
1

Data Analysis in Blockchain
(Master’s Dissertation Extended Summary)

Miguel Baptista, Miguel Mira da Silva, Paulo Rupino da Cunha

Abstract—Blockchain and Data Analysis are two topics of high interest, and both are being studied and integrated for multiple
applications. Blockchain’s main benefit is creating trust, security and privacy in a digital environment to gather data from different
sources. Blockchain’s main challenge is the time necessary to access and analyze stored data, and lack of tools to do so. In this work,
a systematic literature review and a novel architecture are proposed. The main conclusions of the review were, using distributed file
systems can avoid high storage and computation costs; the most common way of accessing data in blockchain, although sub-optimal,
is smart contracts. With the gathered knowledge, a novel architecture was developed. Besides blockchain’s and distributed file systems
joint inherent capabilities, the architecture main benefit is the ability to make fast and up-to-date predictions using incremental machine
learning. A proof-of-concept demonstrating its use was also implemented using Hyperledger Fabric (Blockchain), the InterPlanetary
File System (DFS), Kafka (Distributed Data Streaming Event Platform) and RiverML (Incremental Machine Learning). The system was
evaluated showcasing its scalability and cross-applications potential. Laslty, main contributions, related work, research limitations and
future work are presented.

Index Terms—Blockchain; Information System Security; Data Analysis; Data Streams; Incremental Machine Learning; Distributed File
System.

✦

1 INTRODUCTION

R ECENTLY there has been an increase in the number
of studies about blockchain-based technology and its

applications in multiple fields, due to its ability to create
trust in a digital environment [1].

Blockchain is a distributed tamper-resistant append-only
ledger. Data is organized in blocks that are “linked” to
previous ones via hashes. These hash pointers are created
using the previous block as input on a hash function. When
adding a new block, its validity is verified among the
blockchain participants, and through the consensus algo-
rithm, they agree (or not) on adding this new block to the
blockchain.

Blockchain’s architecture provides a system where the
change of a previously added component is not allowed,
making it immutable since any change is identified as a
malicious attack and is not accepted by the network. This
way, blockchain technology creates trust between its partici-
pants due to its secure and irreversible storage. More recent
blockchains support smart contracts, “programs that imple-
ment the automated processing of traditional contracts” [2].
These programs execute automatically whenever previously
agreed conditions are met.

The immutability properties of blockchain create a high
volume of data to store making the cost of maintaining the
network and appending new blocks expensive over time
or when scaling up the network. Distributed File Systems
were introduced as a solution to tackle this problem. DFS
are peer-to-peer data networks that can be described as
a network of systems capable of data storage, replication,
distribution, and exchange [3]. By combining DFS and
blockchain technology, DFS data integrity issues are solved
through blockchain, as blockchain high maintenance costs
regarding storage are addressed.

Data analysis can generally be described as the process
of information discovery from data. For this to be possi-
ble, data needs to be collected, accessed, processed and

finally analyzed. By finding patterns on the data during the
analysis phase, data can be transformed into information.
Recently, data analysis has also increased in popularity due
to machine learning. Machine learning is capable of building
models based on large amounts of data. The created models
improve data’s utility, which has been of great value for a
different number of industries.

Accessing data on a blockchain is not a process as
straightforward as on a regular centralized data reposi-
tory, like a database. Blockchain does not have a built-in
query system and most solutions are divided in one of two
categories: emulating querying, with smart contracts and
custom search engines, or extracting the data to a traditional
database and access it from there. However, both solutions
have problems. Querying data through smart contracts has
high cost and slow performance. Extracting data to an off
chain database violates the data integrity, since the data is no
longer on chain. Adding DFS to the process only increases
the complexity of the problem.

The objective of this research is to improve the time it
takes to perform data analysis in blockchain based systems.
Through the use of an architecture that also uses distributed
file systems it is possible to reduce storage costs. As such,
the second goal of this work is to create an architecture that
also improves blockchain’s storage costs with a DFS. The
most common tool used for analyzing large amounts of data
is machine learning so it should also be integrated in the
mentioned architecture. Lastly, a proof of concept should be
created to demonstrate the architecture usage.

In Section 2 the research methodologies chosen to con-
duct this work are presented. Section 3 showcase the first
research methodology usage and answers three research
questions; (3.3.1) Which distributed file systems are used
with blockchain? (3.3.2) How is data accessed on architec-
tures using blockchain and distributed file systems? (3.3.3)
Which are the current streaming data architectures used in



2

blockchain? Section 4 presents the research results applica-
tion with a novel architecture. To demonstrate its usage,
a software proof-of-concept is developed and evaluated.
Lastly, Section 5 makes the conclusion remarks and presents
the main contributions, research limitations and future work
of this study.

2 RESEARCH METHODOLOGY

In this section, the research methodologies chosen to con-
duct this paper are presented. The research outline is also
presented.

2.1 Systematic Literature Review
A Systematic Literature Review (SLR) is defined as a “means
of identifying, evaluating and interpreting all available re-
search relevant to a particular research question, or topic
area or phenomenon of interest” [4].

In order to answer the research questions a systematic lit-
erature review was chosen since it is a trustworthy research
methodology and it is useful to summarize and organize the
investigation done in the field of blockchain data analysis.
By performing a SLR we are able to identify any gaps in the
topic while establishing the framework for the investigation.

The SLR conducted was based on Kitchenham 2004
study [4] and comprises three steps: planning, conducting
and reporting. The planning phase is composed of the
following three tasks; identify why the review is needed,
develop a review protocol and define the research questions.
The conducting phase is divided in two parts; screen and
select the target studies and analyze the studies data. Lastly,
the reporting phase purpose is to summarize the informa-
tion gathered in the studies. The SLR aim is to identify
the problem and get answers to our proposed research
questions.

