
Data Analysis in Blockchain

Miguel Afonso Rodrigues Hipólito Baptista

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Miguel Leitão Bignolas Mira da Silva
Prof. Paulo José Osório Rupino da Cunha

Examination Committee

Chairperson: Prof. Manuel Fernando Cabido Peres Lopes
Supervisor: Prof. Miguel Leitão Bignolas Mira da Silva
Member of the Committee: Prof. João Carlos Ferreira

November 2022

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisors, Prof. Miguel Mira da Silva and

Prof. Paulo Rupino da Cunha, for welcoming me as their student and for their dedicated guidance and

support throughout this work. It was an hard and rewarding journey and that was made possible thanks

to these two excellent professionals and people. A special thanks to Prof. Cláudia Antunes that gave

me useful constructive criticism during the Project Thesis resulting in this final Dissertation. I would also

like to thank INOV for the space and work conditions it provided.

I would also like to thank my friends for the endless support and encouragement throughout all

these college years, in special André Lopes, Daniel Ramalho, José Bartissol, Joana Teodoro, Mariana

Chinopa, Leandro Salgado, Pedro Barbosa and Diogo Fernandes. A special thanks to my friends at

AEIST and CPLEIC, two student groups that made me who I am. Also, my thesis collegue that helped

me with part of this work implementation, Ricardo Martins Gonçalves, thank you.

Lastly, I want to thank my family, especially my parents and my brother for always being by my side

during the good and bad times. Also, my grandparents for all the support given for my education.

To each and every one of you – Thank you!

Abstract

Blockchain and Data Analysis are two topics with increasing studies, and both are being integrated for

multiple applications. However, accessing data on a blockchain is not a process as straightforward as

on a regular centralized data repository, like a database.

In this work, two systematic literature reviews (SLR) are performed and a novel architecture is pro-

posed. The main conclusions of these reviews are, (1) blockchain’s main benefit is creating trust, security

and privacy in a digital environment to gather data from different sources; (2) blockchain’s main chal-

lenge is the time necessary to access and analyze stored data, and lack of tools to do so; (3) using

distributed file systems (DFS) can avoid high storage and computation costs; (4) the most common way

of accessing data in blockchain, although sub-optimal, is smart contracts.

With the gathered knowledge, a novel architecture is developed and presented. Besides blockchain’s

and DFS joint inherent capabilities, the architecture main benefit is the ability to make fast and up-to-date

predictions using incremental machine learning.

A proof-of-concept demonstrating its use was also implemented using Hyperledger Fabric (Blockchain),

the InterPlanetary File System (DFS), Kafka (Distributed Data Streaming Event Platform) and RiverML

(Incremental Machine Learning). The system is evaluated, showcasing its scalability and potential ap-

plications. Laslty, we present the main contributions, related work, research limitations and future work.

Keywords

Blockchain; Information System Security; Data Analysis; Data Streams; Incremental Machine Learning;

Distributed File System

ii

Resumo

Blockchain e análise de dados são dois tópicos com cada vez mais estudos e ambos têem sido inte-

grados em múltiplas aplicações. No entanto, aceder a informação na blockchain não é um processo tão

simples como num sistema central clássico de dados, como, por exemplo, uma base de dados.

Neste trabalho, duas revisões sistemáticas de literatura são realizadas e uma nova arquitetura é

proposta. As principais conclusões destas revisões são, (1) o principal beneficio da blockchain é criar

confiança, segurança e privacidade durante o processo de recolha de dados em diferentes fontes num

meio digital; (2) o principal desafio da blockchain é o tempo necessário e a falta de ferramentas para

aceder, analizar e guardar dados; (3) usar sistemas distribuidos de ficheiros pode evitar custos de

armazenamento e computação elevados na blockchain; (4) a maneira mais comum de aceder dados na

blockchain, embora aquém do ideal, são smart contracts.

Com os conhecimentos adquiridos, uma nova arquitetura é desenvovida. Para além das capaci-

dades obtidas da junção da blockchain e dos sistemas distribuidos de ficheiros , o principal beneficio

desta arquitetura é a capacidade de fazer previsões rápidas e atualizadas através do uso de aprendiza-

gem incremental.

Uma prova de conceito que demonstra o uso da arquiteura é implementado, utilizando Hyperledger

Fabric (Blockchain), o InterPlanetary File System (Sistema Distribuido de Ficheiros), Kafka (Plataforma

Distribuı́da de Eventos e de Transmissão de Dados) e RiverML (Aprendizagem Incremental). O sistema

é avaliado, demonstrando ser escalável e potenciais aplicações. Por último, as pricipais contribuiçoes,

trabalho relacionado, limitações da investigaçao e trabalho futuro são apresentados.

Palavras Chave

Blockchain; Cibersegurança de Sistemas de Informação; Análise de Dados; Fluxos de Dados; Apren-

dizagem Incremental; Sistema de Ficheiros Distribuido

iii

Contents

1 Introduction 1

1.1 Research Background . 2

1.2 Research Problem . 3

1.3 Research Objective . 3

1.4 Dissertation Outline . 3

2 Research Methodology 5

2.1 Systematic Literature Review . 6

2.2 Design Science Research . 6

2.3 Research Outline . 7

3 Benefits, Challenges and Solutions for Data Analysis in Blockchain 9

3.1 SLR Planning . 10

3.2 SLR Conducting . 10

3.3 SLR Reporting . 11

3.3.1 RQ1: What are the main benefits? . 11

3.3.2 RQ2: What are the main challenges? . 13

3.3.3 RQ3: What solutions can be used? . 13

3.4 Discussion . 15

4 Data Analysis in Blockchain Distributed File Systems 17

4.1 SLR Planning . 18

4.2 SLR Conducting . 18

4.3 SLR Reporting . 19

4.3.1 RQ1: Which distributed file systems are used with blockchain? 19

4.3.2 RQ2: How is data accessed for analysis on architectures using blockchain and

distributed file systems? . 22

4.3.3 RQ3: Which are the streaming data architectures used in blockchain? 23

4.4 Discussion . 23

4.5 Review’s Related Work . 24

iv

5 Research Proposal 25

5.1 Design and Development . 26

5.2 Demonstration . 29

5.2.1 Proof-of-Concept Technologies . 29

5.2.2 Proof-of-Concept Hardware Specifications . 31

5.2.3 Proof-of-Concept Software Architecture . 31

5.2.4 Proof-of-Concept Implementation . 32

5.3 Evaluation . 33

5.3.1 Produced Dataset . 34

5.3.2 Healthcare Dataset . 36

5.4 Discussion . 38

5.5 Related Work . 39

6 Conclusion 41

6.1 Main Contributions . 42

6.2 Communication . 43

6.3 Research Limitations . 43

6.4 Future Work . 43

References 43

Appendix A: Proof of Concept Code 54

v

List of Figures

2.1 Systematic Literature Review Process . 6

2.2 Design Science Research Methodology . 8

3.1 PRISMA flow diagram for the Systematic Literature Review 11

3.2 Selected Studies Distribution by Year . 12

4.1 PRISMA flow diagram for the Systematic Literature Review 20

4.2 Selected Studies Distribution by Year . 21

5.1 Adding Data Process, Unified Modeling Language (UML) Sequence Diagram 26

5.2 Accessing Data Process, UML Sequence Diagram . 27

5.3 Analyzing Data, UML Sequence Diagram . 28

5.4 Hyperledger Fabric (HLF) Proof-of-Concept, UML Component Diagram 32

5.5 InterPlanetary File System (IPFS) Proof-of-Concept, UML Component Diagram 33

5.6 Data Stream Pipeline Proof-of-Concept, UML Component Diagram 33

5.7 Overral System at Runtime, UML Component Diagram . 34

5.8 HLF & IPFS 10 Bytes Files Evaluation . 35

5.9 HLF & IPFS 10 Kilobytes Files Evaluation . 35

5.10 HLF & IPFS 1 Megabyte Files Evaluation . 35

5.11 Kafka Cluster Producer 10 Bytes Files Evaluation . 36

5.12 Kafka Cluster Producer 10 Kilobytes Files Evaluation . 36

5.13 Kafka Cluster Producer 1 Megabyte Files Evaluation . 36

5.14 Kafka Cluster Consumer 10 Bytes Files Evaluation . 37

5.15 Kafka Cluster Consumer 10 Kilobytes Files Evaluation . 37

5.16 Kafka Cluster Consumer 1 Megabyte Files Evaluation . 37

vi

List of Tables

3.1 Main Benefits Found . 13

3.2 Main Challenges Found . 14

3.3 Solutions Found . 15

4.1 Filtered Studies . 18

4.2 Scope Inclusion/Exclusion Criteria. 19

4.3 Distributed File Systems Used . 22

4.4 Data accessed on Distributed File Systems and Blockchain 23

4.5 Streaming Architectures used in Blockchain . 23

vii

Listings

1 chaincode.go . 54

2 hlf.py . 59

3 ipfs.py . 62

4 kafkaProducer.py . 64

5 producerController.py . 64

6 executeCmd.py . 67

7 iml.py . 67

8 kafkaConsumer.py . 70

9 consumerController.py . 71

10 createTestFiles.py . 73

11 timeProgram.py . 74

viii

Acronyms

AB Abstract

AI Artificial Intelligence

API Application Programming Interface

BC Blockchain

CA Certificate Authority

CID Content Identifier

DHT Distributed Hash Table

DSRM Design Science Research Methodology

DLT Distributed Ledger Technology

DFS Distributed File System

HLF Hyperledger Fabric

HDFS Hadoop Distributed File System

IML Incremental Machine Learning

IPFS InterPlanetary File System

IT Information Technology

IoT Internet of Things

ML Machine Learning

MAE Mean Absolute Error

MTFS Merkle Tree based File System

MSP Membership Service Provider

NAT Network Address Translation

RMSE Root Mean Squared Error

R2 Coefficient of determination

ix

SLR Systematic Literature Review

UML Unified Modeling Language

VM Virtual Machine

x

1
Introduction

Contents

1.1 Research Background . 2

1.2 Research Problem . 3

1.3 Research Objective . 3

1.4 Dissertation Outline . 3

1

Recently there has been an increase in the number of studies about blockchain-based technology and

its applications in multiple fields, due to its ability to create trust in a digital environment [1].

1.1 Research Background

Blockchain is a distributed tamper-resistant append-only ledger. Data is organized in blocks that are

“linked” to previous ones via hashes. These hash pointers are created using the previous block as input

on a hash function. When adding a new block, the consensus algorithm verifies, among the blockchain

participants, its validity. If valid, a new block is added to the blockchain.

“Blockchain can be divided into three types according to read-write permissions and ownership:

public, private and consortium chain.” [2]. Public blockchains are owned by all the nodes, stakeholders

devices, where each one can read and write information to the blockchain. However, this usually results

in a lower number of transactions per second in the network, since the computational power, used in

the consensus algorithm, is higher when compared to the other variants. In private and consortium net-

works, only the owners, organization(s), or user(s) able to participate in the network, can read or write

to the blockchain. The main difference between private and consortium blockchains is that consortium

blockchains are usually owned by multiple organizations. This results in higher transactions per sec-

ond, since the consensus algorithm is usually less computational intensive due to higher trust between

parties. It is common for all the participating nodes in private blockchains to be tied to known identities

outside of the network.

Blockchain’s architecture provides a system where the change of a previously added component is

not allowed, making it immutable since any change is identified as a malicious attack and is not accepted

by the network. This way, blockchain technology creates trust between its participants due to its secure

and irreversible storage. Additionally, all participants have equal access conditions to the stored data.

More recent blockchains support smart contracts, “programs that implement the automated process-

ing of traditional contracts” [2]. These programs execute automatically whenever previously agreed

conditions are met.

The immutability properties of blockchain create a high volume of data to store making the cost of

maintaining the network and appending new blocks expensive over time or when scaling up the network.

Distributed File System (DFS) were introduced as a solution to tackle this problem. DFS are peer-to-

peer data networks that can be described as a network of systems capable of data storage, replication,

distribution, and exchange [3]. BitTorrent inspired modern DFSs as the first mainstream peer-to-peer

data network [3]. By combining DFS and blockchain technology, DFS data integrity issues are solved

through blockchain, as blockchain high maintenance costs regarding storage are addressed.

Data analysis can generally be described as the process of information discovery from data. For this

2

to be possible, data needs to be collected, accessed, processed and, finally, analyzed [4]. By finding

patterns on the data during the analysis phase, data can be transformed into information. Recently,

data analysis has also increased in popularity due to machine learning. Machine learning is capable of

building models based on large amounts of data. The created models improve data’s utility, which has

gather value for a different number of industries.

1.2 Research Problem

Blockchain and Data Analysis are topics of high interest, and both are being studied and integrated

for multiple applications [5]. However, research combining them does not provide guidelines on how

to access data on a blockchain. This process is not as straightforward as on traditional database.

Blockchain does not have a built-in query system, so most solutions can be classified into one of two

categories: emulating querying with smart contracts and custom search engines; or extracting the data

to a traditional database and accessing it from there. However, both solutions have issues. Querying

data through smart contracts has high costs and slow performance, and extracting data to an off-chain

database loses the data integrity protections afforded by the blockchain. There is also a lack of tools or

frameworks to analyse data. The few solutions found were created for particular use cases or industries.

Lastly, with smart contracts and custom search engines, analysing data stored in a blockchain is a time-

consuming process and due to the nature of batch learning, it is a process that is repeated multiple

times.

1.3 Research Objective

The objective of this research is to review the developments in the field and create a framework that

can serve as a starting point in the development of tools to analyse data stored in blockchains. To

that end, we propose an architecture based on microservices; so that, with minor changes, it will be

cross-application. Using distributed file systems, it is possible to reduce storage costs and identify

data tampering since, a content identifier, a hash of the data is saved in the blockchain. Furthermore,

machine learning is used to analyse large amounts of data. By creating a proof-of-concept with existing

open-source technologies, we demonstrate the feasibility of this framework.

1.4 Dissertation Outline

In Chapter 2, the research methodologies are presented. Chapters 3 and 4 showcase the first re-

search methodology usage, one in each chapter. In Chapter 3, the research questions, main benefits

3

(3.3.1), challenges (3.3.2) and possible solutions (3.3.3) for said challenges of performing data analysis

in blockchain are answered. Chapter 4 answers three research questions: (4.3.1) Which distributed file

systems are used with blockchain? (4.3.2) How is data accessed on architectures using blockchain and

distributed file systems? (4.3.3) Which are the current streaming data architectures used in blockchain?

Chapter 5 presents the research results application with a novel architecture. To demonstrate its

usage, a software proof-of-concept is developed and evaluated. Lastly, Chapter 6 makes the conclusion

remarks and presents the main contributions, research limitations and future work of this study.

4

2
Research Methodology

Contents

2.1 Systematic Literature Review . 6

2.2 Design Science Research . 6

2.3 Research Outline . 7

5

In this chapter, the research methodologies chosen to conduct this dissertation are presented. The

research outline is also presented.

2.1 Systematic Literature Review

A Systematic Literature Review (SLR) is defined as a “means of identifying, evaluating and interpreting

all available research relevant to a particular research question, or topic area or phenomenon of interest”

[6].

