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Abstract

VIRIATO is a thrust vectored launch vehicle, whose flight mode while leaving the atmosphere
ranges from subsonic to supersonic, such that it would be challenging to ensure a suitable performance
throughout all its trajectory using classical controllers. To overcome this difficulty, a Robust controller is
developed that ensures a fast response, robustness to mass variations, actuation delays and wind gusts.
To benchmark the H∞ controller, PD, LQG and NMPC controllers are also derived. In order to build
and test these algorithms, Spin.Works developed the VIRIATO Test Platform, a small scaled prototype
of VIRIATO with 1 m height. A simulation environment in MATLAB/Simulink is built, comprising the
most significant kinematic and dynamic equations, the available sensors and their noise specification.
Then the system is linearized, the transfer functions are used to construct the PD controller and the
state space matrices the LQG and Robust controllers. Additionally, using the nonlinear equations, the
NMPCEKF controller is formulated. The simulation results comparing the LQG, NMPCEKF and H∞
controllers indicate that the latter is the fastest alongside the NMPCEKF and is robust to a mass
variation of 20%, actuation delays of 0.1 s and wind gusts of 5 m/s or 35 N. The H∞ was able to follow
square, loop and eight shaped trajectories, while pointing at the center of the loops, with a position
error below 0.5 m and a delay of 1 s. The position error increased slightly when the yaw reference
changed abruptly.
Keywords: Thrust Vector Control, Robust Control, Kalman Filter, H∞

1. Introduction
1.1. Motivation
SpaceX has sparked the interest of private com-
panies in space exploration and launchers, having
done, as of this moment, 187 launches, 149 landings
and 124 total reflights [18]. The aforementioned
success caused a considerable number of startups
in this field of to appear over the years and more
precisely, since 2017, this trend has seen an even
bigger increase [20].
VIRIATO is a project that aims to develop, in-

tegrate and operate a sub-orbital vehicle to vali-
date and test key technologies to the future devel-
opment of a Portuguese microsatellite launcher, be-
ing launched preferably in the planned space port
in Santa Maria, Açores [15].
In the scope of VIRIATO, Spin.Works is respon-

sible for the development of the GNC subsystem
[19]. To implement and test the algorithms, a
smaller scaled VIRIATO, the VIRIATO Test Plat-
form, with an height of 1 m was built. This thesis
focus on the design and computational simulations
of the GNC system in MATLAB/Simulink, namely
the development of Robust position controllers and
guidance algorithms that enable the vehicle to fol-
low square, loop or eight shaped trajectories.

1.2. Literature review

Several small scale launch vehicles project, similar
to the VIRIATO Test Platform, have been devel-
oped and some even tested, such as EAGLE. The
flight controllers developed in this thesis were moti-
vated to some extent by the aforementioned project.
To decide what approaches to take, 3 publications
were studied [4], [16] and [5] in years 2017, 2018
and 2019, respectively, which allowed to have a bet-
ter understanding of the advantages and disadvan-
tages of each control or estimation technique and
also their limitations.

In the first year in [4], to estimate the position,
velocity, Euler angles and angular velocity, a mod-
ular approach was taken, having 2 separate filters
working together, in which a faster, Strapdown fil-
ter, ran at 100 Hz, performed the integration from
accelerometers and gyroscopes, obtaining a state
prediction and a slower Kalman filter, ran at 10 Hz,
did the error correction, using measurements from
GPS, altimeter and magnetometer. The control
task was split into 4 categories, namely system iden-
tification, yaw control (the rotation around the ver-
tical axis), thrust vector control and position con-
trol. The thrust vector control is responsible for the
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attitude and altitude, receiving references from the
outer loop position control. External to these con-
trol loops, a guidance system is responsible for gen-
erating position and velocity references. With this
architecture, hand tuned PD controllers were used
in the first place, but were not further discussed
and replaced by sliding mode controllers. Addition-
ally, a model-reference adaptive scheme, which feeds
a nominal plant with the same inputs as the real
plant, during flight, computes the difference in in-
puts required to compensate for the verified output
variations. Both the inner and outer loops use slid-
ing mode controllers (designed independently due
to the difference in order of magnitude of the closed
loop bandwidth of each loop). The altitude con-
troller produced a response with a settling time of
around 5-10 seconds and there is a constant 20 cm
of error, which is expected given that the sliding
mode controllers had their integral component dis-
abled to prevent the excessive accumulation of error
(windup). The position controllers have a settling
time of about 10 seconds and also show some static
error. The yaw controller works quite well as ex-
pected, having a fast response and very little error.