2.2 Design Science Research
The Design Science Research Methodology (DSRM) is the
chosen methodology to guide this research since it provides
rigorous guidelines for the development of an information
technology artifact. Based on to Hevner 2004 study, this
research should create an “object with an embedded solu-
tion to an understood research problem” [5] through the
following process:

• Problem Identification and Motivation: “Define the
specific research problem and justify the value of a
solution” [5];

• Define the objectives for a solution: “Infer the
objectives of a solution from the problem definition
and knowledge of what is possible and feasible” [5];

• Design and Development: “Create the artifact” [5].
This can be “potentially constructs, models, methods,
or instantiations” [5];

• Demonstration: “Demonstrate the use of the artifact
to solve one or more instances of the problem” [5];

• Evaluation: “Observe and measure how well the arti-
fact supports a solution to the problem. This activity
involves comparing the objectives of a solution to
actual observed results from use of the artifact in the
demonstration” [5];

• Communication: “Communicate the problem and its
importance, the artifact, its utility and novelty, the
rigor of its design, and its effectiveness to researchers
and other relevant audiences such as practicing pro-
fessionals, when appropriate.” [5].

Fig. 1: Design Science Research Methodology

3 DATA ANALYSIS IN BLOCKCHAIN DISTRIBUTED
SYSTEMS: SLR
In this section, the systematic literature review is done in
order to get a better understanding of the current research
on data analysis in blockchain distributed file systems. With
the acquired knowledge, the results are discussed and the
artifact of this research is produced. In the DSRM, this
section is responsible for the solution objectives definition.

3.1 SLR Planning
This section presents our three research questions. The
three main topics these questions pretend to explore are
blockchain, distributed file systems and data analysis, more
specifically using streaming data techniques.

• Research Question 1: Which distributed file systems
are used with blockchain?

• Research Question 2: How is data accessed and
analyzed on architectures using blockchain and dis-
tributed file systems?

• Research Question 3: Which are the current stream-
ing data architectures used in blockchain?

We used the search engine EBSCO Discovering Service
[6] that includes the main research sources, such as Scopus,
Academic Search and Clarivate Analytics (itself including
Web of Science, Current Contents Connect, Derwent Innova-
tions Index, MEDLINE e SciELO Citation Index, and other
resources, such as Citation Reports and Essential Science
Indicators).

To identify the relevant work, we used the following
search expressions: (1) “AB (Blockchain) AND AB (“Dis-
tributed File System” OR “Decentralized File System” OR
“Interplanetary File System”)”; (2) “AB (Blockchain) AND
AB (“Data Stream” OR “Data Streaming” OR “Data Flow”
OR “Data Flows”)”.

The keyword AB indicates to the search engine we have
used – EBSCO Discovery Service – that the search should be
carried out in the title and the abstract. The papers were



3

filtered automatically by the search engine according to
Table 1.

The first search string resulted in 256 studies and the
second in 111 studies. The merged results, after duplicates
were removed, were 277 studies.

TABLE 1: Filtered Studies

Included Excluded
Equivalent Subjects Not Peer Reviewed
Full Text Not Written in English

Not Academic Journal
or Conference Material

The studies abstracts were analyzed and classified as
out of scope according to our inclusion/exclusion criteria,
presented in Table 2.

The purpose of this criteria was to analyze novel data
analysis architectures, such as new data access processes;
new or different architectures for distributed file systems
and blockchain or new distributed file systems technologies
that were not included before. Studies with data manage-
ment components were included since these could identify
technical problems or solutions in current real world appli-
cations of these technologies.

An objective of this study is to understand how data
analysis is being conducted in blockchain based systems,
supported by distributed file systems. As such, blockchain
specific technical improvements or blockchain technology
integration in an industry such as using blockchain for
agriculture, was deemed as out of scope. Personal data
applications were likewise excluded since these are not in
the scope of the study.

TABLE 2: Scope Inclusion/Exclusion Criteria.

Inclusion Criteria Exclusion Criteria
Data Management General Security Im-

provements
Data Processes Personal Data Applica-

tions
Data Access Architec-
tures

Specific Integration of
Blockchain in an Indus-
try

Different Distributed
File Systems

Performance Improve-
ments by Consensus Al-
gorithms

Technologies Not in-
cluded Before

3.2 SLR Conducting

The abstract of every paper was studied which resulted in
excluding a total of 181 papers on this phase. In the follow-
ing phase we analyzed the introduction and conclusion of
the remaining papers finishing this phase with a total of 30
papers.

In Figure 2, we can observe the distribution of the se-
lected papers, where 2021 is the year with the most contribu-
tions, followed by 2019 and 2022. There were no limitations
with regarding the date range of the papers selection. In the
following subsections, the research results are divided by
research question and the answers are presented by topic.

Fig. 2: Selected Studies Distribution by Year

3.3 SLR Reporting

3.3.1 RQ1: Which distributed file systems are used with
blockchain?

Table 3 presents the distributed file systems in use as well
as the blockchain being used when mentioned.

InterPlanetary File System (IPFS) is the most used dis-
tributed file system with blockchain in our sample. IPFS
is a peer-to-peer hypermedia protocol where no nodes are
privileged and a common computer system suffices as a
node. The nodes store the IPFS objects in their local storage.
Nodes then connect to each other and transfer objects. These
objects represent the files and other data structures [7].
The object is chopped into smaller chunks of itself, hashed
and given a unique content identifier (CID), which serves
as a fingerprint. To access the object, the returned CID is
necessary. IPFS “solve the shortage of blockchain in storing
big files” [8] since “storing a document on the blockchain is
expensive” [9].

Hadoop Distributed File System (HDFS) is the second
most used distributed file system with blockchain in our
studies sample. HDFS is an isolated master–slave data
storage network composed of NameNodes and DataNodes.
HDFS “is highly fault-tolerant and is designed to be de-
ployed on low-cost hardware. HDFS provides high through-
put access to application data and is suitable for applications
that have large data sets.” [10]. HDFS is “mainly used for
batch processing of data” [11]. HDFS is most suited when
the nodes can be trusted.

Swarm is another distributed file system used with
blockchain. Swarm is very similar to IPFS. Its biggest dif-
ference is that IPFS uses a Distributed Hash Table (DHT)
and Swarm uses an immutable content address chunkstore
to generate the content identifiers [12]. Swarm has a natu-
ral integration with Ethereum blockchain and an incentive
system that benefits from smart contracts.