In order to answer the research questions a systematic literature review was chosen since it is a

trustworthy research methodology and it is useful to summarize and organize the investigation done in

the field of blockchain data analysis. By performing a SLR we are able to identify any gaps in the topic

while establishing the framework for the investigation.

The SLR conducted was based on Kitchenham 2004 study [6] as shown in Figure 2.1, and comprises

three steps: planning, conducting and reporting. The planning phase is composed of the following three

tasks; identify why the review is needed, develop a review protocol and define the research questions.

The conducting phase is divided in two parts; screen and select the target studies and analyze the stud-

ies data. Lastly, the reporting phase purpose is to summarize the information gathered in the studies.

Figure 2.1: Systematic Literature Review Process

The SLR aim is to identify the problem and get answers to our proposed research questions.

2.2 Design Science Research

Design Science Research Methodology (DSRM) is the chosen methodology to guide this research since

it provides rigorous guidelines for the development of an Information Technology (IT) artifact. According

to Hevner 2004 study [7], Design Science is adequate to solve problems that have,

• “unstable requirements and constraints based upon ill-defined environmental contexts complex

interactions among sub-components of the problem and its solution” [7];

6

• “inherent flexibility to change design processes as well as design artifacts (i.e., malleable pro-

cesses and artifacts)” [7];

• “a critical dependence upon human cognitive abilities (e.g., creativity) to produce effective solu-

tions” [7];

• “a critical dependence upon human social abilities (e.g., teamwork) to produce effective solutions”

[7].

The above reasons match with our research characteristics. As such, this research should create an

“object with an embedded solution to an understood research problem” [8] through the following process:

Problem Identification and Motivation: “Define the specific research problem and justify the value

of a solution” [8];

Define the objectives for a solution: “Infer the objectives of a solution from the problem definition

and knowledge of what is possible and feasible” [8];

Design and Development: “Create the artifact” [8]. This can be “potentially constructs, models,

methods, or instantiations” [8];

Demonstration: “Demonstrate the use of the artifact to solve one or more instances of the problem”

[8];

Evaluation: “Observe and measure how well the artifact supports a solution to the problem. This

activity involves comparing the objectives of a solution to actual observed results from use of the

artifact in the demonstration” [8];

Communication: “Communicate the problem and its importance, the artifact, its utility and novelty,

the rigor of its design, and its effectiveness to researchers and other relevant audiences such as

practicing professionals, when appropriate.” [8].

2.3 Research Outline

Figure 2.2 illustrates the DSRM applied to this research. The research problem and motivation are

presented in Chapter 1. Then, two systematic literature reviews are conducted.

In Chapter 3 the first SLR is presented. Its goal was to define the specific research problem and

justify the value of a solution. It also allowed to acquire knowledge of the status of this topic in the

scientific body of knowledge.

The second SLR conducted in Chapter 4 allowed an understanding of what is possible and feasible.

Through this research the objectives for the solution were defined, resulting in guidelines for the artifact.

In Chapter 5 a novel architecture is proposed to analyze data stored in blockchain and distributed

file systems. In the DSRM this architecture represents the artifact design and development phase. The

7

proof-of-concept is developed to demonstrate and evaluate the architecture usage.

The communication phase is achieved with this dissertation and the scientific manuscripts created.

It is presented in the Chapter 6. This concludes the research in accordance with the DSRM.

Figure 2.2: Design Science Research Methodology

8

3
Benefits, Challenges and Solutions for

Data Analysis in Blockchain

Contents

3.1 SLR Planning . 10

3.2 SLR Conducting . 10

3.3 SLR Reporting . 11

3.4 Discussion . 15

9

In this chapter the systematic literature review is conducted and described. The purpose of this SLR

is to identify current problems and justify the motivation of this research. Also, benefits and possible

solutions are identified.

3.1 SLR Planning

This section presents our three research questions. The two main topics of these questions pretend to

explore are blockchain and data analysis in blockchain. When performing data analysis on a Blockchain:

Research Question 1: What are the main benefits?

Research Question 2: What are the main challenges?

Research Question 3: What solutions can be used?

To identify relevant work, we used the following search expression: “Abstract (AB) (blockchain OR

Distributed Ledger Technology (DLT)) AND AB (“data analysis” OR “data analytics” OR “business ana-

lytics” OR “data handling”)”.

The keyword AB indicates to the search engine we have used – EBSCO Discovery Service – that

the search should be carried out in the title and the abstract.

We used the search engine EBSCO Discovering Service that includes the main sources, such as

Scopus, Academic Search and Clarivate Analytics (itself including Web of Science, Current Contents

Connect, Derwent Innovations Index, MEDLINE e SciELO Citation Index, and other resources such as

Citation Reports and Essential Science Indicators).

3.2 SLR Conducting

The criteria were applied on the search engine, filtering the studies automatically. Studies that were from

equivalent subjects to the topics searched and had the full text available were included. Studies that were

not peer reviewed, not written in English and were not academic journals or conference materials were

excluded. The publication date was not considered an inclusion or exclusion criterion.

Based on the search results and the use of the above criteria, and after removing duplicates, we

obtained 299 studies. The abstract of every paper was then analyzed, which resulted in excluding some

studies for being out of scope (178) or having the wrong subject (12), leading to the removal of a total of

190 papers in this phase.

In the following phase, we analyzed the introduction and conclusion of the remaining papers, finishing

this phase with a total of 41 papers. This process is represented in Figure 3.1.

In Figure 3.2, we can observe the distribution of the selected papers, where 2019 and 2020 are the

years with the most contributions to this research, followed by 2021. From the total selection, 24 are

10

Figure 3.1: PRISMA flow diagram for the Systematic Literature Review

journal articles, and 17 are conference papers.

3.3 SLR Reporting

In this section, the SLR results are presented and organized in tables using the support literature to

each answer found.

3.3.1 RQ1: What are the main benefits?

Table 3.1 presents the main benefits we identified and the respective supporting literature. The topmost

benefit of the blockchain data analysis process is, according to the selected literature, the ability to

store, collect and share data with and from different participants or sources. Smart contracts can have

11

Figure 3.2: Selected Studies Distribution by Year

the capacity to enforce “decentralized access control for data sharing and analytics” [9]. This allows for

the security and privacy of data. For example, an architecture where the stored information is encrypted

and the data owner has the ability, through a smart contract, to share its key; allowing the owner to

have an extra layer of security, since access to the key is necessary. This architecture would also allow

better privacy, since the data is only shared with the intended participants. Also, with the option of

implementing incentive-based systems, through cryptocurrencies, crowdsourcing environments can be

produced. These environments can foster secure and fair data collection, improving the amount of data

available for analysis.

Distributed and/or parallel data processing is blockchain’s second most mentioned benefit. Blockchain

is a distributed network of interconnected systems. However, this is not as fast as regular modern dis-

tributed clusters, mainly due to the processing needed to maintain network security.

In a blockchain network, the distributed ledger is available across multiple nodes. This enables high

availability and consistency, and with blockchain’s inherent secure architecture, data is extremely unlikely

to be lost or corrupted. Also, smart contracts can enforce data structures when appending a block to

the blockchain improving accuracy and completeness. This results in high data integrity, an important

characteristic when dealing with data.

Blockchain metadata can benefit the blockchain data analysis phase since it can feed the machine

learning models [10] and increase the overall quality of the decision/prediction result. For example,

the number of transactions can correlate to past stored data trends, improving the model’s prediction

capabilities for the short term.

Lastly, data provenance is a “historical record of the data and its origins showing the trails of enti-

ties and processes that influenced data of interest” [9] made possible by blockchain distributed ledger

immutability.

12

Table 3.1: Main Benefits Found

Main Benefits Found Support Literature

Data Sharing/ Collecting/ Storage [9], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20] [21], [22], [23], [24], [25]

Distributed and/or Parallel Data Pro-
cessing

[9], [10], [15], [20], [22], [24], [26], [27],
[28]

Data Integrity [9], [15], [22], [29], [30]

Blockchain Metadata [9], [10], [31], [32], [33]

Data Provenance [9], [21], [34]

3.3.2 RQ2: What are the main challenges?

Table 3.2 summarizes the main challenges identified and the supporting literature for each challenge.

The time it takes to access data significantly impacts the data analysis process. Currently, real-time

data access is “essential as a blockchain is a highly dynamic system” [9]; however, the synchronous

communications of the blockchain network make it difficult to do so. Also, querying data in the blockchain

is time consuming because the data blocks “are written into files on disk” [35], and “Data storage models

in blockchains are rather limited and optimized for storage, rather than for searching and indexing, unlike

the conventional counterparts” [9].

System performance and storage waste are also commonly identified challenges to various blockchain-

based systems. “The storage of irrelevant data wastes computational resources” [24].

The lack of analysis service integration in systems and the lack of maturity and research, between

these two topics, were also pointed out in the studies. There is a need to develop custom-made solutions

[18] for most blockchain data analysis contributing to an increase in the effort it takes to analyse the data.

Privacy problems such as being unable to maintain the privacy of sensitive data in the future (due, for

example, to the computational evolution) is a data governance issue. Another matter mentioned in the

literature derives from government policies such as General Data Protection Regulation in the European

Union [36]. The immutability properties of blockchain do not allow data to be deleted, thus violating one

of the articles of the regulation.

Lastly, data heterogeneity was identified as a challenge since the number of data sources (on-chain

and off-chain) a blockchain is exposed, makes it harder to monitor and manage when compared to

conventional systems [10,22].

3.3.3 RQ3: What solutions can be used?

Table 3.3 shows solutions that can be used to tackle some of the main challenges identified previously

and the supporting literature.

13

Table 3.2: Main Challenges Found

Main Challenges Found Support Literature

Time to access data [9], [33], [35], [37], [38]

System Performance and Storage
Waste

[9], [24], [39], [40]

Lack of Research/Tools for Data Anal-
ysis and Blockchain

[18], [27], [33], [38]

Data Governance [9], [26], [34]

Data Heterogeneity [2], [22]

According to [2], “The number of papers reflect that machine learning has already become the main-

stream of blockchain data analysis”. Machine learning is also used to improve the security of blockchain

systems. Machine learning is an indispensable component of data analysis since it enables the analysis

of blockchain’s stored data and the decision/forecasting process automated from large data sources,

such as a blockchain-based system. The most commonly found methodology to perform data analy-

sis was to extract the data to a traditional information system and analyze it through machine learn-

ing models. Integration between novel machine learning methodologies, computing architectures, and

blockchain is also being explored. One example is the growing field of blockchain networks integrated

with federated learning for secure edge computing.

Hyperledger is mentioned as the basis of several architectures and business solutions. The stud-

ies presented contain technology improvements to this platform and new tools and integration. Smart

Contracts are also presented as a solution because of the capacity to enforce data structures and data

access.

There are different approaches taken to improve data access time. By skipping the querying process

altogether, analyzing the data locally in each node, or optimizing the query process, it is possible to

improve the time necessary to access and use data. Rahasack [37] is a custom enterprise-focused

solution that analyses data in the blockchain by integrating it with a data streaming pipeline.

Blockchain’s decentralization allows using its computing resources in a way that was not previously

available in such a secure form. Such is the case for Edge Computing, Grid Computing, Cloud Com-

puting, Ad-Hoc Computing, and some novel hybrid variations that allow a distributed data analysis pro-

cess. Stream Computing was also proposed to analyze data in real-time [26]. Furthermore, Hadoop

MapReduce is also proposed for blockchain-based systems due to its ability of parallel processing and

compatibility with other data analysis tools. Lastly, there is a study that showcases data evaluation

tools [46].

14

Table 3.3: Solutions Found

Main Solutions Found Support Literature

Machine Learning [2], [10], [14], [16], [24], [28], [41], [42],
[43], [44]

Hyperledger Fabric [13], [20], [21], [23], [31], [45]

Smart Contracts [9], [11], [19], [25], [43], [46]

Skip Loading/ Querying Data Process [22], [27], [29], [47]

Optimized Data Access/ Query Pro-
cess

[12], [37], [48]

Hadoop MapReduce [20], [22], [49]

Edge Computing [20], [28], [39]

Cloud Computing [22], [26]

Hybrid Variations [20], [22]

Ad-Hoc Computing [19]

Grid Computing [22]

Stream Computing [26]

Data Evaluation Tools [46]

3.4 Discussion

Blockchain technology is being used in many diverse fields, such as supply chain, smart ecosystems,

industry 4.0, crowdsourcing, education, and others, due to its ability to provide a secure, distributed,

immutable ledger that creates trust between participants. The trust, security, privacy and anonymity that

blockchain architectures can motivate cooperation between network participants, by sharing their data.

Sharing data can be valuable for businesses that interact with each other or their customers.

The blockchain’s ledger decentralization allows for increased data integrity, high availability, since

there are multiple machines with no single point of failure, and high consistency, since no data is changed

or deleted and is equal in every version of the ledger because of the consensus algorithm. Furthermore,

with smart contracts, it is also possible to enforce the data structure and access.

The abovementioned characteristics create a high-value data environment where data can be gath-

ered and stored. In addition, this process also generates metadata that can further increase the amount

of data fed to the data analysis models and thus increase the quality of the end results.

Blockchain compatibility with modern computing solutions is also of great value since, nowadays, the

amount of data stored and analyzed is increasing exponentially. While reviewing the studies, there was

an increasing trend of off-loading the computation necessary to perform analysis to the nodes.

The distributed nature of blockchain also creates difficulties. Since it works with synchronous com-

15

munications, access time can be time-consuming.

Some solutions were briefly mentioned in subsection 3.3.3 as being the most commonly used, resort

to off-loading the data to a traditional system to be analyzed conventionally. However, this solution

creates a problem. The data stored in the traditional system can be tampered decreasing the trust in

this solution.

Another solution was to improve the query system. One proposed way was adding headers to the

blockchain’s blocks and query using those headers. However, this can become inefficient over time.

Data streaming architectures were also proposed to tackle the time it takes to access data. These

avoid off-chain tampering and scale well over time, but the analyzed solution was custom made, lacking

flexibility for the multiple blockchain applications and creating a high amount of development effort.

Machine learning techniques were found to be used to improve blockchain vulnerabilities or perfor-

mance problems. However, for the analysis of stored data in the blockchain, the most commonly found

research was federated learning. This Machine Learning (ML) technique enables distributed training

of models without having access to the private information by training said model in the nodes and

then aggregating the various models into one. With blockchain, this aggregation can be decentralized,

accomplishing better security. Also, the data provenance stored in a blockchain can help achieve the

reproducibility of a data analysis model through its immutability properties.

The lack of tools/architectures for blockchain data analysis and the lack of integration with conven-

tional tools due to the novelty of blockchain technology was an identified issue. “Research efforts that

examine both Big Data and blockchains topics, either describe general capabilities of the two emerging

technologies or examine cases that are not focused on the analysis of Big Data but in other procedures

like authentication and access control.” [27]. Most of the literature found during this research, explored

the application of this technology in different fields, but very few researched the data analysis process

on the blockchain.

Data governance issues are being researched. Data privacy issues introduced by blockchain archi-

tecture still have topics for debate. For example, the ability to maintain the privacy of sensitive data in a

public blockchain. With the increase of computational power, in the future, sensitive data may be com-

promised, since the encryption that makes the information private [9] may be subjected to brute force

attacks. The most common proposed solution for these issues, apart from storing data in a similar ar-

chitecture to edge computing, is to introduce an off-chain. Off-chain data storing has some advantages,

such as cheaper storage [50]; however, this introduces issues such as assuring data immutability and

increased difficulty for analysis services integration.

