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Abstract

The combination of the phonocardiogram (PCG) and the electrocardiogram (ECG) allows the evaluation of the elec-
tromechanical condition of the heart and could greatly improve the accuracy of an initial cardiovascular disease diag-
nosis. In this work, the advantages of combining synchronous PCG and ECG were analyzed in depth, resulting in the
development of deep learning models for abnormality detection and in a novel prototype of an electronic stethoscope that
combines PCG and ECG sensors. The best performing models include a recurrent neural network for murmur detection
from heart sounds, which achieved a sensitivity of 82.7% and specificity of 80.1%, and a hybrid neural network based
on convolutional and recurrent neural networks for abnormality detection from multi-modal data, which reached a sen-
sitivity of 89.9% and specificity of 78.7%. The developed prototype was evaluated experimentally to assess the sensors,
the morphology of the acquired signals, and the effect of the rotation of the stethoscope head, which further extends the
state-of-the-art. It was verified that the ECG lead voltages at different angles of rotation follow Kirchhoff’s law and,
by comparing the ECG waveforms between a reference and the experimental device, the best case reached a Pearson’s
correlation coefficient of 0.928. The results demonstrate the validity of the device and the potential of combining the
two signals, establishing a foundation for further development. The accessibility and low cost of the device, combined
with automatic techniques for disease screening, should significantly facilitate its integration in healthcare facilities and
telemedicine, as well as in research and education.
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death and morbidity worldwide, lowering the quality of
life of the patients and leading to incremental long-term
healthcare costs. An early diagnosis of both congeni-
tal and acquired heart conditions, together with regular
heart monitoring, is essential to reduce the burden of these
diseases and prevent premature deaths [1]. Cardiac aus-
cultation remains the most common primary screening
method [2], since it is very simple, quick, and inexpen-
sive, and allows doctors to diagnose several cardiac con-
ditions related with the mechanical condition of the heart.

The digital recording of heart sounds is named phono-
cardiogram (PCG), and it can be obtained with a chest-
placed microphone and used for further analysis and pro-
cessing [3]. The electrocardiogram (ECG), on the other
hand, records the electrical activity of the heart and is
also one of the most common primary methods of dis-
ease screening. It is used to evaluate the electrical con-
dition of the heart and is a very powerful, non-invasive,
inexpensive, and easy to use technique. The ECG and the
PCG are concurrent phenomena, seeing that the PCG re-
sults from the mechanical operation of the heart, which
in turn relies on its electrical activation [4]. Thus, their
simultaneous acquisition and analysis comes as a natu-
ral step. If the two signals can be recorded simultane-
ously during a routine auscultation exam, it is possible to

inspect the electromechanical condition of the heart and
obtain a faster diagnosis in a straightforward way. Addi-
tionally, there are many cases where the PCG and ECG
contain mutually exclusive information about the heart’s
condition, so a combination of the two signals could also
greatly improve the accuracy of an initial screening [5].

The simultaneous acquisition of the PCG and ECG with
portable cardiac sensing systems is already a reality and
could revolutionize how we address public health policies
for cardiology. Current devices are mostly based on in-
tegrating ECG electrodes in an electronic stethoscope so
the two signals can be acquired at the same time [6]. How-
ever, most still present some limitations, which have pre-
vented their widespread implementation in clinical prac-
tice, mainly related with inadequate form factors, high
costs, or proprietary software and hardware. Advanced
signal processing and machine learning techniques for au-
tomatic disease detection have also been successfully im-
plemented for both signals, but most research still focuses
on exploiting the PCG and the ECG separately [5].

The goal of this work was to perform an in-depth re-
search on the advantages of combining synchronous PCG
and ECG for the automatic detection of heart disease dur-
ing auscultation. Through the integration of deep learn-
ing techniques with a hardware architecture for signal ac-
quisition, we hope to contribute to the development of a
robust system for the pre-screening of cardiac diseases,
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that can improve the accuracy of an initial diagnosis and
thus better inform and support the decisions of medical
professionals in clinical practice. It includes the design
and implementation of deep learning based algorithms for
classification of biosignals acquired during auscultation,
and the development of a novel open-source and low-cost
stethoscope that combines ECG and PCG sensors, over-
coming the limitations of current devices.

2. Heart Disease Detection with ECG and PCG
Given the success of deep learning approaches for PCG
and ECG classification, the first part of this work focuses
on the application of deep neural networks, namely con-
volutional neural networks (CNNs), recurrent neural net-
works (RNNs) and hybrid models, to two different tasks:
detection of murmurs and clinical outcome from PCG sig-
nals (Section 2.1), and abnormality classification based on
simultaneous PCG and ECG data (Section 2.2).

