1.24, Kdθ = −1.24 and aθ = 0.000139.

The closed loop transfer function is:

clθ =
48.2s+ 48.19

6.95e−7s4 + 0.005139s3 + s2 + 48.2s+ 48.19
(3.7)

The bode plot of the loop gain is presented in figure 3.3 a). According to this figure, the gain and

phase margins are 45.1 dB and 76.9◦ , respectively.

GMPDθ = 45.1dB

PMPDθ = 76.9◦
(3.8)

The closed loop bode plot is shown in figure 3.3 b), showing a closed loop bandwidth of 52 rad/s.

The step response of the closed loop system is available in figure 3.4.
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(a) Loop gain. (b) Closed loop.

Figure 3.3: Bode plots with PDθ.

Figure 3.4: Step response with PDθ.
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3.1.3 Position Along x PB
x control

Having closed the pitch control loop, it is now possible to control the position in the x axis by manip-

ulating the pitch of the vehicle. Thus, the input is the pitch reference to the inner controller developed

previously.

The following equations are to be combined to derive the relationship between the pitch reference

θref and the position in the x axis Px.



px = vx
s

vx = −g θs − g ϵ
s(tss+1)

θ =
wy
s

wy = −mgl
Jyy

ϵ
s(tss+1)

(3.9)

Rearranging the second and fourth equations

vx = −g θs −
mgl
Jyy

ϵ
s(tss+1)

Jyy
ml

sθ = −mgl
Jyy

ϵ
s(tss+1)

(3.10)

leads to

vx = −g θ
s
+ sθ

Jyy
ml

= (s
Jyy
ml

− g
1

s
)θ. (3.11)

The inner pitch controller has the following transfer function

θ

θref
= clθ(=)θ = clθθref (3.12)

arriving at

vx = (s
Jyy
ml

− g
1

s
)clθθref (3.13)

and finally

Px
θref

= (s
Jyy
ml

− g
1

s
)
1

s
clθ =

12.17s3 + 12.16s2 − 472.8s− 472.8

6.95× 10−7s6 + 0.005139s5 + s4 + 48.2s3 + 48.19s2
. (3.14)

Once again, choosing the same PD controller as previously

PDpx = Kppx +
Kdpxs

apxs+ 1
(3.15)

with Kppx = −0.036, Kdpx = −0.14 and apx = 0.164. Notice the negative gains due to the non

minimal phase zero in that complicates the control task.

The closed loop transfer function is:
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clpx =
−1.775s4 − 2.213s3 + 68.55s2 + 86s+ 17.02

1.14× 10−7s7 + 0.0008435s6 + 0.1691s5 + 7.13s4 + 53.89s3 + 116.7s2 + 86s+ 17.02
(3.16)

The bode plot of the loop gain is available in figure 3.5 with gain and phase margins of 15.1 and 65.2,

respectively.

GMPDpx = 15.1dB

PMPDpx
= 65.2◦

(3.17)

The closed loop bode plot in 3.5 b), displaying a closed loop bandwidth of 2.76 rad/s. The step

response is shown in 3.6.

(a) Loop gain. (b) Closed loop.

Figure 3.5: Bode plots with PDpx .

Figure 3.6: Step response with PDpx .
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3.1.4 Yaw ψ control

The transfer function between the input torque τr and yaw is

ψ =
1

Jzz

τr
(trs+ 1)s2

=
1.601

s2(0.005s+ 1)
τr (3.18)

The PD controller is:

PDψ = Kpψ +
Kdψs

aψs+ 1
(3.19)

with Kpψ = 113, Kdψ = 21.2 and aψ = 0.00269.

The closed loop transfer function is:

clψ =
32.1s+ 168.7

1.345e− 05s4 + 0.00769s3 + s2 + 32.1s+ 168.7
(3.20)

The bode plot of the loop gain is presented in figure 3.7 a). According to this figure, the gain and

phase margins are 22.6 dB and 70.1◦ , respectively.

GMPDψ = 22.6dB

PMPDψ = 70.1◦
(3.21)

The closed loop bode plot is shown in figure 3.7 b), with a closed loop bandwidth of 61.8 rad/s. The

step response of the closed loop system is available in figure 3.8.

(a) Loop gain. (b) Closed loop.

Figure 3.7: Bode plots with PDψ.
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Figure 3.8: Step response with PDψ

3.2 Cascaded Position Control

3.2.1 Position Along x PB
x control

Using the results from 3.1.3, the open loop transfer function is

vx = (s
Jyy
ml

− g
1

s
)clθθref (3.22)

when substituting,

Vx
θref

=
12.17s3 + 12.16s2 − 472.8s− 472.8

6.95× 10−7s5 + 0.005139s4 + s3 + 48.2s2 + 48.19s
(3.23)

with the help of the ControlSystemDesigner of MATLAB, it is possible to infer that a controller with a gain

and a real pole is enough to ensure the required performance

Kvx =
−0.13

0.16s+ 1
. (3.24)

Notice again the negative gain to compensate for the non minimum phase zero in 3.22. The closed loop

transfer function is

clvx =
−1.582s3 − 1.581s2 + 61.47s+ 61.46

1.1× 10−7s6 + 0.0008229s5 + 0.1651s4 + 7.13s3 + 54.33s2 + 109.7s+ 61.46
. (3.25)

The bode plot of the loop gain, the bode plot of the closed loop and the step response are presented

in figures 3.9 a), b) and 3.10, respectively. The gain and phase margins are shown in equation 3.26.

GMCvx
= 12.1dB

PMCvx
= 76.7◦

(3.26)
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(a) Loop gain. (b) Closed loop.

Figure 3.9: Bode plots with Kvx .

Figure 3.10: Step response with Kvx .

Having defined the inner loop of the cascaded position control px, the open loop transfer function of

the outer loop can be approximated by

vx
vxref

= clvx(=)
spx
vxref

= clvx(=)
px
vxref

=
clvx
s

(3.27)

substituting,

px
vxref

=
−1.582s3 − 1.581s2 + 61.47s+ 61.46

1.1× 10−7s7 + 0.0008229s6 + 0.1651s5 + 7.13s4 + 54.33s3 + 109.7s2 + 61.46s
(3.28)

using only a proportional controller

Kpx = 0.5 (3.29)
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the closed loop transfer function is

clpx =
−0.7908s3 − 0.7907s2 + 30.73s+ 30.73

1.1× 10−7s7 + 0.0008229s6 + 0.1651s5 + 7.13s4 + 53.54s3 + 108.9s2 + 92.2s+ 30.73
(3.30)

Again, the bode plot of the loop gain, the bode plot of the closed loop and the step response are

presented in figures 3.11 a), b) and 3.12, respectively. The gain and phase margins are presented in

equation 3.31.

GMCpx
= 20.5dB

PMCpx
= 69◦

(3.31)

(a) Loop gain. (b) Closed loop.

Figure 3.11: Bode plots with Kpx .

Figure 3.12: Step response with Kpx .
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3.3 Linear Quadratic Gaussian

A LQG controller is going to be designed, combining the inner angular position loop and the outer

position loop in one full state feedback loop [14]. Assuming no velocity measurements, a Kalman filter is

used to estimate them. Note that all the classical gain and phase margins presented in the next sections

are measured at the outputs, given that we are dealing with a MIMO system. Considering that the gain

and phase margins proved to be much higher in the 3 last outputs (velocity, Euler angles and angular

velocity) than in the position loop, only the latter is shown throughout the rest of this thesis. Therefore,

the quantities such as GMLQR or PMLQR correspond to the gain and phase margins, respectively,

measured at the outputs, of the position loop.

Again, only the derivation for the x position, velocity, pitch and Wy LQR is shown.

3.3.1 LQR

The dynamics can be described by

ẋ = Ax+Bu

z = Cx,
(3.32)

with x the states, u the inputs and z the outputs. The cost function of the system is

J =

∫ ∞

0

xTQx+ uTRu dt, (3.33)

and the algorithm attempts to minimize this cost by solving the corresponding Riccati equation. It can

also be proven that the resulting gain from this solution leads to an asymptotically stable closed loop

[14].

The real task in LQR design is to choose suitable Q and R matrices such that the system has the

required performance in terms of response and robustness. In short, a bigger Q leads to a higher cost on

the states and as such the resulting gain will attempt to keep them low, whereas a high R matrix means

that the control actuation is very expensive and the gain will try to minimize the control effort. A starting

point can be settled using the Bryson’s rule [14], defining Q and R as diagonal matrices and assigning

each entry the inverse of the maximum acceptable variation of the corresponding state or control action

squared.