In the next year in [16], the same setup was used,
with the addition of a saturation function replacing
the sign function, which is a very common technique
to avoid chattering in sliding mode control. Addi-
tionally, the model-reference adaptive scheme was
removed. This time, it appears that the altitude
simulations were the same as in [4], having changed
only the position controllers, which is understand-
able because these had the worst results. In this
work, the attitude controller was tested indepen-
dently and exhibited 2◦ oscillations, which were at-
tributed to inertial matrix uncertainties, wind gusts
and sloshing. The results of the position controller
were very similar to [4] and the authors considered
them to be conservative and that more aggressive
gains could be tested.

In the last studied attempt in [5], the sliding
mode controllers were abandoned and replaced by
traditional PID controllers. The results were again
similar to the ones obtained in the previous years.
The altitude controller had an offset of about 10%,
which increased over time and was attributed to not
having real-time mass estimation and using a con-
stant nominal feedforward thrust input, while the
mass of the vehicle was decreasing due to fuel con-
sumption. The position controller had a settling
time of about 15 s and afterwards, while hovering,
a maximum deviation of 0.2 m, under mild winds
speeds up to 5 m/s. In this work, a guidance system
was designed, using a polynomial scheme to gener-
ate a continuous reference for velocity and position.
This includes the possibility of limiting the maxi-
mum velocity and acceleration to reach the desired

position. The results, including the guidance con-
troller, prove that tracking is being done and the
controller is able, although with error oscillations
of 0.2 m, to track the position references.

From these 3 publications, some key ideas were
derived, namely: a 2 phase prediction and correc-
tion estimator should be derived, sliding mode con-
trollers do not exhibit better performance than sim-
pler PID controllers and the control architecture
of a guidance system, an outer and an inner loop,
should be adopted. In fact, to validate the assump-
tion that the sliding mode controllers did not lead
to exceptional results, some exploratory simulations
for VIRIATO were done using them, but the chat-
tering problem was so persistent that to avoid it,
the performance was severely compromised.

2. Background
2.1. System Description
The complete system is shown in figure 1.

Figure 1: VIRIATO Test Platform [19].

The system has 4 actuators, thrust T from the
jet engine, the outer and inner gimbals, δ and ϵ
respectively and rotors that produce a torque τr,
enabling to control 4 outputs simultaneously. In
total, as it will be shown later, there are 12 states,
which means it is an under-actuated system. To
describe the vehicle with Newton-Euler equations,
two reference frames are defined: the inertial and
body frames, presented in figure 1. These allow
for a complete description of the most important
dynamics, without too much error given that the
majority of the mass is fixed when seen from the
body frame. Another more precise approach would
be to use Denavit-Hartenberg parameters, defining
more reference frames to capture all the dynamics
(for instance, the rotation of the gimbals).

The transformation from the body to the inertial
frame is given by the rotation matrix
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RIB = R(λ) = Rz(ψ)Ry(θ)Rx(ϕ) (1)

and the inverse transformation by RBI = RIB
T
.

2.2. Gimbals and Jet Engine

The gimbals and thrust outlet are shown in figure
2.

Figure 2: Gimbals and thrust outlet system [19].

In figure 3, the distance l between the centre of
mass CG and the centre of thrust Ct is displayed.
The rotation of the outer and inner gimbals δ, ϵ, re-

Figure 3: Gimbals and thrust outlet lateral view
[19].

spectively, can be seen in figure 4. The outer gimbal
rotates the motor along the roll axis (x) of the body
frame, producing a roll moment and a force in the
transversal axis (y). The inner gimbal rotates the
motor along the pitch axis (y) of the body, produc-
ing a pitching moment and a force in the longitudi-
nal axis (x).

The rotation matrix of the outer gimbal to the
body frame B is

(a) Outer gimbal δ (b) Inner gimbal ϵ

Figure 4: Outer, inner gimbals δ and ϵ [19].