2.1. Heart Murmur Detection
The goal of the George B. Moody Physionet Challenge
2022 was to develop an automatic method that could iden-
tify the Present, Absent or Unknown cases of murmurs
and the Normal or Abnormal clinical outcome from heart
sound recordings collected from multiple auscultation lo-
cations using a digital stethoscope. It should be noted that
the labels correspond to the patient, and not to the record-
ings, so it is possible that a patient in the Present class has
recordings where no murmurs have been detected.

The challenge used the CirCor DigiScope dataset,
which consists of 5272 PCG recordings from 1568 pa-
tients. This dataset was divided into training, validation,
and test sets, with 60%, 10%, and 30% of the data, respec-
tively. The training set was publicly released, while the
validation and test sets were hidden and used to evaluate
the entries of the challenge [7]. This is the largest publicly
available heart sound dataset and, although it doesn’t in-
clude recordings of simultaneous ECGs, it could help sig-
nificantly enhance the characterization and classification
of the heart sounds, and consequently improve automatic
CVD diagnosis based on auscultation.

To evaluate the performance of the algorithms, two
metrics were introduced. In the murmur detection task,
the evaluation was done with a weighted accuracy metric
that assigns more weight to patients that have or poten-
tially have murmurs than to patients that do not have mur-
murs; in outcome detection, a cost metric that reflects the
cost of screening, treatment, and of missed diagnosis was
used. For more details we refer the reader to [7].

Preprocessing
Initially, all PCG signals were filtered using a 2nd order
Butterworth bandpass filter with cutoff frequencies of 25
and 400 Hz and went through a spike removal process, to
remove unwanted noise and friction spikes [8]. Prior to
feature extraction, each recording was decomposed into
smaller fixed-length segments of 4-seconds. These seg-

ments still contain multiple cardiac cycles and enough in-
formation for the models to learn, and at the same time are
small enough to allow a significant increase in the amount
of training data to build a more robust model [9]. To deal
with the class imbalance in the murmur detection task,
the minority classes (Present and Unknown) were over-
sampled by extracting their segments with 75% overlap.
Recordings from patients in the Present class without an
audible murmur were excluded from training.

For each segment, the static, delta, and delta-delta Mel
frequency spectral coefficients (MFCCs) were extracted
as spectral features, that capture the frequency content of
the signals; and the homomorphic, Hilbert, power spectral
density, and wavelet envelopes were extracted as tempo-
ral features, which capture the variability in morphology.
These envelopes have a sampling frequency of 50 Hz and
were extracted using the method described in [10].

Neural Network Architectures
Three different neural network architectures were em-
ployed for the heart sounds classification: a CNN, which
receives the static, delta, and delta-delta MFCCs orga-
nized into an array with three channels as input; a RNN
consisting of two stacked bidirectional Long Short-Term
Memory (BiLSTM) layers with 64 units, that are able to
process the long distance dependencies in the data and re-
ceive the four envelopes of the PCG signal as input; and
a hybrid neural network obtained by combining the CNN
and RNN as parallel blocks. With this multi-input hybrid
model, the two blocks can complement each other, with
the CNN extracting the most relevant spectral features in
the signal and the RNN extracting the morphological and
temporal information.

In the last layer, the softmax activation function was
used for the murmur multiclass classification and the sig-
moid activation function for the outcome binary classifi-
cation. A diagram of the models is presented in Figure 1.

The model was trained using the SGD optimizer and
cross-entropy loss, with a learning rate of 10−3 and mo-
mentum of 0.9. A weighing was applied to the loss func-
tion to make the model pay more attention to the under-
represented classes. To avoid overfitting, early stopping
was used to monitor the loss of the model on a valida-
tion set, obtained by randomly dividing the training data
in each fold into 90% for training and 10% for validation.

The evaluation of the performance of the models was
done using 5-fold cross validation. In order to obtain the
final labels, it was necessary to take into account that these
tasks are both cases of multiple-instance classification,
given that each patient is represented by a set of instances
(i.e. the recordings from the different auscultation loca-
tions), but it is only the patient that carries the labels. The
models were trained on individual recordings and then the
instance-level decisions were combined, assuming that a
positive label contains at least one positive instance. The
final labels for each patient were therefore generated by
selecting the label of the recording with the highest prob-
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Figure 1: Hybrid CNN and LSTM architecture used for PCG classification.

ability for the positive class.

Results
In Tables 1 and 2 the performance and challenge metrics
using the different neural networks are presented for the
murmur detection and outcome prediction tasks.

