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Abstract—In this work, we disclose an artificial neural network
(ANN) classifier for the automatic distinction between labeled
targets/analytes and clusters of the labeling magnetic nanopar-
ticles (MNP). The signals are acquired in a magnetic cytometer
composed of a disposable cartridge and an acquisition platform.
The disposable cartridge employs a microfluidic channel with a
10ˆ100 µm2 section on top of a silicon substrate where GMR
sensors are deposited. We demonstrate that despite the signals
from clusters and marked targets intersecting in the feature space
if only amplitude and length are considered, an ANN classifier
is able to differentiate them if all the samples from the pulse
are used as inputs. We explain how the ANN was trained to
be generalized for different sampling frequencies. Finally, we
explore the relation between classifier accuracy and variables
like the number of particles, signal noise, and maximum channel
height.

Index Terms—Magnetic Cytometry, Low noise, Machine
Learning, Oversampling

I. INTRODUCTION

A. Magnetic Flow Cytometer

The magnetic flow cytometer (MFC) is used to count a
specific analyte in which a sample is present. For example,
to count and identify cancer cells in a blood sample, these
analytes are the cancer cells. But since a blood sample does not
contain magnetic nature, the cancer cells cannot be identified.
Therefore, a process, through which the sample must pass, is
necessary, so that analytes became magnetic.

In this process, magnetic nanoparticles (MNP) are mixed in
the solution and will bond to the specific marker. Depending
on some factors, like efficiency, the number of target cells
contained in the sample, and others, some or several MNP
may remain free in the sample. The resulting mixture contains
the original solution with the marked cells and free MNP. This
free MNP that did not bind to targets of interest, end up joining
forming clusters.

B. Cluster’s Problem

After the sampling process described before, the sample can
be introduced in the MFC, and the magnetic field produced
by the magnetic particles is gradually picked up by the
magnetoresistive sensors (MR) sensors (Figure 1).

Since, in addition to the labeled analyte being present in
the sample, clusters are also present, and thus the resulting
magnetic field also contains data from the clusters. This

interference of free magnetic labels on the detection signals of
magnetically labelled targets may lead to a false positive. For
this reason, it is important to try to differentiate both signals
as much as possible.

Fig. 1. Interaction between the MR sensor and a particle that crosses the
channel of a cytometer.

II. SIMULATIONS

A. MNP Simulation

It is known that the signal of the magnetic field of the
magnetic particles detected by the MR sensors in the cytometer
has a specific signature and that it resembles the Gaussian
pulse [Figure 2], or its derivates depending on the particle
magnetization angle.

With the advancement of some works [1] [2], it was possible
to assume that an MNP can be modeled using the simulation of



Fig. 2. Illustration of Gaussian Pulse and its derivates.

the magnetic dipole. The equation 1 represents the integral of
the magnetic field [in Oe] produced by the magnetic dipole in
the sensitive axis pxq of the sensor used in this simulation. x0

and y0 represent the center of the sensor, l and w represent the
length and width of the sensor, θ represents the magnetization
angle, and x and y represent the position of the center of the
dipole relative to the center of the sensor.
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The simulation of an MNP with 2 µm of diameter is repre-

sented in Figure 3a). It is possible to see that the simulation
of a particle produces a signature close to what is a Gaussian
monocycle pulse, as mentioned before. Figure 3b) represents
the simulations for a particle traveling in the center of the
channel with the height’s parametric sweep range from 3 to
15µm, relative to the plane perpendicular to the channel’s base,
and direction of flow.

B. Cell Simulation

Based on the confirmation that the dipole simulation can
be used to describe the comportment of an MNP, it is now
possible to simulate the MNPs around a cell.

Through Figure 4, it is possible to observe the result of the
simulation that uses a sphere to represent a cell with 10 µm
of diameter and an algorithm was performed that randomly
distributes points along the spherical surface (blue dots), thus
representing the MNPs distributed around the cell.

Using this cell position simulation combined with the MNP
simulation described in section II-A, it is possible to simulate
a cell, as it possible do see from Figure 5 that shows the
simulation of 15 particles randomly arranged on the spherical
surface of a cell, as well as the signal resulting from the sum
of all particles. The cell has 10 µm of diameter and is located
at a height (z) of 6 µm.

Fig. 3. Representation of the simulation of a single MNP: a) 1 MNP at 5
µm of height; b) 1 MNP at 10 different heights from 3 µm to 15 µm.

