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Abstract 

Due to new health problems and the worsening of old ones, healthcare is needed more than ever. Knowledge 
motivates patients to live healthier as science advances. Thus, many healthcare units have battled to handle 
rising demand while maintaining service quality to improve patient satisfaction and profitability. Simulation 
models may analyse patient flow and identify ways to improve resource efficiency and reduce waiting time. This 
study creates a hospital unit simulation model using data from Lisbon's Hospital da Luz Imaging Department. This 
model will replicate the everyday flow of patients and staff in this department and show how resource and 
examination room management affects the system. At the conclusion of the studies, numerous ideas are offered 
and debated, from level to level, to enhance service, resource, and patient performance, however it is verified 
that only the increase in one unit of examination rooms has a major beneficial influence on queue waiting times. 

Keywords: healthcare simulation, process improvement, simulation models, operational research methods, 
discrete event simulation. 

1. Introduction 
Global competition in a growing industry often 
makes patients curious and apprehensive about 
healthcare [1]. Health consciousness and affluence 
have increased healthcare demand and 
demographic trends toward a healthier lifestyle. 
Thus, local businesses, including medical services, 
face a demanding environment. Due to hospital 
competition, patients now choose the best 
healthcare unit [2], [3].  
Due to rising consumer expectations and demand 
for standard services, hospitals and healthcare units 
must improve their services to compete [4]. For this 
reason, healthcare units are facing many 
challenges. With demand increases, hospitals may 
dissatisfy patients with long lengths of stay due to 
excessive wait times [2]. Thus, a number of them 
have made significant efforts to improve hospital 
efficiency to reduce LOS and other issues like 
patient wait times, patient satisfaction, levels of 
spending, capacity, resource consumption, working 
conditions, staff morale, accessibility to error-free 
treatment, and medicines [5], [6]. Hospitals and 
other healthcare facilities use qualitative concepts 

and human experiences to improve. However, such 
strategies may not yield the big improvement one 
hopes for, and it is impossible to quantitatively 
predict their results [5].  
In recent years, healthcare operations have 
improved with computer simulation to aid decision-
making [7]. A simulation model may simulate the 
process and its dynamics under random 
distributions, show patient flow and care delivery 
methods, and provide performance evaluation 
forecasts [8]. With such a tool, healthcare 
management can evaluate existing procedures, 
study potential changes, experience situations that 
would not otherwise be possible without spending 
a lot of money on system development, training, 
and equipment, or investigate system variable 
relationships or trade-offs [2]. Healthcare 
simulation can also be used to compare situations 
or visualise processes. Simulating performance and 
efficiency can be done continuously. 
This research aims to create a simulation model of 
an Imaging department inspired by 
contextualisation. This model will test various 
internal factor changes, such as a service's 
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personnel and facilities, to examine system 
performance under different scenarios. Thus, for 
each tested combination, it will be possible to 
predict how the unit will behave and determine the 
number of resources needed to perform well for the 
decision-maker. 
This study also evaluates human resource 
effectiveness in each scenario using the occupancy 
rate, which shows how much time a resource 
spends on an activity. When the resource allocated 
to a given number of activities decreases, the 
occupancy rate increases, but waiting times do not 
improve, indicating a trade-off. Finally, the model 
should help the department manage resources. This 
model's precision matches demand and supply, 
optimising resource allocation in time and space 
and reducing queue times. 

2. Literature Review 
Simulation models can be used to evaluate and 
improve performance and productivity. A 
simulation model is created to test and integrate 
with the organization's operational information 
systems [9]. This is done to examine a system's 
longitudinal behaviour and recommend changes 
while it works and generates dynamic data. 
Simulation's true value can be realised when 
simulation models are fully integrated into the 
current information system applications that 
support healthcare providers' daily operations [8]. 

2.1. Discrete-Event Simulation 
Simulation models can be distinguished between 
static or dynamic, deterministic or stochastic and 
continuous or discrete. The most used simulation 
technique is discrete-event simulation, which 
combines dynamic, stochastic and discrete 
properties [10], which is the base of this research. 
Discrete-Event Simulation (DES) is a cheap, secure, 
and fast tool for analysing complex systems and 
assessing performance indicators. DES is an easy 
and adaptable computer-based modelling 
technique for decision-making that simulates the 
dynamic behaviours of complex systems and the 
interactions between people, communities, and 
their surroundings [11], [12], which reflects the 
system's actual behaviour [13]. Due to the large 
amount of data that most real-world systems must 
store and manage, recommends DES on a digital 
computer [14].  DES is better for modelling complex 
systems at the individual level than at the cohort 
level than aggregate models without interaction, 
such as decision trees or Markov models [12], [15]. 
It shows the flow of individual entities through 
discrete events (activities) in a system that evolves 
over time [14]. Due to resource scarcity, entities 
must line up between these events. These are 
queueing networks [16]. In a hospital simulation, 