The architecture that reached the best performance in
murmur detection was the BiLSTM. It has a high speci-
ficity and high sensitivity for the Present class, but a low
sensitivity for the Unknown class. A possible explanation
for this is the low sample size, since the Unknown class
only represents 7.2% of the data, which could make its
instances too varied for the model to learn in a way that
can be generalized for new examples. Another possibility
is the fact that the model could be able to reliably identify
the presence or absence of murmurs in these signals, since
the Unknown label is only an indicator of the recordings’
inferior signal quality [7].

All the tested models had poor results in the outcome
prediction task, with a low specificity and sensitivity. This
could be because the outcome labels result from an overall
assessment of the patient’s condition, which is based on
multiple examinations (including clinical history, physical
examination, and echocardiogram) and not just on auscul-
tation data. It is possible that some of the abnormalities
cannot be identified just from the heart sound recordings,
meaning that the signals do not contain all the information
that is necessary for the neural networks to learn.

Given these results, for scoring and ranking on the chal-
lenge the chosen model was the one based on the BiLSTM
architecture. The scores and ranks for each task are pre-
sented in Table 3. The model showed promising perfor-
mance in the detection of murmurs, with scores in the of-
ficial hidden validation and test sets being superior to the
scores obtained with cross-validation on the public data.

2.2. Heart Abnormality Detection from the ECG
and PCG

The goal of the PhysioNet/CinC challenge 2016 was
to develop an algorithm to automatically classify PCG
recordings as normal or abnormal. It assembled eight

databases from different sources, including the MIT heart
sounds database (MITHSDB). The MITHSDB is the only
public database with simultaneous PCG and ECG record-
ings, and it includes 405 samples from 121 subjects,
meaning that each patient contributed with more than one
recording. The dataset is unbalanced when considering a
binary classification: about 32.6% of the data are consid-
ered normal, while 71.4% are considered abnormal [11].

Given the low sample size in the MITHSDB, the strat-
egy to develop an algorithm for heart abnormality detec-
tion based on the multi-modal signals was to first apply
the method described on the previous section to the en-
tire PhysioNet/CinC challenge 2016 database (to deter-
mine the best performing neural network for PCG abnor-
mality detection), and then to evaluate whether adding the
ECG information improves the classification performance
in the MITHSDB.

Since all the recordings in the PhysioNet/CinC chal-
lenge 2016 database are treated as independent samples,
the final labels were obtained per recording instead of per
patient as in the previous task. The results are presented in
Table 4, and the top performance metrics are in line with
the methods in the state-of-the-art applied to the same
dataset. The best performing models are the CNN and
hybrid architectures, contrary to the results obtained for
murmur detection. It can also be seen that the improve-
ment in performance obtained from adding the parallel
LSTM block was not significant, and that the CNN has
the best sensitivity. For these reasons, the chosen model
for evaluation on the MITHSDB was the CNN.

Multi-modal Signal Classification
RNNs are able to capture the temporal dependencies in
the raw ECG signals without any feature extraction steps.
The chosen approach was therefore to combine the CNN
for the PCG classification with a parallel BiLSTM for
ECG classification in a hybrid neural network, in order
to verify whether the combination of the two signals en-
hances the classification performance. Each ECG signal
was filtered using a 100th-order band-pass FIR filter with
cutoff frequencies of 0.5 Hz and 50 Hz and then normal-
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Table 1: Performance metrics from multiclass PCG murmur classification obtained for each neural network architecture. The positive predictive
value and the F1 score refer to the Present class. Best results are in bold.

Accuracy
(%)

Sensitivity
(Present) %

Sensitivity
(Unknown) %

Specificity
(%)

Positive P.
Value (%)

F1 score
(%)

Weighted
Accuracy (%)

CNN 68.1±6.2 82.1±4.4 14.7±6.7 69.8±8.5 46.0±8.7 59.5±7.6 58.3±3.4
LSTM 77.1±1.9 82.7±3.7 31.2±11.9 80.1±3.1 58.4±4.3 68.3±3.0 65.25±4.3
Hybrid 72.2±5.2 81.0±3.1 29.3±9.9 78.1±1.7 57.9±4.3 67.4±2.8 63.45±3.7

Table 2: Performance metrics from PCG clinical outcome classification obtained for each neural network architecture. Best results are in bold.

