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Abstract

It is not possible to maintain a persistent connection between a low Earth orbit satellite and a ground
station. For this reason, different techniques are employed to increase the connection availability, and
data throughput. In this work, the ground segment for the ISTSAT-1 is studied, its architecture revised
and improved, to ease its distribution, automation, and operation. While the suggested improvements
and solutions are directly applicable to the ground segment of ISTSAT-1, they should be general enough
to be employed on other ground segments.
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1. Introduction

Nowadays many satellites orbit our planet and while
their missions diverge from one another, most of
them need to broadcast information and receive
commands from Earth in order to fulfil their mis-
sions. This information can, typically, be subdivided
into mission related data, telecomands, and teleme-
try which allows the detection of possible anomalies
with the spacecraft.

To allow this communication between the two par-
ties a ground segment is needed. A ground segment
is the part of the satellite’s communication system
that resides on the ground [4], allowing the mon-
itoring and control of the spacecraft from Earth.
The structure of this segment varies according to
the satellites they are supporting. However, every
ground segment needs at least one ground station
which provides a physical layer interface to communi-
cate with the satellites. In order for ground stations
to be able to transmit and receive data, they need a
line of sight (LOS) to the target spacecraft. There-
fore, the connection availability is limited by the
satellite’s orbit and the ground station’s location.

Traditionally, when a satellite is in LOS, satellite
operators are entrusted with the task of sending the
appropriate commands to achieve some previously
stipulated goal. However, recently, there has been an
increase in the automation of repetitive tasks, not
only to free staff for more important endeavours but
also to reduce the costs associated with the mission.

1.1. Motivation
Today a great number of satellites are launched into
low Earth orbits (LEOs), orbits normally at an al-
titude of less than 1000 km above Earth. The low
altitude of these orbits allows high data bandwidth
and low latency communications. However, satel-
lites in LEOs travel at a speed of around 7.8 km
per hour, taking approximately 90 minutes to circle
Earth [3], nearly 16 times the rotational period of
Earth. Therefore, resorting to one LEO satellite and
a ground station, it is not possible to persistently
maintain a LOS and, consequently, a connection be-
tween them.
When operating a LEO satellite, one has to be

aware of when the spacecraft is above the hori-
zon and thus accessible for communication. This
is known as a pass. The number of passes, as well
as their temporal distribution, varies according to
many factors such as the orbit’s altitude and incli-
nation, and the ground station’s location.

Communication is central to a satellite’s mission
success. Therefore it is important to employ tech-
niques to increase the number of available passes
and their throughput. This problem needs to be ad-
dressed by most LEO satellites and the ISTSAT-1
is not an exception.

ISTSAT-1 is a cubesat (1U) that will orbit Earth
at 550km of altitude, in a sun-synchronous LEO.
Its mission is to validate that a small satellite,
with a planar antenna, and a general microproces-
sor (instead of a Field-Programmable Gate Array
(FPGA) board) is able to collect Automatic Depen-
dent Surveillance-Broadcast (ADS-B) messages sent
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by planes [1]. In order to accomplish its mission, the
spacecraft needs to be supported by a ground seg-
ment.

The ground segment of ISTSAT-1 was developed
alongside the spacecraft, while its main task was
to support the satellite’s needs and test it. Now,
that the spacecraft is near launch, it is necessary
to audit the state of its ground segment, assessing
flaws, suggesting improvements, and implementing
solutions. While the suggested improvements and
solutions are directly applicable to the ground seg-
ment of ISTSAT-1, they should be general enough to
be employed on another mission’s ground segments.

1.2. Objectives and Contributions

The main contributions of this work were the re-
duced latency, increased goodput, Graphical User
Interface (GUI) design and implementation, and the
ability to schedule operations. These contributions
were motivated by the objectives extracted from the
analysis of the initial ISTSAT-1’s ground segment.

Since the ground segment was developed at the
same time as the spacecraft, its structure grew or-
ganically to support the needs of the satellite. This
resulted in design decisions that poorly influenced
latency and goodput. Thus, one of the objectives
was to improve both metrics through the modular-
ization of the ground segment.

During the evolution of the ground segment, op-
erators resorted to a Command Line Interface (CLI)
to interact with the spacecraft. While this decision
suffices for the development process, it is important
to create an User Interface (UI) easier to use. There-
fore, another objective was to improve the ground
segment so that its operation becomes more user
friendly.

Throughout the development of the satellite, it
endured long lasting tests. However, these tests did
not require any scheduling, they were simply left
running. This motivated the objective of employing
a system capable of scheduling operations.