3.3.2 Position Along x PB
x control

Recalling the decoupled Ax and Bx matrices derived in section 2.4.1
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Ax =



pBx vBx θ wy

˙pBx 0 1 0 0

˙vBx 0 0 −g 0

θ̇ 0 0 0 1

ẇy 0 0 0 0

, Bx =



ϵ

˙pBx 0

˙vBx −g

θ̇ 0

ẇy
−mgl
Jyy


Having calculated the A and B matrices, one can define the Q and R matrices to obtain the optimal

gain, computed in this case with MATLAB’s lqr function

Q =


1

0.12 0 0 0

0 1
0.12 0 0

0 0 1
(1.2π/180)2 0

0 0 0 1
(1π/180)2

and R =
1

12× π/180
= 11.36 (3.34)

which, when computed using the lqr function of MATLAB, arrived at the following gains

KLQRpx
=

[
2.9671 6.2105 −49.2085 −18.9511

]
(3.35)

The bode plot of the loop gain is presented in figure 3.13 a). In this case, it does not make sense to

compare the margins present in the aforementioned figure because it does not have the same physical

meaning (notice the negative sign in the gain margin). The gain margin is simply displaying the gain in

dB that the system has when the phase is 180◦ , which for complex systems such as this one (4 poles

at the origin of the plant, from input ϵ to output PBx ) might not be useful. This time, using the function

allmargin [15] of MATLAB, the classical gain and phase margins can be computed from the loop gain of

the MIMO system consisting of Apx and KLQRpx
, resulting in the gain and phase margins in equation

3.36.

GMLQR = 14.68dB

PMLQR = 67.72◦
(3.36)

The closed loop bode plot is shown in figure 3.13 b), with a closed loop bandwidth of 0.86 rad/s and

the step response of the closed loop system is available in figure 3.14.
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(a) Loop gain. (b) Closed loop.

Figure 3.13: Bode plots with LQRpx .

Figure 3.14: Step response with LQRpx .

3.3.3 Disk margins

Disk margins are a more comprehensive approach to stability margins than classical gain and phase

margins, namely in the domain of multiple input multiple output MIMO systems. Contrary to classical

margins, disk margins compare variations in gain and phase simultaneously, leading to a disk in a plane

having as y axis the phase margin and x axis the gain margin. Additionally, it takes into account multi loop

variations (in this system, there are 4 loops, so it would vary the gain and phase of them individually

simultaneously) at the inputs and outputs (it can be shown that perturbations at the inputs can affect

stability differently than at the outputs) [16].

To calculate the disk margin, a complex valued perturbation f is added to the loop, comprising a

disturbed loop Lf = fL, as depicted in figure 3.15.

Each set of perturbations, denoted f or D(α, σ), is a disk parameterized by a size α and skew σ.

Given a skew σ, the disk margin is the largest size α for which the closed loop remains stable for all

perturbations in D(α, σ), whose domain is given by
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Figure 3.15: Disturbed feedback loop with perturbation f [16].

f ∈ D(α, σ) =


1 +

1− σ

2
δ

1− 1 + σ

2
δ
: δ ∈ C with |δ| < α . (3.37)

In short, the value of skew, σ specifies if the gain is expected to increase or decrease, having chosen,

for simplicity, a value of σ = 0.

An example of variations D(α, σ) having σ = 0.2 and α = 0.75 is displayed in figure 3.16. From these

perturbations, a minimum and maximum gain of γmin and γmax, respectively, can be multiplied to the

system, assuming a null variation in phase. On the contrary, a maximum phase of ϕmax can be added,

assuming a null variation in gain.

Figure 3.16: The set of variations D(α, σ) having σ = 0.2 and α = 0.75 [16].

Lastly, the function diskmargin of MATLAB was used to perform the calculations [17], leading to the

following disk gain and phase margins (considering multi-loop variations), DGMLQR and DPMLQR,

respectively.

DGMLQR = 2.5dB

DPMLQR = 16.3◦

DMLQR = 0.29

(3.38)

To illustrate these margins, the disk can be visualized in figure 3.17. As expected, disk margin is much

smaller than the classical margins or the individual gain or phase margins.
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Figure 3.17: Maximum simultaneous gain and phase variations using the LQR controller.

3.3.4 LQG

Having designed the LQR, now the Kalman filter is built. In fact, according to the separation theorem,

the controller and filter can be designed independently and the closed poles are the sum of their poles

individually [18].

In this work, the loop transfer recovery (LTR) technique is used, which aims to recover the properties

of a LQR controller, even when not having access to some states [19].

The covariance of the error could be computed at each time step to calculate a variable gain, but this

time only the optimal gain computed by the Riccati equation is going to be used, formulating a steady

state Kalman filter.

The algorithm is split into two phases, prediction and correction, and can be described by the follow-

ing equations

ẋ = Ax+Bu+ L[y − Cx]

y = Cx
. (3.39)

According to the LTR technique, in the design of the Kalman filter, the perturbations are introduced

as

ẋ = Ax+Bu+Bd (3.40)

which means that the perturbations are weighted by the input matrix. Then, the Q and R matrices are

chosen

The chosen Q and R values are

Q = 1 and R = σ = 10 (3.41)
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and using the function kalman of MATLAB resulted in the Kalman gain [13]

L =


3.7834 −0.6640 0.2662

7.4131 −3.0149 6.5834

−0.6640 0.7473 0.9764

0.2662 0.9764 23.3847

 . (3.42)

To validate these results, the loop gain for different values of σ is shown in figure 3.18.

Figure 3.18: Loop gain using several σ values.

The results having the different values of σ were very similar, so in the end σ = 10 was chosen

because it is enough to give a clear estimate of the states and would lead to the most noise reduction.

After closing the feedback loop of the open loop system with the coupled LQR and Kalman filter, the step

response to a position reference of 1 is presented in figure 3.19. The kalman filter is able to estimate

precisely the velocity, as can be seen in the velocity graph. The time response of the LQG is very similar

to the LQR alone, but the gain and phase margins are significantly lower and, as will be seen in the

nonlinear simulations, will cause some oscillation at the input (the inner gimbal ϵ). As was the case

for the LQR controller, it is not possible to estimate stability margins from the loop gain bode plot, so

it is not presented. In addition to this, the bandwidth of the system is the same (as the settling time is

also similar), so the closed loop bode plot is also disregarded. Again, with the functions allmargin and

diskmargin, the classical and disk margins can be computed, arriving at the values in equation 3.43.

GMLQG = 4.6dB

PMLQG = 23.8◦

DMLQG = 0.16

(3.43)
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Figure 3.19: Step response with LQGpx .

3.4 Linear Model Predictive Controller

Considering that the A and B matrices have been developed and MATLAB has a model predictive

control toolbox readily available, an attempt to control the VIRIATO Test Platform with a linear mpc is

made. To control the positions Px and Py, 2 model predictive controllers are used with the same Ax, Bx

and Ay, By matrices of the 2 previous subsections.

A sample time of

hs = 0.1s (3.44)

was chosen after testing several values. Although the sampling rate of the sensors and actuators is

bigger (100 Hz), the solver of MATLAB showed some instability if a faster rate was chosen. The plant

ẋ = Ax+Bu

y = Cx,
(3.45)

is fed to the MPC object of MATLAB, and it converts it to a discrete time model with the specified sample

time using the function c2d using zero order hold on the inputs [20][21].

The problem formulation is similar to the lqr, except that the model predictive controller tries to mini-

mize the cost function 3.48 in a finite time horizon, instead of infinite time. This implies that a prediction

horizon must be chosen, selecting a window to minimize the cost function

Ph = 1.5s (3.46)

which is equal to 15 time steps. A control horizon should also be defined, being the time up until the

control input is changing; after it, the inputs remain the same in the remaining of the prediction horizon.
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The control horizon chosen was

Ch = 0.2s (3.47)

At each time step, the mpc tries to minimize the following cost function

J =

∫ Ph

0

x(t)TQx(t) + u(t)TRu(t)dt, (3.48)

noting that the control input u is now changing with time and the upper limit of the integral is no longer

infinity but the prediction horizon. In fact, the mpc function of MATLAB is not solving this problem in

continuous time, but in discrete. In this case, the plant model is discretized

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k),
(3.49)

and the cost function is

J =

Phn∑
k=1

(y(k)TQy(k) + u(k)TRu(k)) (3.50)

with Phn the number of time steps of the prediction horizon. The mpc function of MATLAB solves this

problem with a quadratic programming approach, which also allows to define the constraints that this

cost function is subject to.