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Positive P.
Value (%)

F1 score
(%) Cost

CNN 59.9±3.0 68.2±7.2 52.1±5.7 57.2±2.7 62.1±3.8 12021±953
LSTM 62.6±3.3 61.4±6.7 63.8±9.0 62.2±4.5 61.3±2.4 12875±963
Hybrid 60.9±4.7 63.4±5.1 58.7±7.2 59.2±5.1 61.1±4.4 12565±911

Table 3: Challenge metrics for both classification tasks. 5-fold cross
validation was used on the public training set, with repeated scoring on
the hidden validation set and one-time scoring on the hidden test set.

Training Validation Test Ranking
Murmurs 0.652±0.043 0.751 0.757 6/40

Outcomes 12875±963 11222 13815 25/39

ized and downsampled to a sampling frequency of 100
Hz.

The used neural network was similar to the one in Fig-
ure 1 for the binary classification. It was trained with
MFCC features of PCG segments at the input of the CNN
block, and with the filtered and normalized raw ECG seg-
ments at the input of the BiLSTM block. The length of
the segments was equal to 4 seconds, and these were ex-
tracted with 75% overlap for the minority class.

Results

In Table 5 the performance metrics for uni- and multi-
modal signal classification are presented. It is quite clear
that the performance using the multi-modal signals is su-
perior to that of the single modalities, and the results are
in line with the ones of other deep learning methods in the
state-of-the-art [5]. However, unlike the methods applied
to uni-modal ECG and PCG classification, the proposed
approach and the other deep learning based methods still
don’t outperform traditional machine learning methods
with handcrafted features. This is likely due to the small
amount of available data, since deep learning approaches
are highly affected by limited datasets. Due to this con-
straint, the results should be interpreted in a tentative way
since, as was mentioned, there is not only a low sam-
ple size, but many samples come from the same patient
and are treated independently, which could lead to over-
fitting and an overestimation of the models’ performance.
Nonetheless, this analysis showed the potential of com-
bining the two signals to detect cardiac abnormalities and
provides a good reference for future applications and de-
velopment.

Larger and more representative datasets are necessary
to train and implement deep learning classifiers that can

fully take advantage of the complementary information
in the two modalities. However, devices that are capa-
ble of simultaneous PCG and ECG acquisition are still
not widely used due to multiple limiting factors. In order
to build more robust classification methods, it is first nec-
essary to develop hardware architectures that can record
the synchronous PCG and ECG and overcome the current
usability constraints. This motivated the development of a
novel hardware prototype based on a low-cost and open-
source stethoscope, which is described in Section 3.

3. Novel Electronic Stethoscope for Simultaneous
ECG and PCG Acquisition

In this section, a novel electronic stethoscope for simulta-
neous electrocardiography and phonocardiography during
auscultation is proposed.

A core aspect when combining ECG and PCG for dis-
ease diagnostic is the temporal synchronization of both
signals. Previous work has found restrictions associated
with retrofitting external sensors to existing digital stetho-
scopes [6; 12]. To gain more control over the construc-
tion and sensor integration, this work builds upon the Glia
stethoscope to devise an end-to-end design of a novel
form factor, without significantly changing the standard
form factor. The Glia stethoscope1 is an open-source 3D-
printed acoustic stethoscope that is research-validated and
operates as well as a Littmann Cardiology III (considered
a gold-standard device [13]). It is composed of six dif-
ferent 3D printed parts, the most relevant ones being the
stethoscope head and a ring to attach the diaphragm.

In this work, Glia’s design was adapted to include
phonocardiography and electrocardiography sensing ca-
pabilities, while keeping it open-source, with a low-cost,
and ensuring that the acoustic properties of the model
aren’t significantly altered. The form factor of the device
was also considered, so it could be used similarly to stan-
dard auscultation stethoscopes. As such, the stethoscope
head was adapted to include PCG and ECG sensors, with
3D-printed polymer based dry electrodes attached to the
ring.

1https://github.com/GliaX/Stethoscope
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Table 4: Performance metrics from PCG classification obtained for each neural network architecture. Best results are in bold.

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Positive P.
Value (%)

F1 score
(%)

CNN 88.5±1.0 92.8±1.5 87.3±1.3 65.5±2.3 76.8±1.7
LSTM 79.7±4.3 90.8±3.2 76.8±5.8 50.9±5.0 65.0±4.3
Hybrid 88.7±0.9 92.3±2.3 87.8±0.5 66.2±1.5 77.1±1.8

Table 5: Performance metrics from multi-modal signal classification obtained for different signal combinations. Best results are in bold.