Merkle Tree based File System (MTFS) is a distributed
file system that was integrated with blockchain. In MTFS
a node consists of a “batch of servers with professional
connection sitting in a data center” [13]. MTFS uses asym-
metric cryptography including proxy re-encryption (PRE),
to ensure data privacy. Its peer-to-peer network broadcasts
data like a tree having redundant nodes and connections
in case of failure. This file system has less adoption and im-
plementation examples when compared with the previously
mentioned file systems.

When adding data to a distributed file system, most of
the studies follow a similar process, which can be summa-
rized as follows:



4

1) Data Source: Create Data Entry and send to API
2) API: Send (Encrypted) Data to Distributed File Sys-

tem
3) API: Upload Data and Generate Hash from Data
4) DFS: Send Data’s Hash to API
5) API: Send Transaction to Blockchain with the Data’s

Hash
6) Blockchain: Send Confirmation of Success to API

TABLE 3: Distributed File Systems Used

Distributed File Sys-
tems

Support Literature

IPFS and Ethereum [8] [14] [15] [16] [9] [17]
[18] [19] [20] [21] [22]
[23]

IPFS and HLF [24] [25] [26]
IPFS and Multi-Chains/
Custom-Chain

[27] [28] [29]

IPFS [30] [31] [32] [3]
HDFS and Ethereum [33]
HDFS and HLF [11]
HDFS [34]
MTFS [13]
Swarm and Ethereum/
Hyperledger Fabric

[35]

3.3.2 RQ2: How is data accessed for analysis on architec-
tures using blockchain and distributed file systems?
Table 4 presents the data access architectures used by
blockchain and distributed file systems found.

Smart Contracts, or Custom Search Engine Query, are
the most common data accessing mechanism among the
distributed file system and blockchain architectures, within
the research studies. In these methods, after the data content
identifier is obtained from the distributed file system, the
identifier is saved in the blockchain ledger, along with
relevant metadata, such as access authorization. In the case
of custom search engines it is also saved in a local or a cloud
database. A smart contract or a traditional query in a local
or a cloud database obtains the data content identifier by
matching saved metadata such as a keyword. Using off-
chain sources greatly improves access speed, however, since
it is off-chain, it can be a target for malicious participants.

Hadoop Integration is the second most used accessing
data mechanism identified. In these systems, the distributed
file system used is HDFS where it is possible to use MapRe-
duce that “is a pre-built framework in HDFS” [11]. In these
cases, MapReduce can be used to analyze the data.

Share by Smart Contracts is another method used to
access data from a distributed file system and a blockchain
network where all the participants are trusted. The data
content identifier is broadcast to all the participants through
a smart contract. In this case every participant is able to
directly access the saved file through the identifier in the
distributed file system.

3.3.3 RQ3: Which are the streaming data architectures
used in blockchain?
Only one streaming data architecture in blockchain was
found in the analyzed studies - “ITrade: A Blockchain-
based, Self-Sovereign, and Scalable Marketplace for IoT

TABLE 4: Data accessed on Distributed File Systems and
Blockchain

Data Access/ Analysis
Found

Support Literature

Smart Contracts or
Custom Search Engine
Query

[8] [14] [15] [16] [9] [17]
[30] [24] [33] [18] [19]
[22] [20] [28] [26]

Hadoop Integration [36] [11]
Shared by Smart Con-
tract

[25]

Data Streams” [37] (see Table 5). In this study, blockchain
(Ethereum) and smart contracts are used for security, avail-
ability and trust purposes. Also, this system uses a pull-
based message consumption model (Kafka) as the basis of
its streaming architecture. This system’s purpose is to give
a data buyer the ability to subscribe to a data stream.

TABLE 5: Streaming Architectures used in Blockchain

Data Streaming Archi-
tecture Found

Support Literature

Event-based Message
Model

[37]

3.4 Discussion
Most blockchain architectures available in studies usually
focus on adapting blockchain to an industry. In subsection
3.3.1, although different combinations of technologies are
presented, (blockchains and DFS), the architecture between
them is usually similar. Also, most of these architectures
do not include or propose in their systems a mechanism or
methodology for analyzing the data stored in their systems.

In subsection 3.3.2 we can observe the solutions used to
access data. Most of them could be more efficient or secure
making the analysis process under-performing. The smart
contracts query system does not scale well and such these
implementations are introduced with custom built search
engines. The problem with custom build solutions is the
lack of comparability across different frameworks. Also,
since these solutions are not on-chain, they can be subject
to malicious participants and do not work on a public
blockchain. HDFS is naturally compatible with MapReduce.
However, like the previously mentioned case, it is not suited
for public settings, since HDFS intended use is when its
nodes can be trusted. Likewise, the last solution found is
also not suited for public settings. These results motivate
the proposal of a different architecture.

4 RESEARCH PROPOSAL

In the DSRM, this section presents the the design and
development, the demonstration and the evaluation phases.
The artifact of the design and development is the proposed
architecture and the demonstration and evaluation are pre-
sented through the software proof-of-concept.

4.1 Design and Development
To improve the analysis process, we conceptualize an ar-
chitecture that is divided into a data storage and collection



5

layer composed by a distributed file system, integrated with
blockchain based on the results analyzed in the systematic
literature review and a data stream pipeline.

In Figure 3, we present an UML sequence diagram that
showcases how new data is processed in the system. A user
starts by sending data to the API through, for example, a
website. The server’s API can encrypt the data if needed and
will send the data to a distributed file system to be saved.
The distributed file system, after saving the data, will return
the content identifier back to the API. The API will send a
new transaction to the blockchain with the content identifier
and if successful the confirmation of new data will be sent
to both the API and then the user. After data is saved and
the confirmation is sent to the user, the API will also send
the new data to the data analysis pipeline for it to be readily
available when an analysis request is submitted.