3.4.1 Position Along x PB
x control

The derivation and results are only shown for the position x Px control, as for Py the procedure is the

same.

To control the x position PBx , the matrices Ax and Bx previously derived in section 2.4.1 are used.

The constraints are

−17π/180 <= ϵ <= 17π/180

−15π/180 <= θ <= 15π/180,
(3.51)

defining a maximum inner gimbal angle ϵ of 17◦ and a pitch θ of 15 ◦ .

The chosen Q and R weights are

Q =
[
1 0.1 0.1 0.1

]
and R = 10, (3.52)

which are arrays and not matrices due to the mpc function having them as arguments in this format.

With these specifications, a linear simulation was carried out in figure 3.20, consisting of a step
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response to a PBx reference. As it can be seen, the performance is the best so far; however, it is much

harder to perform a frequency and robustness analysis and will not be done here.

Figure 3.20: Step plot with MPCpx .

3.5 Final Performance Results

The resulting performance of the linear controllers of the position along x PBx can be summarized in

table 3.2, with ξ the damping factor, TR the rise time (defined as the time to reach 90% of the reference

level 1), TS the settling time (time required for the signal to reach 98% of the reference value and does

not leave this threshold later), GM the gain margin and PM the phase margin.

Table 3.2: Resulting position x PBx performance.
Bandwidth [Hz] ξ Overshoot [%] TR [s] TS [s] GM [dB] PM[º]

PD 0.07 0.564 11.7 0.78 8.49 11.2 65.2
Cascaded 0.12 0.844 1.0 2.83 4.59 20.5 69.0
LQR 0.14 0.702 0.0 2.54 4.39 14.7 67.7
MPC - - 5.3 0.95 2.74 - -

As one would expect the MPC controller showed the best performance, taking only 2.74s to reach

the reference. However, in terms of robustness the cascaded controller has the highest stability margins,

although close to the PD and LQR controllers (it is possible to calculate these values for the MPC con-

troller, but it is not done in this work). As described previously, a more thorough analysis of robustness

for MIMO systems can be carried out using the function diskmargin of MATLAB, which takes into account

multi loop variations at the inputs and outputs simultaneously. These margins computed with the function

diskmargin are significantly lower (for instance, DGMLQR = 2.5dB as opposed to GMLQR = 14.7dB),

which means that one should not be overconfident on the SISO results.

Although the performance and robustness of the cascaded controller are lower than the LQR and

MPC, it still would be the best first approach to control the VIRIATO Test Platform. The cascaded scheme

enables to tune each loop independently which makes the tuning task significantly easier.
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In table 3.3 the resulting specifications of the PD pitch controller are presented. It can be seen

that they are fulfilled with the simplest controller, so it might not be required to use more complicated

structures. The results for the roll ϕ control are identical.

Table 3.3: Resulting pitch θ performance.
Bandwidth [Hz] ξ Overshoot [%] TR [s] TS [s] GM [dB] PM[º]

PD 8.28 1 2.2 0.04 0.26 45.1 76.9

The resulting specifications for the height Pz control can be visualized in table 3.4. It can be seen

that the specifications are almost met, being the desired closed loop bandwidth of 1 Hz very close to the

obtained one.

Table 3.4: Resulting height Pz performance.
Bandwidth [Hz] ξ Overshoot [%] TR [s] TS [s] GM [dB] PM[º]

PD 0.88 0.847 15.2 0.348 3.64 45.5 60.7

Lastly, the specifications of the yaw ψ control are displayed in table 3.5. The desired performance

parameters are once again met.

Table 3.5: Resulting yaw ψ performance.
Bandwidth [Hz] ξ Overshoot [%] TR [s] TS [s] GM [dB] PM[º]

PD 9.84 0.946 3.5 0.03 0.45 22.6 70.1
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Chapter 4

Robust Control

In this section H2, H∞ and µ synthesis control laws are derived. In figure 4.1 a general feedback

control system structure is shown, with P the augmented plant model and K the controller model.

Figure 4.1: General control configuration [22].

From the block diagram,

z
v

 = P(s)

w
u

 =

P11(s) P12(s)

P21(s) P22(s)

w
u

 (4.1)

u = K(s)v (4.2)

and the generalized plant P is

P =


A B1 B2

C1

C2

D11 D12

D21 D22

 (4.3)

The objective of this formulation of the control problem is to find a controller K, which based on the

information in v generates an input u which counteracts the influence of w on z thereby minimizing the

norm from w to z.

The signals are u the control variables, v the measured variables, w the exogenous signals such as

disturbances wd and commands r and z the so called error signals which are to be minimized in some

sense to meet the control objectives. As shown in [22], the closed loop transfer function from w to z is
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given by the linear fractional transformation

z = Fl(P,K)w = Nw (4.4)

where

Fl(P,K) = P11 +P12K(I−P22K)−1P12 (4.5)

As said previously, the goal of theH2 andH∞ problems is to minimize theH2 andH∞ norms of Fl(P,K),

respectively. The most general widely available and widely used algorithms for H2 and H∞ control

problems are based on the state space solutions in [23] and are the ones used by the H2syn and

Hinfsyn functions of MATLAB.

To specify the performance requirements, the generalized plant P must have weighting functions Wz

and Ww. Thus, considering the exogenous inputs w, being disturbances, references or noise and z the

controlled outputs. The weighting matrices are chosen frequency dependent and selected such that

weighted signals w and z are of magnitude 1 that is, such that the norm from w to z should be less than

1. Thus, in most cases only the magnitude of the weights matter and we choosing Ww(s) and Wz(s)

stable and minimum phase.

In H2 or H∞ problems, the problem is formulated by the following specifications

min
K

||N(k)||2 or ∞, N =


WuKS

WTT

WPS

 (4.6)

with S the sensitivity function (for performance), T the complementary sensitivity function (for robustness

and noise attenuation) and the loop transfer KS (to penalize large inputs) and K is a stabilizing controller.

The corresponding block diagram is presented in 4.2. From it, the following equalities are derived

z1 = Wuu (4.7)

z2 = WTGu (4.8)

z3 = WPw +WPGu (4.9)

v = −w −Gu (4.10)

and the generalized plant P is

P =


0 WuI

0 WTG

WP I WPG

−I −G

 (4.11)

having this partition, one obtains
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P11 =


0

0

WP I

 , P12 =


Wu

WTG

WPG

 , P21 = −I, P22 = −G (4.12)

Figure 4.2: Block diagram of z = Nw [22].

Lastly, to synthesize the H2 and H∞ controllers, the following conditions must be met [22]

(A1) (A, B2, C2) is stabilizable and detectable.

(A2) D11 and D21 have full rank.

(A3)

A− jωI B2

C1 D12

 has full column rank for all ω.

(A4)

A− jωI B1

C2 D21

 has full row rank for all ω.

(A5) D11 = 0 and D22 = 0.

Assumption (A1) is required for the existence of stabilizing controllers K and assumption (A2) is

sufficient to ensure the controllers are proper and hence realizable. Assumptions (A3) and (A4) ensure

that the optimal controller does not try to cancel poles or zeros on the imaginary axis which would result

in closed loop instability. Assumption (A5) is conventional in H2 control. D11 makes P11 strictly proper.

It can be shown that H2 is the set of strictly proper stable transfer functions. D22 = 0 makes P22 strictly

proper and simplifies the formulae in the H2 algorithms. In H∞ neither D11 = 0 nor D22 = 0 is required

but they do significantly simplify the algorithm formulae.

Sometimes more assumptions are made; however, these are the most important ones. The H2 and

H∞ are going to be used to control the positions Px and Py, where the former has the following state

space representation (the same as in 2.4.1).

Ax =



pBx vBx θ wy

˙pBx 0 1 0 0

˙vBx 0 0 −g 0

θ̇ 0 0 0 1

ẇy 0 0 0 0

, Bx =



ϵ

˙pBx 0

˙vBx −g

θ̇ 0

ẇy
−mgl
Jyy
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The state space system comprises 4 poles at the origin, which means that at least conditions A3

and A4 are not met. To overcome this issue, the system can be shifted by an arbitrary value α and then

shifted back to the original plant [23]. In this case, to achieve a fast performance, an α of 2 was chosen,

so the poles move to s = −2.