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Positive P.
Value (%)

F1 score
(%)

Only PCG 72.8±2.5 77.4±3.9 61.5±7.5 83.3±2.2 80.2±2.1
Only ECG 84.7±1.5 88.2±2.5 76.2±8.6 90.2±3.3 89.1±0.9

Simultaneous ECG + PCG 86.7±4.0 89.9±3.9 78.7±9.3 91.3±3.7 90.5±2.9

Figure 2: Modified stethoscope head with hole for the electret micro-
phone (top) and modified ring and half-moon ECG electrodes (bottom).

3.1. Form Factor
The aim was to preserve the standard analog auscultation
feature of the stethoscope, to avoid creating barriers in the
interaction between the end-user (the physician) and the
device [12]. As such, to integrate the PCG sensor, the
stethoscope head was modified by adding a small hole in
the back (Figure 2), with the same diameter as an electret
microphone. With this approach, the sound will still travel
through the silicone tubes and ear pieces to be listened
to by the doctor during the auscultation procedure, while
simultaneously being recorded.

To allow ECG sensing capabilities, two 3D-printed dry
electrodes with a half-moon shape were added to the side
of the stethoscope head, attached to an altered ring (Fig-
ure 2). This design had several advantages, namely: 1) the
fact that there was no need to alter the diaphragm of the
original stethoscope, which is essential to ensure the qual-
ity and intensity of the sound reaching the earpiece and the
sensor microphone; 2) a higher inter-electrode distance,
which leads to a higher signal magnitude; 3) a higher
electrode conductance due to the increased surface area
granted by the half-moon shape, which leads to higher
SNR and reduced motion artifacts [14]; and 4) better er-

Figure 3: Photo of the developed device.

gonomics, since by fitting the electrodes along the ring the
shape of the standard stethoscope isn’t being modified.

The modified stethoscope parts (ring and stethoscope
head) were printed using polylactic acid (PLA) filaments.
For the ECG dry electrodes the electrical conductivity
of the material also had to considered, reason for which
the Protopasta Conductive PLA (ProtoPlant, Inc) material
was chosen, as it combines PLA with carbon black. The
electrical interface between the electrodes and the ECG
sensor was done by fusing each wire to the material with
heat, which has been tested and validated in [15]. The
final device is presented in Figure 3.

3.2. Instrumentation
For data acquisition and Bluetooth wireless streaming, a
novel acquisition system named ScientISST SENSE2 was
used. It is based on the ESP32 microcontroller architec-
ture and allows multi-channel sampling with high time
(up to 16 kHz) and amplitude (12-bit) resolution. It was
coupled with two sensors, one for each signal modality:

•A ScientISST ECG sensor [16], which has already
been validated in previous studies [17]. It has a gain of
1100 and applies a bandpass filter with cut-off frequen-
cies of 0.5 Hz and 40 Hz. It was used with a virtual ground
configuration to measure a single-lead ECG.

•A novel PCG sensor based on an audio amplification
circuit that uses an electret microphone and the LM4861
amplifier, which has a gain of 40 and applies a bandpass
filter with cut-off frequencies of approximately 21 Hz and
408 Hz (which were chosen based on the frequency con-
tent of the heart sounds).

2https://www.scientisst.com/sense
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Figure 4: Frequency responses of the Glia stethoscope with the original
head and altered heads, for the frequencies of interest in PCG signals.

The SENSE Web App3 was used to record the data on
a base station. Both signal modalities were acquired with
a sampling frequency of 2000 Hz.

A total of 19 multi-modal signals were collected from
18 volunteers, 50% of which were female. One person
had a previous diagnosis of arrhythmia, and in terms of
age distribution 3 participants belonged to the age bracket
of 18-24 years, 1 to 25-34 years, 8 to 35-44 years, 1 to 45-
54 years, 3 to 55-64 years, and 2 were over 65 years old.
Initially the relevant demographic and clinical history data
were collected, and after that a simultaneous PCG and
ECG were recorded using the proposed device, with the
subjects seated and at rest. Written consent was obtained
for the participants, and all data was treated anonymously.

3.3. Acoustic Transfer
To verify that the acoustic properties of the stethoscope
weren’t significantly altered, the frequency response of
the proposed device was evaluated with the same exper-
imental setup that was used to compare the frequency
response of the Glia stethoscope with the one of the
Littmann Cardiology III (described in [13]). A latex bal-
loon was filled with 2 liters of water and used as a phan-
tom, where both the proposed electronic stethoscope with
the altered head and the original Glia stethoscope were
applied. The phantom excitations were done by an exter-
nal speaker which was in contact with the balloon, and
white noise with frequencies between 0 and 5000 Hz was
played for 15 seconds.