16

4
Data Analysis in Blockchain

Distributed File Systems

Contents

4.1 SLR Planning . 18

4.2 SLR Conducting . 18

4.3 SLR Reporting . 19

4.4 Discussion . 23

4.5 Review’s Related Work . 24

17

In this chapter, the systematic literature review is done in order to get a better understanding of the

current research on data analysis in blockchain distributed file systems. With the acquired knowledge,

the results are discussed and the artifact of this research is produced. In the DSRM, this Chapter is

responsible for the solution objectives definition.

4.1 SLR Planning

This section presents our three research questions. The three main topics these questions pretend to

explore are blockchain, distributed file systems and data analysis, more specifically using streaming data

techniques.

Research Question 1: Which distributed file systems are used with blockchain?

Research Question 2: How is data accessed and analyzed on architectures using blockchain and

distributed file systems?

Research Question 3: Which are the current streaming data architectures used in blockchain?

We used the search engine EBSCO Discovering Service [51] that includes the main research sources,

such as Scopus, Academic Search and Clarivate Analytics (itself including Web of Science, Current

Contents Connect, Derwent Innovations Index, MEDLINE e SciELO Citation Index, and other resources,

such as Citation Reports and Essential Science Indicators).

To identify the relevant work, we used the following search expressions: (1) “AB (Blockchain) AND

AB (“Distributed File System” OR “Decentralized File System” OR “Interplanetary File System”)”; (2) “AB

(Blockchain) AND AB (“Data Stream” OR “Data Streaming” OR “Data Flow” OR “Data Flows”)”.

4.2 SLR Conducting

The keyword AB indicates to the search engine we have used – EBSCO Discovery Service – that the

search should be carried out in the title and the abstract. The papers were filtered automatically by the

search engine according to Table 4.1.

The first search string resulted in 256 studies and the second in 111 studies. The merged results,

after duplicates were removed, were 277 studies.

Table 4.1: Filtered Studies

Included Excluded
Equivalent Subjects Not Peer Reviewed
Full Text Not Written in English

Not Academic Journal or Confer-
ence Material

18

The studies abstracts were analyzed and classified as out of scope according to our inclusion/exclu-

sion criteria, presented in Table 4.2.

The purpose of this criteria was to analyze novel data analysis architectures, such as new data

access processes; new or different architectures for distributed file systems and blockchain or new

distributed file systems technologies that were not included before. Studies with data management

components were included since these could identify technical problems or solutions in current real

world applications of these technologies.

An objective of this study is to understand how data analysis is being conducted in blockchain based

systems, supported by distributed file systems. As such, blockchain specific technical improvements or

blockchain technology integration in an industry such as using blockchain for agriculture, was deemed

as out of scope. Personal data applications were likewise excluded since these are not in the scope of

the study.

Table 4.2: Scope Inclusion/Exclusion Criteria.

Inclusion Criteria Exclusion Criteria
Data Management General Security Improvements
Data Processes Personal Data Applications
Data Access Architectures Specific Integration of Blockchain in

an Industry
Different Distributed File Systems Performance Improvements by

Consensus Algorithms
Technologies Not included Before

The abstract of every paper was studied which resulted in excluding a total of 181 papers on this

phase. In the following phase we analyzed the introduction and conclusion of the remaining papers

finishing this phase with a total of 30 papers. Figure 4.1 represents the process through a PRISMA flow

diagram.

In Figure 4.2, we can observe the distribution of the selected papers, where 2021 is the year with

the most contributions, followed by 2019 and 2022. There were no limitations with regarding the date

range of the papers selection. In the following subsections, the research results are divided by research

question and the answers are presented by topic.

4.3 SLR Reporting

4.3.1 RQ1: Which distributed file systems are used with blockchain?

Table 4.3 presents the distributed file systems in use as well as the blockchain being used when men-

tioned.

19

Figure 4.1: PRISMA flow diagram for the Systematic Literature Review

InterPlanetary File System (IPFS) is the most used distributed file system with blockchain in our

sample. IPFS is a peer-to-peer hypermedia protocol where no nodes are privileged and a common

computer system suffices as a node. The nodes store the IPFS objects in their local storage. Nodes then

connect to each other and transfer objects. These objects represent the files and other data structures

[52]. The object is chopped into smaller chunks of itself, hashed and given a unique Content Identifier

(CID), which serves as a fingerprint. To access the object, the returned CID is necessary. IPFS “solve the

shortage of blockchain in storing big files” [53] since “storing a document on the blockchain is expensive”

[54].

Hadoop Distributed File System (HDFS) is the second most used distributed file system with blockchain

in our studies sample. HDFS is an isolated master–slave data storage network composed of NameN-

odes and DataNodes. HDFS “is highly fault-tolerant and is designed to be deployed on low-cost hard-

20

Figure 4.2: Selected Studies Distribution by Year

ware. HDFS provides high throughput access to application data and is suitable for applications that

have large data sets.” [55]. HDFS is “mainly used for batch processing of data” [56]. HDFS is most

suited when the nodes can be trusted.

Swarm is another distributed file system used with blockchain. Swarm is very similar to IPFS. Its

biggest difference is that IPFS uses a Distributed Hash Table (DHT) and Swarm uses an immutable

content address chunkstore to generate the content identifiers [57]. Swarm has a natural integration

with Ethereum blockchain and an incentive system that benefits from smart contracts.

Merkle Tree based File System (MTFS) is a distributed file system that was integrated with blockchain.

In MTFS a node consists of a “batch of servers with professional connection sitting in a data center” [58].

MTFS uses asymmetric cryptography including proxy re-encryption (PRE), to ensure data privacy. Its

peer-to-peer network broadcasts data like a tree having redundant nodes and connections in case of

failure. This file system has less adoption and implementation examples when compared with the previ-

ously mentioned file systems.

When adding data to a distributed file system, most of the studies follow a similar process, which can

be summarized as follows:

1. Data Source: Create Data Entry and send to Application Programming Interface (API)

2. API: Send (Encrypted) Data to Distributed File System

3. API: Upload Data and Generate Hash from Data

4. DFS: Send Data’s Hash to API

5. API: Send Transaction to Blockchain with the Data’s Hash

6. Blockchain (BC): Send Confirmation of Success to API

21

Table 4.3: Distributed File Systems Used

Distributed File Systems Support Literature
IPFS and Ethereum [53] [59] [60] [61] [54] [62] [63]

[64] [65] [66] [67] [68]
IPFS and Hyperledger Fabric
(HLF)

[69] [70] [71]

IPFS and Multi-Chains/ Custom-
Chain

[72] [73] [74]

IPFS [10] [75] [76] [3]
HDFS and Ethereum [77]
HDFS and HLF [56]
HDFS [78]
MTFS [58]
Swarm and Ethereum/ Hyper-
ledger Fabric

[79]

4.3.2 RQ2: How is data accessed for analysis on architectures using blockchain

and distributed file systems?

Table 4.4 presents the data access architectures used by blockchain and distributed file systems found.

Smart Contracts, or Custom Search Engine Query, are the most common data accessing mechanism

among the distributed file system and blockchain architectures, within the research studies. In these

methods, after the data content identifier is obtained from the distributed file system, the identifier is

saved in the blockchain ledger, along with relevant metadata, such as access authorization. In the case

of custom search engines it is also saved in a local or a cloud database. A smart contract or a traditional

query in a local or a cloud database obtains the data content identifier by matching saved metadata such

as a keyword. Using off-chain sources greatly improves access speed, however, since it is off-chain, it

can be a target for malicious participants.

Hadoop Integration is the second most used accessing data mechanism identified. In these systems,

the distributed file system used is HDFS where it is possible to use MapReduce that “is a pre-built

framework in HDFS” [56]. In these cases, MapReduce can be used to analyze the data.

Share by Smart Contracts is another method used to access data from a distributed file system and

a blockchain network where all the participants are trusted. The data content identifier is broadcast to

all the participants through a smart contract. In this case every participant is able to directly access the

saved file through the identifier in the distributed file system.

22

Table 4.4: Data accessed on Distributed File Systems and Blockchain

Data Access/ Analysis Found Support Literature
Smart Contracts or Custom
Search Engine Query

[53] [59] [60] [61] [54] [62] [10]
[69] [77] [63] [64] [67] [65] [73]
[71]

Hadoop Integration [80] [56]
Shared by Smart Contract [70]

4.3.3 RQ3: Which are the streaming data architectures used in blockchain?

Only one streaming data architecture in blockchain was found in the analyzed studies - “ITrade: A

Blockchain-based, Self-Sovereign, and Scalable Marketplace for IoT Data Streams” [81] (see Table

4.5). In this study, blockchain (Ethereum) and smart contracts are used for security, availability and trust

purposes. Also, this system uses a pull-based message consumption model (Kafka) as the basis of its

streaming architecture. This system’s purpose is to give a data buyer the ability to subscribe to a data

stream.

Table 4.5: Streaming Architectures used in Blockchain

Data Streaming Architecture
Found

Support Literature

Event-based Message Model [81]

4.4 Discussion

Most blockchain architectures available in studies usually focus on adapting blockchain to an industry.

In subsection 4.3.1, although different combinations of technologies are presented, (blockchains and

DFS), the architecture between them is usually similar. Also, most of these architectures do not include

or propose in their systems a mechanism or methodology for analyzing the data stored in their systems.

In subsection 4.3.2 we can observe the solutions used to access data. Most of them could be more

efficient or secure making the analysis process under-performing. The smart contracts query system

does not scale well and such these implementations are introduced with custom built search engines.

The problem with custom build solutions is the lack of comparability across different frameworks. Also,

since these solutions are not on-chain, they can be subject to malicious participants and do not work

on a public blockchain. HDFS is naturally compatible with MapReduce. However, like the previously

mentioned case, it is not suited for public settings, since HDFS intended use is when its nodes can be

trusted. Likewise, the last solution found is also not suited for public settings. These results motivate the

proposal of a different architecture.

23

4.5 Review’s Related Work

There are various SLRs reviews in the research field of blockchain and its applications on industries

in general or in specific applications like healthcare [82], supply chains [83], energy [84], Internet of

Things (IoT) [85] and smart cities [86], finance [87], government [88], education [89], agriculture [90], etc.

There are also various reviews in the research field of blockchain and different technology improvements

to blockchain security [91] and privacy [92].

Also, H. Huang [93] makes a summary of the current state of blockchain and DFS, demonstrating

challenges and open issues. However, this study is not a SLR and N. Deepa [94] presents a survey

about the state of big data and blockchain, including the data analysis topic; however, it only mentions

distributed file systems briefly. As such, while researching this field, no SLR was found that addresses

data analysis in blockchain (and DFS) with the same scope. Also, Adedoyin A. Hussain [95] is not

an SLR and focuses on Artificial Intelligence (AI) and blockchain integration without considering every

phase of the analysis process.

24

5
Research Proposal

Contents

5.1 Design and Development . 26

5.2 Demonstration . 29

5.3 Evaluation . 33

5.4 Discussion . 38

5.5 Related Work . 39

25

In the DSRM, this chapter presents the the design and development, the demonstration and the

evaluation phases. The artifact of the design and development is the proposed architecture and the

demonstration and evaluation are presented through the software proof-of-concept.

5.1 Design and Development

To improve the analysis process, we conceptualize an architecture that is divided into a data storage and

collection layer composed by a distributed file system, integrated with blockchain based on the results

analyzed in the systematic literature review and a data stream pipeline.

In Figure 5.1, we present an Unified Modeling Language (UML) sequence diagram that showcases

how new data is processed in the system. A user starts by sending data to the API through, for example,

a website. The server’s API can encrypt the data if needed and will send the data to a distributed file

system to be saved. The distributed file system, after saving the data, will return the content identifier

back to the API. The API will send a new transaction to the blockchain with the content identifier and

if successful the confirmation of new data will be sent to both the API and then the user. After data is

saved and the confirmation is sent to the user, the API will also send the new data to the data analysis

pipeline for it to be readily available when an analysis request is submitted.

Figure 5.1: Adding Data Process, UML Sequence Diagram

Figure 5.2 shows how data is accessed, as well as how an analysis request is fetched from the

analysis results database. When a user sends a data request through, for example, a website, a request

is sent to the blockchain with the transaction identifier. Then, the blockchain returns the transaction data

26

that contains the content identifier in the distributed file system. The content identifier is sent in a request

to the distributed file system and the data is returned to the user by the API. The analysis request is

sent to the data analysis pipeline and the requested analysis is returned from the data already analyzed

in the database.

Figure 5.2: Accessing Data Process, UML Sequence Diagram

The data stream pipeline has three components: the ingestion layer, event-based message bus

system (based on the results of subsection 4.3.3); a stream processing application; an incremental

learning module. Incremental Learning is a machine learning method designed to ingest a continuous

amount of data and continuously update the learnt model, which makes it ideal to a data stream. The

model infers new statistical information using the new data; providing updated results while maintaining

previously acquired knowledge [96].

In Figure 5.3, we can observe the analysis process inside the data stream pipeline. The data stream

messages ingestion system is responsible for managing the incoming data to be analyzed from the API.

The stream processing application requests the messages from the data stream messages ingestion

system and processes the data and saves it, if necessary, in the results database. Lastly, the incremental

learning algorithm pulls the data from the data stream messages ingestion system and the latest model

from the database; then, it processes the new data and updates the incremental learning model with

the latest data. The stream processing application results may be of interest to the incremental learning

algorithm and it is possible to use it as part of the input for the model. With a stream processing

application, efficient data pre-processing can be integrated.

27

Figure 5.3: Analyzing Data, UML Sequence Diagram

An identified challenge of typical distributed data stream processing frameworks is “how to accurately

ingest and integrate data streams from various sources and locations into an analytics platform” [97].

Our proposed architecture solves this issue, since it aggregates multiple data sources into a single one

through blockchain. It is also compatible with different types of blockchains (public or private), resulting

in an architecture that is not bound to a single application.

Another issue solved by our proposed architecture is adding data analysis functionalities to an exist-

ing blockchain based system. For example: applying the proposed pipeline and expanding the system’s

API on a blockchain already in use, would add data analysis functionalities.

One of the benefits of this new architecture is that it is modeled like microservices. Since its modules

are loosely-coupled, with small changes to the overall architecture, features can be added or removed

(for example, encryption, access control, or data pre-processing).

28

5.2 Demonstration

In this section, using the proposed architecture as the basis, a software proof-of-concept implements

the DSRM’s artifact usage. The chosen technologies and implementation environment are presented,

as well as, the proof-of-concept overview.

5.2.1 Proof-of-Concept Technologies

The chosen blockchain to create the proof-of-concept was Hyperledger Fabric. HLF is maintained by

the Linux Foundation [98], an organization that supports open-source projects.

HLF is a permissioned distributed ledger framework that provides a foundation for developing appli-

cations or solutions with a modular architecture. HLF blockchain framework has four main components:

the user (client), the nodes (peer or orderer), and the Membership Service Provider (MSP).