Then, the plant is augmented with weights W1, W2 and W3 [24], corresponding to WP (except that

MATLAB considers the error feedback and not the state), Wu and WT , respectively. W1, as is the

case for WP , should be high in the control bandwidth to ensure good reference tracking and distur-

bance rejection (obtaining small sensitivity S), whereas W3 should be the opposite and is responsible

for robustness (in the case of multiplicative disturbance) and noise attenuation (to achieve small com-

plementary sensitivity T ). In order to limit control effort in a particular band, W2 should have a high

magnitude in it to obtain small KS.

Given that the weighting functions W1,W2 and W3 shape N , in order to minimize its norm, these func-

tions should be chosen accordingly, by following the aforementioned guidelines and with some tuning.

In this case, the weighting functions are the same for the 3 algorithms, where W1 was chosen setting a

pole close to the desired bandwidth and a zero a decade faster, with unity static gain, namely

W1 =
0.1(s+ 10w)

s+ w
, (4.13)

with w the frequency of the pole so that the transfer function has a bandwidth close to its location. The

following desired frequencies have been selected

wpx = 1Hz = 6.28rad/s

wvx = 10Hz = 62.8rad/s

wθ = 30Hz = 188.5rad/s

wwy = 70Hz = 439.8rad/s,

(4.14)

with wpx to wwy the desired frequencies, leading to the transfer functions

W1 =



0.1(s+62.8)
s+6.28

0.1(s+628)
s+62.8

0.1(s+1885)
s+188.5

0.1(s+4398)
s+439.8

 . (4.15)

The weighting function W3 is the inverse of W1 to ensure robustness,

W3 =


10(s+6.28)
s+62.8

10(s+62.8)
s+628

10(s+188.5)
s+1885

10(s+439.8)
s+4398

 . (4.16)
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And finally,

W2 = 1/(17× pi/180), (4.17)

sets actuation cost.

The W1 and W3 weighting functions can be visualized in figure 4.3.

(a) Position along x, px. (b) Velocity along x, vx.

(c) Pitch, θ. (d) Angular velocity around y, wy .

Figure 4.3: Weighting functions for the different outputs.

4.1 H2 synthesis

The goal of the H2 control problem is to find a stabilizing controller that minimizes [22]

||F(s)|| =

√
1

2π

∫ ∞

−∞
F(jw)F(jw)T dw; F = Fl(P,K) = N (4.18)

where P includes the plant model, the interconnection structure and the weighting functions. It can be

proven that by minimizing the H2 norm, we are minimizing the root mean square rms value of z.

With the above formulation, a step response produced the results available in figure 4.4. In figure

4.5 the bode plot of the closed loop system is shown, displaying a closed loop bandwidth of 1.95 rad/s.

The response proves to be faster than the linear controllers, but still slower than the NMPC, which is still
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an interesting result given that it is possible to quantify robustness contrary to the NMPC. Moreover, the

H∞ controller does not require full state feedback.

Figure 4.4: Step response of the closed loop system with H2 controller

Figure 4.5: Bode plot of the closed loop system with the H2 controller.

Lasty, the classical and disk gain and phase margins (using the functions allmargin and diskmargin

of MATLAB) of the system with the H2 controller are lower than the LQR, which is expected given that

the response is much faster.

GMH2
= 11.0dB

PMH2 = 78.4◦

DMH2
= 0.20

(4.19)

40



4.2 H∞ synthesis

First the singular values σ must be defined. In short, the eigenvalue analysis for MIMO systems offer

some limitations, namely they can only be computed for square matrices and that they only measure the

gain for the special case when the inputs and outputs have the same direction (in the eigenvectors). This

proves to be only useful for stability analysis, but not performance [22]. To obtain the singular values,

the singular value decomposition is usually performed, resulting in

G = U
∑

VT (4.20)

∑
is an l ×m matrix with k = min l,m non-negative singular values, σi arranged in descending order

along its main diagonal; the other entries are zero. The singular values are the square roots of the

eigenvalues of GHG where GH is the complex conjugate transpose of G.

σi(G) =
√
λi(GHG) (4.21)

U is an l× l unitary matrix of output singular values ui and V is an m×m unitary matrix of input singular

values vi [22].

From the singular values it is possible to find its maximum (and minimum), defining the largest gain

for any input direction, the peak of the singular value σ̄. Thus, the H∞ problem is very similar to the H2

one, but the function to minimize is

||Fl(P,K)||∞ = min
ω
σ̄(Fl(P,K)(jω)). (4.22)

In addition to this, for all signals w with finite H2 norm, the H∞ norm corresponds to the maximum gain

from w to z, considering the L2 norm (this is the L2-induced norm)

||Fl(P,K)||∞ = sup
∥w∥2<∞

∥z∥2
∥w∥2

. (4.23)

The Hinfsyn function of MATLAB was used to find the controller that minimizes the peak singular

value of Fl(P(jω),K(jω))[25].

With these specifications, the step response of the closed loop system can be seen in figure 4.6.

Similar to the H2 controller, the response is fast and smooth, although the pitch angle θ reaches around

−15◦ , which may be too much. In figure 4.7 the bode plot of the closed loop system is shown, displaying

a closed loop bandwidth of 1.81 rad/s.

The results of the H∞ seem to be the most promising, when compared to the previous controller and

the µ synthesis, considering that it has interesting time and frequency responses.

Finally, the gain and phase margins (using the diskmargin function of MATLAB) of the system with
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Figure 4.6: Step response of the closed loop system with the H∞ controller.

Figure 4.7: Bode plot of the closed loop system with the H∞ controller.
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the H∞ controller are similar to the H2 controller.

GMH∞ = 12.2dB

PMH∞ = 75.9◦

DMH∞ = 0.22

(4.24)

4.3 µ synthesis

The last robust controller to be designed is the µ synthesis controller. The biggest difference to the

H2 and H∞ techniques is that the uncertainty in the model can be specified, as well as the desired

gain and phase margins. By analysing the state space matrices Ax and Bx, one can infer that the last

element of the control matrix Bx has the biggest expected variation throughout the flights of the VIRIATO

Test Platform. The mass is expect to vary around 20% due to fuel usage, which adding a 10% margin,

means that the controller should be robust to the following expected variation

−0.7
mgl

Jyy
<= −mgl

Jyy
<= −1.3

mgl

Jyy
. (4.25)

The structured singular value µ is central to the µ synthesizes and is a function that provides a

generalization of the singular value σ and the spectral radius ρ. The name structured singular value

is used because it generalizes the singular value RS-condition, σ̄(M) <= 1 ∀ω, with M the nominal

system. To define µ, consider the stability of the M∆ − structure in figure 4.8 for the case where ∆

is a set of norm bounded block diagonal perturbations. From the determinant stability condition, which

applies to both real and complex perturbations, one arrives at

det(I−M∆(jω)) ̸= 0, ∀ω,∀∆, σ̄(∆(jω)) <= 1 ∀ω (4.26)

As this condition only accepts a qualitative answer, a factor km is defined, which quantifies the robust-

ness and stability of the system and the uncertainty ∆ is scaled by km. The goal is to find the smallest

km which makes the matrix I− kmM∆ singular,

det(I− kmM∆) = 0 (4.27)

and the structured singular value, µ is defined as 1/km.

Figure 4.8: M∆− structure for robust stability analysis [22].

To compute the controller, the function musyn of MATLAB uses an iterative process called D-K it-

eration, which combines H∞ synthesis and µ analysis and often yields good results [22]. In short the
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process is [26]

(1) Uses H∞ synthesis to find a controller that minimizes the closed-loop gain of the nominal system.

(2) Performs a robustness analysis to estimate the robust H∞ performance of the closed-loop system,

which is typically larger than the peak value of the structured singular value µ̄. This amount is

expressed as a scaled H∞ norm involving dynamic scalings called the D and G scalings (the D

step).

(3) Finds a new controller to minimize the scaled H∞ norm obtained in step 2 (the K step).

(4) Repeats steps 2 and 3 until the robust performance stops improving.

Having formulated the problem, the µ controller was synthesized with the musyn function of MATLAB

and produced the closed loop step and bode plots in figures 4.9 and 4.10. The response is slower than

the H2 and H∞ controllers and similar to the LQG. Furthermore, the closed loop system is robust to

variations of up to 30% of the expression in equation 4.25 and has the worst case gain and disk margins

in the complete range of mass variation (calculated using the function wcdiskmargin of MATLAB [27])

shown in equation 4.28.

The µ synthesis controller is a an interesting example of why it is important to look at disk margins.

Although the classical gain and phase margins are bigger than the other robust controllers, the disk

margin is significantly lower. The response is not as good as expected, and the controller tuning was

challenging, so until better tuning methods appear, the H2 or H∞ controllers are more suitable. In fact,

some papers such as [28] came up with heuristics to find the desired weighting functions to synthesize

the robust controllers; however, when this was experimented, the results were not very satisfactory.