entities are often transferred patients. This 
simulation allows traits to affect system progression 
and resource limits [11]. Thus, it accurately depicts 
how patient characteristics affect a health system. 
Since DES results are samples from a distribution, 
multiple simulation runs may be needed to 
accurately measure output parameters. This is 
especially problematic in unstable systems when 
the arrival rate is near the service rate or activity 
time fluctuations are large [17]. 
DES models allow patients to be unique and interact 
with resource supply [2].  Although testing and 
running these models takes longer, they help model 
healthcare delivery systems, especially when 
resources are scarce [18]. 

2.2. Framework for Developing GE-DES in 
Healthcare Systems 
The framework for Generalizable Discrete Event 
Simulation (GE-DES) for Healthcare Systems 
consists of four sections: (I) understanding the issue 
scenario, (II) establishing the modelling objectives, 
(III) choosing the model content and (IV) developing 
the model.  
(I) understanding the issue scenario is divided into 
four steps: study population, evaluating the system 
performance, status quo process map, and 
experimental decision factors. The information 
gathered for each of the four domains is intended 
to guide modelling operations. Decision factors 
reveal model inputs. The comprehensive process 
mapping lists relevant components to help select 
model content. The modeller must understand the 
topic to build an accurate model that addresses the 
concerns [19]. To determine if DES is the best 
option, consumers and subject matter experts must 
understand and express the problem [20]. 
(II) establishing the modelling objectives describe 
how simulation research analyses alternative 
system configurations based on a performance 
metric to aid client decision-making. Typically, 
configuration options are constrained by hospital 
money, physical space, and laws [21]. Modelling 
objectives, level of detail, and generality may be 
interrelated. [22]. More detail may make a model 
less generic. Objectives are classified either general 
(run-time and visualisation needs, development 
effort, and re-use flexibility) or modelling 
(answering "what are the most important issues to 
be addressed by experimenting with the model?") 
[23]. The generic and reusable content of the ED 
model is related to the general objectives. The 
primary function of selected models determines 
their modelling objectives. 
(III) in selecting model content, the framework 
distinguishes between model scope, which 
identifies model boundaries by including or 
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omitting a representation of parts of the system 
under investigation as model components, model 
detail (or depth of the model), which focuses on 
characteristics [24], and identifying model 
assumptions and simplifications [20]. Before 
evaluating the extent and amount of complexity of 
the suggested simulation model, its use should be 
questioned [19]. Variability, interconnectedness, 
and complexity of the modelled system determine 
simulation selection. DES is the most applicable 
system applicable because most operational 
systems are queuing systems. In addition to these 
reasons, the issue scenario, modelling objectives, 
experimental factors, and responses will determine 
whether simulation is the right method. Conceptual 
simulation models have not been discussed much 
yet. Different modelling strategies are possible. 
Simulation-specific conceptual model begins here. 
(IV) healthcare decision-making involves complex 
social interactions. Thus, healthcare service delivery 
and patient flow management issues are hard to 
define. Understanding the healthcare process is 
essential for making sound, defensible decisions 
and achieving success [25]. Consequently, the issue 
must be developed from the service delivery 
perspective. After defining the problem, identifying 
inputs, outputs, assumptions, and entities, and 
reviewing, the model can be developed. 
Quantitative data (observations) are saved in 
databases or recorded on any form of storage 
media (records), while qualitative data can be 
collected by direct observation of the system and 
expert interviews [26]. Doctors, nurses, consultants, 
administrators, and managers are hospital experts 
[27]. The hospital information system records 
patient treatment route, arrival method, referral 
type, and discharge or admission time [25]. Staff 
enter patient data (e.g., administrators, doctors, 
and nurses through the stages of patient care). 
Hospital records lack precision and uniformity due 
to healthcare system restrictions. Before extracting 
data, data mining must extract the most dedicated 
group of documents. Expert and clinician 
observations and interviews are used to gather 
model inputs. This clarified many system issues. 

3. Case Study Formulation and Analysis 
This chapter explains all of the information provided 
by the Imaging department management at 
Hospital da Luz regarding the unit under study for 
developing the plan and subsequent conceptual 
model. 