The output of the stethoscope was recorded by a mi-
crophone placed at the end of the silicone tube that con-
nects the stethoscope head to the earpieces. This experi-
ment was repeated three times, and the average frequency
responses are presented in Figure 4. In the low and mid-
frequency ranges the devices performed similarly, empha-
sizing the lower frequency regions between 50 and 200
Hz, with a slight roll-off in the higher frequencies.

3.4. Heart Rate and Auscultation Points
Before further analysis, the acquired signals were filtered
using a FIR filter with order equal to half of the sampling
frequency, with cutoff frequencies of 0.5 and 40 Hz for

3https://sense.scientisst.com

Figure 5: Scatter plots comparing ECG and PCG average heart rates
before (top) and after (bottom) artifact removal. The dashed line repre-
sents an equal heart rate in both signals. The outlier signals that were
corrected are shown in black.

the ECG and of 25 and 400 Hz for the PCG.
To evaluate the concurrence between the signals, the

average heart rates calculated for the PCG and ECG were
compared for all subjects. In Figure 5, it can be veri-
fied that there is a high agreement between the measure-
ments, although there are a few outliers. They correspond
to subjects that had an ECG signal with regions highly
corrupted by artifacts, where several R-peaks were erro-
neously identified. After removing these sections and re-
calculating the average heart rates for the resulting seg-
ments, the ECG-derived heart rates become much closer
to the heart rates calculated for the PCG.

As the stethoscope head is placed on different ausculta-
tion points, the heart’s electrical axis will be viewed from
different perspectives and, as such, the morphology of the
recorded ECG waves will be different. This is clear in Fig-
ure 6, where alterations can also be seen in the PCG sig-
nal. S1 and S2 are present in all the signals, as expected,
but depending on the area of the chest and its closeness
to each heart valve, the stethoscope will amplify the car-
diac sounds differently. By rotating the stethoscope head
on the same auscultation point the effect on the ECG will
be similar, i.e, since the electrode’s position is changing,
the signal will record the heart’s electrical activity from
a different perspective. The main fiducial points in the
two signals can be clearly identified, and it is possible to
verify their alignment: the S1 sound occurs immediately
after the R-peak, and the S2 sound immediately after the
end of the T-wave.
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Figure 6: Example of ECG and PCG signals acquired with the stethoscope head at the different auscultation points.

3.5. ECG Leads Characterization
The Einthoven limb leads (Leads I, II, and III) and their
corresponding definitions are represented in Figure 7(a).
This lead system is based on the assumption that the car-
diac sources are represented by a dipole p̄ located at the
center of the equilateral triangle. Thus, the voltages mea-
sured by the three limb leads are proportional to the pro-
jections of the electric heart vector on the sides of the lead
vector triangle [18]. Considering this, we have:

VI = pcos(α) = py (1)

VII =
p
2

cos(α)−
√

3
2

sinα = 0.5py −0.87pz (2)

VIII =−
√

p
2

cos(α)−
√

3
2

psin(α) =−0.5py −0.87pz

(3)
and we can verify that Kirchhoff’s voltage law is satisfied:

VI +VIII =
p
2

cos(α)−
√

3
2

sinα =VII (4)

The same assumption can be made for the ECG leads
measured with the stethoscope on the chest, since they
are in the frontal plane. To verify that the ECG leads ob-
tained at different rotations also follow Kirchhoff’s law,
eight signals were collected by rotating the stethoscope
head counterclockwise in increments of 45º (Figure 7(b)).
This data collection was performed always on the same
auscultation point, on the left third intercostal space. Us-
ing the notation from Figure 8 we have, for example:

V0◦ = pcos(α) = py (5)

V90◦ = psin(α) = pz (6)

V45◦ =

√
2

2
(pcos(α)+ psin(α)) =

√
2

2
(V0◦ +V90◦) (7)

To compare the heartbeat waveform morphology, the
ECG signals were segmented into individual beats by
clipping the signals around the detected R-peaks (at -200
and 400 ms). Then, the DBSCAN algorithm was applied

(a)

(b)

Figure 7: a) Einthoven limb leads and Einthoven triangle. ΦL and ΦR
are the potentials at the left and right arms, and ΦF is the potential at the
right leg [18]. b) ECG waveforms of leads measured at different angles
of rotation of the stethoscope head, relative to the frontal plane.

to detect the outlier beat waveforms, which were excluded
from the analysis. The cosine distance metric was used,
with a maximum distance between samples equal to 0.06
and a minimum number of samples per cluster equal to 2.