RBδ =

1 0 0
0 cos δ − sin δ
0 sin δ cos δ

 (2)

and of the inner gimbal

RBϵ =

 cos ϵ 0 sin ϵ
0 1 0

− sin ϵ 0 cos ϵ

 . (3)

Thus, the force due to the jet engine expressed in
the body frame is

Tm = −RBδ RBϵ Tez =

 −T sin ϵ
T cos ϵ sin δ
−T cos ϵ cos δ

 (4)

and the resulting motor torque τm

τm = lez ×T =

−T l cos ϵ sin δ−T l sin ϵ
0

 . (5)

2.3. Rotors
One of the 4 rotors around the VIRIATO Test Plat-
form can be seen in figure 5.

Figure 5: One of the 4 rotors of the VIRIATO Test
Platform [19].

The total force generated by these 4 rotors when
paired is null, resulting only in a torque τrez.
Therefore, the total force of the inputs expressed
in the body frame is FB = T and the torque in the
body frame τB is

τB = τm + τrez =

−T l cos ϵ sin δ−T l sin ϵ
τr

 (6)

Finally, the dynamics of the actuators are approx-
imated by first order systems. This approximation
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is common for gimbals (controlled by servos) or ro-
tors; however, the engine could benefit from proper
system identification. Nonetheless, choosing a first
order system is an usual first approach.

h(s) =
1

stu + 1
. (7)

2.4. Newton-Euler Equations of Motion
The equations of motion are derived using the
Newton-Euler equations, which combine the trans-
lational and rotational dynamics of a rigid body [2].

d

dt


pB

vB

λ
Ω

 =


−Ω× p+ v

−Ω× v + FB

m +RBI gez
Q(λ)Ω

J−1(τB −Ω× JΩ)

 (8)

with λ the Euler angles and Q(λ) the transforma-
tion from angular velocities to Euler rates

Q(λ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 (9)

2.5. State Space Horizontal Equations
The linearized model is

f(x) = Ax+Bu. (10)

The matrix can be decoupled into longitudinal,
lateral and vertical movements. The longitudinal
movement Ax matrix is

Ax =


pBx vBx θ wy

˙pBx 0 1 0 0
˙vBx 0 0 −g 0
θ̇ 0 0 0 1
ẇy 0 0 0 0

 (11)

and the Bx matrix

Bx =


ϵ

˙pBx 0
˙vBx −g
θ̇ 0

ẇy
−mgl
Jyy

.

 (12)

The state space equations for the lateral movement
is analogous.

2.6. Height Transfer Function
Combining the position by velocity in z,

ṗBz = vBz ↔ pBz =
vBz
s
. (13)

with the velocity in z by the thrust T ,

v̇Bz = − 1

m
T ↔ vBz = − 1

m

1

s
T, (14)

one gets

pBz = − 1

m

1

s2
T. (15)

2.7. Yaw Transfer Function

Combining the yaw by angular velocity in z,

ψ̇ = wz ↔ ψ =
wz
s

(16)

with the angular velocity in z by the torque of the
rotors τr,

ẇz =
1

Jzz
τr ↔ wz =

1

Jzz

1

s
τr (17)

one gets

ψ =
1

Jzz

1

s2
τr. (18)

2.8. Sensor Specifications

To observe the position, Euler angles and angular
velocity states, the Xsens mti-680 was selected [22].
Although this unit can provide velocity measure-
ments, in this work it is considered that they are
not available, so their noise is not going to be quan-
tified. From the datasheet [21], the sensor specifi-
cations are shown in table 1.

Table 1: Sensor specification of the Xsens mti-680
in SI units.

Horizontal Pos. Vertical Pos.
RMS 1 2

Roll/Pitch Yaw Angular Vel. Acceleration
0.0035 0.0175 0.0012* 0.0059*

*Obtained from the PSD of the noise at 100 Hz.

2.9. Disk Margins

Disk margins are a more comprehensive approach
to stability margins than classical gain and phase
margins, namely in the domain of multiple input
multiple output MIMO systems. Contrary to clas-
sical margins, disk margins compare variations in
gain and phase simultaneously, leading to a disk in
a plane having as y axis the phase margin and x axis
the gain margin. Additionally, it takes into account
multi loop variations (in the system in equation 11,
there are 4 loops, so it would vary the gain and
phase of them individually simultaneously) at the
inputs and outputs (it can be shown that pertur-
bations at the inputs can affect stability differently
than at the outputs) [17].