The user uses the HLF client application to propose transactions on the network. The client can only

read or write to the ledger, however, it is possible to delete data by sending a transaction that, in the

application’s logic deletes the said data. To propose transactions to the network, the client application

needs to have a certificate from the Certificate Authority (CA).

The MSP defines HLF rules. It is responsible for validating, authenticating, and allowing access to

every identity that participates in the network. MSP, through the use of a CA, allows and revoke the

user’s certificates. There are two types of MSPs: the local MSP and the channel MSP. The local MSP

defines the users and nodes and who has administrative or participant rights. The channel MSP defines

who has administrative or participant rights in a channel.

Channels are restricted messaging paths used by HLF to provide transaction privacy and confiden-

tiality. All the data on a channel is therefore invisible and inaccessible to channel outsiders. The data

includes the chaincode, transactions, members, and channel information.

Chaincode is the name given to HLF smart contracts. Through container technology, chaincode

implements the application’s logic. In the proof-of-concept, the chaincode is implemented in Go Pro-

gramming Language.

The HLF is composed of two types of node organizations: the orderer organization and the peer

organization(s). The orderer organisation is responsible for the consensus algorithm of the blockchain.

The peer organization(s) is responsible for committing the transactions to the orderer nodes, as well as

keeping a copy of the ledger. In the proof-of-concept the consensus algorithm used is Raft [99].

The ledger has two different parts, the world state and the blockchain. The blockchain records all the

changes that occur in the world state. The world state is a database that holds the ledger current state,

expressed in key-value pairs. The world state is only maintained by the peers. In the proof-of-concept

CouchDB is used since it provides richer functionalities when compared with the alternative, LevelDB.

29

The blocks of the blockchain contain the header (block number, current block hash, and previous

block hash), the data, the metadata (time, certificate, public key, signature, and validity), and the trans-

action. The transaction is composed of the transaction header (with transaction metadata), the client

signature, the proposal (input of the chaincode), the response (output of the chaincode), and the en-

dorsement (list of transaction responses from other organizations).

There are four main reasons for choosing this blockchain framework. HLF “enables performance

at scale while preserving privacy” [100] while still being customizable and modular. Secondly, it is

one of the most used blockchain frameworks and is open-source, having multiple scientific studies,

(as mentioned in subsections 3.3.3 and 4.3.1), using it in their research. Lastly, its only operation costs

are the computation and storage of the servers used to execute it.

The distributed file system selected to integrate with HLF is the InterPlanetary File System (IPFS). It

is the most used distributed file system with blockchain in all the literature reviewed, as show in section

4.3.1. It is fast, scalable, and allows any type of data to be stored. “IPFS is a distributed system for

storing and accessing files, websites, applications, and data.” [101]. In section 4.3.1, this technology

usage is explained.

The distributed event streaming platform chosen for the data stream pipeline, that will manage the

messages arrival for analysis, is Apache Kafka [102]. Kafka is composed of topics, producers, con-

sumers, and brokers. Kafka organization system works over topics. Every message that is sent to a

Kafka system is sent to a topic. A topic is, therefore, a stream of messages. Each message (also named

record), is stored in a key-value format. The key of this message is called Offset.

The producers are applications responsible for publishing messages to a given topic. Consumers

are the applications that read said published messages from a given topic.

Brokers are the instances responsible for exchanging messages with the producer and consumer

applications. One broker is enough to implement a Kafka system, however, usually, multiple brokers are

used to form a cluster and create replication. In the proof-of-concept a Kafka cluster is used with three

brokers.

In a Kafka cluster, at the moment, it is necessary to implement a Zookeeper server with the purpose

of managing and create consensus in said broker cluster. One Zookeeper server can be used to create

said consensus. However, if needed, more Zookeeper servers can be added, as long as in odd numbers,

creating a Zookeeper Cluster. In production, three or five Zookeeper servers are advised but in the proof-

of-concept only one is used.

River ML library is the analysis tool selected to use Incremental Machine Learning (IML). “River is a

Python library for online machine learning. It aims to be the most user-friendly library for doing machine

learning on streaming data. River is the result of a merger between creme and scikit-multiflow.” [103].

Since this is a proof-of-concept, stream processing capabilities were not implemented. The objective

30

of these would be the transformation, cleaning, and serializing of incoming data however this was not

necessary, since the test dataset used for evaluation was already prepared for analysis. If necessary,

Kafka Streams integrates with Kafka and could be an option.

Lastly, all the application controllers and connectors were implemented using Python 3.8. All of the

above mentioned technologies are free and open-source.

5.2.2 Proof-of-Concept Hardware Specifications

The development environment used to implement this proof-of-concept was a server with the following

hardware specifications.

CPU: Intel(R) Xeon(R) CPU E3-1240 v6 @ 3.70GHz

RAM: 64GB

HDD: 2TB

OS Version: Ubuntu Server 18.04

In this machine, using a virtualization technology, virt-manager, twelve Virtual Machines were created

with the following specifications.

CPU: 1 virtualCPU

RAM: 4GB

HDD: 30GB

OS Version: Ubuntu Desktop 20.04.4 LTS

5.2.3 Proof-of-Concept Software Architecture

An internal network, with Network Address Translation (NAT), was also implemented for communica-

tion between said machines. This network was named Olympus. In Figure 5.4 we can see the HLF

implementation representation.

Alpha organization is composed of four Virtual Machine (VM)s, AlphaCA (the Certificate Authority),

AlphaAdmin (the organization Admin), and the two organization peers - Zeus and Poseidon. Beta or-

ganization is composed of three VMs: BetaCA (the Certificate Authority), BetaAdmin (the Organization

Admin) and Hera (the Organization Peer). Omega organization is composed of five VMs: OmegaCA

(the Certificate Authority), OmegaAdmin (the Organization Admin), and the three orderer peers - Atlas,

Cronus, and Rhea. The Certificate Authorities and the Admin VMs are necessary for the setup of the

HLF system. However, when deployed, the network only needs the peer and the orderer nodes for

proper function. Figure 5.5 showcases IPFS representation. The VMs used for the HLF peers are also

used as peers for the IPFS cluster, Zeus, Poseidon and Hera.

31

Figure 5.4: HLF Proof-of-Concept, UML Component Diagram

Figure 5.6 shows the data stream pipeline representation. In the data stream pipeline, BetaCA was

used as a Kafka Broker, Hera was used as a Kafka Broker as well as a Producer and lastly, AlphaCA was

used as a Kafka Peer, the Zookeeper Server, the Kafka Consumer and the IML computation module.

Hera was chosen as the Kafka Producer since it is a HLF and an IPFS peer giving it access to the data.

The chosen VMs for Kafka could have been any other. For an easier implementation of adding data,

one of the brokers should be a HLF and IPFS node. AlphaCA and BetaCA were chosen as the other

brokers since, after setting up HLF they were not being used. Figure 5.7 shows the overral system at

runtime.

5.2.4 Proof-of-Concept Implementation

In Annex 6.4, the proof-of-concept code is presented. The chaincode 1 implemented to allow CRUD

(Create, Read, Update, Delete) actions in HLF blockchain is presented. Although not used in the proof-

of-concept, it is possible to delete the contents of IPFS, cid, and keep the block by changing the delete

flag to True. It is also possible to return everything stored with GetAllAssets function. This chaincode

available to be used by any peer of any peer organization.

Hera VM is responsible for adding, reading, and deleting data from HLF and IPFS and sending all the

32

Figure 5.5: IPFS Proof-of-Concept, UML Component Diagram

Figure 5.6: Data Stream Pipeline Proof-of-Concept, UML Component Diagram

added data to the chosen Kafka topic. The HLF, the IPFS and the Kafka Producer are controlled with

bash commands, through the python programs 2, 3, 4. All the bash commands are executed with the

subprocess library 6. Hera’s main controller is presented 5 and is responsible for integrating all these

functionalities.

AlphaCA VM is responsible for receiving and analysing data sent to a given kafka topic 8. The

analysis is made with the river python library 7. All the bash commands are executed with the sub-

process library 6. AlphaCA’s main controller is presented 9 and is responsible for integrating all these

functionalities.

5.3 Evaluation

For the evaluation of the proof-of-concept, two data sources are used. The proof-of-concept design

allows any type of data to be analyzed. As such, the proposed architecture is cross-application. The

test environment is the same as the demonstration implementation environment 5.2.2. To measure the

time different components of the system take, the timeit python library is used 11.

The first data source used were random files created with 10 bytes, 10 kilobytes, 1 megabyte using

33

Figure 5.7: Overral System at Runtime, UML Component Diagram

the code in Listing 10. Through this source, the time it takes to add data to HLF & IPFS, and also,

sending data and receiving data from the Kafka Cluster, is evaluated. The second data source is a

dataset about the insurance costs of healthcare in the USA and was extracted from Kaggle [104]. With

this source, the time it takes to save it in HLF & IPFS, send it to the Kafka Cluster, receiving data from

said Cluster and analyze it with a simple Linear Regression is measured. The individual time of each

component and the total amount (sum of all parts) is presented.

5.3.1 Produced Dataset

The Figures 5.8 and 5.9 represent the average time it takes to add 10, 100, 1000, and 10000 files with 10

bytes and 10 kilobytes to HLF and IPFS, respectively. Figure 5.10 represents the average time it takes

to add 10, 100, and 1000 files with 1 megabyte of data (only evaluated until 1000 for lack of memory

space) to HLF and IPFS. Hera VM was used.

The total average time it takes to add a file to HLF and IPFS is 1.74 seconds for 10 bytes files, 1.70

seconds for 10 kilobytes files, and 2.92 seconds for 1 megabyte files. The results show that the size of

the file impacts the time it takes to add to the IPFS when files size are measured in megabytes. The

results show that the time it takes to add files scales linearly, in regard to the number of files.

34

Figure 5.8: HLF & IPFS 10 Bytes Files Evaluation Figure 5.9: HLF & IPFS 10 Kilobytes Files Evaluation

Figure 5.10: HLF & IPFS 1 Megabyte Files Evaluation

The Figures 5.11 and 5.12 represent the average time it takes to send 10, 100, 1000, and 10000

files with 10 bytes and 10 kilobytes to the Kafka cluster, respectively. Figure 5.13 represents the average

time it takes send 10, 100, and 1000 files with 1 megabyte of data (only evaluated until 1000 for lack of

memory space) to Kafka. Hera VM was used.

The total average time it takes to send a file to the Kafka cluster is 2.41 seconds for 10 bytes, 2.41

seconds for 10 kilobytes, and 2.85 seconds for 1 megabyte. The results show that the size of the file

does impact the time it takes to send data to the cluster. The results show that the time it takes to send

these files to Kafka is, mostly, constant, in regard to the number of files.

In total, saving a file in HLF & IPFS and sending its contents to the Kafka Cluster for analysis takes,

on average, 4.15 seconds for 10 bytes, 4.11 seconds for 10 kilobytes and 5.77 seconds for 1 megabyte.

The Figures 5.14 and 5.15 represent the average time it takes to receive 10, 100, 1000, and 10000

files with 10 bytes and 10 kilobytes from the Kafka cluster, respectively. Figure 5.13 represents the

average time it takes receive 10, 100, and 1000 files with 1 megabyte of data (only evaluated until

1000 for lack of memory space) from Kafka. AlphaCA VM was used. The time measured in the Kafka

consumer are impacted by the Kafka producer, since the evaluation was performed at the same time.

If the data were sent to the topic and then consumed, the consumer time evaluation results would be

35

Figure 5.11: Kafka Cluster Producer 10 Bytes Files
Evaluation

Figure 5.12: Kafka Cluster Producer 10 Kilobytes Files
Evaluation

Figure 5.13: Kafka Cluster Producer 1 Megabyte Files Evaluation

better. However, this would not represent real world use cases, since the data production rate impacts

the data consumption rate.

The total average time it takes to receive a file from the Kafka cluster is 2.38 seconds for 10 bytes,

2.38 seconds for 10 kilobytes, and 2.42 seconds for 1 megabyte. The results show that the size of the

file has a low impact on the time it takes to receive data from the cluster. The results show that the time

it takes to receive these files from Kafka is mostly constant, in regard to the number of files.

5.3.2 Healthcare Dataset

The healthcare insurance cost dataset [104] has 1338 entries. It has six columns, age, sex, body mass

index, number of children in the insurance, smoker, and region. The charges of the medical costs are the

target of our analysis. The chosen algorithm to perform the analysis is a simple linear regression with a

stochastic gradient descent of 0.05. The analysis metrics implemented are Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and, Coefficient of determination (R2). These are common ML

metrics for linear regressions. The model is saved every 50 data entries.

Using the above mentioned dataset, two approaches were used. The first scenario tests the time it

36

Figure 5.14: Kafka Cluster Consumer 10 Bytes Files
Evaluation

Figure 5.15: Kafka Cluster Consumer 10 Kilobytes Files
Evaluation

Figure 5.16: Kafka Cluster Consumer 1 Megabyte Files Evaluation

takes to save, on HLF & IPFS, and send, with Kafka Producer, the single file with all the data, and the

time it takes to receive it, with Kafka Consumer, and analyze it (building the model). In this approach,

the average time for data to be saved and sent is 3.31 seconds, and is 51 minutes and 33.03 seconds

to be analyzed. The second scenario is similar to the first but, instead of using a single file, each data

entry is separated through individual files. In this scenario, the time it takes on average for; data to be

saved and sent is 1 hour, 28 minutes and 1.85 seconds; data to be analyzed 1 hour, 27 minutes and

54.73 seconds seconds.

In both of the above mentioned scenarios, five random entries are sent to a different Kafka Topic,

and used to perform predictions. On average, making a prediction for these five entries takes 11.17

seconds, not taking into account the time it takes to be sent from the producer. In these, the analysis

metrics gave the following results: MAE: 2782.667; RMSE: 4051.730; R2: 0.888.

These metrics can be improved using a more advanced algorithm, better data pre-processing, or

better data mining. Since these scenarios goal is to measure the duration of the analysis, (and showcase

the architecture capabilities), the analysis results (metrics) were not optimized.

37

5.4 Discussion

In this chapter, an architecture was proposed with the goal of improving the time it takes to perform data

analysis in blockchain systems integrated with DFS. By integrating blockchain and DFS it was possible

to reduce the blockchain storage costs as well as improve its scalability and data types compatible.

Instead of making queries in the blockchain, in this architecture, data is stored in the system and

sent to an data analysis module. Storing the data in the blockchain allows for data integrity. It also

allows, depending on the implementation, to share data across organizations. If necessary, reading and

extracting data from the blockchain is still possible using smart contracts. However, in this architecture,

after confirming data has been stored with success, the data is sent for analysis.

To analyze data, IML is the chosen technology and has two main advantages, from an application

perspective. First, it allows a model to be continuously improved and adapt to new data. Second, it

allows a prediction to be made without stopping the training process. However, IML has two limitations.

First, like machine learning, training takes time. Since data can be constantly added to the system, and

sent for analysis, a ingestion system to manage the stream of data is necessary. Second, the input data,

although with the use of smart contracts, completeness can be enforced, data pre-processing is limited.

Using stream processing applications data can be pre-processed or visualized.