3.1. Service Functioning Description 
Hospital da Luz Imaging offers about ten types of 
examinations. The decision-maker suggested 
Mammography, X-Ray, MRI, CAT, and Ultrasound 
reduce waiting times. The department has two 

Mammography equipment that can simultaneously 
examine two patients. The department also has four 
X-Ray appliances, six MRI machines, three CAT 
devices, and eight Ultrasound scanners, allowing 
the same number of patients. Each office has its 
exam equipment. Regarding the health personnel 
assigned to supervise and conduct each 
examination, it is necessary to have one technician 
in Mammography, X-Ray, MRI and CAT; one 
assistant in X-Ray, MRI, CAT and Ultrasound; and a 
physician in Ultrasound. In addition, only a secretary 
is required to perform the check-in of the patient. 
The patient gets a ticket at a check-in location to 
start the journey. The unit has two entrances with 
check-in counters. Exams are inserted in zones A 
(Imaging) and B (Ultrasound). Mammography, X-
Ray, MRI, and CAT examinations define zone A, 
while Ultrasound defines zone B. Patients must 
enter the entrance room concerning the zone they 
will examine. A patient with zone A and zone B 
examinations will enter any zone and be directed to 
a waiting room after check-in. In case of the patient 
enters zone A but has an examination scheduled in 
zone B, the check-in service is usually done there, 
but after the service, the patient will go to the other 
waiting room. 
The patient must wait until the healthcare 
personnel responsible for the examination 
summoned them. The duration of each exam is 
predetermined and corresponds to the time slot 
provided for each patient. This period will include 
completing the exam and all associated activities 
(preparation of equipment, instructing the patient, 
and filling out the medical report, if necessary, 
among others). By the end of this period, the 
patient will leave the office to make room for the 
next one. The patient's number of exams does not 
affect the prescribed duration for all exams except 
MRI, i.e., if the patient has two MRI exams, the 
specified period will be doubled. 
After leaving the office, the patient can wait for 
another exam or leave the unit. In the first scenario, 
he will go to the waiting area for the other exam and 
repeat. The patient does not return to the queue 
because all scheduled exams of the same type are 
done simultaneously. 

3.2. Objectives 
As stated before, the decision-maker's primary 
objective is to decrease patients' general average 
waiting time in the examination queue. However, 
sub-goals can be set to help achieve the main goal 
and act as a stage. Sub-objectives may include 
reducing the average queueing and maximum time 
for check-in and examination activities separately; 
increasing the number of facilities inside the unit to 
have a more significant patient flow (fewer patients 
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in queues) so they can be treated more quickly to 
boost patient satisfaction and to increase the 
occupancy rate of each resource to increase 
profitability. 

3.3. Key Performance Indicators 
Performance metrics must be established after 
problem definition and understanding objectives. 
These will determine the system's performance 
throughout the project by assessing the degree to 
which the predetermined objectives have been 
met. Like the pre-objectives, the KPIs must measure 
service quality to reduce waiting times in service 
queues.  
The average and maximum queueing time for each 
check-in service or examination and resource 
occupancy rate are used for this. These metres will 
be reviewed after several system runs to determine 
if the system is improving or deteriorating. 

3.4. Activities 
Activities represent a period with a given duration. 
Refers to a group of operations that modify the 
state of an object. Although activities and events are 
often used interchangeably, they have distinct 
meanings in the context of simulating. An event is a 
change in the system's state caused by an activity, 
with the event serving as the consequence and the 
activity as the cause. 
Each activity that will be analysed is associated with 
each service under study. In this case, there will be 
seven activities, corresponding to: Mammography, 
X-Ray, MRI, CAT, Ultrasound and Imaging and 
Ultrasound Check-ins. 

3.5. Assumptions 
To design the model, some basic assumptions were 
needed to guide its construction, analysis, and 
solution-finding. The issue was formulated without 
mentioning these assumptions, which helped 
create the model and assume the right conditions 
for modelling.  
1. A patient only goes through the check-in 
procedure only once each day for an unlimited 
number of examinations. 
2. A patient who has records on several days will be 
considered as one new patient each day they 
attended the unit. 
3. Every patient exits the department having had at 
least one examination. 
4. The patient waits in the queue for an examination 
for as long as is required. 
5. The patient who enters the unit on a particular 
day is required to be seen on the same day and, 
therefore, must depart the unit on the same day, 
never being permitted to remain there from day to 
day. 

6. A patient is only permitted to take one 
examination at a time. 
7. The duration of each examination activity 
corresponds to the slot provided for the patient 
(and its associated resources). 

3.6. Sketch of the Conceptual Model 
The model to be developed can be divided into 
two sections. The first section covers the time 
between patients' entrance (when they take the 

ticket from the kiosk) and their departure from the 
check-in service to join a queue for an examination. 
Thus, the second section of the model covers the 
rest of the journey, from the patients' check-in to 
their exit from the system, focusing on their passage 
through various examinations. Patients are directed 
to the imaging or ultrasound service when they 
arrive in the first section of the model. Each zone 
has a check-in activity service and a queue. Patients 
are sent to sub-service queues after abandoning 
check-in. The imaging service has four sub-services: 
mammography, x-ray, MRI, and CAT, but only one 
for ultrasound: ultrasound. After the examination, 
the patient can choose to enter another queue or 
leave the system. The model's life cycle diagram and 
SIMUL8 design overview are shown below. 