An example disk D(α, σ), having σ = 0.2 and
α = 0.75 is displayed in figure 6. From these two
values, a minimum and maximum gain of γmin and
γmax, respectively, can be multiplied to the system,
assuming a null variation in phase. On the contrary,
a maximum phase of ϕmax can be added, assuming
a null variation in gain. The function diskmargin
of MATLAB was used to perform the calculations
[12].
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Figure 6: The set of variations D(α, σ) having σ =
0.2 and α = 0.75 [17].

3. Implementation
3.1. Pre Kalman Filtering Position Measurements
To overcome the noisy position signals in table 1,
a Kalman filter is derived, combining the inertial
positions and accelerations from the Xsens mti-680
unit using kinematic laws. The equations are

ẋ = Ax+Bu

y = Cx,
(19)

with x the states, u the known inputs and y the
outputs. For a steady state Kalman filter, the gain
can be computed once by solving the associated Ri-
catti equation [3] with the aforementioned matrices
and the costs Q and R.
The cost Q refers to the process noise, so the

bigger it is, the less we trust the model. On the
contrary, the R matrix corresponds to the measure-
ment noise, being usual to make experimental tests
to quantify sensor noise variance to populate the el-
ements of the R matrix. Just as the Q matrix, the
bigger the R, the less we trust the measurements
and so their noise is reduced.
The state space matrices for the position kalman

filter KFP are

AKFP =

[ p v

ṗ 0 1
v̇ 0 0

]
, BKFP =

[ acc

ṗ 0
v̇ 1

]
(20)

and

CKFP =
[ p v

y 1 0
]

(21)

with p the position, v the velocity and acc the
known acceleration. Computing the Kalman filter
with the function kalman [14] having

Q = 1× 10−8andR = 1 (22)

leads to the gain

L =

[
0.0811 0.0033
0.0033 0.0003

]
. (23)

The gains are very small, which is expected because
the position measurements are very noisy and by
having a small Q compared to R there is a small
trust in them.

With these specifications, several tests were con-
ducted, coming to the conclusion that the cost Q
should not be increased because that would lead
to a higher reliance in the position measurements
and thus more noise; however, it could also not be
decreased due to the increase in drift.

The position and velocity errors average around
10−3 m and 10−5 m/s in the beginning of the sim-
ulation, but could increase up to 0.035 m and 10−4

m/s due to drift, respectively.

3.2. Kalman Filtering Horizontal Movement LTR
Technique

Using the pre filtered position and velocity mea-
surements from the previous subsection 3.1 and the
state space equations 11 and 12, a Kalman filter can
be derived.

In this work, the loop transfer recovery (LTR)
technique is used, which aims to recover the prop-
erties of a full feedback controller, even when not
having access to some states [8].

The algorithm is split into two phases, prediction
and correction, and can be described by the follow-
ing equation

ẋ = Ax+Bu+ L[y − Cx]. (24)

According to the LTR technique [8], in the design of
the Kalman filter, the perturbations are introduced
as

ẋ = Ax+Bu+Bd (25)

which means that the perturbations are weighted
by the input matrix. To validate these results, the
loop gain for different values of σ is shown in figure
7.

The results having the different values of σ were
very similar, so in the end σ = 10 was chosen be-
cause it is enough to give a clear estimate of the
states and would lead to the most noise reduction.
Following the LTR technique, the R matrix was cho-
sen as the identity matrix.

3.3. Height PD Controller
The transfer function between the input thrust T
and the z position including the time constant of
the motor tm of 0.1 s is

pBz = − 1

m

T

s2(tms+ 1)
= − 0.0727

s2(0.1s+ 1)
(26)
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Figure 7: Loop gain using several σ values.

The pole at s = −10 is due to the time constant
of the motor, the s2 is the double integration from
vertical force to position and the negative gain is
due to the upward direction of the thrust along the
negative z axis (the z axis points downwards). Us-
ing the function pidTuner ofMATLAB it is possible
to define the gains according to the given specifica-
tions.

The PD controller structure is:

PDz = Kpz +
Kdzs

azs+ 1
(27)

with Kpz = −30, az = 0.00139,Kdz = −50.

The gain and phase margins are 45.5 dB and
60.7º, respectively. The closed loop bandwidth is
5.56 rad/s. The rise, settling times are 0.35 and 3.64
seconds, respectively and the overshoot is 15.2%.