2. Related Work

In order to properly design a ground segment for
a LEO satellite, it is important to research about
how ground station distribution, ground segment au-
tomation, and interfaces are typically handled. This
investigation aims to provide insight about solutions
that can be applicable to problems the ISTSAT-1
may endure.

2.1. Ground Station Distribution

Ground stations are responsible for acting as a gate-
way between the ground and space segments. A con-
nection between them is established through the
transmission and reception of electromagnetic waves
which need to be modulated and demodulated in
order to allow the exchange of data between both

parties.
For a ground station to be able to communicate

with a satellite, it must be in LOS. However, for
LEO satellites, this only accounts for a relatively
short period of time. Therefore, controlling just one
ground station might not fulfil the satellite’s mission
data budget. There are two main approaches to
increase communication availability.

One technique is to increase the number of ground
stations accessible to the ground segment. These are
referred to as Ground Station Networks (GSNs).

Another way to solve this issue is by relaying data
through a pre-existing network formed by satellites
in a constellation. Typically referred to as Space Re-
lay Networks (SRNs). However SRNs require the in-
stallation of specific hardware and/or software prior
to launch in order access these networks.
ISTSAT-1 does not contain the components re-

quired to take advantage of SRNs, therefore it is
only possible to increase communication availability
through ground segment solutions.
In recent years, with the reduction of LEO satel-

lite’s launch prices, there was an increase in the
demand for readily available ground stations and
companies started providing Ground Stations as a
Service (GSaaSs). These services allow a client to
rent ground stations from a GSN for some period
and only pay for the scheduled time.

2.2. Ground Segment Automation and Inter-
face

Traditionally the ground segment is operated by hu-
mans, known as ground operators. They are respon-
sible for monitoring and controlling the state of the
satellite. To achieve this goal, they analyse the re-
ceived telemetry and mission data, devise a strategy
to reach the target state, and according to that plan,
issue commands to the satellite.
Since it is only possible to communicate during

a pass and that passes are typically short for LEO
satellites, the time it takes a ground operator be-
tween the analysis, planing and commanding phase
is critical to the amount of work it is possible to
produce during each pass.
This limitation can be mitigated by automating

reactions based on received satellite data, and by pro-
viding ground operators appropriate interfaces. The
first measure ensures ground operators do not have
to execute repetitive tasks, which reduces the proba-
bility of operation errors and increases data process-
ing and reaction time. While the second, guarantees
that when a ground operator is required to interact
with the satellite, they can do so efficiently.

There are many ways of quantifying the automa-
tion level of a ground segment. One common ap-
proach is to rate them according to the light level of
the operations room [9]: lights on, refers to a man-
ual system; lights dim, to a semi-automated system,
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where some of the operations are automated; and
lights off, defines a system where almost all functions
are automated.

2.2.1 Mission Operation software

The software that enables the ground segment has a
crucial role in the success of the mission it supports.
It is typically composed of multiple systems that
interact with each other, requiring a big effort and
investment to develop. In order to mitigate these
costs, it is usual to resort to generic solutions, which
are developed taking into account common needs
across multiple satellite missions.

Major Tom Major Tom is the cloud based com-
mand and control solution provided by Kubos. In
addition of providing an interface to send commands
to the spacecraft and display the received data, it
also affords the possibility resorting to the GSNs pre-
integrated into their system for communication.

3. Ground Segment of ISTSAT-1

During the development phase of ISTSAT-1, the pri-
mary focus was on the satellite development. There-
fore, typically, the feature implementations in the
ground segment were motivated as a way of testing
new satellite functionalities.

The organic growth of the ground segment around
the spacecraft’s needs led to an unstructured design,
whose architecture and flaws will be exposed. Af-
ter evidencing the shortcommings of some of the
approaches taken, a solution will be proposed.

3.1. Initial Architecture

The ground segment is divided into the modules
shown in Figure 1. The coloured blocks represent
hardware systems while the white blocks represent
relevant processes running inside them. The solid
links between blocks represent Transmission Control
Protocol (TCP) connections while dashed links rep-
resent Universal Serial Bus (USB) communications.

Tiva Computer + Pluto

Computer + TNC + ICOMRaspberry Pi

Virtual Private Server

Core Server TNC Proxy

Gnu-Radio ScriptI²C Gateway

Data Visualiser Database

Operator's PC

Gsctl

Web Browser

Figure 1: Ground Segment Architecture

3.1.1 Protocols

Typically the ground segment communicates with
the satellite via radio, but, during the development
and testing phases, it is also possible to communicate
with each ISTSAT-1 subsystem through a serial bus.