GMµ = 21.2dB

PMµ = 72.5◦

DMµ = 0.16

(4.28)
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Figure 4.9: Step response of the closed loop system with the µ controller.

Figure 4.10: Bode plot of the closed loop system with the µ controller.
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Chapter 5

Nonlinear Control and Estimation

In this section a nonlinear model predictive controller NMPC and an extended Kalman filter EKF are

derived.

5.1 Nonlinear Model Predictive Controller

The NMPC works similarly to the MPC, with the exception that the model is nonlinear. Due to its

ability to deal with nonlinearities, the model used no longer has the position and velocity states in the

body frame, but in the inertial one. Thanks to this, no transformation is needed to give position references

nor to visualize the resulting coordinates in the inertial frame. As such, the dynamics are

d

dt



pI

vI

λ

Ω

δm


=



vI

RIB
FB

m+δm
+ gez

Q(λ)Ω

J−1(τB −Ω× JΩ)

01×n


(5.1)

and recalling that the forces in the body frame FB are

FB = −RBδ RBϵ Tez =


−T sin ϵ

T cos ϵ sin δ

−T cos ϵ cos δ

 (5.2)

and the torque in the body frame τB

τB = lez ×T+ τrez =


−Tml cos ϵ sin δ

−Tml sin ϵ

τr

 (5.3)

The mass of the vehicle is added as a state, updating it at each time step with the EKF. The dynamical

equation of the mass is dδm
dt = 0, assuming that in the prediction horizon of the NMPC the mass does
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not change (which is a reasonable approximation assuming a short time of a few seconds).

The chosen prediction and control horizons are

Ph = 2s

Ch = 2s
(5.4)

accounting for 20 time steps, as the sample time is

hs = 0.1s (5.5)

The cost function is similar to the linear mpc

J =

Ph∑
k=1

z(k)TQz(k) + u(k)TRu(k) (5.6)

The constraints are
−17◦ <= δ <= 17◦

−17◦ <= ϵ <= 17◦

0N <= T <= 220N

−1.1Nm <= τr <= 1.1Nm

(5.7)

To formulate the optimization problem, 2 common approaches are available, namely single or multiple

shooting. In single shooting, the approach is more intuitive, as the decision variables are only the inputs.

In the case of multiple shooting, at each time step in the prediction horizon the next state has to equal

the state function, having as arguments the current state and inputs. This leads to the addition of the

following constraint for each time step of the prediction horizon

Ph∑
k=1

x(k + 1)− f(x(k),u(k)) = 0 (5.8)

and the solver tries not only to find the optimal inputs but also the states. The dimensionality of the

problem increases; however it is sparse and more linear, reducing the calculation speed [29].

Lastly, the chosen solver was CasADi [30] using an interior point method [31], which proved to be

significantly faster than the solver of MATLAB.

Setting the following reference

Pxref = 1

Pyref = 1

Pzref = 1

ψref = 150◦

(5.9)

The response can be seen in figure 5.1. Notice the static error of the Down Pz coordinate due

to a mass error introduced of 2.5 Kg. To mitigate the effect of mass error on the NMPC, an extended

Kalman filter EKF with the ability to estimate parameters such as the mass will be derived in the following
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section. Regardless, the performance is the best so far, even with the mass error. The calculated inputs

are shown in figure 5.2.

Figure 5.1: Step plot with NMPC

Figure 5.2: Inputs calculated by the NMPC

5.2 Extended Kalman Filter

In this section the derivation of the EKF extended Kalman filter is made. The objective is to estimate

the mass of the VIRIATO Test Platform to use in the NMPC model.

The algorithm can be summarized in 2 steps, prediction and correction, as is summarized in equa-

tions 5.10 to 5.15.
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Prediction of state (5.1), covariance and output (the same as the state, except for the mass variation δm)

estimates

x̂k|k−1 = f(x̂k−1|k−1,u(k)) (5.10)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +Qk (5.11)

yk = h(x̂k|k−1) (5.12)

gain computation

Kk = Pk|k−1H
T
k

[
HkPk|k−1H

T
k +Rk

]−1 (5.13)

correction of state and covariance estimates

x̂k|k = x̂k|k−1 +Kk(zk − yk) (5.14)

Pk|k = (In −KkHk)Pk|k−1(In −KkHk)
T +KkRkK

T
k (5.15)

In addition to this, the matrix Qk is obtained from [32]

Qk = ΦT
kQuΦk (5.16)

and Φk results from the discretization by matrix exponentation of the continuous time matrix A

Φk = eAhs (5.17)

which can be calculated using the expm function of MATLAB. The sample time is

hs = 0.1s (5.18)

The nonlinear model f(xk,uk) used in the EKF is in 5.1 and its jacobian A(x,u), which was obtained

symbolically in MATLAB is

A(x,u) =
f(xk,uk)

dx
(5.19)

The observations noise covariance matrix is typically

Rk =


σ2
1 0

. . .

0 σ2
m

 (5.20)

with σ1 to σm the standard deviation of the sensors and m is the number of measurements. In this case,

the sensors are considered to produce clean measurements, so the Rk is chosen very low, such as
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10−5, representing the significant trust in the sensors. If the sensors prove to be noisy, inaccurate or

biased, the observations noise covariance matrix Rk should be increased accordingly.

The noise covariance matrix Qk represents the trust of the designer in the prediction model. It is

computed from Qu

Qu =


q11 0

. . .

0 qnn

 (5.21)

with Q11 to Qnn chosen according to the reliance on the prediction model and n the number of states.

In the present work, the entry of Qu corresponding to δm will be set significantly higher than the others

(fifty (50) as opposed to 0) to take into account that this parameter has a higher uncertainty.

The observation function h(x̂) receives as argument the current state and returns the outputs. As-

suming that the measurements correspond to the states, h(x̂) is

h(x̂k) =


xi 0 0

. . . 0

0 xn−1 0

 (5.22)

where the last column is full of zeros because δm is not being measured, having a total of rows of the

number of states n minus 1.

The observations matrix of the extended Kalman filter is [32]

Hk =
[dhi(xk)

dxj

]
(m×n) =


1 0 0

. . . 0

0 1 0

 . (5.23)

5.3 Formulation without velocity measurements

In this thesis, it is assumed that there are no velocity measurements available and with this slight

modification, the matrices chosen are, starting with the cost Q,

Qu =

I12×12 012×1

01×12 200

 (5.24)

the last element of the previous matrix is significantly higher because it was found empirically after

several attempts and it is intuitive to attribute less trust to the mass variation equation (it is assumed that

the mass does not vary in a sample which is not true, it is slowly decreasing). Perhaps by measuring

the current mass consumption it would be possible to include it in this equation, leading to much better

estimates.

The number of measurements available are 9, positions, Euler angles and angular velocities, so the

size of the R matrix is 9× 9, and its entries were chosen as

51



R =


0.01I3×3 03×3 03×3

02×2 0.00352I2×2 02×5

01×3 0.01752 01×5

03×3 03×3 0.00122I3×3

 (5.25)

where the non null entries for the Euler angles and angular velocity states (rows 3 to 9) were specified

as the variance of the sensors and the position values by trial and error (the position already had the pre

filtering defined in section 2.

The measurement matrix Hk is

Hk =


I3×3 03×3 03×3 03×3 03×1

03×3 03×3 I3×3 03×3 03×1

03×3 03×3 03×3 I3×3 03×1

 (5.26)

which selects the measurements being taken from the available 13 states, in this case, positions, Euler

angles and angular velocities.

5.4 Nonlinear MPC and EKF

Having formulated the EKF, it can be coupled together with the NMPC, feeding it the states and the

mass error estimate, forming a NMPCEKF. The simulation results are found in 5.3 and the inputs as well

as the estimated mass error in 5.4. Due to the exact estimation of δm by the EKF, the static error no

longer exists.

Figure 5.3: Step plot with NMPC with updated mass estimate.
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Figure 5.4: Inputs calculated by the NMPC and mass error estimate provived by the EKF
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Chapter 6

Nonlinear Simulations

In this chapter, the most promising controllers, one from each category: linear (LQG), nonlinear

(NMPCEKF) and robust (H∞) are tested against mass variation, actuation delay and wind gusts (per-

turbations). In the case of the mass variation and actuation, the controller is asked to do a complex

trajectory, combining a step input of 1 in each position axis (north, east and down) and a yaw reference

of 150º, whereas to test it for wind gusts, it is asked to stand still.