3.4. Yaw PD Controller

The transfer function between the input torque τr
and yaw including the time constant of 0.005 sec-
onds of the rotors is

ψ =
1

Jzz

τr
(trs+ 1)s2

=
1.601

s2(0.005s+ 1)
τr (28)

The PD controller is:

PDψ = Kpψ +
Kdψs

aψs+ 1
(29)

with Kpψ = 113, Kdψ = 21.2 and aψ = 0.00269.

The resulting gain and phase margins are 22.6 dB
and 70.1º, respectively. The closed loop bandwidth
is 61.8 rad/s. The settling time is 0.1 seconds and
the overshoot is 3.45%.

3.5. LQG Position Controller

The dynamics can be described by

ẋ = Ax+Bu

y = Cx,
(30)

with x the states, u the inputs and y the outputs.
The cost function of the system is

J =

∫ ∞

0

xTQx+ uTRu dt, (31)

and the algorithm attempts to minimize this cost by
solving the corresponding Riccati equation. It can
also be proven that the resulting gain from this so-
lution leads to an asymptotically stable closed loop
[10].

The real task in LQR design is to choose suit-
able Q and R matrices such that the system has
the required performance in terms of response and
robustness. A starting point can be settled using
the Bryson’s rule [10],

Q =


1

0.12 0 0 0
0 1

0.12 0 0
0 0 1

(1.2π/180)2 0

0 0 0 1
(1π/180)2

 (32)

and

and R =
1

12× π/180
= 11.36. (33)

The gains were computed using the lqr function of
MATLAB. With these specifications, the rise and
settling times to a step input are 2.54 and 4.39 sec-
onds, respectively. The closed loop bandwidth is
0.856 rad/s. The gain, phase and disk margins (us-
ing the diskmargin function of MATLAB) of the
system with the LQG controller are 4.6 dB, 23.8◦

and 0.16, respectively.

3.6. NMPCEKF controller
In addition to equation 8, the mass of the vehicle
is added as a state and the EKF updates it at each
time step. The dynamic equation of the mass is
dδm
dt = 0, assuming that in the prediction horizon
of the NMPC the mass does not change (which is a
reasonable approximation assuming a short time of
a few seconds).

The chosen prediction and control horizons are

Ph = 2s

Ch = 2s
(34)

accounting for 20 time steps, as the sample time is

hs = 0.1s (35)

The cost function is similar to the linear MPC

J =

Phn∑
k=1

y(k)TQy(k) + u(k)TRu(k) (36)
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The constraints are:

−17º <= δ <= 17º

−17º <= ϵ <= 17º

0N <= T <= 220N

−1.1Nm <= τr <= 1.1Nm

(37)

To formulate the optimization problem, the mul-
tiple shooting technique was used, leading to the
constraint

Phn∑
k=1

x(k + 1)− f(x(k),u(k)) = 0. (38)

The solver tries not only to find the optimal inputs
but also the states. The dimensionality of the prob-
lem increases; however it is sparse and more linear,
reducing the calculation speed [9]. Lastly, the cho-
sen solver was CasADi [1] using an interior point
method [6], which proved to be significantly faster
than the solver of MATLAB.
Then, the EKF extended Kalman filter is derived.

The objective is to estimate the mass of the VIRI-
ATO Test Platform to use in the NMPC model.
The algorithm can be summarized in 2 steps, pre-
diction and correction, as is summarized in equa-
tions 39 to 44.

Prediction of state, covariance and output estimates

x̂k|k−1 = f(x̂k−1|k−1,u(k)) (39)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +Qk (40)

yk = h(x̂k|k−1) (41)

gain computation

Kk = Pk|k−1H
T
k

[
HkPk|k−1H

T
k +Rk

]−1
(42)

correction of state and covariance estimates

x̂k|k = x̂k|k−1 +Kk(zk − yk) (43)

Pk|k = (In −KkHk)Pk|k−1(In −KkHk)
T+

+KkRkK
T
k (44)

The details of the matrices can be studied in [7].

3.7. H∞ Position Controller
In H2 or H∞ control, the problem is formulated by
the following specifications

min
K

||N(k)||2 or∞, N =

WuKS
WT

WPS

 (45)

with S being the sensitivity function (for perfor-
mance), T the complementary sensitivity function
(for robustness and noise attenuation) and the loop
transfer KS (to penalize large inputs).