This architecture improves the time performance of the analysis, since a prediction can be requested

to the system and is readily available. The main limitation is when the analysis intended is not built or

trained. For example, when different IML algorithms need to be trained from the beginning and the data

needs to be extracted from the blockchain (if the data is no longer available in the data stream messages

ingestion system). For testing purposes, extracting the data to a data warehouse and using classic batch

based machine learning may be faster. However, using IML, will provide better time efficiency when

making up-to-date predictions.

In the software proof-of-concept, we can observe the average time it takes to save, access, send,

receive and analyze data in a system using HLF, IPFS, Kafka, and RiverML. Through the evaluation,

we can conclude it scales linearly. The time needed for saving the data and obtaining a model capable

of producing a prediction is significant, however, optimizing the system with better distribution and im-

proving the system hardware, in our case, VMs, will reduce the duration of the whole process. There

were three main objectives achieved with this proof-of-concept: demonstrate the architecture usage with

existing technologies; showcase how it would scale; demonstrate, with a real-world dataset, the ability to

make predictions from data while continuously improving a simple incremental machine learning model.

There are multiple possible applications for our proposed architecture. Using a similar implementa-

tion to the proof-of-concept, we present examples of applications in specific industries:

• Weather-dependent Industries (e.g., Agriculture, Fishing, Mining, Construction) – Weather data

38

could be aggregated in the blockchain, with contributions from public participants, and each orga-

nization could extract value from the data by analysing it. After an initial setup, the model would

continuously learn, improve and make predictions tailored to the organization’s use case.

• Healthcare – Medical data could be aggregated with blockchain from different participants (e.g.,

hospitals, research centers, and clinics), and users could control how much information they allow

each organization type to access for analysis, with minor changes to the smart contracts and

the API. For example, research centers would have access to large amounts of private data for

research purposes and could develop constantly improving models that hospitals could use to

predict patients’ health problems.

• Energy & Smart Cities – Energy consumers could provide data on consumption to the blockchain,

and energy producers could leverage it to create models to predict needs and more accurately

adjust energy production and price.

• Supply Chains – A customer-driven production and supply process, pull supply chains, involve

integrating and using multiple platforms from different organizations. It can be difficult to exchange

data between them and sometimes data can be lost in the process. However, using a similar im-

plementation of our proof-of-concept, it is possible to aggregate the data and, with the proposed

method, obtain predictions on consumer demand across the supply chain providing every organi-

zation with this critical information. In addition, the model would continuously improve and provide

readily available updated predictions.

5.5 Related Work

To the best of our knowledge, not many studies propose architectures to analyse data stored in a

blockchain. A simple approach to this problem would be analysing the data directly in the ledger using

smart contracts and reading all the data every time an analysis is necessary. Since extracting potentially

large amounts of data from the blockchain every time an analysis is required could be a time-consuming

process, another approach entails saving data to a data warehouse and analysing it with batch-based

machine learning. When data is added to the blockchain, the data warehouse would need to be updated.

However, this approach trades increased performance for the risk of data integrity since the immutability

of the blockchain no longer protects it. However, some cryptographic protections can be put in place to

detect tampering. When compared with such implementations, the main advantages of our proposed

architecture are:

• Maintains data integrity — Analysis are made on the data source, blockchain, and the DFS;

39

• Maintains the analysis model updated – Every time data is saved, it is sent to the analysis pipeline;

• Fast and up-to-date predictions – The most recent model is always available to make predictions;

Other studies that discuss the topic of data analysis in blockchain such as Bandara [37], present a

solution that although efficient is limited to the blockchain the authors created not expanding to public

blockchains. It is a solution that scales better than our proposal but does not establishes a framework

for data analysis in blockchain and cannot be used for multiple applications. When compared to other

implementations, our architecture is:

• Customizable – Modules are loosely coupled allowing for custom implementations where compo-

nents may be removed according the application purpose;

• Flexible – It is possible to use different technologies, such as different types of blockchain, to better

suit the application purposes;

• Adaptable – By expanding the API of a system, it is possible to implement our data analysis

pipeline in blockchains already being used.

• Enables data aggregation – Depending on the implementation, data from multiple data sources

and organizations can be collected, stored, and shared;

• Further, in use cases where multiple blockchain participants have access to the data, each can

create information from the data source by making different analysis;

40

6
Conclusion

Contents

6.1 Main Contributions . 42

6.2 Communication . 43

6.3 Research Limitations . 43

6.4 Future Work . 43

41

Given the recent increase in blockchain systems popularity, there are several proposals that explore

this technology applications in multiple fields. Through this work, we have answered six research ques-

tions and organized the current body of knowledge identified. Additionally, the proposed architecture

presents a potential solution for some of the identified issues, such as, the lack of data analysis so-

lutions over blockchain, the time it takes to analyze said data and how new and old systems moving

forward could collect, store and analyze said data securely. It also presents itself as a solution for a data

collection system to feed a data analytics platform, through the blockchain.

6.1 Main Contributions

This technology stores data in architectures that provide high data integrity and provenance, as well as,

a platform where different participants can share data with a high degree of trust. However, this data

only has value if it can be accessed and analyzed in an efficient way creating, through the data analysis

process, information. With this goal, we used a Systematic Literature Review to identify the main (1)

benefits and (2) challenges, and possible (3) solutions for data analysis on the blockchain.

With the knowledge extracted from the above research, besides the research questions answers,

insights such as the use of a distributed file system were learned. In DFS the amount, speed and type of

data would be improved. Also, streaming data technologies allow for a higher data flow from the moment

data is accessed to the analysis.

The second SLR was performed to identify which technologies were used with blockchain, the

methodologies used to access data in these architectures and which streaming data architectures were

being used.

Following the research results, we proposed an architecture based on the results from the SLR. The

architecture is composed of blockchain technology, for trust, security, traceability, data integrity, data

sharing and provenance purposes. A DFS is included in the architecture, for storage scalability and

to store different data types such as files or images. Lastly, we included a data stream pipeline as

a data analysis solution (with stream processing capabilities for data transformation on the go and/or

incremental learning model(s) to analyze said data).

We developed a software proof-of-concept to demonstrate the use of said architecture without the

stream processing module. A Hyperledger Fabric blockchain is deployed with the InterPlanetary File

System as its DFS. Kafka is used as the distributed event streaming platform that controls the data flow

and a Python library named River ML is utilized as a incremental machine learning tool.

We evaluated the proof-of-concept using two datasets: a produced dataset and a healthcare dataset.

Through the produced dataset, using files with different data sizes and different file quantities the proof-

of-concept components are evaluated using time as the main metric. Through the produced dataset, we

42

demonstrate the linear scalability of the system. Through the healthcare dataset, the architecture usage

is exemplified with a real-world case.

6.2 Communication

This thesis manuscript and the scientific manuscripts produced, “Benefits, Challenges, and Solutions for

Data Analysis in Blockchain: Review” and “Data Analysis in Blockchain: Review & Architecture” submit-

ted to academic journals for publication represent the communication phase of the DSRM. Through the

SLRs, the produced artefact (architecture) and the proof-of-concept prototype demonstration and evalu-

ation, a novel data analysis architecture for blockchain and DFS is proposed to the community creating

guidelines for future system architectures.

6.3 Research Limitations

The review’s research is based on scientific literature only. However, the distributed file system, the

blockchain and the data analysis topics also have developments described in gray literature. A multivocal

literature review could be used to include that data, but that was not in the scope of our study.

6.4 Future Work

Future work could implement and test prototypes with different technologies (e.g., blockchain frame-

works, distributed file systems, incremental machine learning libraries, and data streaming platforms). It

would be interesting to better address performance with load testing, spike testing, stress testing, vol-

ume testing, endurance testing, and scalability testing. For a specific use case, it would be interesting

to compare the proposed solution with a classical one based on a data warehouse and batch-based

machine learning data analysis.

43

References

[1] D. D. Shin, “Blockchain: The emerging technology of digital trust,” Telematics and informatics,

vol. 45, p. 101278, 2019.

[2] W. Hou, B. Cui, and R. Li, “A survey on blockchain data analysis,” Proceedings - 2021 IEEE 45th

Annual Computers, Software, and Applications Conference, COMPSAC 2021, pp. 357–365, 7

2021.

[3] E. Daniel and F. Tschorsch, “Ipfs and friends: A qualitative comparison of next generation peer-

to-peer data networks,” IEEE Communications Surveys and Tutorials, vol. 24, pp. 31–52, 2022.

[4] M. S. Brown, “Transforming unstructured data into useful information,” Big Data, Mining, and Ana-

lytics: Components of Strategic Decision Making, 2014.

[5] J. A. Jaoude and R. G. Saade, “Blockchain applications - usage in different domains,” IEEE Ac-

cess, vol. 7, pp. 45 360–45 381, 2019.

[6] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele University,

vol. 33, no. 2004, pp. 1–26, 2004.

[7] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design sceince in information systems,” MIS

Quarterly, vol. 28, pp. 75–105, 2004.

[8] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science research

methodology for information systems research,” Journal of Management Information Systems,

vol. 24, pp. 45–77, 2007.

[9] H. Y. Paik, X. Xu, H. M. Bandara, S. U. Lee, and S. K. Lo, “Analysis of data management in

blockchain-based systems: From architecture to governance,” IEEE Access, vol. 7, pp. 186 091–

186 107, 2019.

[10] M. Chen, T. Malook, A. U. Rehman, Y. Muhammad, M. D. Alshehri, A. Akbar, M. Bilal, and M. A.

Khan, “Blockchain-enabled healthcare system for detection of diabetes,” Journal of Information

Security and Applications, vol. 58, 5 2021.

44

[11] B. E. Blakely, P. Pawar, L. Jololian, and S. Prabhaker, “The convergence of EDI, blockchain, and

big data in health care,” Conference Proceedings - IEEE SOUTHEASTCON, vol. 2021-March,

2021.

[12] C. Edussuriya, K. Vithanage, N. Bandara, J. Alawatugoda, M. Sandirigama, U. Jayasinghe,

N. Shone, and G. M. Lee, “BAT—block analytics tool integrated with blockchain based iot plat-

form,” Electronics (Switzerland), vol. 9, no. 9, pp. 1–20, 2020.

[13] F. Jamil, F. Qayyum, S. Alhelaly, F. Javed, and A. Muthanna, “Intelligent microservice based on

blockchain for healthcare applications,” Computers, Materials and Continua, vol. 69, no. 2, pp.

2513–2530, 2021.

[14] A. Kumari and S. Tanwar, “A Data Analytics Scheme for Security-aware Demand Response Man-

agement in Smart Grid System,” 7th IEEE Uttar Pradesh Section International Conference on

Electrical, Electronics and Computer Engineering, UPCON 2020, 2020.

[15] G. J. Mendis, Y. Wu, J. Wei, M. Sabounchi, and R. Roche, “A Blockchain-Powered Decentralized

and Secure Computing Paradigm,” IEEE Transactions on Emerging Topics in Computing, vol.

6750, no. c, pp. 1–18, 2020.

[16] N. V. Pardakhe and V. M. Deshmukh, “Machine Learning and Blockchain Techniques Used in

Healthcare System,” 2019 IEEE Pune Section International Conference, PuneCon 2019, pp. 1–5,

2019.

[17] M. A. Rahman, M. Rashid, S. Barnes, M. Shamim Hossain, E. Hassanain, and M. Guizani, “An IoT

and blockchain-based multi-sensory in-home quality of life framework for cancer patients,” 2019

15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019,

pp. 2116–2121, 2019.

[18] M. A. Rahman, M. M. Rashid, J. L. Kernec, B. Philippe, S. J. Barnes, F. Fioranelli, S. Yang,

O. Romain, Q. H. Abbasi, G. Loukas, and M. Imran, “A secure occupational therapy framework for

monitoring cancer patients’ quality of life,” Sensors (Switzerland), vol. 19, no. 23, 2019.

[19] A. Raslan, G. Kapogiannis, A. Cheshmehzangi, W. Tizani, and D. Towey, “A Framework for As-

sembling Asset Information Models (AIMs) through Permissioned Blockchain,” Proceedings - 2020

IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020, pp. 529–

534, 2020.

[20] S. Rasool, M. Iqbal, T. Dagiuklas, Z. Ul-Qayyum, and S. Li, “Reliable Data Analysis through

Blockchain based Crowdsourcing in Mobile Ad-hoc Cloud,” Mobile Networks and Applications,

vol. 25, no. 1, pp. 153–163, 2020.

45

[21] C. Schaefer and C. Edman, “Transparent logging with hyperledger fabric,” ICBC 2019 - IEEE

International Conference on Blockchain and Cryptocurrency, pp. 65–69, 2019.

[22] Z. Shae and J. J. Tsai, “On the Design of a Blockchain Platform for Clinical Trial and Precision

Medicine,” Proceedings - International Conference on Distributed Computing Systems, pp. 1972–

1980, 2017.

[23] N. Sukhija, E. Bautista, M. Moore, and J. G. Sample, “Employing blockchain technology for de-

centralized crowdsourced data access and management,” Proceedings - 2019 IEEE SmartWorld,

Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCAL-

COM/IOP/SCI 2019, pp. 268–273, 2019.

[24] S. Tanwar, Q. Bhatia, P. Patel, A. Kumari, P. K. Singh, and W. C. Hong, “Machine Learning Adop-

tion in Blockchain-Based Smart Applications: The Challenges, and a Way Forward,” IEEE Access,

vol. 8, pp. 474–448, 2020.

[25] L. Zhu and F. Li, “Agricultural data sharing and sustainable development of ecosystem based

on block chain,” Journal of Cleaner Production, vol. 315, no. April, p. 127869, 2021. [Online].

Available: https://doi.org/10.1016/j.jclepro.2021.127869

[26] D. Dhagarra, M. Goswami, P. R. Sarma, and A. Choudhury, “Big Data and blockchain supported

conceptual model for enhanced healthcare coverage: The Indian context,” Business Process Man-

agement Journal, vol. 25, no. 7, pp. 1612–1632, 2019.

[27] K. Lampropoulos, G. Georgakakos, and S. Ioannidis, “Using blockchains to enable big data analy-

sis of private information,” IEEE International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks, CAMAD, vol. 2019-Septe, 2019.

[28] Z. Shahbazi and Y. C. Byun, “Improving transactional data system based on an edge computing-

blockchain-machine learning integrated framework,” Processes, vol. 9, no. 1, pp. 1–20, 2021.

[29] M. Nugent and R. G. Lennon, “Blockchain for Decentralized Data Analysis,” INFOCOM 2019

- IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2019, pp.

1059–1060, 2019.

[30] S. Venkatraman and R. Venkatraman, “Big data security challenges and strategies,” AIMS Mathe-

matics, vol. 4, no. 3, pp. 860–879, 2019.

[31] A. Choubey, S. Behera, Y. S. Patel, K. Mahidhar, and R. Misra, “EnergyTradingRank Algorithm for

Truthful Auctions among EVs via Blockchain Analytics of Large Scale Transaction Graphs,” 2019

46

https://doi.org/10.1016/j.jclepro.2021.127869

11th International Conference on Communication Systems and Networks, COMSNETS 2019, pp.

9–14, 2019.

[32] J. Xiaomeng, Z. Fan, L. Shenwen, Y. Jinglin, and H. Ketai, “Data Analysis of Bitcoin Blockchain

Network Nodes,” Proceedings of the 15th IEEE Conference on Industrial Electronics and Applica-

tions, ICIEA 2020, pp. 1891–1895, 2020.