All the controllers received filtered position measurements using the Kalman filter derived in section 2.

The LQG controller receives these position and velocity estimates and the raw Euler angles and angular

velocities. Given that it was troublesome enough to tune the H∞ controller for control performance,

instead of tuning it also to deal with noisy inputs, it was decided to just use the linear Kalman filter of the

LQG. The NMPCEKF also receives the pre filtered position and velocity estimates, the raw Euler angles

and angular velocity signals. In addition to this, a low gain integrator was added to the height loop of the

LQG and H∞ controllers.

The nominal case for these results is defined as starting with an initial mass of 13.75, a mass variation

of -0.008 Kg/s, no wind and no delay. In addition to these, the controllers are given step references of 1

meter in each position axis (north, east, down) and a yaw of 150º.

6.1 Estimation results

The results of the estimation for the linear Kalman filter of the LQG and the extended Kalman filter of

the NMPCEKF are presented. The simulation is ran in the nominal case.

6.1.1 Linear Kalman filter

The results of the estimation can be visualized in figure 6.1. The errors of the position and velocity

estimates are low, showing a good performance; however, the Euler angles and angular velocities have

significant errors. This is mostly due to the fact that when the yaw is varying, the Euler angles and the

angular velocities are coupled (2.10) which leads to model mismatch. To prevent this issue, the Q matrix
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of the filter could be increased to represent the lack of trust in the model, but this would in turn increase

noise.

Figure 6.1: Estimation errors of the states of the VIRIATO Test Platform using the linear Kalman filter of
the LQG controller.

6.1.2 Extended Kalman filter

The results of the estimation can be visualized in figure 6.3. This time, the errors are low for all states,

showing an excellent performance, which is attributed to the ability of the EKF to include the coupled

nonlinear dynamics reducing model mismatch. In addition to this, this filter is discrete, contrary to the

continuous time linear Kalman filter presented previously, so it would also be ready for implementation.

In figure 6.2 the mass estimate for a longer simulation time is shown. As can be verified, the estimator

is able to precisely follow the mass variation, with an average mass error of 0.02 Kg.

Figure 6.2: Estimation of the mass of the VIRIATO Test Platform using the extended Kalman filter of the
NMPCEKF controller.
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Figure 6.3: Estimation errors of the states of the VIRIATO Test Platform using the extended Kalman filter
of the NMPCEKF controller.

6.2 Mass variation

In this section the controllers are compared against a mass variation of −2.5Kg or 20%, which is the

available fuel, with the nominal references (again, step references of position of 1 meter in all 3 axis and

a yaw of 150º), no wind and no added actuation delay. Each of the following 3 subsections presents the

state errors and the inputs calculated by the controllers. The integrator of the height controller PID is

assumed to have settled in the correct mass variation of 20%.

6.2.1 LQG

The LQG results can be visualized in figures 6.4 and 6.5. The controller is able to track the references

reasonably, having clearly more difficulty in the horizontal position, which is expected because it has the

highest order (4 integrations from gimbals to position). Nevertheless, the yaw PD and the height PID

controllers are able to track the references with a settling time of around 3 to 4 seconds, which proves

that these controllers are suitable enough for these states.

Although the tracking performance is satisfactory, the outer and inner gimbals have very fast dynam-

ics, forcing the gimbals to move abruptly, which could damage them in the long term or lead to instability.

In the case of the thrust and the torque from the rotors the actuation inputs are slower and smoother,

proving that the PD and PID controllers are competent to control yaw and height, respectively.

Considering that the behaviour of the VIRIATO Test Platform with the LQG controller proves to be

similar with or without significant mass changes, it is proven that the controller is able to deal with the

expected mass variation. In fact, the limitation of this controller is that it fails to deal with a fast changing

57



yaw, as can be seen in the North state, where it has a significant overshoot. This can also be attributed

to the estimation error of the linear Kalman filters while the yaw is varying.

Figure 6.4: State errors of the VIRIATO Test Platform using the LQG controller. In the nominal nom and
disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

Figure 6.5: Inputs of the VIRIATO Test Platform using the LQG controller. In the nominal nom and
disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

6.2.2 NMPCEKF

The NMPCEKF results can be visualized in figures 6.6 and 6.7. The performance of the controller

is very promising, being able to deal with the complex step references smoothly. Notice that, contrary

to the LQG, the North state does not have an overshoot because the NMPCEKF is able to predict the

effect of the fast changing yaw and correct accordingly.

The provided inputs of this controller, namely the gimbals, have a much smoother trajectory, leading

to less abrupt movements and to increase the lifetime of the inputs.
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Thus, it is proved that the NMPCEKF can deal with the expected mass variation and also any complex

reference trajectories.

Figure 6.6: State errors of the VIRIATO Test Platform using the NMPCEKF controller. In the nominal nom
and disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

Figure 6.7: Inputs of the VIRIATO Test Platform using the NMPCEKF controller. In the nominal nom and
disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

6.2.3 H∞

The H∞ results can be visualized in figures 6.8 and 6.9. As can be seen, the controller is faster

than the LQG and as fast as the NMPCEKF. Again, it has some overshoot in the North state due to the

varying yaw, and could also be attributed to the linear Kalman filter estimation error.

Contrary to the LQG and similarly to the NMPCEKF, the gimbals have acceptable, slow dynamics;

however, the asked gimbal angles differ the most among the 3 controllers between the nominal case in
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blue and the red case with less 2.5 Kg of mass. This is mostly due to the fact that the tuning of this

controller was aggressive and as such the mass variation has a considerable impact in the dynamics.

The H∞ controller is able to track the references reasonably while under a mass variation of 2.5 Kg,

although the LQG and NMPCEKF controllers appear to be more robust to a variation of mass.

Figure 6.8: State errors of the VIRIATO Test Platform using the H∞ controller. In the nominal nom and
disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

Figure 6.9: Inputs of the VIRIATO Test Platform using the H∞ controller. In the nominal nom and
disturbed dist cases, m = 13.8Kg, ṁ = −0.008Kg/s and m = 11.3Kg, ṁ = 0Kg/s, respectively.

6.3 Actuation Delay

In this section the controllers are compared against an actuation delay of around 0.1 seconds in the

gimbals, with the same step references as in the previous section.
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6.3.1 LQG

The LQG results can be visualized in figures 6.10 and 6.11. Although the trajectory followed is very

similar with or without delay, from the inputs it is clear that there are dangerous oscillations which could

lead to dangerous situations. This is a consequence of the dynamics of the gimbals using the LQG

controller being so fast, which cause little resistance to delays.

Figure 6.10: State errors of the VIRIATO Test Platform using the LQG controller. In the nominal nom
and disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.

Figure 6.11: Inputs of the VIRIATO Test Platform using the LQG controller. In the nominal nom and
disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.

6.3.2 NMPCEKF

The NMPCEKF results can be visualized in figures 6.12 and 6.13. The NMPCEKF, similar to the

LQG, is able to follow the step references, but this time the orientation of and the input gimbals of the
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VIRIATO Test Platform are oscillatory, which could also lead to accidents. This controller also fails to

deal with the given delay.

Figure 6.12: State errors of the VIRIATO Test Platform using the NMPCEKF controller. In the nominal
nom and disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.

Figure 6.13: Inputs of the VIRIATO Test Platform using the NMPCEKF controller. In the nominal nom
and disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.

6.3.3 H∞

The H∞ results can be visualized in figures 6.14 and 6.15. Contrary to the 2 previous controllers,

the H∞ controller is very robust to actuation delays. In fact, after some tests it was verified that it is able

to withstand delays of up to 0.5 seconds, which is 100 times higher than the nominal value of 0.005

seconds, proving that it is quite capable in this domain.
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Figure 6.14: State errors of the VIRIATO Test Platform using the H∞ controller. In the nominal nom and
disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.

Figure 6.15: Inputs of the VIRIATO Test Platform using the H∞ controller. In the nominal nom and
disturbed dist cases, delays of 0.005 and 0.01 seconds, respectively.
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6.4 Wind Gusts

In this section the controllers are compared against a wind gust of 5 m/s coming from South, but this

time they are asked to stand still (references of 0 in all states).

The wind gust dynamics can be approximated by the model in the Military Specification MIL-F-8785C

[33] and the algorithm is implemented in the block of Simulink, Discrete Wind Gust Model [34]. The

chosen wind gust time response is present in figure 6.16.

Figure 6.16: Wind gust.