Fig. 4. Simulation of a cell with 10 µm of diameter and 20 particles (blue
dots) on its spherical surface randomly distributed.

It is possible to observe that the MNPs are at different
distances from the center of the sensor, to the x-axis, and as
they are also located at different heights (z-axis), the MNPs
that are closer to the sensor have a bigger magnetic field than
those that are further away.

C. Cluster Simulation

Clusters are sets of MNPs that never came together with
the analytes/cells present in the samples, and that, therefore,
end up joining each other.



Fig. 5. Simulation of 15 MNP around a cell with 10 µm diameter, located
at 6 µm of height. Above, the representation of each particle, below, the
representation of the sum of the simulated particles.

To simulate the clusters, it is necessary to define how they
are grouped. Assuming that MNPs are spheres, it is possible
to use the packing of spheres as a grouping method. In geom-
etry, a sphere packing is an arrangement of non-overlapping
spheres within a containing space. The spheres considered are
usually all of identical sizes, and the space is usually three-
dimensional Euclidean space. There are two main methods of
sphere packing, square packing, and hexagonal packing. Both
are represented in Figure 6.

Fig. 6. Square Packing representation for circles (MNPs).

The chosen method used to simulate clusters was square
packing, because, although it is a method that uses more free
space than hexagonal packing, it is easier to implement, since
if we define a main sphere/MNP, with 2 µm of diameter, placed
in a certain position, all the others are situated at a distance
of 2 µm in all x, y, z directions from the main one.

In Figure 7 is represented the simulation of a cluster with
15 MNP using the square packing.

It is possible to conclude that, unlike cell simulation, in
cluster simulation, the MNPs, from the point of view of the x-
axis, are more close to each other and they have all spaced the
same distance, which in this case is 2 µm which corresponds to
the diameter size of the particle. This happens because in this
case there are no cells between the particles, and therefore they
are closer to each other. For this reason, it is natural that the
signals from the cluster simulation have a greater amplitude
because as the distance between the particles is smaller, the

Fig. 7. Cluster Simulation located at 6 µm of height for 15 particles using
square packing.

sensor detects a higher magnetic field when the particles pass
through it.

III. SIMULATION RESULTS

A. Cell vs Cluster Simulation

One way to compare and differentiate the signals from
the simulation of cells and clusters is to observe the two
signals simultaneously when subjected to the same conditions
of particle numbers and heights in relation to the sensor’s
plane. The following Figure 8 shows the simulated signals of
cells and clusters for the same number of particles (15 MNP)
with a height (from the center of the cell/cluster to the plane
of the sensor) relatively close to the sensor (6 µm).

Fig. 8. Cell vs Cluster Simulation signals for 15 MNP located at 6 µm of
height to the plane of the sensor.

From this Figure 8 it is possible to conclude that the
magnetic field signal coming from the cluster simulation
(green signal) has a greater amplitude in comparison to the
cell simulation (blue signal). To compare both signals with a
different perspective, Figure 9 represents the same signals but
for a distance further from the sensor plane (10 µm).

It is possible to observe that the smaller the distance in
height of the particles to the sensor’s plane, the greater the
amplitude of the signal. The reason is because the magnetic
field produced by the particles, felt by the sensor, is stronger,
once the magnetic particle is closer to the center of the sensor.
It is possible to conclude that the simulations seem to correctly
demonstrate what happens in reality.



Fig. 9. Cell vs Cluster Simulation signals for 15 MNP located at 10 µm of
height to the plane of the sensor.

IV. ADDING NOISE TO SIMULATIONS

Although the simulation results seem acceptable and similar
to what is expected from the real signals, the absence of the
noise signal in the simulation can be a negative point for the
artificial neural network’s results, because the signal resulting
from the interaction of the magnetic particles with the MR
sensors in the cytometer contains noise. The simulated results
shown here have no noise, which makes it very simple for
the neural network to distinguish the signals between cell and
cluster, so the ANN’s results would be inconclusive, as they
would not translate to real data.

Thus, to add noise to the simulation, a value obtained
randomly through a normal distribution was added to the
original signal. A normal distribution (also known as Gaussian,
Gauss, or Laplace–Gauss distribution) is a type of continuous
probability distribution for a real-valued random variable. The
general form of its probability density function is described
in Equation 2 where µ is the mean or expectation of the
distribution and σ is it standard deviation. For this case, it
can be assumed that µ is zero and σ will be the parameter
that defines the amplitude of the noise signal in µV.
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Figures 10 and 11 represent the simulation for 1 MNP
located at 5 µm of height in relation to the center of the sensor
with a noise signal of σ=2 µV and σ=10 µV, respectively.