4. Data Treatment 
This phase focuses on collecting data and how it was 
treated to implement in the conceptual model.  

4.1. Patient Entries 
The department accepted patients Monday 
through Friday from 7:30 AM to 8:30 PM. Since the 
system runs for 13 hours, it is necessary to divide it 
into several time intervals to better analyse the 
events in each and maintain tracking control for 
validation later.  Graphic 1 presents the histogram 
relatively to the number of arrivals in the function 
of the extracted timestamps divided into 112 bins 

Figure 1 – Base schema of the model that will be 

implemented in SIMUL8. 
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(classes). This represents the average number of 
patients arriving at the unit during this period. 
By dividing the total hours of running per the 
number of classes, it was obtained that each bar is 
equivalent to seven minutes. Through the graph, it 
was possible to divide it into seven intervals over 
time, and in each interval the bars show the same 
behaviour, as shown in the figure. 

 

 

 

 

 

 
 

Through the graph, it was possible to divide it into 
seven intervals over time, and in each interval the 
bars show the same behaviour, as shown in the 
figure. Thus, each bar block corresponds to a period, 
with five periods of 2h and two periods of 1.5h, the 
latter representing the extreme hours. Using the 
provided information, it is possible to determine 
how many patients visit each block daily. By placing 
the values corresponding to each time, the Chi-
Square test is conducted to verify whether the set 
of values is consistent with a Poisson process [28], 
using SPSS Statistics [29]. For each block, it is then 
calculated the average arrival rate. 
To convert the average arrival rate per hour into the 
interval between arrivals, in minutes, the inverse 
process described by expression (1) was used, which 
is the exact value that must be entered into SIMUL8. 
The interval length is the base unit of measure, in 
this case is 60 minutes. 

𝐼𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒
 

A process with a Poisson distribution can have 
exponential interarrival times. Swapping between 
these distributions is similar to the formula above. 
A Poisson process's inverse mean is the parameter 
𝜆 of an exponential distribution.  

Table 1 – Rate of patient per hour and interarrival time, 
in minutes. 

 Poisson Exponential 

Time Slot 
Arrival Rate 
(patients/h) 

Interarrival 
Time (min) 

07:30 AM – 09:00 PM 35.366 1.697 

09:00 AM – 11:00 PM 57.219 1.049 

11:00 AM – 01:00 PM 47.486 1.264 

01:00 AM – 03:00 PM 41.445 1.448 

03:00 AM – 05:00 PM 51.528 1.164 

05:00 AM – 07:00 PM 39.002 1.538 

07:00 AM – 08:30 PM 13.453 4.460 

 
The proportion of patients in each block who went 
to one of the check-ins is shown in Table 2, below. 

 
Table 2 – Proportion of patients that proceeded to one of 

the services per time slot in the moment of arrival. 

 % Of Patients 

Time Slot Imaging Ultrasound 

07:30 AM – 09:00 PM 81.192 18.808 

09:00 AM – 11:00 PM 77.792 22.208 

11:00 AM – 01:00 PM 77.856 22.144 

01:00 AM – 03:00 PM 83.572 16.428 

03:00 AM – 05:00 PM 77.009 22.991 

05:00 AM – 07:00 PM 77.963 22.037 

07:00 AM – 08:30 PM 92.714 7.286 

 

4.2. Check-In Service 
With the data set relating to the duration of this 
activity, and to prevent possible outliers from 
entering the data analysis, they are identified for 
later removal, using the quartile method [30]. 
The decision-maker determined that two minutes 
of activity was the bare minimum, and subsequent 
calculations to identify outliers led to the 
elimination of durations greater than 19 minutes. 
Thus, the set of valid values is inserted into a vector, 
and the probability distribution that best fits the 
values is calculated using the SPC For Excel 
software.  
Consequently, the time set followed a log-normal 
distribution with a mean of 7.527 and a standard 
deviation of 3.648. 

4.3. Imaging and Ultrasound Services 
The duration of the activities remains constant 
regardless of the number of exams performed, with 
the exception of the MRI examination, whose 
duration is added the number of times a patient 
takes is examined. Each activity will have this 
durations (in minutes): Mammography (15), X-Ray 
(10), MRI (40), CAT (20), and Ultrasound (15). This 
step also aims to determine the probability that a 
specific patient will use each service. These 
calculations are crucial because they will enable the 
simulation to determine whether the patient will 
choose one route or another depending on the 
actual use of each service. 
The percentage distribution of patients per exam is 
therefore calculated. It was found that, of the total 
number of patients admitted, 11% were in 
Mammography, 32% in X-Ray, 17% in MRI, 20% in 
CAT and 42% in Ultrasound. The sum of the 
percentages exceeded 100% because there were 
patients who underwent multiple exams during 
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Graphic 1 – Histogram of the average number of 

arrivals per time interval per day (112 bins). 