The Mean Squared Error (MSE) and Pearson’s cor-
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Figure 8: Example of heartbeat waveforms of experimental leads measured at different rotation angles and the equivalent waveforms obtained
through Kirchhoff’s law (from the adjacent ECG leads, at ± 45º).

Table 6: PCC and MSE between heartbeat waveforms of experimental
single-lead ECG at different rotation angles and the equivalent wave-
forms obtained through Kirchhoff’s law (from adjacent leads at ± 45º)

Angle PCC MSE
0º 0.948±0.021 2.81E-3±1.19E-3

45º 0.424±0.210 3.99E-3±1.01E-3
90º 0.974±0.012 3.31E-3±1.11E-3
135º 0.991±0.005 1.49E-3±7.99E-4
180º 0.967±0.015 3.80E-3±2.22E-3
225º 0.243±0.264 4.55E-3±1.81E-3
270º 0.985±0.007 1.35E-3±5.71E-4
315º 0.992±0.005 1.28E-3±7.27E-4

Table 7: PCC and MSE between heartbeat waveforms of experimental
ECGs at different rotation angles and the equivalent waveforms obtained
through Kirchhoff’s law (from the adjacent two lead ECG pair).

Angle PCC MSE
0º+270º = 315º 0.975±0.014 3.93E-3±1.79E-3

45º+315º = 0º 0.959±0.011 8.32E-3±3.61E-3
180º+90º = 135º 0.994±0.002 4.18E-3±2.91E-4

225º+135º = 180º 0.967±0.004 5.51E-3±4.51E-4

relation coefficient (PCC) were calculated between the
heartbeat waveforms of the experimental leads at differ-
ent rotation angles and the equivalent waveforms obtained
through Kirchhoff’s law (from the adjacent ECG leads, at
± 45º). The results are presented in Table 6, and are in ac-
cordance with what can be observed in Figure 8. All the
leads have a very high correlation and a low MSE, except
for the ones obtained at rotation angles of 45º and 225º,
which have low correlation coefficients. The most likely
explanation for this is the fact that the peaks of the adja-
cent ECG leads at ± 45º have opposite signals and, when
combining the waves, the signal amplitudes cancel each
other, which makes the resulting morphology more sen-
sitive to small angle changes. As expected, these signals
also have a much lower amplitude than the other leads.

This shows that the ECG leads measured with the
stethoscope follow Kirchhoff’s law, similarly to the
Einthoven leads. Therefore, to evaluate all the frontal
plane components of the heart’s electrical activity it is
only necessary to perform two acquisitions in the same
auscultation point with the stethoscope head at different
angles. As a result, the design was further enhanced by
adding two additional dry ECG electrodes perpendicular
to the current ones, allowing the recording of two ECG
leads at the same time to obtain a full view of the frontal
plane components with a single acquisition.

Figure 9: Disposition and polarity of two pairs of ECG dry electrodes
on the stethoscope head, for the acquisition of two ECG leads.

A preliminary evaluation to validate this modified de-
sign was done by splitting each half-moon electrode part
into two separate electrodes, for a total of four electrodes
on the stethoscope head. The positive electrodes were
placed at the left and bottom sides (Figure 9). Four acqui-
sitions were performed by rotating the stethoscope head
counterclockwise at the angles of 0º, 45º, 180º, and 225º.
Since there are two perpendicular ECG leads, these mea-
surements correspond to a total of eight signals that span
all the angles of rotation represented in Figure 7(b).

Considering the polarity of the ECG electrodes on the
stethoscope head, the acquired lead pairs are: 0º and 270º;
45º and 315º; 180º and 90º; 225º and 135º. The results
of Table 7 show that it is possible to compute additional
leads from the two ECG leads measured perpendicularly.
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The calculated waveforms have a high correlation and
low MSE when compared with the experimental measure-
ments, although the results were slightly worse than the
ones obtained for the single ECG leads (Table 6). This
could be because the electrode parts used in this initial
study aren’t completely symmetrical. By designing new
electrodes with a symmetrical shape, the correlation be-
tween the acquired and computed signals should increase.

3.6. Comparison with Lead I
The same protocol was used to compare the waveforms
of the ECG leads obtained at different angles of rotation
with the ones of the standard Lead I, which was acquired
simultaneously. All the rotation angles had a high corre-
lation with the Lead I channel, as presented in Table 8.
Surprisingly, the leads with the highest correlation were
the ones obtained in the vertical axis at 270º and 90º, in-
stead of the ones obtained in the same direction as Lead
I, in the horizontal axis. A possible explanation is that
the lead vectors created by the electrodes of the device
(which are placed at a short distance from each other on
the chest) don’t span the same volume as the electrodes of
Lead I (which are placed on the right and left arms). The
projections of the electric heart vector on the lead vector
will therefore be different, altering the morphology of the
measured ECG signals. Nonetheless, this high correlation
suggests that the ECG leads measured with the proposed
device are clinically meaningful.