[33] P. Zheng, Z. Zheng, J. Wu, and H.-N. Dai, “XBlock-ETH: Extracting and Exploring Blockchain Data

From Ethereum,” IEEE Open Journal of the Computer Society, vol. 1, no. April, pp. 95–106, 2020.

[34] V. G. Venkatesh, K. Kang, B. Wang, R. Y. Zhong, and A. Zhang, “System architecture for

blockchain based transparency of supply chain social sustainability,” Robotics and Computer-

Integrated Manufacturing, vol. 63, no. November 2019, p. 101896, 2020. [Online]. Available:

https://doi.org/10.1016/j.rcim.2019.101896

[35] L. Li and H. Tong, “Blockchain Data Analytics,” Comp.Hkbu.Edu.Hk, 2018.

[36] “European commission,” last accessed 30 December 2021. [Online]. Available: https:

//ec.europa.eu/info/law/law-topic/data-protection/

[37] E. Bandara, X. Liang, P. Foytik, S. Shetty, N. Ranasinghe, and K. De Zoysa, “Rahasak—Scalable

blockchain architecture for enterprise applications,” Journal of Systems Architecture, vol. 116, no.

February, p. 102061, 2021. [Online]. Available: https://doi.org/10.1016/j.sysarc.2021.102061

[38] A. Learning, “Storing and Querying Bitcoin Blockchain Using SQL Databases,” Information Sys-

tems Education Journal (ISEDJ), vol. 12, no. 4, p. 6, 2014.

[39] Y. Gao, H. Lin, Y. Chen, and Y. Liu, “Blockchain and SGX-Enabled Edge-Computing-Empowered

Secure IoMT Data Analysis,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15 785–15 795,

2021.

[40] M. Moniruzzaman, S. Khezr, A. Yassine, and R. Benlamri, “Blockchain for smart homes: Review

of current trends and research challenges,” Computers and Electrical Engineering, vol. 83, no.

2020, 2020.

[41] H. Bi, J. Liu, and N. Kato, “Deep Learning-based Privacy Preservation and Data Analytics for IoT

Enabled Healthcare,” IEEE Transactions on Industrial Informatics, vol. 3203, no. c, pp. 1–10, 2021.

[42] D. Unal, M. Hammoudeh, M. A. Khan, A. Abuarqoub, G. Epiphaniou, and R. Hamila, “Integration

of federated machine learning and blockchain for the provision of secure big data analytics for

Internet of Things,” Computers and Security, vol. 109, p. 102393, 2021. [Online]. Available:

https://doi.org/10.1016/j.cose.2021.102393

47

https://doi.org/10.1016/j.rcim.2019.101896
https://ec.europa.eu/info/law/law-topic/data-protection/
https://ec.europa.eu/info/law/law-topic/data-protection/
https://doi.org/10.1016/j.sysarc.2021.102061
https://doi.org/10.1016/j.cose.2021.102393

[43] Y. Wu, P. Zheng, J. Guo, W. Zhang, and J. Huang, “A Controllable Efficient Content Distribution

Framework Based on Blockchain and ISODATA,” Proceedings - 17th IEEE International Confer-

ence on Trust, Security and Privacy in Computing and Communications and 12th IEEE Interna-

tional Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018, pp. 1698–

1701, 2018.

[44] Y. Wu, Z. Wang, Y. Ma, and V. C. Leung, “Deep reinforcement learning for blockchain in industrial

IoT: A survey,” Computer Networks, vol. 191, no. February, 2021.

[45] E. Zhou, H. Sun, B. Pi, J. Sun, K. Yamashita, and Y. Nomura, “Ledgerdata Refiner: A Power-

ful Ledger Data Query Platform for Hyperledger Fabric,” 2019 6th International Conference on

Internet of Things: Systems, Management and Security, IOTSMS 2019, pp. 433–440, 2019.

[46] W. T. Tsai, R. Wang, S. Liu, E. Deng, and D. Yang, “COMPASS: A data-driven blockchain evalua-

tion framwework,” Proceedings - 14th IEEE International Conference on Service-Oriented System

Engineering, SOSE 2020, pp. 17–30, 2020.

[47] D. T. Jose and A. B. Technology, “TOTEM : Token for controlled computation,” 2019 10th Inter-

national Conference on Computing, Communication and Networking Technologies (ICCCNT), pp.

1–7, 2019.

[48] R. Galici, L. Ordile, M. Marchesi, A. Pinna, and R. Tonelli, “Applying the ETL process to blockchain

data. Prospect and findings,” Information (Switzerland), vol. 11, no. 4, pp. 1–15, 2020.

[49] N. Wan, Y. Liu, and W. Xiao, “A Financial Transaction Methods Based on MapReduce Technology

and Blockchain,” Proceedings - 2020 3rd International Conference on Smart BlockChain, Smart-

Block 2020, pp. 109–113, 2020.

[50] Q. Zheng, Y. Li, P. Chen, and X. Dong, “An innovative ipfs-based storage model for blockchain,”

2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 704–708, 2018.

[51] I. S. T. (IST), “Ist digital library,” https://bist.tecnico.ulisboa.pt/pesquisa/biblioteca-digital/, 2022,

[Online; accessed 20-June-2022].

[52] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint arXiv:1407.3561,

2014.

[53] W. Huang, “A blockchain-based framework for secure log storage,” 2019 IEEE 2nd International

Conference on Computer and Communication Engineering Technology-CCET, 2019.

[54] K. Y. Bandara and J. Breslin, “Baas architecture for dapps and application for veterinary medicine

case study in ireland,” The 2021 International Symposium on Networks, Computers and Commu-

nications (ISNCC 2021) - Dubai, UAE, 2021.

48

https://bist.tecnico.ulisboa.pt/pesquisa/biblioteca-digital/

[55] D. Borthakur et al., “Hdfs architecture guide,” Hadoop apache project, vol. 53, no. 1-13, p. 2, 2008.

[56] V. Mothukuri, S. S. Cheerla, R. M. Parizi, Q. Zhang, and K.-K. R. Choo, “Blockhdfs: Blockchain-

integrated hadoop distributed file system for secure provenance traceability,” Blockchain: Re-

search and Applications, vol. 2, p. 100032, 12 2021.

[57] S. Team, “Swarm; storage and communication infrastructure for a self-sovereign digital society,”

https://www.ethswarm.org/swarm-whitepaper.pdf, 2021, [Online; accessed 27-June-2022].

[58] J. Kan and K. S. Kim, “Mtfs: Merkle-tree-based file system,” ICBC 2019 - IEEE International

Conference on Blockchain and Cryptocurrency, pp. 43–47, 5 2019.

[59] D. D. Taralunga and B. C. Florea, “A blockchain-enabled framework for mhealth systems,” Sensors,

vol. 21, 4 2021.

[60] M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar, M. K. Afzal, and M. Shafiq, “A secure

data sharing platform using blockchain and interplanetary file system,” Sustainability (Switzerland),

vol. 11, 12 2019.

[61] A. Kumari and S. Tanwar, “A reinforcement-learning-based secure demand response scheme for

smart grid system,” IEEE Internet of Things Journal, vol. 9, pp. 2180–2191, 2 2022.

[62] Y. E. Oktian, S. G. Lee, and B. G. Lee, “Blockchain-based continued integrity service for iot big

data management: A comprehensive design,” Electronics (Switzerland), vol. 9, pp. 1–36, 9 2020.

[63] Z. Zhou, M. Wang, Z. Ni, Z. Xia, and B. B. Gupta, “Reliable and sustainable product evalua-

tion management system based on blockchain,” IEEE Transactions on Engineering Management,

2021.

[64] R. G. R and P. K. S, “Self-restrained energy grid with data analysis and blockchain techniques,”

Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020.

[65] N. Alrebdi, A. Alabdulatif, C. Iwendi, and Z. Lian, “Svbe: searchable and verifiable blockchain-

based electronic medical records system,” Scientific Reports, vol. 12, 12 2022.

[66] H. R. Hasan, K. Salah, I. Yaqoob, R. Jayaraman, S. Pesic, and M. Omar, “Trustworthy iot data

streaming using blockchain and ipfs,” IEEE Access, vol. 10, pp. 17 707–17 721, 2022.

[67] S. Jiang, J. Liu, L. Wang, and S.-M. Yoo, “Verifiable search meets blockchain: A privacy-preserving

framework for outsourced encrypted data,” ICC 2019-2019 IEEE International Conference on

Communications (ICC), 2019.

49

https://www.ethswarm.org/swarm-whitepaper.pdf

[68] A. Desai, P. Shah, and D. D. Ambawade, “Verifyb - students’ record management and verification

system,” Proceedings - International Conference on Communication, Information and Computing

Technology, ICCICT 2021, 2021.

[69] E. Nyaletey, R. M. Parizi, Q. Zhang, and K.-K. R. Choo, “Blockipfs - blockchain-enabled inter-

planetary file system for forensic and trusted data traceability,” Proceedings - 2019 2nd IEEE

International Conference on Blockchain, Blockchain 2019, pp. 18–25, 7 2019.

[70] X. Tao, M. Das, Y. Liu, and J. C. Cheng, “Distributed common data environment using blockchain

and interplanetary file system for secure bim-based collaborative design,” Automation in Construc-

tion, vol. 130, 10 2021.

[71] C. Chen, J. Yang, W. J. Tsaur, W. Weng, C. Wu, and X. Wei, “Enterprise data sharing with privacy-

preserved based on hyperledger fabric blockchain in iiot’s application,” Sensors, vol. 22, 2 2022.

[72] C. Peng, Y. Yu, J. Zhao, and H. Yu, “Research on cross-chain communication based on decen-

tralized identifier,” HotICN 2021 - 2021 4th International Conference on Hot Information-Centric

Networking, pp. 7–12, 2021.

[73] A. S. Yadav, N. Singh, and D. S. Kushwaha, “Sidechain: storage land registry data using

blockchain improve performance of search records,” Cluster Computing, vol. 25, pp. 1475–1495,

4 2022.

[74] J. S. Gazsi, S. Zafreen, G. G. Dagher, and M. Long, “Vault: A scalable blockchain-based protocol

for secure data access and collaboration,” Proceedings - 2021 IEEE International Conference on

Blockchain, Blockchain 2021, pp. 376–381, 2021.

[75] P. Altmann, A. G. Abbasi, O. Schelen, K. Andersson, and M. Alizadeh, “Creating a traceable

product story in manufacturing supply chains using ipfs,” 2020 IEEE 19th International Symposium

on Network Computing and Applications, NCA 2020, 11 2020.

[76] P. A. Lobo and V. Sarasvathi, “Distributed file storage model using ipfs and blockchain,” 2021 2nd

Global Conference for Advancement in Technology, GCAT 2021, 10 2021.

[77] T. Renner, J. Muller, and O. Kao, “Endolith: A blockchain-based framework to enhance data re-

tention in cloud storages,” Proceedings - 26th Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, PDP 2018, pp. 627–634, 6 2018.

[78] F. Ishengoma, “Nfc-blockchain based covid-19 immunity certificate: Proposed system and emerg-

ing issues,” Information Technology and Management Science, vol. 24, pp. 26–32, 12 2021.

50

[79] P. Sylim, F. Liu, A. Marcelo, and P. Fontelo, “Blockchain technology for detecting falsified and sub-

standard drugs in distribution: Pharmaceutical supply chain intervention,” JMIR Research Proto-

cols, vol. 7, 9 2018.

[80] M. Hena and N. Jeyanthi, “A three-tier authentication scheme for kerberized hadoop environment,”

Cybernetics and Information Technologies, vol. 21, pp. 119–136, 12 2021.

[81] S. R. Niya, D. Dordevic, and B. Stiller, “Itrade: A blockchain-based, self-sovereign, and scalable

marketplace for iot data streams,” Proceedings of the IM 2021 : 2021 IFIP/IEEE International

Symposium on Integrated Network Management : 17-21 May 2021, Bordeaux, France, virtual

conference, 2021.

[82] A. Tandon, A. Dhir, A. N. Islam, and M. Mäntymäki, “Blockchain in healthcare: A systematic

literature review, synthesizing framework and future research agenda,” Computers in Industry,

vol. 122, p. 103290, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0166361520305248

[83] Y. Wang, J. H. Han, and P. Beynon-Davies, “Understanding blockchain technology for future supply

chains: a systematic literature review and research agenda,” Supply Chain Management: An

International Journal, 2018.

[84] H. Khan and T. Masood, “Impact of blockchain technology on smart grids-a systematic literature

review,” Available at SSRN 4003063, 2021.

[85] S. K. Lo, Y. Liu, S. Y. Chia, X. Xu, Q. Lu, L. Zhu, and H. Ning, “Analysis of blockchain solutions for

iot: A systematic literature review,” IEEE Access, vol. 7, pp. 58 822–58 835, 2019.

[86] C. Shen and F. Pena-Mora, “Blockchain for cities—a systematic literature review,” Ieee Access,

vol. 6, pp. 76 787–76 819, 2018.

[87] O. Ali, M. Ally, Y. Dwivedi et al., “The state of play of blockchain technology in the financial services

sector: A systematic literature review,” International Journal of Information Management, vol. 54,

p. 102199, 2020.

[88] F. R. Batubara, J. Ubacht, and M. Janssen, “Challenges of blockchain technology adoption for

e-government: a systematic literature review,” Proceedings of the 19th Annual International Con-

ference on Digital Government Research: Governance in the Data Age, pp. 1–9, 2018.

[89] F. Loukil, M. Abed, and K. Boukadi, “Blockchain adoption in education: a systematic literature

review,” Education and Information Technologies, vol. 26, no. 5, pp. 5779–5797, 2021.

51

https://www.sciencedirect.com/science/article/pii/S0166361520305248
https://www.sciencedirect.com/science/article/pii/S0166361520305248

[90] O. Bermeo-Almeida, M. Cardenas-Rodriguez, T. Samaniego-Cobo, E. Ferruzola-Gomez,

R. Cabezas-Cabezas, and W. Bazan-Vera, “Blockchain in agriculture: A systematic literature re-

view,” International Conference on Technologies and Innovation, pp. 44–56, 2018.

[91] P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi, and K. K. R. Choo, “A systematic literature

review of blockchain cyber security,” Digital Communications and Networks, vol. 6, pp. 147–156,

5 2020.

[92] F. J. de Haro-Olmo, Ángel Jesús Varela-Vaca, and J. A. Álvarez Bermejo, “Blockchain from the

perspective of privacy and anonymisation: A systematic literature review,” Sensors (Switzerland),

vol. 20, pp. 1–21, 12 2020.

[93] H. Huang, J. Lin, B. Zheng, Z. Zheng, and J. Bian, “When blockchain meets distributed file sys-

tems: An overview, challenges, and open issues,” IEEE Access, vol. 8, pp. 50 574–50 586, 2020.

[94] N. Deepa, Q.-V. Pham, D. C. Nguyen, S. Bhattacharya, B. Prabadevi, T. R. Gadekallu, P. K. R.

Maddikunta, F. Fang, and P. N. Pathirana, “A survey on blockchain for big data: approaches,

opportunities, and future directions,” Future Generation Computer Systems, 2022.