Time Period (07:30 AM – 08:30 PM) 

10 
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(1) 
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their hospital stay. Therefore, the patient has two 
options: leaving the unit after the examination or 
moving to a different waiting queue. For each 
combination of two exams, the probabilities of the 
patient taking both on the same day had to be 
determined (intersection probability). This was 
determined by dividing the number of patients who 
utilised the two examinations in combination by the 
total number of admitted patients. Similarly, the 
probability that the patient had only undergone one 
exam on the same day was determined.  
After determining the individual and intersection 
probabilities, it is possible to calculate the 
conditional probability, using the expression (2) that 
indicates the likelihood that a patient has 
participated in one examination while also 
participating in another. The conditional probability 
is equal to the intersection probability divided by 
the individual probability. Note that the probability 
that a patient has been on an Ultrasound knowing 
that they have been on a Mammography is not 
equal to the probability that a patient has been on 
a Mammography knowing that they have been on 
an Ultrasound. 

𝑃(𝐴 | 𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

The results of these probabilities may be seen on 
the original document, at section 7.3., Table 8, they 
can be calculated manually using the formula 
above. 

5. Model Development 
Once gathered, data (from observations and 
interviews with experts) is combined to conceive 
the conceptual model using SIMUL8, where 
processes and activities could be defined. The 
conceptual model guides the actual simulation 
model, which contains more system detail. Besides 
that, it serves as a communication mechanism for 
validating the model. The implementation of the 
model in SIMUL8 may be seen at the original 
document in Figure 1A from the annexes section. 

5.1. Simulation Clock 

Establishing the system's unit of measurement was 
crucial before simulation. The minute was chosen to 
evaluate the acquired outcomes because most of 
the information is presented in minutes and the 
pre-established performance metrics use this time 
unit as a reference. On working days, the simulation 
runs from 7:30 AM to 9:00 PM, for 13 hours and 30 
minutes long. 

5.2. Components of the Model 
Seven weekly-pattern shifts were created. Each 
time slot of the arrivals is covered by a specific shift. 

The system uses resources throughout the 
simulation. They require non-specialist staff (or 
equipment). In general, several activities share a 
resource, with the others on active standby until it 
is used by another. Technicians, assistants, 
physicians, and secretaries will understand this 
research's four potential resources for examination-
related activities. Knowing their system roles does 
not matter. The only important information is how 
many resources of each type are needed for each 
activity that depends on them and when they are no 
longer needed. 
Labels add system control. Work items can be 
labelled before or during the simulation. Activities 
can examine and change the label's value. In this 
context, the labels will serve as a trail for each 
patient, indicating the latest exam they passed and 
the other tests they have taken, with the latter 
incrementing the exam-specific label each time the 
patient enters this activity. This will also serve as a 
debug to determine if the patient repeated an 
examination since they should not re-enter the 
queue where they have already been before. Labels 
will prevent these incidents. Therefore, two labels 
representing each activity are necessary to develop 
this logic. 

5.3. Activities 

Below is a list of model activities and how they were 
modelled. For a more detailed explanation, it is 
recommended to see the original document. The 
explanation of some fictional activities was also 
described. 
1. Arrivals: This activity receives a distribution that 
specifies the interarrival time at each time slot, so 
all patient arrival information, including temporal 
distributions, must be stored here. This activity is, 
therefore, a time-dependent, with seven smaller 
exponential distributions comprising each time slot. 
The parameter of each smaller distribution is 
expressed in the second column of the Table 1. 
Here, all the created labels were set to zero along, 
to indicate that the patient has not been into any 
kind of examination. When designing the system, 
only one entry for all patients was considered. Next 
activity will cover dividing patients by entry zone. 
2. Shift and Sep: Patients will be transferred to one 
of seven fictitious activities based on their arrival 
time. Thus, each shift created had to be assigned 
with each of these Shift activities, meaning each 
activity will only take patients during its assigned 
shift. Since percentages vary by slot, this was 
necessary to accommodate patients who choose 
Imaging or Ultrasound. Thus, each Shift activity is 
linked to two fictional activities, Sep_I or Sep_US, 
with percent mode enabled in the routing out of the 