The state space system in equation 11 comprises
4 poles at the origin, which means that the system
must be shifted by an arbitrary value α, the H∞
gains computed and then shifted back to the origi-
nal plant [23]. In this case, to achieve a fast perfor-
mance, an α of 2 was chosen, so the poles move to
s = −2.
Then, the plant is augmented with weighting

functions W1, W2 and W3 [11], corresponding to
WP , Wu and WT , respectively. W1 should be high
in the control bandwidth to ensure good reference
tracking and disturbance rejection (obtaining small
sensitivity S), whereas W3 should be the opposite
and is responsible for robustness (in the case of mul-
tiplicative disturbance) and noise attenuation (to
achieve small complementary sensitivity T ). In or-
der to limit control effort in a particular band, W2

should be large to obtain small KS.
Given that the weighting functions W1,W2 and

W3 shape N , in order to minimize its norm, these
functions should be chosen accordingly, by following
the aforementioned guidelines and with some tun-
ing. In this case, the weighting functions are the
same for the 3 algorithms, where W1 was designed
by setting a pole close to the desired bandwidth and
a zero a decade faster, with unity static gain

W1 =
0.1(s+ 10w)

s+ w
, (46)

with w the frequency of the pole so that the transfer
function has a bandwidth close to its location. The
weighting functions are

W1 =


0.1(s+62.8)
s+6.28

0.1(s+628)
s+62.8

0.1(s+1885)
s+188.5

0.1(s+4398)
s+439.8

 , W3 =


10(s+6.28)
s+62.8

10(s+62.8)
s+628

10(s+188.5)
s+1885

10(s+439.8)
s+4398

 . (47)

Note that the weighting function W3 is the inverse
of W1 to ensure robustness, due to the fact that for
higher frequencies W3 should be large to attenuate
undesired dynamics and noise. Lastly,

W2 = 1/(17× pi/180), (48)

sets actuation cost.
The Hinfsyn function of MATLAB was used to

find the controller that minimizes the peak singular
value [13].

With these specifications, the rise and settling
times to a step input are 1.24, 2.3 seconds, respec-
tively. The closed loop bandwidth is 1.81 rad/s or
0.29 Hz. The gain, phase and disk margins (using
the diskmargin function of MATLAB) of the system
with the H∞ controller are 12.2 dB, 75.9◦ and 0.22,
respectively.
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4. Results
4.1. Control Performance
After testing the controllers in nonlinear simula-
tions, some conclusions can be taken.. Firstly, the
height and yaw are successfully controlled using a
PID and a PD only, so more complex techniques are
not necessary to ensure good tracking performance,
disturbance rejection and robustness.
Conversely, the position loop could benefit from

more sophisticated controllers such as the NM-
PCEKF or the H∞. Both offer different benefits,
namely the NMPCEKF is better suited for complex
trajectories which have simultaneous varying refer-
ences, whereas the H∞ controller excels in simple
trajectories, ensuring the highest level of robustness
and disturbance rejection.
A summary of the results is present in table 2. All

controllers are capable of dealing with the expected
mass variation of -2.5 Kg, the NMPCEKF and H∞
controllers are the fastest and the latter has the best
robustness and disturbance rejection properties, as
mentioned in the previous paragraph, moving only
0.6 m to a wind gust disturbance of 5 m/s or 35 N.
Lastly, the LQG controller has worse performance

in almost all parameters, which confirms that the
added complexity of the NMPCEKF or H∞ could
compensate.

Table 2: Simulation results of the 3 controllers.
LQG NMPCEKF Hinf

Settling time [s] 5 4 4
Robust to mass variation yes
Max. actuation delay [s] 0.1 0.1 0.5
Wind gusts max. pos. error [m] 4.2 1.2* 0.6

*In the previous simulations the settling times of the LQG
and H∞ are affected by the varying yaw. If the yaw was
kept constant, the settling times would be as indicated in
the table.
**There was also an error in the Down position and after
10 seconds
the NMPCEKF was able to return to its initial position.

4.2. Estimation Errors
Here the estimation errors are presented for a simu-
lation having step references of 1 m in North, East,
Down and a yaw of 150◦.