[95] A. A. Hussain and F. Al-Turjman, “Artificial intelligence and blockchain: A review,” Transactions on

Emerging Telecommunications Technologies, vol. 32, 9 2021.

[96] Y. Luo, L. Yin, W. Bai, and K. Mao, “An appraisal of incremental learning methods,” Entropy, vol. 22,

no. 11, p. 1190, 2020.

[97] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan, “A survey of distributed

data stream processing frameworks,” IEEE Access, vol. 7, pp. 154 300–154 316, 2019.

[98] “Linux foundation team,” last accessed 16 October 2022. [Online]. Available: https:

//www.linuxfoundation.org/

[99] “Deploy the ordering service,” last accessed 16 October 2022. [Online]. Avail-

able: https://hyperledger-fabric.readthedocs.io/en/release-2.4/deployorderer/ordererdeploy.html#

deploy-the-ordering-service

[100] “Hyperledger fabric team,” last accessed 16 October 2022. [Online]. Available: https:

//www.hyperledger.org/use/fabric

[101] “Ipfs docs, what is ipfs?” last accessed 16 October 2022. [Online]. Available: https:

//docs.ipfs.tech/concepts/what-is-ipfs/#decentralization

[102] “Apache kafka team,” last accessed 16 October 2022. [Online]. Available: https://kafka.apache.

org/

52

https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
https://hyperledger-fabric.readthedocs.io/en/release-2.4/deployorderer/ordererdeploy.html#deploy-the-ordering-service
https://hyperledger-fabric.readthedocs.io/en/release-2.4/deployorderer/ordererdeploy.html#deploy-the-ordering-service
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://docs.ipfs.tech/concepts/what-is-ipfs/#decentralization
https://docs.ipfs.tech/concepts/what-is-ipfs/#decentralization
https://kafka.apache.org/
https://kafka.apache.org/

[103] “River ml team,” last accessed 16 October 2022. [Online]. Available: https://riverml.xyz/

[104] M. Choi, “Medical cost personal datasets,” last accessed 16 October 2022. [Online]. Available:

https://www.kaggle.com/datasets/mirichoi0218/insurance

53

https://riverml.xyz/
https://www.kaggle.com/datasets/mirichoi0218/insurance

Appendix A: Proof of Concept Code

Listing 1: chaincode.go

1 package main

2

3 import {

4 "enconding/json"

5 "fmt"

6 "log"

7 "time"

8 "strings"

9

10 "github.com/hyperledger/fabric -contract -api -go/contractapi"

11 }

12

13 // SmartContract provides functions for managing an Asset

14 type SmartContract struct {

15 contractapi.Contract

16 }

17

18 // Asset describes basic details of what makes up a simple asset

19 type Asset struct {

20 ID string `json:"ID"`

21 TimeStamp string `json:"timeStamp"`

22 CID string `json:"CID"`

23 Hash string `json:"hash"`

24 Deleted bool `json:"deleted"`

25 }

26

54

27 // CreateAsset issues a new asset to the world state with given details.

28 func (s *SmartContract) CreateAsset(ctx contractapi.

TransactionContextInterface , id string , cid string , hash string) error {

29 exists , err := s.AssetExists(ctx , id)

30 if err != nil {

31 return err

32 }

33 if exists {

34 return fmt.Errorf("the asset %s already exists", id)

35 }

36 t := time.Now()

37 timestamp := t.Format("2006 -01 -02 15:04:05")

38

39 asset := Asset{

40 ID: id,

41 TimeStamp: timestamp ,

42 CID: cid ,

43 Hash: hash ,

44 Deleted: false ,

45 }

46 assetJSON , err := json.Marshal(asset)

47 if err != nil {

48 return err

49 }

50

51 return ctx.GetStub ().PutState(id, assetJSON)

52 }

53

54 // ReadAsset returns the asset stored in the world state with given id.

55 func (s *SmartContract) ReadAsset(ctx contractapi.TransactionContextInterface

, id string) (*Asset , error) {

56 assetJSON , err := ctx.GetStub ().GetState(id)

57 if err != nil {

58 return nil , fmt.Errorf("failed to read from world state: %v", err)

59 }

60 if assetJSON == nil {

61 return nil , fmt.Errorf("the asset %s does not exist", id)

62 }

55

63

64 var asset Asset

65 err = json.Unmarshal(assetJSON , &asset)

66 if err != nil {

67 return nil , err

68 }

69

70 return &asset , nil

71 }

72

73 // UpdateAsset updates an existing asset in the world state with provided

parameters.

74 func (s *SmartContract) UpdateAsset(ctx contractapi.

TransactionContextInterface , id string , cid string , hash string) error {

75 exists , err := s.AssetExists(ctx , id)

76 if err != nil {

77 return err

78 }

79 if !exists {

80 return fmt.Errorf("the asset %s does not exist", id)

81 }

82 t := time.Now()

83 timestamp := t.Format("2006 -01 -02 15:04:05")

84

85 // overwriting original asset with new asset

86 asset := Asset{

87 ID: id,

88 TimeStamp: timestamp ,

89 CID: cid ,

90 Hash: hash ,

91 Deleted: false ,

92 }

93

94 assetJSON , err := json.Marshal(asset)

95 if err != nil {

96 return err

97 }

98

56

99 return ctx.GetStub ().PutState(id, assetJSON)

100 }

101

102 // DeleteAsset deletes an given asset from the world state.

103 func (s *SmartContract) DeleteAsset(ctx contractapi.

TransactionContextInterface , id string) error {

104 exists , err := s.AssetExists(ctx , id)

105 if err != nil {

106 return err

107 }

108 if !exists {

109 return fmt.Errorf("the asset %s does not exist", id)

110 }

111

112 return ctx.GetStub ().DelState(id)

113 }

114

115 // AssetExists returns true when asset with given ID exists in world state

116 func (s *SmartContract) AssetExists(ctx contractapi.

TransactionContextInterface , id string) (bool , error) {

117 assetJSON , err := ctx.GetStub ().GetState(id)

118 if err != nil {

119 return false , fmt.Errorf("failed to read from world state: %v", err)

120 }

121

122 return assetJSON != nil , nil

123 }

124

125 //When the correspondent ipfs file is deleted , update the deleted parameter.

126 func (s *SmartContract) SetDeleted(ctx contractapi.

TransactionContextInterface , id string) error {

127 asset , err := s.ReadAsset(ctx , id)

128 if err != nil {

129 return err

130 }

131

132 asset.Deleted = true

133 assetJSON , err := json.Marshal(asset)

57

134 if err != nil {

135 return err

136 }

137

138 return ctx.GetStub ().PutState(id, assetJSON)

139 }

140

141 // GetAllAssets returns all assets found in world state

142 func (s *SmartContract) GetAllAssets(ctx contractapi.

TransactionContextInterface) ([]* Asset , error) {

143 // range query with empty string for startKey and endKey does an

144 // open -ended query of all assets in the chaincode namespace.

145 resultsIterator , err := ctx.GetStub ().GetStateByRange("", "")

146 if err != nil {

147 return nil , err

148 }

149 defer resultsIterator.Close()

150

151 var assets []* Asset

152 for resultsIterator.HasNext () {

153 queryResponse , err := resultsIterator.Next()

154 if err != nil {

155 return nil , err

156 }

157

158 var asset Asset

159 err = json.Unmarshal(queryResponse.Value , &asset)

160 if err != nil {

161 return nil , err

162 }

163 assets = append(assets , &asset)

164 }

165

166 return assets , nil

167 }

168

169 func main() {

170 assetChaincode , err := contractapi.NewChaincode (& SmartContract {})

58

171 if err != nil {

172 log.Panicf("Error creating asset -transfer -basic chaincode: %v", err)

173 }

174

175 if err := assetChaincode.Start (); err != nil {

176 log.Panicf("Error starting asset -transfer -basic chaincode: %v", err)

177 }

178 }

Listing 2: hlf.py

1 import ipfs

2 from executeCmd import execute_cmd

3

4 IPFS_FILES_PATH = "~/IPFS/files/"

5 HLF_PATH = "~/HLF/fabric/bin/"

6

7 def add_data_hlf(id , filename):

8 """

9 receives the unique ID and the filename with path e.g: ~/add.txt

10 return

11 """

12 cid = ipfs.add_data_ipfs(filename)

13 cmd = HLF_PATH + "peer chaincode invoke -o atlas.omega.olympus.pt :7050 --

tls --cafile ~/HLF/organizations/ordererOrganizations/omega.olympus.

pt/msp/tlscacerts/ca-omega -olympus -pt -7054. pem -C main -channel -n

occv3 -c '{\"Args \":[\" CreateAsset \",\"" + str(id) + "\",\"" + str(

cid) + "\"]}'"

14 response = execute_cmd(cmd)

15 if "status :200" in response:

16 return True

17 else:

18 return False

19

20 def delete_data_hlf(id):

21 """

22 receives the id

23 """

59

24 cmd = HLF_PATH + "peer chaincode invoke -o atlas.omega.olympus.pt :7050 --

tls --cafile ~/HLF/organizations/ordererOrganizations/omega.olympus.

pt/msp/tlscacerts/ca-omega -olympus -pt -7054. pem -C main -channel -n

occv3 -c '{\"Args \":[\" ReadAsset \",\"" + str(id) + "\"]}'"

25 response = execute_cmd(cmd)

26 if "status :200" in response:

27 lst_response = response.split("CID")

28 response_cid = lst_response[-1]

29 lst_response = response_cid.split("deleted")

30 response_cid = lst_response[0]

31 ipfs_cid = ""

32 for char in response_cid:

33 if char != "/" and char != "\"" and char != "\\" and char != ":"

and char != ",":

34 ipfs_cid = ipfs_cid + char

35

36 if (ipfs.delete_data_ipfs(ipfs_cid) == True):

37 pass

38 else:

39 return False

40 else:

41 return False

42

43 cmd = HLF_PATH + "./peer chaincode invoke -o atlas.omega.olympus.pt :7050

--tls --cafile ~/HLF/organizations/ordererOrganizations/omega.olympus

.pt/msp/tlscacerts/ca -omega -olympus -pt -7054. pem -C main -channel -n

occv3 -c '{\"Args \":[\" DeleteAsset \",\"" + str(id) + "\"]}'"

44 response = execute_cmd(cmd)

45 if "status :200" in response:

46 return True

47 else:

48 return False

49

50 def get_data_hlf(id):

51 """

52 receives the blockid

53 return data_path stored in IPFS

54 """

60

55 cmd = HLF_PATH + "peer chaincode invoke -o atlas.omega.olympus.pt :7050 --

tls --cafile ~/HLF/organizations/ordererOrganizations/omega.olympus.

pt/msp/tlscacerts/ca-omega -olympus -pt -7054. pem -C main -channel -n

occv3 -c '{\"Args \":[\" ReadAsset \",\"" + str(id) + "\"]}'"

56 response = execute_cmd(cmd)

57 if "status :200" in response:

58 lst_response = response.split("CID")

59 response_cid = lst_response[-1]

60 lst_response = response_cid.split("deleted")

61 response_cid = lst_response[0]

62 ipfs_cid = ""

63 for char in response_cid:

64 if char != "/" and char != "\"" and char != "\\" and char != ":"

and char != ",":

65 ipfs_cid = ipfs_cid + char

66

67 data_path = ipfs.get_data_ipfs(ipfs_cid)

68 return data_path

69

70 def get_all_data_hlf ():

71 """

72 returns path with all the data

73 """

74 cmd = HLF_PATH + "peer chaincode invoke -o atlas.omega.olympus.pt :7050 --

tls --cafile ~/HLF/organizations/ordererOrganizations/omega.olympus.

pt/msp/tlscacerts/ca-omega -olympus -pt -7054. pem -C main -channel -n

occv3 -c '{\"Args \":[\" GetAllAssets \"]}'"

75 response = execute_cmd(cmd)

76 if "status :200" in response and "payload" in response:

77 lst_response = response.split("CID")

78 lst_response = lst_response[1:]

79 ipfs_cid = ""

80 for response_cid in lst_response:

81 lst_response = response_cid.split("deleted")

82 response_cid = lst_response[0]

83 for char in response_cid:

84 if char != "/" and char != "\"" and char != "\\" and char !=

":" and char != ",":

61

85 ipfs_cid = ipfs_cid + char

86 ipfs.get_data_ipfs(ipfs_cid)

87 ipfs_cid = ""

88 return IPFS_FILES_PATH

Listing 3: ipfs.py

1 from executeCmd import execute_cmd

2

3 IPFS_FILES_PATH = "~/IPFS/files/"

4

5 def add_data_ipfs(filename):

6 """

7 receives the filename in e.g: ~/ mypath/add.txt

8 return new content identifier

9 """

10

11 #convert input to string

12 filename = str(filename)

13

14 cmd = "cp " + filename + " " + IPFS_FILES_PATH

15 execute_cmd(cmd)

16

17 #add filename to ipfs and send hash to temporary file

18 cmd = "ipfs -cluster -ctl add " + filename

19 cmd_return = execute_cmd(cmd)

20

21 #ipfs -cluster -ctl add return format -> added hash1010101 txt.txt

22 list_cmd_return = cmd_return.split ()

23 ipfs_hash = list_cmd_return[1]

24

25 cmd = "ipfs get " + ipfs_hash

26 execute_cmd(cmd)

27

28 cmd = "mv " + ipfs_hash + " " + IPFS_FILES_PATH

29 execute_cmd(cmd)

30

31 filename = filename.split("/")

62

32 cmd = "rm " + IPFS_FILES_PATH + filename[-1]

33 execute_cmd(cmd)

34

35 return ipfs_hash

36

37 def delete_data_ipfs(cid):

38 """

39 receives the content identifier of the data to be deleted

40 """

41

42 #convert input to string

43 cid = str(cid)

44

45 #unpin filename from ipfs and run garbage collector to delete from

cluster

46 cmd = "ipfs -cluster -ctl pin rm " + cid

47 execute_cmd(cmd)

48

49 cmd = "ipfs -cluster -ctl ipfs gc"

50 execute_cmd(cmd)

51

52 cmd = "rm " + IPFS_FILES_PATH + cid

53 execute_cmd(cmd)

54

55 return True

56

57 def get_data_ipfs(cid):

58 """

59 send ipfs content identifier

60 return content path

61 """

62

63 #convert input to string

64 cid = str(cid)

65

66 #get data from ipfs

67 cmd = "ipfs get " + cid

68 execute_cmd(cmd)

63

69

70 cmd = "mv " + cid + " " + IPFS_FILES_PATH

71 execute_cmd(cmd)

72

73 return IPFS_FILES_PATH + cid

Listing 4: kafkaProducer.py

1 from executeCmd import execute_cmd

2

3 KAFKA_PATH = "~/KAFKA/bin/"

4

5 def send_data(server_addr , topic_name , datafile):

6 """

7 send data to kafka topic

8 server_addr can be 1 or more ip addrs serverA or serverA serverB

9 data will be read each line at time

10 """

11 cmd = KAFKA_PATH + "kafka -console -producer.sh --broker -list " + str(

server_addr) + ":9092 --topic " + str(topic_name) + " < " + str(

datafile)

12 execute_cmd(cmd)