Fig. 3: Adding Data Process, UML Sequence Diagram

Figure 4 shows how data is accessed, as well as how
an analysis request is fetched from the analysis results
database. When a user sends a data request through, for
example a website, a request is sent to the blockchain with
the transaction identifier. Then, the blockchain returns the
transaction data that contains the content identifier in the
distributed file system. The content identifier is sent in
a request to the distributed file system and the data is
returned to the user by the API. The analysis request is sent
to the data analysis pipeline and the requested analysis is
returned from the data already analyzed in the database.

Fig. 4: Accessing Data Process, UML Sequence Diagram

The data stream pipeline is composed of an ingestion
layer based on an event based message bus system (based
on the results of subsection 3.3.3), a stream processing ap-
plication and an incremental learning module. Incremental
Learning is a machine learning method designed to ingest
a continuous amount of data and continuously update the
learnt model, which makes it ideal to a data stream. The
model infers new statistical information based on new data;

providing updated results while maintaining previously
acquired knowledge.

In Figure 5 we can observe the analysis process inside
the data stream pipeline. This pipeline is composed of three
main parts. The data stream messages ingestion system is
responsible for managing the incoming data to be analyzed
from the API. The stream processing application requests
the messages from the data stream messages ingestion sys-
tem and processes the data and saves it, if necessary, in
the results database, to visualize it. Lastly, the incremental
learning algorithm pulls the data from the data stream
messages ingestion system and the latest model from the
database; it then processes the new data and updates the
incremental learning model with the latest data. The stream
processing application results may be of interest to the
incremental learning algorithm and it is possible to use it as
part of the input for the model. Using the stream processing
application, efficient data pre-processing can be used.

Fig. 5: Analyzing Data, UML Sequence Diagram

An identified challenge of typical distributed data
stream processing frameworks is “how to accurately in-
gest and integrate data streams from various sources and
locations into an analytics platform” [38]. Our proposed
architecture solves this issue, since it aggregates multiple
data sources into a single one through blockchain. It is also
compatible with different types of blockchains (public or
private), resulting in an architecture that is not bound to a
single application.

Another issue solved by our proposed architecture
is adding data analysis functionalities to an existing
blockchain based system. For example, if there is a
blockchain already being used, by applying our proposed
pipeline and expanding the system’s API, data analysis
functionalities could be added.

One of the benefits of this new architecture is that it is
modeled like microservices, since its modules are loosely-
coupled as such, with small changes to the overall archi-
tecture, features can be added or removed (for example,
encryption, access control or data pre-processing).



6

4.2 Demonstration
In this section, using the proposed architecture as the basis,
a software proof-of-concept is implemented to showcase
the DSRM’s artifact usage. The technology used is pre-
sented and justified and the implementation environment
described. Then an overview of the proof-of-concept and
the development results are presented.

4.2.1 Proof-of-Concept Technologies
The chosen blockchain to create the proof-of-concept was
Hyperledger Fabric (HLF). HLF is maintained by the Linux
Foundation, an organization that supports open-source
projects.

HLF is a permissioned distributed ledger framework
that provides a foundation for developing applications or
solutions with a modular architecture. The user uses the
HLF client application to propose transactions on the net-
work. The client can only read or write to the ledger, how-
ever, it is possible to delete data by sending a transaction
that, in the application’s logic deletes the said data. To
propose transactions to the network, the client application
needs to have a certificate from the Certificate Authority
(CA). Chaincode are the name given to HLF smart contracts.
Through container technology, chaincode implements the
application’s logic. In the proof-of-concept, the chaincode
is implemented in Go Programming Language.

The HLF is composed by two types of node organiza-
tions. The orderer organisation responsible by the consensus
algorithm of the blockchain and the peers organizations,
responsible by committing the transactions to the orderer
nodes, as well as keeping a copy of the ledger. In the proof-
of-concept the consensus algorithm used is Raft. In the
proof-of-concept CouchDB is used since it provides richer
functionalities when compared with the alternatives.

There were four main reasons for choosing this
blockchain framework. HLF “enables performance at scale
while preserving privacy” [39] while still being highly cus-
tomizable and modular. Secondly, it is one of the most used
blockchain frameworks and is open-source, having multiple
scientific studies using it in their research. Lastly, its only
operation costs are the computation and storage of the
servers used to execute it.

The distributed file system selected to integrate with
HLF is the InterPlanetary File System IPFS. It is the most
used distributed file system with blockchain in all the
literature reviewed, as show in subsection 3.3.1. It is fast,
scalable and allows any type of data to be stored. “IPFS is a
distributed system for storing and accessing files, websites,
applications, and data.” [40]. In subsection 3.3.1, this tech-
nology usage explained.

The distributed event streaming platform chosen for the
data stream pipeline that will manage the messages arrival
for analysis is Apache Kafka. Kafka is composed of top-
ics, producers, consumers and brokers. Kafka organization
system works over topics. Every message that is sent to a
Kafka system is sent to a topic. A topic is therefore a stream
of messages. Each message (also named record), is stored in
a key-value format. The key of this message is called Offset.

The producers are applications responsible for publish-
ing messages to a given topic. Consumers are the applica-
tions that read said published messages from a given topic.

Brokers are the instances responsible for exchanging mes-
sages with the producer and consumer applications. One
broker is enough to implement a Kafka system, however,
usually, multiple brokers are used to form a cluster and
create replication. In the proof-of-concept a Kafka cluster
is used with three brokers.

In a Kafka cluster, at the moment, it is necessary to im-
plement a Zookeeper server with the purpose of managing
and create consensus in said broker cluster. One Zookeeper
server can be used to create said consensus but if needed,
as long as in odd numbers, more Zookeeper servers can be
added, creating a Zookeeper Cluster. In production, three
or five Zookeeper servers are advised but in the proof-of-
concept only one is used.

River library is the analysis tool selected to use Incre-
mental Machine Learning (IML). “River is a Python library
for online machine learning. It aims to be the most user-
friendly library for doing machine learning on streaming
data. River is the result of a merger between creme and
scikit-multiflow.” [41].