(2) 
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first. Table 2 shows the Shift activity input values 
according to the time slot. 
3. Wait_Check_In: After getting the ticket at the 
checkpoint, the patient waits to be called to the 
service for check-in. Two queues of this type, 
Wait_Check_In_I and Wait_Check_In_US, one for 
each zone, are connected to one of the immediately 
preceding activities, Sep_I and Sep_US, respectively, 
and only pass patients designated for the respective 
services. 
4. Check_In: Here, the log-normal distribution 
specified in the point 4.2. of this article is employed 
for the duration of both activities. Here, the 
resource responsible for this activities are defined, 
with the option to pick it up and release it when the 
patient exits the activity. 
5. Go_Wait_Exam: This fictitious activity follows 
the patient from the check-in desk to the 
examination waiting room. In reality, a patient may 
be served at a service check-in and wait in the 
opposite waiting room of the other service with a 
15% probability defined in the routing out dialogue. 
Patients who leave the Go_Wait_Exam_I activity 
have four pathways that match the four exam 
waiting rooms. Each examination's percentages had 
to be adjusted to the main service's patient count. 
Thus, 19%, 55%, 30%, and 34% of Imaging patients 
go to Mammography, X-Ray, MRI, and CAT, 
respectively, while 42% go to Ultrasound. This 
activity's routing dialogue includes the percentage 
values provided. 
6. Wait_Exam: There are a total of five queues of 
this kind, each preceding the appropriate 
examination-related activity. 
7. Exam: There are a total of five activities of this 
kind, each corresponding to one examination with 
the respective duration as a fixed distribution and 

with connected to the corresponding resources. 
The resources are required and released here, apart 
for the MRI, which is released ahead. The labels 
relatively to this examination is set to one. The 
labels relatively to the last exams of the other 
activities are set to zero to indicate that this was the 
last activity the patient has been. 
8. Dispatch_MRI: This activity is responsible for 
moving the patient back to this examination, with a 
probability of 32%, which corresponds to the 
probability of a patient repeat that examination. 
9. Other_Exam: The patient that finishes its 
examination, will have the option to moving to 
another queue or leave the unit. The conditional 
probabilities previously mentioned in section 4.3. 
are applied in the routing out of this activity. The 
MRI resources are released here. 
10. Mammo, XRay, MRI, CAT and US: This fictitious 
queues are imposed only to apply visual code to 
prevent patients from entering the waiting queues 

where they have already been. In case a patient is 
sent to one of this queues, they will go back to the 
previous activity to re-sent them back again. 
11. Exit_Mammo, Exit_XRay, Exit_MRI, Exit_CAT 
and Exit_US: This exit point receives the patients 
who abandon the unit. 

12. Go_Wait: This fictitious activity directs the 
patient towards the specific queue to perform other 
examination. 

6. Results Discussion and Presentation 
Here, it is computed the initial and final conditions 
and evaluate the system. The results are examined 
and interpreted after proposing a formal solution 
search technique and presenting this methodology. 

6.1. Initial Conditions 
In order for the system to function, it is necessary to 
determine the minimum conditions. This will 
establish the minimum resource and activity values 
necessary for the system to execute minimally. For 
this computation, many simulations were run over 
days or weeks to extract the total number of arrivals 
and divide it by the total number of hours the 
system was admitting new patients based on the 
system's 13-hour workday. This resulted in an 
average of 38.385 patients/h each day.  
To determine the minimum number of concurrent 
activities, it is necessary to multiply the patient 
average arrival rate by the simulated proportion of 
patients engaging in each activity and this value by 
its duration. According to the calculations, two 
Mammography activities must occur concurrently. 
Since there is one technician for each activity, 
exactly two technicians must be counted for this 
activity (section 3.1.). The other minimum number 
of activities and resources are: for X-Ray, three 
activities, i.e., (three technicians and three 
assistants); for MRI, six activities (six technicians 
and six assistants); for CAT, three activities (three 
technicians and three assistants); for Ultrasound, 
five activities (five assistants and five physicians); 
for the Imaging Check-In, four activities (four 
secretaries); and for the Ultrasound Check-In, one 
activity (one secretary) is the minimum required. 

6.2. Warm-Up Period 
After setting this minimum values into the SIMUL8, 
it is required to determine when each activity's 
occupancy rate and average queue waiting time 
stabilised to start collection results. Therefore, 
multiple runs were conducted weekly to determine 
that period of stabilization. According to Tables 16A 
to 26A (and the complementary information from 
Graphic 3A to 13A), the simulation results after 13 
weeks seem to be stable after a period of small 
oscillations related to average waiting times. The 

https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
https://drive.google.com/file/d/1ED-HuSAEbWsPurZgLsGQfBTUIN2uzkiM/view?usp=share_link
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warm-up period was defined to be 26 weeks (twice 
the 13 weeks verified) and 105,300 minutes to 
account for an extra safety margin to minimise the 
effects of those starting conditions. 