Fig. 10. Simulation of an MNP located at 5 µm of height with a noise signal
of σ = 2 µV.

Fig. 11. Simulation of an MNP located at 5 µm of height with a noise signal
of σ = 10 µV.

By observing the figures, the greater the value of the sigma
parameter, the greater the amplitude of the noise signal, and
therefore, the more difficult it is to distinguish the signature
from the presence of the MNP in the microfluidic channel of
the cytometer. The same will also happen in relation to the
height that the particle is to the sensor, because for the same
sigma value, the greater the distance to the sensor’s center,
the more difficult it will be to find the signature. This can
be observed by comparing Figures 10 and 12, the difference
between them being the height of the MNP. For particles
located further away from the sensor, the amplitude of the
signal is smaller, as was concluded before, and it becomes
more difficult to detect their presence.

Fig. 12. Simulation of an MNP located at 15 µm of height with a noise
signal of σ = 2 µV.

Thus, concluding that the implementation of cell and cluster
simulations is well defined and according to what happens in
reality, it is now possible to use the data obtained from the
simulated magnetic field to train the artificial neural network.

V. ARTIFICIAL NEURAL NETWORKS

A. Training DataSet

A training data-set is the base for any machine learning
application, and it contains the data that will be used by a
ML model, in this case, an ANN, to train and predict the
results. Thus, remembering that the objective is to distinguish
between a cell and a cluster through the signal of the magnetic



TABLE I
REPRESENTATION OF THE DATA-SET TRAINING.

ANN Output ANN Input

NºParticles Sigma’s Noise Signal [µV] Height [m] Cell/Cluster Magnetic Field [µV]

17 2 5e´6 1 [-1.94703, 1.90645, ... , 0.86984, 1.33735]

17 2 5e´6 0 [1.05238, 3.31398, ... , 1.82329, 3.76494]

17 3 10e´6 1 [-0.59911, 2.35205, ... , 1.44749, -0.91202]

17 3 10e´6 0 [-2.63580, -1.91170, ... , 0.74629, 1.26064]

(...)

70 12 15e´6 1 1.11419, 3.08200, ... , 0.41205, -0.05114]

70 12 15e´6 1 [-1.15678, -1.056711, ... , 0.75632, 2.27631]

field, we have as input of the neural network the signal itself,
that is, the signature that was shown earlier that resembles
the Gaussian pulse. So this task can be approached as a
classification problem, and as an output of the ANN, we have
the value ’1’ if this signal corresponds to a cell and the value
’0’ if it is a cluster. Each input has 250 points/samples that
correspond to the pulse and that is translated by the sum of
the magnetic fields produced by the magnetic particles that
constitute the cell or the cluster. Table I is a representation of
how is the data-set that will serve as training for the neural
network.

Table I only represents a few cases for information purposes,
however, the dataset is made up of thousands of cases since
each characteristic that affects the magnetic field will vary as
follows:

‚ Height ranges from 5 to 15 µm with a step of 0.1 µm;
‚ The Sigma value of the noise signal varies between 2-12

µV with a step of 1 µV;
‚ The number of particles per cell/cluster will take the

following values: [6, 10, 17, 22, 31, 40, 55, 62, 70].
The choice of the number of particles was taken into account

that it would be very difficult to make a dataset with all
possible numbers of particles, and for that reason, a random
number was chosen for every ten up to a maximum of 70
particles. Furthermore, for each different case, 5 different noise
vectors are generated, to take into account that each noise
vector is implemented randomly, through the equation 2, and
to have more data in the dataset.

B. ANN Structure and Training

An ANN consists of 3 main layers: the input layer, the
hidden layer, and the output layer. Using the same number
of neurons in the input layer for the hidden layer, which in
this case is 250, which corresponds to 250 points/samples
of the magnetic signal obtained through the simulation, the
accuracy results obtained were the best compared to other
values or methods. Since the input is fixed, because it always
has 250 values extracted from the signal, we can assume that
the number of neurons in the input and the hidden layer is
always fixed and equal, as we have obtained the best accuracy
results in this case. The output layer is composed of only one

neuron once this is a classification problem where there are
only two classes, ’cell - 1’ or ’cluster - 0’. For that reason, the
activation function in this layer is the sigmoid function. The
activation function, for the hidden layer, is the ReLu function
because in addition to its simplicity, this function has a strong
biological motivation, and it has been demonstrated to enable
better training of deeper networks than other activate functions.
The data preparation, the ANN architecture, and training were
performed in python language, using the Keras library with
the TensorFlow 2.2.0 back-end and the sci-kit learn package.