13 return True

Listing 5: producerController.py

1 import hlf

2 import kafkaProducer

3 from timeProgram import delay

4 import datasetController as dtsc

5 import signal

6

7 KAFKA_TOPIC = "trainer"

8 KAFKA_PREDICTION_TOPIC = "analyzer"

9 KAFKA_ADDR = "ca.alpha.olympus.pt"

10

11 CONTROLLER_FOLDER_PATH = "/home/hera/CONTROLLER/"

64

12 DATA_FOLDER_PATH = CONTROLLER_FOLDER_PATH + "dataset_files/"

13 DATA_FOLDER_INDEX_PATH = DATA_FOLDER_PATH + "index.txt"

14 DATA_PREDICTION_FOLDER_PATH = CONTROLLER_FOLDER_PATH + "

dataset_files_analysis/"

15 DATA_PREDICTION_FOLDER_INDEX_PATH = DATA_PREDICTION_FOLDER_PATH + "index.txt"

16

17 def handler(signum , frame):

18 global flag

19 res = input("ACTION: Ctrl -c was pressed. Do you really want to exit? y/n

")

20 if res == 'y':

21 flag = False

22

23 def add_datafiles ():

24 global flag

25 flag = True

26 signal.signal(signal.SIGINT , handler)

27 hlf_id_tracker = 1

28

29 dtsc.undo_selection ()

30 delay("Undo Selection")

31 dtsc.random_selection_analysis(5)

32 delay("Selection")

33

34 with open(DATA_FOLDER_INDEX_PATH , "r") as indexFile:

35 for line in indexFile:

36 if(not flag):

37 print("\nEXCEPTION: Stopped !\n")

38 break

39 filename = DATA_FOLDER_PATH + str(line)

40 filename = filename[:-1] #removes last \n char

41 add_data(hlf_id_tracker , filename)

42 hlf_id_tracker += 1

43 print("INFO: Added " + str(hlf_id_tracker) + " files\n")

44

45 print("INFO: Last FileID Added is " + str(hlf_id_tracker))

46 return hlf_id_tracker

47

65

48 def add_datafiles_prediction ():

49 with open(DATA_PREDICTION_FOLDER_INDEX_PATH , "r") as indexFile:

50 for line in indexFile:

51 filename = DATA_PREDICTION_FOLDER_PATH + str(line)

52 filename = filename[:-1] #removes last \n char

53 send_prediction_data(filename)

54 print("")

55 return

56

57 def add_data(id , filename):

58 status = hlf.add_data_hlf(id, filename)

59 if not status:

60 print('ERR: HLF or IPFS Error')

61 return

62 print('INFO: File Added With Success to HLF and IPFS')

63

64 print('INFO: Sending Data to Kafka Cluster ')

65 response = kafkaProducer.send_data(KAFKA_ADDR , KAFKA_TOPIC , filename)

66 if (response):

67 print('INFO: Data Sent to Kafka Cluster ')

68 else:

69 print('ERR: Data Not Sent to Kafka Cluster ')

70 return

71

72 def send_prediction_data(filename):

73 if (kafkaProducer.send_data(KAFKA_ADDR , KAFKA_PREDICTION_TOPIC , filename)

):

74 print('INFO: Data Sent to Kafka Cluster ')

75 else:

76 print('ERR: Data Not Sent to Kafka Cluster ')

77 return

78

79 def read_data(id):

80 data_path = hlf.get_data_hlf(id)

81 print('INFO: Data Retrieved With Success from HLF and IPFS')

82 print('INFO: Data Located in File: ' + data_path)

83 return data_path

84

66

85 def read_all_data ():

86 data_path = hlf.get_all_data_hlf ()

87 print('INFO: All Data Fetched With Success from HLF and IPFS')

88 print('INFO: All Data Located in Folder: ' + data_path)

89 return data_path

90

91 def delete_data(id):

92 status = hlf.delete_data_hlf(id)

93 if not status:

94 print('ERR: HLF or IPFS Error')

95 return

96 print('INFO: Data Deleted With Success from HLF and IPFS')

97 return

98

99 def delete_all_data(id):

100 id_counter = 1

101 id = int(id)

102 while (id_counter <= id):

103 delete_data(id_counter)

104 id_counter += 1

105 print("INFO: All Data Deleted from HLF and IPFS")

Listing 6: executeCmd.py

1 import subprocess

2

3 def execute_cmd(cmd):

4 ps = subprocess.Popen(cmd , shell=True , stdout=subprocess.PIPE , stderr=

subprocess.STDOUT)

5 response = str(ps.communicate ()[0])

6 return response

Listing 7: iml.py

1 from river import linear_model

2 from river import metrics

3 from river import compose

67

4 from river import preprocessing

5 from river import optim

6 import os

7 import pickle

8

9 SAVE_MODEL_FREQUENCY = 50

10

11 class Iml:

12

13 def __init__(self):

14 self.model = compose.Pipeline(

15 ('cat_scale ', compose.SelectType(str) | preprocessing.

OneHotEncoder ()),

16 ('scale ', compose.SelectType(int ,float) | preprocessing.

StandardScaler ()),

17 ('log_reg ', linear_model.LinearRegression(optimizer=optim.SGD(0.0

5)))

18)

19 self.modelName = 'model.plk'

20 self.metricMAE = metrics.MAE()

21 self.metricRMSE = metrics.RMSE()

22 self.metricR2 = metrics.R2()

23 # save every counter interations

24 self.counter = SAVE_MODEL_FREQUENCY

25

26 def learn(self , entryData , targetData):

27 x, y = entryData , targetData

28 self.model.learn_one(x, y)

29 y_pred = self.model.predict_one(x)

30

31 self.metricMAE.update(y, y_pred)

32 self.metricRMSE.update(y, y_pred)

33 self.metricR2.update(y, y_pred)

34

35 self.counter -= 1

36 if (self.counter <= 0):

37 print("\nINFO: Saving Model ...\n")

38 self.counter = SAVE_MODEL_FREQUENCY

68

39 self.save_model ()

40

41 return True

42

43 def printMetrics(self):

44 print("MAE: " + str(self.metricMAE.get()))

45 print("RMSE: " + str(self.metricRMSE.get()))

46 print("R2: " + str(self.metricR2.get()))

47

48 def prediction(self , entryData):

49 return self.model.predict_one(entryData)

50

51 def save_model(self):

52 # by writing to tmp file operation becames atomic

53 tmp = "tmp.plk"

54 with open(tmp , 'wb') as f:

55 pickle.dump(self ,f)

56 os.replace(tmp , self.modelName)

57

58 def load_model(self):

59 with open(self.modelName , 'rb') as f:

60 return pickle.load(f)

61

62 def parse_response_data(inputData):

63 inputData = inputData[2:]

64 inputData = inputData[:-3]

65 data_lst = inputData.split(",")

66

67 data = {

68 "age":int(data_lst[0]),

69 "sex":data_lst[1],

70 "bmi":float(data_lst[2]),

71 "children":int(data_lst[3]),

72 "smoker":data_lst[4],

73 "region":data_lst[5]

74 }

75

76 # target are the charges int and float due to logistic regression

69

77 return {"data": data , "target": float(data_lst[6])}

Listing 8: kafkaConsumer.py

1 from executeCmd import execute_cmd

2

3 KAFKA_PATH = "~/KAFKA/bin/"

4

5 def create_topic(server_addr , replication_factor , partitions , topic_name):

6 """

7 creates topic

8 usage example params ca.alpha.olypus.pt 1 3 health_data1

9 """

10 cmd = KAFKA_PATH + "kafka -topics.sh --create --bootstrap -server " + str(

server_addr) + ":9092 --replication -factor " + str(replication_factor

) + " --partitions " + str(partitions) + " --topic " + str(topic_name

)

11 execute_cmd(cmd)

12 return

13

14 def delete_topic(server_addr , topic_name):

15 """

16 creates topic

17 usage example params ca.alpha.olypus.pt 1 3 health_data1

18 """

19 cmd = KAFKA_PATH + "kafka -topics.sh --bootstrap -server " + str(

server_addr) + ":9092 --delete --topic " + str(topic_name)

20 execute_cmd(cmd)

21 return

22

23 def receive_data(server_addr , topic_name , max_messages):

24 cmd = KAFKA_PATH + "kafka -console -consumer.sh --bootstrap -server " + str(

server_addr) + ":9092 --topic " + str(topic_name) + " --from -

beginning --max -messages " + str(max_messages)

25 return execute_cmd(cmd)

26

27 def receive_data_offset(server_addr , topic_name , partition , offset):

28 cmd = KAFKA_PATH + "kafka -console -consumer.sh --bootstrap -server " + str(

70

server_addr) + ":9092 --topic " + str(topic_name) + " --max -messages

1 --partition " + str(partition) + " --offset " + str(offset)

29 return execute_cmd(cmd)

Listing 9: consumerController.py

1 import kafkaConsumer as kafka

2 import iml

3 import signal

4 from executeCmd import execute_cmd

5

6 KAFKA_TOPIC = "trainer"

7 KAFKA_PREDICTION_TOPIC = "analyzer"

8 KAFKA_ADDR = "localhost"

9 KAFKA_PARTITIONS = "1"

10 KAFKA_REPLICATION = "1"

11

12 def init():

13 # Create Learn Data Topic

14 kafka.create_topic(KAFKA_ADDR , KAFKA_REPLICATION , KAFKA_PARTITIONS ,

KAFKA_TOPIC)

15 # Create Prediction Data Request Topic

16 kafka.create_topic(KAFKA_ADDR , KAFKA_REPLICATION , KAFKA_PARTITIONS ,

KAFKA_PREDICTION_TOPIC)

17 # Init Model

18 global learner

19 learner = iml.Iml()

20 print('INFO: Init Data Topic and Model Sucess ')

21 return True

22

23 def clean():

24 # Delete Learn Data Topic

25 print("INFO: Deleting " + KAFKA_TOPIC + " topic ...")

26 kafka.delete_topic(KAFKA_ADDR , KAFKA_TOPIC)

27 # Delete Prediction Data Request Topic

28 print("INFO: Deleting " + KAFKA_PREDICTION_TOPIC + " topic ...")

29 kafka.delete_topic(KAFKA_ADDR , KAFKA_PREDICTION_TOPIC)

30 # Delete Model

71

31 print("INFO: Topics Deleted. Deleting Model ...")

32 cmd = "rm model.plk"

33 execute_cmd(cmd)

34 print('INFO: Cleaning Sucess ')

35 return True

36

37 def handler(signum , frame):

38 global flag

39 res = input("ACTION: Ctrl -c was pressed. Do you really want to exit? y/n

")

40 if res == 'y':

41 flag = False

42

43 def continuous_analysis(offset , partition):

44 global flag

45 flag = True

46 signal.signal(signal.SIGINT , handler)

47 global learner

48 print('INFO: Continuous Analysis Started. Waiting ...')

49 # init: data needs to be loaded to access by offset atfer

50 kafka.receive_data(KAFKA_ADDR , KAFKA_TOPIC , offset + 2)

51 while(flag):

52 print('\nINFO: Waiting Data From Kakfa ')

53 response = str(kafka.receive_data_offset(KAFKA_ADDR , KAFKA_TOPIC ,

partition , offset))

54 offset += 1

55 print('INFO: Data Received From Kakfa ')

56 if(response != "b\'\'"):

57 data = iml.parse_response_data(response)

58 print('INFO: Analysing Data With Incremental Learning Model ')

59 if (not learner.learn(data["data"], data["target"])):

60 print('ERR: Incremental Learning Model Did Not Learn')

61 print('INFO: Data Analysed ')

62 else:

63 print("ERR: Kafka Response Empty")

64 return

65 print("INFO: Saving Model ...")

66 learner.save_model ()

72

67 print('INFO: Analysis Stopped\n')

68 return offset

69

70 def predictions_request(offset , partition):

71 global flag

72 flag = True

73 signal.signal(signal.SIGINT , handler)

74 print('INFO: Loading Model')

75 predictor = iml.Iml().load_model ()

76 print('INFO: Waiting Prediction Data From Kakfa ')

77 kafka.receive_data(KAFKA_ADDR , KAFKA_PREDICTION_TOPIC , offset + 2)

78 while(flag):

79 print('\nINFO: Getting Data From Kakfa ')

80 response = str(kafka.receive_data_offset(KAFKA_ADDR ,

KAFKA_PREDICTION_TOPIC , partition , offset))

81 print('INFO: Data Received From Kakfa ')

82 offset += 1

83 if(response != "b\'\'"):

84 data = iml.parse_response_data(response)

85 print('INFO: Predicting from Data With Incremental Learning Model

')

86 prediction_result = predictor.prediction(data["data"])

87 print("INFO: Prediction Result of Data " + str(prediction_result)

+ " \n From Data: " + str(data))

88 else:

89 print("ERR: Kafka Response Empty")

90 return

91 predictor.printMetrics ()

92 return offset

Listing 10: createTestFiles.py

1 import os

2

3 def delete_files ():

4 os.system("rm -r ./ testFiles")

5

6 def generate_files(quantity , nbytes):

73

7 os.system("mkdir ./ testFiles")

8 for i in range(quantity):

9 filename = "./ testFiles/testFile_" + str(i)

10 with open('%s'%filename , 'wb') as f:

11 f.write(os.urandom(nbytes))

Listing 11: timeProgram.py

1 import timeit

2 from time import sleep

3

4 def start():

5 global start

6 start = timeit.default_timer ()

7

8 def end():

9 global start

10 stop = timeit.default_timer ()

11 result = stop - start

12 return result

13

14 def delay(event):

15 print("INFO: Sleeping after " + event + "..." , end =" ")

16 sleep(1)

17 print("Waking Up!")

74

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Research Background
	1.2 Research Problem
	1.3 Research Objective
	1.4 Dissertation Outline

	2 Research Methodology
	2.1 Systematic Literature Review
	2.2 Design Science Research
	2.3 Research Outline

	3 Benefits, Challenges and Solutions for Data Analysis in Blockchain
	3.1 SLR Planning
	3.2 SLR Conducting
	3.3 SLR Reporting
	3.3.1 RQ1: What are the main benefits?
	3.3.2 RQ2: What are the main challenges?
	3.3.3 RQ3: What solutions can be used?

	3.4 Discussion

	4 Data Analysis in Blockchain Distributed File Systems
	4.1 SLR Planning
	4.2 SLR Conducting
	4.3 SLR Reporting
	4.3.1 RQ1: Which distributed file systems are used with blockchain?
	4.3.2 RQ2: How is data accessed for analysis on architectures using blockchain and distributed file systems?
	4.3.3 RQ3: Which are the streaming data architectures used in blockchain?

	4.4 Discussion
	4.5 Review's Related Work

	5 Research Proposal
	5.1 Design and Development
	5.2 Demonstration
	5.2.1 Proof-of-Concept Technologies
	5.2.2 Proof-of-Concept Hardware Specifications
	5.2.3 Proof-of-Concept Software Architecture
	5.2.4 Proof-of-Concept Implementation

	5.3 Evaluation
	5.3.1 Produced Dataset
	5.3.2 Healthcare Dataset

	5.4 Discussion
	5.5 Related Work

	6 Conclusion
	6.1 Main Contributions
	6.2 Communication
	6.3 Research Limitations
	6.4 Future Work

	References
	Appendix A: Proof of Concept Code