6.3. Terminal Conditions 
The results collection period must be determined 
after the warm-up period. Thus, it is supposed to 
examine, across different time intervals, the 
variation related to all the KPIs considering the 
resources and activities at their minimum. To 
ensure confidence interval precision around the 
simulation results' estimated mean, each 
experiment's number of trials was first determined. 
Thus, 5% mean value accuracy is applied. This 
implies that a genuine KPI result will fall within its 
minimum and maximum values 95% of the time. 
The software demonstrated that three trials were 
enough, but five were added for safety. Therefore, 
each data collection period will include five 
runs from the same experiment, each with some 
variability due to random numbers regulating its 
behaviour. The mean and values within each KPI's 
confidence interval will be displayed in SIMUL8's 
results manager. Then, the collection periods for 
results are arbitrarily set at 5, 10, and 20 weeks. This 
duration was altered following each trial's five 
executions. The objective is to compare KPI 
confidence intervals across periods of data 
collection. After running the system for each period, 
the variations between each KPI's upper and lower 
bound are computed. Observations indicate that 
the variances of each confidence interval decrease 
as the period of data collection lengthens, indicating 
that the system becomes more stable over time. 
Therefore, it makes sense to analyse the system 
over longer collection periods. Long-term system 
operation necessitates consideration of the CPU's 
computationally intensive tasks. Thus, it was 
sufficient to establish a collection period of 20 
weeks. 

6.4. Solution Searching Technique 
In the initial phase of the analysis, the number of 
replicas and resources will be maintained at their 
minimum values, except for the activity and its 
associated resources that are being studied, whose 
quantity will vary between executions. Then, it will 
be observed how increasing replicas and resources 
in each activity affects the KPIs for the queues under 
analysis. The number of replicas of an activity and 
resources will be increased by one unit throughout 
the subsequent three runs, starting from the point 
with the number of resources being reduced to 
their absolute minimum. At the end of the three 
runs of experiments, the number of replicas whose 
transition from run to run had the highest 
performance will be preserved.  

The system will be evaluated in parts. The system 
will be evaluated in segments. The first segment will 
be tested at each check-in, and only then will the 
other activities be studied based on the already 
optimised resources of the check-in activities, so as 
not to account for the bottleneck effect of the 
check-in activities, i.e., the flow conditioned by 
these activities. 
Imaging Check-In Service: increasing the number of 
replicas from four to five had the same impact as 
increasing it from five to six, i.e., the benefit rose 
correspondingly. The effect is diminished when the 
number of replicas increases from six to seven. For 
this reason, it is preferable to abuse the system with 
six replicas. 
Ultrasound Check-In Service: raising the number of 
replicas and associated resources from one to two 
proved to have the highest impact on the KPIs, 
rather than the other increases. 
Mammography Facility: it was verified that the 
percentage of improvement is better with the 
increase from two to four three replicas. The 
second-highest benefit is reached when transition 
from three to four replicas. 
X-Ray Facility: there was a more significant 
percentage difference when increasing from three 
to four replicas, which appears to translate into a 
better gain. Increasing the number of replicas from 
four to five yields the second-greatest 
improvement. 
MRI Facility: the system is best improved by the rise 
from seven to eight facilities compared to the other 
increases. The second-highest improvement comes 
when the number of replicas is increased from eight 
to nine. 
CAT Facility: this analysis reveals that the KPIs 
perform more optimally for the transition from four 
to five replicas, rather than for the transition from 
three to four (in both KPIs). The second-greatest 
benefit is reached when increasing from five to six 
replicas. 
Ultrasound Facility: According to what has been 
seen, adding a sixth replica has a more substantial 
influence on the system than increasing from six to 
seven or even from seven to eight replicas. 
However, the second greatest benefit happens 
when raising the number from seven to eight 
facilities. 