Training the data-set with 150 epochs, the maximum value
of accuracy was 99.68%, which means that, with a data-set
of 77 thousand cases, 247 cases cannot be correctly classified
by the model. Accuracy means the degree to which the result
(of the model to predict if the signal is a cell or a cluster) is
correct. The objective of this project is to distinguish between
cell and cluster magnetic signals, for a different number of
particles and positions. So to interpret better our accuracy
results, the model was trained using the entire dataset, and to
observe the predictions of the model as a function of different
parameters, the data-set test was split into a different number
of particles and different heights to classify and observe how
the accuracy of the model varies with the variation of these
parameters. The results obtained are represented in the next
section.

VI. RESULTS

The first results obtained are presented in Figures 13 and 14.
Figure 13 represents the accuracy of the model as a function
of 2 parameters: the number of particles per cell/cluster, and
sigma value of noise signal. For a bigger number of particles,
the color is darker and for smaller particle numbers the signal
is lighter. Figure 14 represents the accuracy of the model as a
function of the height of the cell/cluster to the plane’s sensor
and also the sigma value. For heights closer to the sensor (5
µm) the signal is darker and for heights more furthest (15 µm)
the signal is lighter.

For larger particle numbers and smaller heights the magnetic
field is higher since in the first case the magnetic field
produced is larger because there are more particles, and in the
second case because as we are closer to the sensor, the signal is



Fig. 13. ANN accuracy for different nºparticles and sigma values.

Fig. 14. ANN accuracy for different range of height’s values and sigma.

felt by it more intensely. Furthermore, for higher sigma values,
the noise signal is also higher. Putting these two facts together,
supposedly what should happen was that the accuracy should
decrease over sigma values since the noise signal was higher
and it should be more difficult to distinguish between cell and
cluster in the middle of the noise. However, what happens is
precisely the opposite, which leads us to the conclusion that
the ANN, from a certain moment on, no longer distinguishes
between cell and cluster, to start distinguishing between noise
signal and cluster signal (for having the largest amplitude of
magnetic field), which is a bit easier to differentiate. This is a
negative result because the ANN begins to misclassify with a
lower SNR values (greater sigma values), which will be more
common in reality.

That said, for this not to happen, it was decided to decrease
the maximum number of sigma of the noise signal to 7 µV,
since it was from this sigma value that accuracy became
very high and stable close to 1, as can be seen from the
previous figures. From now on, to make the results more
understandable, these will be represented in SNR values in dB
instead of sigma values, following Equation 3. Besides that,
the number of particles less than 10 can be removed because

the signal is not strong enough to make useful conclusions.
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Applying the decisions made above, the result that translates
the accuracy as a function of SNR value intervals by the
number of particles is represented in Figure 15. In this case,
the noise signal is higher for lower SNR values, so the
results show that, on average, with increasing SNR value
range, accuracy tends to improve. Furthermore, for larger
numbers of particles that make up cells and clusters we have
higher accuracy, to smaller numbers of particles. Figure 16
is represented the accuracy of the model as function of the
height of the cell/cluster to the plane’s sensor and also SNR
value intervals. For smaller height’s values, when the position
is more closer to sensor, the accuracy is greater. For bigger
distances to the sensor the accuracy decreases. The Figure
shows that overall there is a tendency for accuracy to improve
as SNR values increase.

Fig. 15. ANN accuracy for different nºparticles and SNR range values.

Fig. 16. ANN accuracy for different heights and SNR range values.

It can be concluded that this ANN can differentiate, with
good accuracy, the cell signals from cluster signals for a
system with a maximum RMS noise signal of 7 µV which is
the equivalent of a minimum SNR value of 9.90 dB, for cells
and clusters with a minimum of 20 particles. Although there is
no maximum number for particles, the maximum number used
to train was 70 because it seems to be a reasonable number
for particles that are attached to a cell. The actual value of
RMS noise in the MFC that we are working on in this project
is between 2-5 µV at 200KHz bandwidth, so this model can
predict any signal that is between these values.