Since this is a proof-of-concept, stream processing capa-
bilities were not implemented. The objective of these would
be the transformation, cleaning and serializing of incoming
data however this was not necessary since the test dataset
used for evaluation was already prepared for analysis. If
necessary, Kafka Streams integrates with Kafka and could
be an option.

Lastly, all the application controllers and connectors are
implemented using Python 3.8. All of the above mentioned
technologies are free and open-source.

4.2.2 Proof-of-Concept Hardware Specifications
The development environment used to implement this
proof-of-concept was a server with the following hardware
specifications; CPU: Intel(R) Xeon(R) CPU E3-1240 v6 @
3.70GHz; RAM:64GB; HDD:2TB; OS Version: Ubuntu Server
18.04. In this machine, with the use of virt-manager, a vir-
tualization technology, twelve Virtual Machines (VM) were
created with the following specifications: CPU:1 virtualCPU;
RAM:4GB; HDD:30GB; OS Version:Ubuntu Desktop 20.04.4
LTS.

4.2.3 Proof-of-Concept Software Architecture
An internal network, with NAT, was also implemented for
communication between said machines. This network was
named Olympus with three organizations, Alpha, Beta and
Omega.

Alpha organization is composed of four VMs, AlphaCA
the Certificate Authority, AlphaAdmin the organization Ad-
min and the two peers Zeus and Poseidon. Beta organization
is composed of three VMs, BetaCA the Certificate Authority,
BetaAdmin the Organization Admin and Hera the Organi-
zation Peer. Omega organization is composed of five VMs,
OmegaCA the Certificate Authority, OmegaAdmin the Or-
ganization Admin and the three orderers Atlas, Cronus and
Rhea. The Certificate Authorities and the Admin VMs are
necessary for the setup of the HLF system however, when
deployed, the network only needs the peers and the orderers
for proper function.

The VMs used for the HLF peers are also used as peers
for the IPFS cluster, Zeus, Poseidon and Hera.



7

In the data stream pipeline, BetaCA was used as a
Kafka Broker, Hera was used as a Kafka Broker as well
as a Producer and lastly, AlphaCA was used as a Kafka
Peer, the Zookeeper Server, the Kafka Consumer and the
IML computation module. Hera was chosen as the Kafka
Producer since it is a HLF and an IPFS peer giving it access
to the data.

The chosen VMs for Kafka could have been any others.
For an easier implementation of adding data, one of the
brokers chosen is a HLF and IPFS node. AlphaCA and
BetaCA were chosen as the other brokers since, after setting
up HLF they were not being used. Figure 6 shows the
overral system at runtime.

Fig. 6: Overral System at Runtime, UML Component Dia-
gram

4.2.4 Proof-of-Concept Implementation

The proof-of-concept code is available on GitHub [42]. The
chaincode implemented in HLF, although not used in the
proof-of-concept, allows the contents of IPFS, cid, to be
deleted by changing the delete flag to True. It is also possible
to return everything stored with GetAllAssets function. This
chaincode available to be used by any peer of any peer
organization.

Hera VM is responsible for adding, reading and deleting
data from HLF and IPFS and sending all the added data to
the chosen Kafka topic. The HLF, the IPFS and the Kafka
Producer are controlled with bash commands implemented
in python programs. All the bash commands are executed
with the subprocess library. Hera’s controller is responsible
for integrating all these functionalities. AlphaCA VM is
responsible for receiving and analysing data sent to a given
Kafka topic. The analysis is made with the RiverML python
library. AlphaCA’s controller is responsible for integrating
all these functionalities.

4.3 Evaluation

To perform evaluation in the proof-of-concept, the DSRM
artifact demonstration, two data sources were used. The
architecture and proof-of-concept, design allow for any kind
of data to be analyzed. As such, the proposed architecture is
cross-application and any data sources can be used.

The first data source used were random files created with
10 bytes, 10 kilobytes, 1 megabyte using a python script.
Through this source, the time it takes to add data to HLF
& IPFS, and also, sending data and receiving data from the
Kafka Cluster, is evaluated. The second data source is an
dataset about the insurance costs of healthcare in the USA
and was extracted from Kaggle [43]. With this source, the
time it takes to save it in HLF & IPFS, send it to the Kafka
Cluster, receiving data from said Cluster and analyze it with
a simple Linear Regression is measured. The individual time
of each component and the total amount (sum of all parts)
is presented.

The test environment is the same as the demonstration
implementation environment 4.2.2. To measure the time
different components of the system take, the timeit python
library is used.

4.3.1 Produced Dataset
The Figures 7a and 7b represent the average time it takes
to add 10, 100, 1000 and 10000 files with 10 bytes and 10
kilobytes to HLF and IPFS, respectively. Figure 7c represents
the average time it takes to add 10, 100 and 1000 files with
1 megabyte of data (only evaluated until 1000 for lack of
memory space) to HLF and IPFS. Hera VM was used.

The total average time it takes to add a file to HLF and
IPFS is 1.74 seconds for 10 bytes files, 1.70 seconds for 10
kilobytes files and 2.92 seconds for 1 megabyte files. The
results show that the size of the file impacts the time it
takes to add to the IPFS when files size are measured in
megabytes. The results show that the time it takes to add
files to HLF and IPFS scales linearly in terms of file quantity.

(a) HLF & IPFS 10 Bytes
Files Evaluation

(b) HLF & IPFS 10 Kilobytes
Files Evaluation

(c) HLF & IPFS 1 Megabyte
Files Evaluation

Fig. 7: Save Files to HLF & IPFS Time Evaluation

The Figures 8a and 8b represent the average time it
takes to send 10, 100, 1000 and 10000 files with 10 bytes
and 10 kilobytes to the Kafka cluster, respectively. Figure 8c
represents the average time it takes send 10, 100 and 1000
files with 1 megabyte of data (only evaluated until 1000 for
lack of memory space) to Kafka. Hera VM was used.

The total average time it takes to send a file to the Kafka
cluster is 2.41 seconds for 10 bytes, 2.41 seconds for 10
kilobytes and 2.85 seconds for 1 megabyte. The results show



8

that the size of the file does (or not) impact the time it takes
to send data to the cluster. The results show that the time it
takes to send these files to Kafka is mostly constant.