Having characterized the wind gust, it is converted to a resulting force acting on the VIRIATO Test

Platform, so the following drag equation is used

D =
1

2
ρACdV

2, (6.1)

with D the drag, ρ the air density of 1.225 Kg/m3, A the lateral area of the VIRIATO Test Platform (when

the wind gusts are horizontal), Cd the drag coefficient and V the wind speed. The VIRIATO Test Platform

was approximated by a cylinder with height and radius of 1 and 0.3 meters, respectively, leading to a

lateral area A of

A = 2πrh = 2π × 0.3× 1 = 0.6πm2. (6.2)

Using the cylinder approximation, the Cd is [35]

Cd ≈ 1.2. (6.3)

The maximum perturbation, when the wind speed is 5 m/s is

D =
1

2
× 1.225× 0.6π × 1.2× 52 = 34.636N. (6.4)

6.4.1 LQG

The LQG results can be visualized in figures 6.17 and 6.18. The controller is able to resist to the

perturbation by leaning against the wind gust, but it flies more than 4 meters away from the original

64



position. If the gains were increased it would have a better resistance to the perturbation and would

be able to stay closer to its initial position, but as it has been shown before, the gimbal dynamics are

already very fast. This is clearly a limitation of the LQG controller, it is already on its performance limit,

the gains can not be increased without risking low stability and robustness.

The inner gimbals (6.18) move in one direction so that the VIRIATO Test Platform faces the wind

gust and then in the opposite direction so it stops rotating when the required inclination matches the

perturbation.

Figure 6.17: States of the VIRIATO Test Platform using the LQG controller.

Figure 6.18: Inputs of the VIRIATO Test Platform using the LQG controller.

6.4.2 NMPCEKF

In this domain the behaviour of the NMPCEKF is dominated by the estimates given by the extended

Kalman filter. Considering that the filter is using the dynamic equations, depending on the cost of each
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variable in the process noise Q matrix, if the costs of certain variables are much higher than the others,

the estimation errors can be completely attributed to the ones with the highest costs. As such, by setting

the cost in the Q matrix of the angular variables (Euler angles and angular velocity) higher, the EKF gives

precise estimates of all variables except the Euler angles, which have a considerable error (figure 6.21).

This response, coupled with a mass estimate error (figure 6.22) causes the NMPCEKF to completely

reject the wind gust and return to its original position (still with a maximum deviation of 1 meter), acting

similarly to an integrator, as shown in figure 6.19.

The inputs throughout this trajectory are shown in figure 6.20 and are similar to the LQG in figure

6.18, with the difference that this time the gimbals move more aggressively.

Figure 6.19: States of the VIRIATO Test Platform using the NMPCEKF controller with Q cost higher for
the Euler angles and angular velocities.

Figure 6.20: Inputs of the VIRIATO Test Platform using the NMPCEKF controller.
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Figure 6.21: Estimation errors of the VIRIATO Test Platform using the NMPCEKF controller with Q cost
higher for the Euler angles and angular velocities.

Figure 6.22: Mass estimate of the VIRIATO Test Platform using the NMPCEKF controller with Q cost
higher for the Euler angles and angular velocities.
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6.4.3 H∞

The H∞ results can be visualized in figures 6.23 and 6.24. Although the H∞ controller is not able

to completely reject the wind gust perturbation (it has no integrator), it is able to attenuate it effectively,

being moved from the original position 0.6 meters, which is a better result than the LQG and is less than

the max deviation of 1 meter of the NMPCEKF.

As expected, the movement of the inner gimbal is the most aggressive among the 3 controllers,

which is required to attenuate considerably the wind gust and stop the VIRIATO Test Platform from

being dragged.

Figure 6.23: States of the VIRIATO Test Platform using the H∞ controller.

Figure 6.24: Inputs of the VIRIATO Test Platform using the NMPCEKF controller.
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6.5 Overall results

After the thorough tests, some conclusions can be taken regarding the 3 controllers. Firstly, the

height and yaw control are successfully controlled using PID and PD controllers only, so more complex

techniques are not necessary to ensure good tracking performance, disturbance rejection and robust-

ness. The yaw controller was able to track step references with a 2.5 s settling time and was unaffected

by the different introduced perturbations. The height controller showed a settling time of 3 to 4 seconds

and was also little affected by the Pitch and Roll variations, caused by North and East step references,

of the VIRIATO Test Platform.

Contrarily, the position control could benefit from more sophisticated controllers such as the NM-

PCEKF or the H∞ controllers. Both of them offer different benefits, namely the NMPCEKF is better

suited for complex trajectories which have simultaneous varying references, whereas the H∞ controller

excels in simple trajectories, ensuring the highest level of robustness and disturbance rejection.

A summary of the results is present in table 6.1. All controllers are capable of dealing with the

expected mass variation of -2.5 Kg or 20 %, the NMPCEKF and H∞ controllers are the fastest and

the latter has the best robustness and disturbance rejection properties, as mentioned in the previous

paragraph.

Lastly, the LQG controller has worse performance in almost all parameters, which shows that it could

serve as a baseline controller that could be safely implemented first, as its tuning is just a matter of

changing the gains and is known to most control engineers.

Table 6.1: Simulation results of the 3 controllers.
LQG NMPCEKF Hinf

Approximate settling time [s] 5 4 4
Robustness to mass variation yes
Maximum tolerable actuation delay [s] 0.1 0.1 0.5
Wind gusts maximum position error [m] 4.2 1.2* 0.6

*In the previous simulations the settling times of the LQG and H∞ are affected by the varying yaw. If the yaw
was kept constant, the settling times would be as indicated in the table.
**There was also an error in the Down position and after 10 seconds the NMPCEKF was able to return to its
initial position.

69



70



Chapter 7

Guidance

In this chapter, using the H∞ controller derived and tested previously, 3 trajectories will be fed to the

controller, namely a square through waypoints, a circular trajectory while pointing to the center and a

more complex one that resembles an 8 or the infinity, again pointing at the center of each circunference.

Additionally, a constant 2 m/s wind perturbation coming from South (pushing the VIRIATO Test Platform

towards North) is added.

Given that the H∞ controller is able to control position directly, the guidance algorithm only has 2

concerns, limit the position reference to the control loop and generate trajectories for the VIRIATO Test

Platform to follow.

To limit the references, a simple solution was found,

e = r − x

el = min(2,max(−2, e))

rl = x+ el

(7.1)

with e, r, x, el, rl the error, reference, current state, limited error and reference, respectively. This way,

the error is bounded to -2 and 2, which ensures that the inputs stay within a reasonable value.

7.1 Square Waypoint Trajectory

In this section, the simplest trajectory is fed to the VIRIATO Test Platform. The goal is to follow the

path defined in the orange, dotted line in figure 7.2, while keeping a constant yaw of 0. The states during

the movement, in figure 7.1 show that the VIRIATO Test Platform is able to follow the North and East

position references with a delay of 1 second, which is expected given the performance shown in the

previous chapter. It can also be noted that when the VIRIATO Test Platform changes direction, it tilts,

which causes a disturbance in the Down position, originating maximum errors of 0.4 meters. This Down

error could be reduced by increasing the gains of the height controller, but this would increase noise,

reduce stability margins and increase fuel consumption. In fact, after the VIRIATO Test Platform tilts, it
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goes back to its original straight position after a few seconds, recovering some of the lost height. Note

that the North and East references are not steps and have a maximum error of 2 meters, as intended

with the limiting technique defined earlier.

In figure 7.2 the square trajectory is closely matched, with a constant error in the North position

due to the wind perturbation of 2 m/s, shifting the square trajectory to the right (the wind comes from

South). In addition to this, in the corners there is a slight increase in error due to the fact that a simple

mechanism was adopted to change the reference to the next waypoint, namely when the error is less

than a threshold, which in this case was 0.5 m. The inputs of the VIRIATO Test Platform behave smoothly,

moving the gimbals accordingly, tilting the VIRIATO Test Platform in the right direction to accelerate and

then roll or pitch back to the original position. The thrust also increases in the beginning of the direction

change to increase speed and then compensates to keep the height at zero.

Figure 7.1: States of the VIRIATO Test Platform and horizontal position references for the square trajec-
tory
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(a) Path. (b) Inputs.

Figure 7.2: Square path in the North-East plane and inputs of the VIRIATO Test Platform.

7.2 Loop Trajectory

Here, a slightly more complex trajectory is given to the VIRIATO Test Platform. It has to describe a

circumference while pointing at its center, as depicted in the red line in figure 7.4.