To have a visual perception of the signals that we are talking
about, the following Figures 17, 18, 20 and 19 represent both
signals (cell/cluster) in the same conditions to exemplify the
magnetic signals with the maximum and minimum values
of SNR that this model can predict. By observation of the
first to Figures (17 and 18), it can be concluded that for a
minimum SNR value, that corresponds to worst conditions,
both simulations look similar which can be translated as harder
for the ANN to distinguish the signals. Another characteristic
that must be mentioned is that for the same conditions, the
cluster simulation has always a bigger SNR value, that happens
because the cluster signal has a bigger amplitude (because of
all the reasons mentioned before) and the noise signal has
the same amplitude for both signals so SNR values will be
bigger for cluster simulations. For better conditions (Fig. 20
and 19), the cluster simulation has a greater amplitude than
cell simulation so it is much easier for ANN to differentiate
it.

Fig. 17. Example of a signal for minimum SNR (11.41 dB) for a cell
simulation with 20 particles at 15 µm of height.

Fig. 18. Example of a signal for minimum SNR value of 13.24 dB, for a
cluster simulation with 20 particles at 15 µm of height.

VII. SIGNAL SUBSAMPLING

The results obtained so far translate the accuracy of the
model that uses as input the signal that results from the sum
of the magnetic field produced by the particles. This signal
contains 250 samples, however, it will not always be possible
to obtain this amount of samples, because if the particles travel

Fig. 19. Example of a signal with a SNR value of 44.9 dB, for a cell
simulation with 70 particles at 5 µm of height.

Fig. 20. Example of a signal with a SNR value of 48.02 dB, for a cluster
simulation with 70 particles at 5 µm of height.

at a higher speed for the same sampling frequency we will have
a signal with fewer samples. So the idea is to try to understand
if the artificial neural network, that was implemented, can
distinguish the signals when the particles travel at a higher
speed. And if so, establish a limit situation by which the model
fails to distinguish.

In Figures 21, 22, and 23 there are some results of ANN
accuracy for simulations with different particle’s speed and
with a frequency sample of 200 kHz.

Fig. 21. ANN accuracy for different nºparticles and SNR range values for
a particle speed of 0.8 m/s, which corresponds to a signal with 30 samples.

For observation of the figures, it is possible to conclude that
for a greater particle’s speed (fewer samples), in general, the



Fig. 22. ANN accuracy for different nºparticles and SNR range values for
a particle speed of 2 m/s, which corresponds to a signal with 14 samples.

Fig. 23. ANN accuracy for different nºparticles and SNR range values for
a particle speed of 4 m/s, which corresponds to a signal with 6 samples.

accuracy values tend to decrease, as it is possible to see from
Figure 24, which shows how the model accuracy varies as a
function of the particle’s velocity.

Fig. 24. ANN accuracy mean for different values of particles speed.

According to [3] there is a estimation that is necessary at
least 10 samples to fully characterise the pulse, as suggested
by [4], [5]. This estimate arises through the Equation 4, that
estimates the maximum flow rate in µl/min to use on the
cytometry experiment considering: sampling rate (Fs) the ratio
between pulse duration and maximum to minimum duration
(α “ Tfull{THL

) empirically estimated to be between 3-
4 in the case of bipolar Gaussian mono-cycles, the sensor
length (Lsens), the minimum desirable number of samples to
reconstruct the signal (Smin), the microfluidic channel’s height
(hc) and width (wc), as well as the channel section (Asec).

Flow rate“
LsensˆαˆFs

p´0.56p
hc
wc

q2`1.15p
hc
wc

q`1.5qSmin

Asecˆ60ˆ109 (4)

Thus, according to this and by observing the results present
in Figure 24, it is possible to conclude that using at least
10 samples (that corresponds to approximately 2.5 m/s of
particle’s speed) the ANN can differentiate the signals with
an overall good accuracy.

VIII. CONCLUSIONS

By observing the accuracy results obtained, it was con-
cluded that this model can differentiate the signals with greater
precision for a system with a maximum RMS noise signal of
7 µV, for cells and clusters ideally with a minimum of 20
particles. By subsampling the signal it can also be concluded
that the maximum speed that the particles can travel in the
microfluidic channel is at a speed of 2.5 m/s.
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