In total, saving a file in HLF & IPFS and sending its
contents to the Kafka Cluster for analysis takes, on average,
4.15 seconds for 10 bytes, 4.11 seconds for 10 kilobytes and
5.77 seconds for 1 megabyte.

(a) Kafka Cluster Producer
10 Bytes Files Evaluation

(b) Kafka Cluster Producer
10 Kilobytes Files Evaluation

(c) Kafka Cluster Producer
1 Megabyte Files Evaluation

Fig. 8: Send Files to Kafka Cluster Time Evaluation

The Figures 9a and 9b represent the average time it takes
to receive 10, 100, 1000 and 10000 files with 10 bytes and
10 kilobytes from the Kafka cluster, respectively. Figure 8c
represents the average time it takes receive 10, 100 and 1000
files with 1 megabyte of data (only evaluated until 1000 for
lack of memory space) from Kafka. AlphaCA VM was used.
The times measured in the consumer are impacted producer
since the evaluation was performed at the same time. If
the data were sent to the topic and then consumed, the
consumer time evaluation results would be better. However,
this would not represent real world use cases, since the data
production rate impacts the data consumption rate.

The total average time it takes to receive a file from the
Kafka cluster is 2.38 seconds for 10 bytes, 2.38 seconds for
10 kilobytes and 2.42 seconds for 1 megabyte. The results
show that the size of the file does (or not) impact the time it
takes to receive data from the cluster. The results show that
the time it takes to receive these files from Kafka is mostly
constant.

4.3.2 Healthcare Dataset

The healthcare insurance cost dataset [43] has 1338 entries.
It has six columns, age, sex, body mass index, number of
children in the insurance, smoker and region. The charges
of the medical costs are the target of our analysis. The
chosen algorithm to perform the analysis is a simple linear
regression with a stochastic gradient descent of 0.05. The
analysis metrics implemented are Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE) and Coefficient
of Determination (R2). These are common machine learning
metrics for linear regressions. The model is saved every 50
data entries.

(a) Kafka Cluster Consumer
10 Bytes Files Evaluation

(b) Kafka Cluster Consumer
10 Kilobytes Files Evaluation

(c) Kafka Cluster Consumer
1 Megabyte Files Evaluation

Fig. 9: Receive Files from Kafka Cluster Time Evaluation

Using the above mentioned dataset, two approaches are
used. The first scenario tests the time it takes to save, on
HLF & IPFS, and send, with Kafka Producer, the single file
with all the data, and the time it takes to receive it, with
Kafka Consumer, and analyze it (building the model). In
this approach, the time it takes on average, for data to be
saved and sent is 3.31 seconds and is 51 minutes and 33.03
seconds to be analyzed. The second scenario is similar to
the first but instead of using a single file, each data entry is
separated through individual files. In this scenario, the time
it takes on average for; data to be saved and sent is 1 hour
28minutes and 1.85 seconds; data to be analyzed 1 hour 27
minutes and 54.73 seconds seconds.

In both of the above mentioned scenarios, five ran-
dom entries are sent to a different Kafka Topic, and used
to perform predictions. On average, making a prediction
for these five entries takes 11.17 seconds, not taking into
account the time it takes to be sent from the producer.
In these, the analysis metrics gave the following results:
MAE: 2782.667; RMSE: 4051.730; R2: 0.888. These metrics
can be improved using a more advanced algorithm, better
data pre-processing, etc. Since these scenarios goal is to
measure the duration of the analysis, (and showcase the
architecture capabilities), the analysis results (metrics) were
not optimized.

4.4 Discussion
In this section, an architecture was proposed with the goal
of improving the time it takes to perform data analysis
in blockchain systems integrated with DFS. By integrating
blockchain and DFS it was possible to reduce the blockchain
storage costs as well as improve its scalability and data types
compatible.

Instead of making queries in the blockchain, in this
architecture, data is stored in the system and sent to an data
analysis module. Storing the data in the blockchain allows
for data integrity. It also allows, depending on the imple-
mentation, to share data across organizations. If necessary,
reading and extracting data from the blockchain is still pos-
sible using smart contracts. However, in this architecture,



9

after confirming data has been stored with success, the data
is sent for analysis.

To analyze data, IML is the chosen technology and has
two main advantages, from an application perspective. First,
it allows a model to be continuously improved and adapt to
new data. Second, it allows a prediction to be made without
stopping the training process. However, IML has two limita-
tions. First, like machine learning, training takes time. Since
data can be constantly added to the system, and sent for
analysis, a ingestion system to manage the stream of data
is necessary. Second, the input data, although with the use
of smart contracts, completeness can be enforced, data pre-
processing is limited. Using stream processing applications
data can be pre-processed or visualized.

This architecture improves the time performance of the
analysis, since a prediction can be requested to the sys-
tem and is readily available. The main limitation is when
the analysis intended is not built or trained. For example,
when different IML algorithms need to be trained from
the beginning and the data needs to be extracted from the
blockchain (if the data is no longer available in the data
stream messages ingestion system). For testing purposes,
extracting the data to a data warehouse and using classic
batch based machine learning may be faster. However, using
IML, will provide better time efficiency when making up-to-
date predictions.

In the software proof-of-concept, we can observe the
average time it takes to save, access, send, receive and
analyze data in a system using HLF, IPFS, Kafka, and
RiverML. Through the evaluation, we can conclude it scales
linearly. The time needed for saving the data and obtaining
a model capable of producing a prediction is significant,
however, optimizing the system with better distribution
and improving the system hardware, in our case, VMs,
will reduce the duration of the whole process. There were
three main objectives achieved with this proof-of-concept.
First, was demonstrate the architecture usage with existing
technologies. Second, showcase how it would scale. Third,
demonstrate, with a real-world dataset, the ability to make
predictions from data while continuously improving a sim-
ple incremental machine learning model.