In figure 7.3, the controller is able to follow the North, East positions and velocities, with 1 second

delay, while the yaw has a smaller delay of 0.2 seconds. Given that the states are very similar to the

references, only having a delay, the path followed is almost the same as the reference (figure 7.4), but

the trajectory is delayed. Due to the wind perturbation, the loop is also shifted to the right by around 30

meters.

Notice, in figure 7.4, that the yaw is almost pointing to the center of the circumference, with an error

of 20º, which could be corrected by using an integrator at the cost of robustness and overshoot. The

input gimbals are smoother than in the square trajectory, having an initial abrupt movement, then making

small adjustments to keep in track and in the end they roll and pitch the VIRIATO Test Platform so it stops

moving. The thrust has a maximum error of 0.4 m, due to the tilting and requested horizontal velocity

and the rotors provide an initial torque so the VIRIATO Test Platform starts spinning at the correct rate

for the loop and then an opposite torque so it stops.

.
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Figure 7.3: States of the VIRIATO Test Platform and horizontal position references for the loop trajectory

(a) Path. (b) Inputs.

Figure 7.4: Loop path in the North-East plane and inputs of the VIRIATO Test Platform.
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7.3 Infinity Trajectory

Lastly, the most complex tested trajectory is presented. Similarly to the previous 2 sections, it is

shown in the red line in figure 7.6. The VIRIATO Test Platform has to follow a trajectory that resembles

the infinity symbol ∞ or an 8, while pointing at the center of the first circumference at North, East = (2,

0) when its North position is less than 4 m and to the second center at North, East = (6, 0) when the

North position is bigger than 4 m.

The tracking results of the position and velocity states in figure 7.5 are similar to the loop trajectory

in figure 7.3, exhibiting a smooth trajectory with a delay of 1 second. Contrary to the previous loop

trajectory, when the VIRIATO Test Platform crosses the 4 m North mark, the yaw reference changes

180º, behaving as a step reference, to whom the VIRIATO Test Platform responds in approximately 3

seconds with little overshoot.

In figure 7.6, the path is closely followed, except in the segment where yaw has to change 180º,

consequently affecting the position of the VIRIATO Test Platform. This behaviour exists because the

position controller is not able to react as quickly as the yaw controller, thus suffering position errors. This

also happened in the previous chapter to the H∞ controller, and its the most significant drawback when

compared to the NMPCEKF. Furthermore, similarly to the previous 2 cases, the wind perturbation shifts

the trajectory to the right by 0.3 meters.

Similarly to the previous loop trajectory section, the gimbals move abruptly in the beginning to tilt

the VIRIATO Test Platform in the right direction and then do small changes to keep the VIRIATO Test

Platform in the desired trajectory. Notice that in seconds 9 and 21 the inner gimbal shows again an

abrupt response, which corresponds to the crossing of the 4 m North (figure 7.5 and a change of 180º of

yaw, so the position controller has to compensate the yaw changes. The thrust also varies significantly

at the 9 and 21 seconds mark, for the same reason as described previously and it is enough to keep the

Down error below 0.4 m (figure 7.5.
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Figure 7.5: States of the VIRIATO Test Platform and horizontal position references for the infinity trajec-
tory

(a) Path. (b) Inputs.

Figure 7.6: Infinity path in the North-East plane and inputs of the VIRIATO Test Platform.
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Chapter 8

Conclusions

In this chapter the main conclusions of this work are presented.

8.1 Achievements

Firstly, the nonlinear and linear dynamics, both in transfer function and state space form were derived.

Additionally, the noise specifications of the sensors were presented and the position and acceleration

measurements were combined to produce cleaner position and velocity estimates.

Then, classical PD controllers (both using filtered derivatives and cascaded), were applied to control

height, Euler angles and position states. In addition to this, MIMO LQG and MPC controllers were

formulated to control the horizontal position of the VIRIATO Test Platform. The main design results of

these controllers were shown, achieving the desired performance for the control of the Euler angles

and height, but the bandwidth of the horizontal position PD and LQG controllers was 0.12 and 0.14,

respectively, far from the desired 1 Hz.

Having concluded that the previously developed position controllers did not achieve the desired per-

formance, 3 robust controllers H2, H∞ and µ synthesis were designed. Their tuning using weighting

functions W1, W2 and W3 proved to be challenging, but responses with a bandwidth of 0.3 Hz were

found for the H2 and H∞ controllers, which is significantly better than the PD and LQG controllers. More-

over, the stability margins for these controllers are similar to the slower linear controllers developed in 3,

so this design proved to be an improvement.

To test another control position approach, a nonlinear MPC controller (NMPC) and an extended

Kalman filter (EKF) with mass error states were developed. The EKF receives position, Euler angles

and angular velocity measurements and the known actuator inputs given to VIRIATO (gimbals, thrust

and torque of the rotors) and provides estimates of the real position, velocity, Euler angles and angular

velocity, as well as the mass error. The NMPC, receives these estimates and using the CasADi interior

point solver calculates the optimal trajectory in the prediction horizon, whose curve is shaped by its Q

and R cost matrices. Together these 2 systems form the NMPCEKF (nonlinear model predictive control

with an extended Kalman filter) and originate the fastest response, with the littlest overshoot in nominal
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conditions (no perturbations or delay) among all the controllers.

Having designed linear, robust and nonlinear controllers, the best performing controller of each cat-

egory was chosen: LQG, H∞ and NMPCEKF, respectively. These are compared against the maximum

expected mass variation of -2.5 Kg, actuation delays of 0.1 s in the gimbals and wind gusts of 5 m/s

equalling 35 N. All 3 controllers were able to deal with the expected mass variation with little effort, but

the H∞ controller showed the best rejection to perturbations, moving a maximum of 0.6 m to a wind

gust of 5 m/s, while the LQG moved 4 m and the NMPCEKF 1 m. Note that if the cost matrix Q of the

EKF was tuned so that little trust was given to the Euler angles and angle velocity measurements, the

NMPCEKF would completely reject the wind gust disturbance, having a max deviation of 1 m and then

returning to its original position. This is an interesting result but could be detrimental in other situations

due the fact that this low trust in the Euler angles and angular velocity measurements lead to an esti-

mation error of the Euler angles of 15◦ which is a dangerous result. Lastly, the H∞ controller had again

the best robustness against actuation delays, easily withstanding the presented delay of 0.1 s, while the

other controllers struggled and were barely stable.

Having tested extensively the most promising controllers, the H∞ controller proved to be the most

reliable given its fast response, disturbance rejection and robustness properties. Externally to this con-

troller, an outer guidance loop was developed that generates the trajectories for the position controller

to follow and limits the references at each time step not to exceed a certain threshold, chosen as 2 m.

This set up was able to follow the desired square and loop paths with a maximum error of 0.3 m, mostly

due to the wind perturbation of 2 m/s and only deviated a maximum of 0.5 m in the infinity path, in the

segment with a drastic variation of the yaw reference of 180◦ .

All things considered, a guidance and control system was developed that enables the VIRIATO Test

Platform to follow trajectories ranging from square waypoints to rotating loops, having little path and yaw

errors except when asked abrupt yaw variations. The proposed final controller is faster than the usual

PD or LQG algorithms and exhibits robustness to mass variations of -2.5 Kg or 20% of the nominal value,

0.1 s of actuation delay and wind gusts of 5 m/s or 35 N.

8.2 Future Work

To continue developing on this work, the algorithms could be implemented in real time in the VIRIATO

Test Platform. The tests should start with the simplest classical PD controller, increasing in complexity

until the H∞ controller. Perhaps it would be possible to test the NMPCEKF controller, but it would require

a faster microcontroller.

In the computational simulations domain, there are several ideas that could be explored to enhance

the control and guidance of the VIRIATO Test Platform. The dynamical model presented in this master

thesis is very simplified, capturing only the main dynamics. A more complex model that captures more

complex movements such as sloshing could be developed to run the simulations in a more reliable

environment.

The Weighting functions of the Robust controllers were obtained via trial and error, which proved to
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be a challenging exercise. Similarly to the LTR technique used to tune the Kalman filter of the LQG, one

to tune the weighting functions of the robust controllers could be developed.

The NMPCEKF could be extended with disturbance or delay states to include perturbations such as

wind gusts or actuation delays and deal with them optimally.

Lastly, the proposed H∞ controller performance was impacted when simultaneous position and

abrupt yaw references were fed. A solution to this problem would be to include some nonlinear mapping

before feeding the position references to the controller, using for example feedback linearization.
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