Using the linear Kalman filter, the errors of the
position, velocity and angular velocity estimates
average a mean error of 10−3 m, 10−4 m/s and
10−3 ◦/s, respectively, showing a good performance;
however, the Euler angles have significant errors,
reaching up to 2◦. This is mostly due to the fact
that when the yaw is varying, the Euler angles and
the angular velocities are coupled (see equation 8)
which leads to model mismatch. To prevent this
issue, the Q matrix of the filter could be increased
to represent the lack of trust in the model, but this
would in turn increase noise.
The extended Kalman filter EKF did not show

the limitation of increased error when the yaw
varies, due to its nonlinear nature. It averaged 10−3

position (m), velocity (m/s) and angular velocity
(◦/s) mean errors, and Euler angle errors of 0.05◦.

4.3. Guidance

A trajectory is fed to the controller, having a con-
stant 2 m/s wind perturbation pushing the VIRI-
ATO Test Platform North.

Given that the H∞ controller is able to control
the horizontal position directly, the guidance algo-
rithm only has to limit the position reference and
generate trajectories for the VIRIATO Test Plat-
form to follow.

To limit the references, a simple solution was
found,

e = r − x

el = min(2,max(−2, e))

rl = x+ el

(49)

with e, r, x, el, rl the error, reference, current state,
limited error and reference, respectively. This way,
the error is bounded to -2 and 2, which ensures that
the inputs stay within a reasonable value.

The VIRIATO Test Platform has to follow an
eight shaped trajectory, shown in the red line in
figure 9, while pointing at the closest circumference
center.

The tracking results of the position and veloc-
ity states in figure 8 exhibit a smooth trajectory
with a delay of 1 second. When the VIRIATO Test
Platform crosses the 4 m North mark, the yaw ref-
erence changes 180◦, behaving as a step reference,
and the response takes approximately 3 seconds to
settle again, with little overshoot.

In figure 9, the path is closely followed, except in
the segment where yaw has to change 180◦, conse-
quently affecting the position of the VIRIATO Test
Platform. This behaviour exists because the posi-
tion controller is not able to react as quickly as the
yaw controller, thus suffering position errors. The
wind perturbation shifts the trajectory to the right
by 0.3 meters.

The gimbals move abruptly in the beginning to
tilt the VIRIATO Test Platform in the right direc-
tion and then do small changes to keep it in the
desired trajectory. Notice that in seconds 9 and 21
the inner gimbal shows again an abrupt response,
which corresponds to the crossing of the 4 m North
(figure 8 and a change of 180◦ of yaw, so the posi-
tion controller has to compensate the yaw changes.
The thrust also varies significantly at the 9 and 21
seconds mark, for the same reason as described pre-
viously and it is enough to keep the vertical (Down)
error below 0.7 m (figure 8).
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Figure 8: States of the VIRIATO Test Platform.
throughout the loop trajectory.

5. Achievements

Firstly, the nonlinear and linear dynamics, both in
transfer function and state space form were derived.
Additionally, the noise specifications of the sensors
were presented and the position and acceleration
measurements were combined to produce cleaner
position and velocity estimates.

(a) Path.

(b) Inputs.

Figure 9: Infinity path in the North-East plane and
inputs of the VIRIATO Test Platform.

Classical PD controllers were developed for
height and yaw. The LQG and NMPCEKF al-
gorithms were derived to benchmark the H∞ con-
troller. The latter was tuned using weighting func-
tions, which proved to be challenging.

The 3 controllers were compared against the max-
imum expected mass variation of -2.5 Kg or 20%,
actuation delays of 0.1 s in the gimbals and wind
gusts of 5 m/s equalling 35 N. All were able to deal
with the expected mass variation with little effort,
but the H∞ showed the best response to wind gust
perturbations of 5 m/s, moving a maximum of 0.6
m and robustness against actuation delays up to 0.5
s.

An outer guidance loop was developed that gener-
ates the trajectories for the H∞ position controller
to follow and limits the references at each time
step not to exceed a certain threshold, chosen as
2 m. This setup was able to follow the desired eight
shaped path with a maximum error of 0.5 m, mostly
due to the wind perturbation of 2 m/s and the dras-
tic variation of the yaw reference of 180◦.
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All things considered, a guidance and control sys-
tem was developed that enables the VIRIATO Test
Platform to follow complex trajectories such as the
eight shaped presented in this work, having little
position and yaw errors. As can be proved, the pro-
posed final controller is faster than the usual PD or
LQG algorithms and exhibits robustness to mass
variations of -2.5 Kg or 20%, 0.1 s of actuation de-
lay and wind gusts of 5 m/s or 35 N.
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