Table 8: PCC and MSE between heartbeat waveforms of reference Lead
I channel and experimental leads at different rotation angles.

Angle PCC MSE
0º 0.876±0.026 0.166±0.049
45º -0.854±0.020 2.609±0.409
90º -0.922±0.016 2.464±0.262

135º -0.887±0.015 2.471±0.209
180º -0.875±0.015 2.463±0.262
225º 0.812±0.020 0.228±0.055
270º 0.928±0.007 0.093±0.014
315º 0.870±0.014 0.186±0.030

3.7. Discussion
These results show that the PCG and ECG are adequately
acquired. By using the proposed device on a standard aus-
cultation procedure (through the 5 auscultation points), it
would be possible to record 5 ECG leads that view the
electrical activity of the heart from different perspectives
and 5 PCG signals that will reflect the function of the dif-
ferent heart valves. This provides a high amount of addi-
tional information without altering the clinical routine.

An important contribution of this work is the experi-
mental evaluation of the relationships between the leads
obtained at different angles, which fills an existing gap
in the state-of-the-art. They all have a high correlation
with Lead I, suggesting that they all contain meaningful
information for CVD screening. It was also found that the
ECG leads measured with the stethoscope follow Kirch-

hoff’s law, similarly to the Einthoven leads. A prelimi-
nary evaluation was done by recording two ECG leads at
the same time with the original electrodes split in two, and
it was found that it is possible to calculate additional ECG
leads in the frontal plane from just one acquisition. This
motivates the creation of a new design for the electrodes,
to have four identical parts along the stethoscope’s head.

4. Conclusions
Combining ECG and PCG acquisition in the same device
allows the simultaneous inspection of the electrical and
mechanical condition of the heart, further improving the
accuracy of the heart disease diagnosis. The approach
developed in this work enables this by incorporating
ECG and PCG sensors in a validated 3D-printed acoustic
stethoscope without significantly altering its form factor
or acoustic transfer properties, which facilitates the inte-
gration of the new device in current clinical practice.

The implementation of deep learning architectures
for classification of signals acquired during auscultation
showed promising results in different tasks, including
murmur detection from heart sounds and abnormality de-
tection from multi-modal PCG and ECG data. In the lat-
ter, the developed hybrid neural network based on parallel
CNN and RNN blocks had a performance at the level of
other state-of-the-art methods, with a F1 score of 90.5%.

Overall, this evaluation demonstrated promising results
for further work. The low-cost, portability, and simplicity
of the proposed device, allied with computer-aided and
deep learning techniques for automatic diagnosis, could
significantly facilitate the early screening of CVDs. We
believe this system would have the biggest impact in pri-
mary care facilities as part of the auscultation routine, in
telemedicine, or in areas with difficult access to an inte-
grated health system, where an automatic screening tool
that isn’t dependent on trained professionals could signifi-
cantly reduce the mortality and morbidity associated with
both congenital and acquired cardiopathies. Furthermore,
the device is open-source, which makes it more accessible
and easily upgradeable. The ability to collaborate, share
the technology, and save the acquired signals for further
analysis and model development could also make the de-
vice an important tool in both research and education.

5. Future Work
This work has established a basis for further development.
Regarding the developed prototype, the next step should
be a full, comprehensive evaluation of the device in a real-
world setting, with both healthy subjects and patients with
diagnosed cardiovascular pathologies. It is especially im-
portant to do this evaluation in comparison with standard
medical tools for cardiac monitoring (such as the 12-lead
ECG), in order to validate the clinical usefulness of the
new device. An application has already been made to the
health ethics committee of Centro Hospitalar Vila Nova
de Gaia/Espinho (CHVNG/E) to evaluate the device and
sensors in a hospital environment with cardiac patients.
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This can also be articulated with the development of
new datasets for the training of deep learning algorithms
for automatic CVD screening based on the multi-modal
data. With a larger dataset and more detailed annotations,
it is expected that the performance of the current deep
learning models will significantly increase, and also that
they will be able to generalize better for new examples.

More improvements could be done by combining the
current models with attention layers, which would not
only improve the models’ performance (since the neural
networks would be able to better extract the most rele-
vant features in the signals and better estimate their con-
tribution for the final classification), but also enhance the
interpretability and explainability of the results, which is
highly relevant in healthcare applications.
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