5 CONCLUSION

This technology stores data in architectures that provide
high data integrity and provenance, as well as, a platform
where different participants can share data with a high
degree of trust. However, this data only has value if it
can be accessed and analyzed in an efficient way creating,
through the data analysis process, information. The use of a
distributed file system can improve the amount, speed and
type of data in blockchain. Also, streaming data technolo-
gies allow for a higher data flow from the moment data is
accessed to the analysis.

The SLR was performed to identify which technologies
were used with blockchain, the methodologies used to ac-
cess data in these architectures and which streaming data
architectures were being used.

Following the research results, an architecture is pro-
posed based on the results from the SLR. The architecture
is composed of blockchain technology, for trust, security,

traceability, data integrity, data sharing and provenance
purposes. A DFS is included in the architecture, for storage
scalability and to store different data types such as files or
images. Lastly, a data stream pipeline is included as a data
analysis solution (with stream processing capabilities for
data transformation on the go and/or incremental learning
model(s) to analyze said data).

A software proof-of-concept is developed to demon-
strate the use of said architecture without the stream pro-
cessing module. A Hyperledger Fabric blockchain is de-
ployed with the InterPlanetary File System as its DFS. Kafka
is used as the distributed event streaming platform that
controls the data flow and a Python library named RiverML
is utilized as a incremental machine learning tool.

The proof-of-concept is evaluated using two a produced
dataset and a healthcare dataset. Through the produced
dataset, using files with different data sizes and different
file quantities the proof-of-concept components are evalu-
ated using time as the main metric. Through the produced
dataset, we demonstrate the linear scalability of the system.
Through the healthcare dataset, the architecture usage is
exemplified with a real-world case.

5.1 Communication

This study and a scientific manuscript previously produced,
“Benefits, Challenges and Solutions for Blockchain Data
Analysis: SLR” submitted to an academic journal repre-
sent the communication phase of the DSRM. Through the
SLR, the produced artefact (architecture) and the proof-of-
concept prototype demonstration and evaluation, a novel
data analysis architecture for blockchain and DFS is pro-
posed to the community creating guidelines for future sys-
tem architectures.

5.2 Research Limitations

This research is based on scientific literature only. However,
the distributed file system, the blockchain and the data
analysis topics also have developments described in gray
literature. A multivocal literature review could be used to
include that data, but that was not in the scope of our study.

5.3 Future Work

In this work, a novel architecture was produced. In or-
der to showcase its use a software proof-of-concept was
developed and evaluated. However, since the its purpose
was showcasing the architecture only simple evaluations
were done. Important work that could be done to further
develop research in this topic include: Implementing and
testing different technologies (blockchain frameworks, dis-
tributed file systems, incremental machine learning libraries
and data streaming (and stream processing) platforms);
Develop more an optimized version of the proof-of-concept,
a prototype; Evaluating said prototype with, for example,
load testing, spike testing, stress testing, volume testing,
endurance testing and more scalability testing; Comparing
system performance and analysis quality against a system
that would send the data to a data warehouse and perform
data analysis with classic batch based machine learning.



10

REFERENCES

[1] D. D. Shin, “Blockchain: The emerging technology of digital trust,”
Telematics and informatics, vol. 45, p. 101278, 2019.

[2] W. Hou, B. Cui, and R. Li, “A survey on blockchain data analy-
sis,” Proceedings - 2021 IEEE 45th Annual Computers, Software, and
Applications Conference, COMPSAC 2021, pp. 357–365, 7 2021.

[3] E. Daniel and F. Tschorsch, “Ipfs and friends: A qualitative com-
parison of next generation peer-to-peer data networks,” IEEE
Communications Surveys and Tutorials, vol. 24, pp. 31–52, 2022.

[4] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[5] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee,
“A design science research methodology for information systems
research,” Journal of Management Information Systems, vol. 24, pp.
45–77, 2007.

[6] I. S. T. (IST), “Ist digital library,”
https://bist.tecnico.ulisboa.pt/pesquisa/biblioteca-digital/,
2022, [Online; accessed 20-June-2022].

[7] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[8] W. Huang, “A blockchain-based framework for secure log stor-
age,” 2019 IEEE 2nd International Conference on Computer and Com-
munication Engineering Technology-CCET, 2019.

[9] K. Y. Bandara and J. Breslin, “Baas architecture for dapps and
application for veterinary medicine case study in ireland,” The
2021 International Symposium on Networks, Computers and Commu-
nications (ISNCC 2021) - Dubai, UAE, 2021.

[10] D. Borthakur et al., “Hdfs architecture guide,” Hadoop apache
project, vol. 53, no. 1-13, p. 2, 2008.

[11] V. Mothukuri, S. S. Cheerla, R. M. Parizi, Q. Zhang, and K.-K. R.
Choo, “Blockhdfs: Blockchain-integrated hadoop distributed file
system for secure provenance traceability,” Blockchain: Research and
Applications, vol. 2, p. 100032, 12 2021.

[12] S. Team, “Swarm; storage and communication in-
frastructure for a self-sovereign digital society,”
https://www.ethswarm.org/swarm-whitepaper.pdf, 2021,
[Online; accessed 27-June-2022].

[13] J. Kan and K. S. Kim, “Mtfs: Merkle-tree-based file system,” ICBC
2019 - IEEE International Conference on Blockchain and Cryptocur-
rency, pp. 43–47, 5 2019.

[14] D. D. Taralunga and B. C. Florea, “A blockchain-enabled frame-
work for mhealth systems,” Sensors, vol. 21, 4 2021.

[15] M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar,
M. K. Afzal, and M. Shafiq, “A secure data sharing platform
using blockchain and interplanetary file system,” Sustainability
(Switzerland), vol. 11, 12 2019.

[16] A. Kumari and S. Tanwar, “A reinforcement-learning-based secure
demand response scheme for smart grid system,” IEEE Internet of
Things Journal, vol. 9, pp. 2180–2191, 2 2022.

[17] Y. E. Oktian, S. G. Lee, and B. G. Lee, “Blockchain-based continued
integrity service for iot big data management: A comprehensive
design,” Electronics (Switzerland), vol. 9, pp. 1–36, 9 2020.