6.5. Results Interpretation 
The KPIs improved most after the first run, when the 
minimum replicas and resources values were raised 
by one. Due to the increased replicas and resources 
in posterior executions, this advantage diminished 
over time. However, these improvements were 
significant, so it was possible to climb higher. The 
decision-maker will decide how much cost increase 
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they are willing to accept to make this system 
change. After a few runs, certain KPIs show a small 
change between the last two runs, proving that the 
proportion of benefit decreases until eventually 
stabilises. This will come to a point where increasing 
the number of replicas and resources will no longer 
be beneficial in this context. Since the utilisation 
rate will drop when adding more activities and 
resources, increasing replicas or resources in this 
situation is not recommended. Thus, replicas and 
resources would be 1:1, queueing times would 
decrease, and the system would be undercrowded, 
benefiting patients. 
When testing the model with all this individual 
improvements all combined, the KPIs have 
deteriorated as predicted. This conditioning in the 
waiting queues of these activities impeded regular 
flow when reviewing the KPI results for a particular 
activity while limiting the others to the bare 
minimum. Fewer patients circulated from these 
activities, reducing the waiting queue for the 
"optimal" activity (via other examinations). 
However, optimising all activities increases patient 
circulation between exams. More patients are 
examined, so more move to other waiting rooms.  
Hence, for each activity, it may be necessary to raise 
a level to the number of replicas and resources that 
will yield the second-greatest benefit. Then, each 
activity's replica count will increase to reach the 
second-highest benefit and the respective 
resources will be readjusted. Therefore, the system 
was re-run using the number of replicas and 
accordingly number of resources for the second-
highest benefit for the same period. The results 
showed decreased queueing times for all queues, so 
the KPIs performed better. Due to shorter wait 
times, this makes the system more convenient. 
When queue KPIs improve for a single activity, 
resource efficiency decreases. Efficiency and 
occupancy rates are directly related. This implies 
that more resources must be wasted in a given 
period for operations to be efficient. Due to the 
increase in replicas, resources are less efficient 
throughout the experiments because there are 
more of them for the same number of patients on 
the waiting queue. As predicted, the same number 
of patients is more evenly distributed among 
resources, reducing their workload. The resource 
has more free time  considering that the duration of 
each activity remains constant. More free time 
means more resource waste or unused. 
The system was set up to study the effects of 
reducing resources by type while maintaining 
activity levels to improve resource efficiency. When 
the number of activities remains the same but the 
having decreased the number of resources, 
resource utilisation is expected to increase. There is 

a visible trade-off between resource efficiency and 
service delivery. To deal with it, it is essential to 
strike a balance between the two and find a level of 
comfort where neither has advantages nor 
disadvantages. The value of the performance of the 
KPIs of the second-highest benefit was then used as 
a starting point, and three experiments were 
conducted, each with one less resource of each type 
than the previous experience, to determine how 
resource efficiency improved with the decrease in 
performance of the remaining KPIs. Mammography 
and MRI queues still have room for improvement, 
according to the results. However, the KPIs for other 
examination queues (except Ultrasound) show 
weak variances from the base experience. This is 
because check-in activities, which condition the 
system, have fewer resources. The system's second 
part flows slower because these queues are more 
crowded. The maximum queueing time for these 
queues improves dramatically.  
Although the number of patients who wait longer 
than the average value is relatively small, it is still a 
case that merits consideration because the average 
waiting time is still low. Due to the physician 
shortage, the Ultrasound queue KPIs performed 
poorly, but it became clear that this resource is 
highly dependent on the system's overall 
performance. A second execution used the 
experiment's values with less than three resources 
and increased the number of physicians by two to 
avoid this issue. This shows that a reduction from 24 
to 21 technicians increased their efficiency from 
68.22% to 75.90% after a final general analysis 
based on the second-highest benefit. This 
resource's efficiency increased from 67.97% to 
74.33% after reducing from 28 to 25 assistants. 
From 58.89% to 67.30%, efficiency dropped from 8 
to 7 physicians. Productivity rose from 50.59% to 
72.22% when 10 secretaries were cut to 7. The 
queues' performance was only slightly affected by 
resource efficiency, but some queues performed 
better than others, advising that this last solution 
may be the most appealing. 

7. Conclusion and Future Work 
This study focused on improving the services of 
Hospital da Luz Imaging's department. To meet 
patients' demands for better service and increase 
demand, the goal was to reduce wait times. The 
metrics for minimising these wait times were 
explored in various ways to provide solutions. After 
presenting these results, the decision-maker will be 
able to choose the best option to keep the system 
running. 
The bottleneck effect on check-in activities often 
prevents exam waiting rooms from being 
overcrowded, which may be beneficial since limiting 
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the check-ins may also reduce health staff 
(technicians, assistants and physicians). After 
considering this, as seen in the last experiment, 
reducing the number of resources did not affect 
examination queue performance other than 
improving resource efficiency, so it may be 
beneficial to do so. 
As in the initial analyses of the previous chapter, the 
modeller must emphasise the importance of 
reducing the bottleneck effect to improve queue 
performance. System upgrades must be done in 
stages. If check-in delays patients, improving 
examination-related tasks is pointless. 
The last analysis demonstrated that resource 
utilisation rate for all resources is about 70%, 
indicating that 30% of the time is spent waiting to 
be allocated to activities due to a lack of patients or 
resources. Studying when these resources are most 
needed and least needed can help improve their 
efficiency even more.  
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