[18] Z. Zhou, M. Wang, Z. Ni, Z. Xia, and B. B. Gupta, “Reliable
and sustainable product evaluation management system based on
blockchain,” IEEE Transactions on Engineering Management, 2021.

[19] R. G. R and P. K. S, “Self-restrained energy grid with data anal-
ysis and blockchain techniques,” Energy Sources, Part A: Recovery,
Utilization and Environmental Effects, 2020.

[20] N. Alrebdi, A. Alabdulatif, C. Iwendi, and Z. Lian, “Svbe: search-
able and verifiable blockchain-based electronic medical records
system,” Scientific Reports, vol. 12, 12 2022.

[21] H. R. Hasan, K. Salah, I. Yaqoob, R. Jayaraman, S. Pesic, and
M. Omar, “Trustworthy iot data streaming using blockchain and
ipfs,” IEEE Access, vol. 10, pp. 17 707–17 721, 2022.

[22] S. Jiang, J. Liu, L. Wang, and S.-M. Yoo, “Verifiable search meets
blockchain: A privacy-preserving framework for outsourced en-
crypted data,” ICC 2019-2019 IEEE International Conference on
Communications (ICC), 2019.

[23] A. Desai, P. Shah, and D. D. Ambawade, “Verifyb - students’
record management and verification system,” Proceedings - Inter-
national Conference on Communication, Information and Computing
Technology, ICCICT 2021, 2021.

[24] E. Nyaletey, R. M. Parizi, Q. Zhang, and K.-K. R. Choo, “Blockipfs
- blockchain-enabled interplanetary file system for forensic and
trusted data traceability,” Proceedings - 2019 2nd IEEE International
Conference on Blockchain, Blockchain 2019, pp. 18–25, 7 2019.

[25] X. Tao, M. Das, Y. Liu, and J. C. Cheng, “Distributed common data
environment using blockchain and interplanetary file system for
secure bim-based collaborative design,” Automation in Construc-
tion, vol. 130, 10 2021.

[26] C. Chen, J. Yang, W. J. Tsaur, W. Weng, C. Wu, and X. Wei, “Enter-
prise data sharing with privacy-preserved based on hyperledger
fabric blockchain in iiot’s application,” Sensors, vol. 22, 2 2022.

[27] C. Peng, Y. Yu, J. Zhao, and H. Yu, “Research on cross-chain com-
munication based on decentralized identifier,” HotICN 2021 - 2021
4th International Conference on Hot Information-Centric Networking,
pp. 7–12, 2021.

[28] A. S. Yadav, N. Singh, and D. S. Kushwaha, “Sidechain: stor-
age land registry data using blockchain improve performance of
search records,” Cluster Computing, vol. 25, pp. 1475–1495, 4 2022.

[29] J. S. Gazsi, S. Zafreen, G. G. Dagher, and M. Long, “Vault: A
scalable blockchain-based protocol for secure data access and
collaboration,” Proceedings - 2021 IEEE International Conference on
Blockchain, Blockchain 2021, pp. 376–381, 2021.

[30] M. Chen, T. Malook, A. U. Rehman, Y. Muhammad, M. D. Al-
shehri, A. Akbar, M. Bilal, and M. A. Khan, “Blockchain-enabled
healthcare system for detection of diabetes,” Journal of Information
Security and Applications, vol. 58, 5 2021.

[31] P. Altmann, A. G. Abbasi, O. Schelen, K. Andersson, and M. Al-
izadeh, “Creating a traceable product story in manufacturing
supply chains using ipfs,” 2020 IEEE 19th International Symposium
on Network Computing and Applications, NCA 2020, 11 2020.

[32] P. A. Lobo and V. Sarasvathi, “Distributed file storage model using
ipfs and blockchain,” 2021 2nd Global Conference for Advancement in
Technology, GCAT 2021, 10 2021.

[33] T. Renner, J. Muller, and O. Kao, “Endolith: A blockchain-based
framework to enhance data retention in cloud storages,” Proceed-
ings - 26th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2018, pp. 627–634, 6 2018.

[34] F. Ishengoma, “Nfc-blockchain based covid-19 immunity certifi-
cate: Proposed system and emerging issues,” Information Technol-
ogy and Management Science, vol. 24, pp. 26–32, 12 2021.

[35] P. Sylim, F. Liu, A. Marcelo, and P. Fontelo, “Blockchain technology
for detecting falsified and substandard drugs in distribution: Phar-
maceutical supply chain intervention,” JMIR Research Protocols,
vol. 7, 9 2018.

[36] M. Hena and N. Jeyanthi, “A three-tier authentication scheme
for kerberized hadoop environment,” Cybernetics and Information
Technologies, vol. 21, pp. 119–136, 12 2021.

[37] S. R. Niya, D. Dordevic, and B. Stiller, “Itrade: A blockchain-based,
self-sovereign, and scalable marketplace for iot data streams,”
Proceedings of the IM 2021 : 2021 IFIP/IEEE International Symposium
on Integrated Network Management : 17-21 May 2021, Bordeaux,
France, virtual conference, 2021.

[38] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and
S. Khan, “A survey of distributed data stream processing frame-
works,” IEEE Access, vol. 7, pp. 154 300–154 316, 2019.

[39] “Hyperledger fabric team,” last accessed 16 October 2022.
[Online]. Available: https://www.hyperledger.org/use/fabric

[40] “Ipfs docs, what is ipfs?” last accessed 16 October
2022. [Online]. Available: https://docs.ipfs.tech/concepts/what-
is-ipfs/#decentralization

[41] “River ml team,” last accessed 16 October 2022. [Online].
Available: https://riverml.xyz/

[42] M. Baptista, “Github thesis proof-of-concept code,” 2022,
[Online; accessed 27-October-2022]. [Online]. Available:
https://github.com/miguelarhb/Thesis

[43] M. Choi, “Medical cost personal datasets,” last
accessed 16 October 2022. [Online]. Available:
https://www.kaggle.com/datasets/mirichoi0218/insurance