The protocols used for radio communication
between the ground and space segments are
ISTNanosat-1 Command Protocol (INCP), Reliable
Data Protocol (RDP)[8], Cubesat Space Protocol
(CSP)[6], and Amateur X.25 (AX.25)[2]. INCP is
the application level protocol, used to issue commu-
nicate with the spacecraft.

When communicating though the serial interface,
the INCP messages are directly sent in via the I²C
bus to the target subsystem, easing the development
and testing of the spacecraft.

3.1.2 GSCTL

GSCTL is a client program with a CLI. It is the
interface between the operator and the system, pro-
viding access to the functionalities exposed by the
Core Server.

Using this UI it is possible, not only, to command
the satellite, but also to run built-in operations. Op-
erations is the designation used to define a dynamic
flow of commands whose behaviour depends on the
satellite responses. The available operations cover
the most used scenarios. Currently these operations
are mostly used to automate functional tests on the
spacecraft.

This interface, while effective for proficient opera-
tors due to its flexibility, can intimate those trying
to learn to operate the spacecraft as it requires the
user to constantly recall the names of commands,
steepening the learning curve. On the other hand,
GUIs organise information in a way that facilitates
its mastering. They also account for the majority
of UIs, therefore, users are typically more comfort-
able using them. For these reasons, it is important
to create a GUI that enables the ground segment
operation.

3.1.3 Core Server

The Core Server exposes an Application Program-
ming Interface (API) that enables client programs
to operate the satellite. This module also processes
mission and telemetry data received from the space-
craft, storing it persistently in a Database. To send
information to the satellite, INCP messages need
to be generated and formatted according to each
gateway specification. When data is received, the
inverse process has to take place.

Gateways are nodes that form a passage between
two networks operating with different protocols. In
the specific case of ISTSAT-1, there are two gateway
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types, ground stations and the Electrical Ground
Support Equipment (EGSE).

3.1.4 EGSE

EGSE is an integrated system of electrical testing
solutions to ensure that the satellite is operating
according to the specification.

In the specific case of ISTSAT-1, the EGSE can be
used to program the satellite and to interface with
the spacecraft’s I2C bus. The EGSE Gateway is the
module responsible for receiving INCP messages via
USB and sending them to the satellite’s I2C bus.

3.1.5 Ground Station

Each ground station is comprised of at least a ra-
dio, an antenna, and a controller that provides an
API to exchange data with the satellite. The ground
segment has one ground station using a traditional
radio transceiver and another using a Software De-
fined Radio (SDR). Both ground station controllers
only allow the sending and receiving of frames. It is
not possible to change modulation or the pointing
of the antenna programmatically.
To communicate using any of these ground sta-

tions, the operator must request the Core Server to
establish a TCP connection with the appropriate
controller. Since the Internet Protocol (IP) address
and port of the service running in the ground station
controller are necessary to open a TCP connection,
and the operator cannot directly command the Core
Server, this is usually done using GSCTL.

This approach is not ideal, as the ground operator
needs to know when each ground station is up, and
what is its IP address. If the ground station is not
hosted on the same network as the Core Server, it
might be necessary to configure the ground station’s
network to allow foreign connections. However, de-
pending on the network, it may not be possible to
configure it in such way.

Traditional Ground Station In this ground sta-
tion the controller receives the address, control, and
information fields of the AX.25 frames via the TCP
socket. This information is then sent to the Terminal
Node Controller (TNC) which frames it according
to the High-Level Data Link Control (HDLC) pro-
tocol, modulates them using Audio Frequency-Shift
Keying (AFSK), and sends the audio to the radio
transceiver. The transceiver then frequency modu-
lates the audio signal into the Radio Frequency (RF)
band and transmits it using the antenna. When re-
ceiving information, the reverse operations are done
by the same ground station components.

SDR Ground Station Differently to how the
previously discussed ground station operates, this

controller receives the AX.25 frames. It then, pro-
cesses and forwards them to the SDR. The SDR en-
sures that they are transmitted using the antenna.
As with the traditional ground station, when receiv-
ing information, the reverse operations are done by
the same components.

Due to the nature of SDRs, it is possible to change
the used frequency modulation. This is defined by
the GNU-Radio script running in ground station
controller.

Ground Station Interface The approach de-
fined in both ground station descriptions establishes
a RDP connection between the Core Server and the
satellite. Since the RDP connection is established
with the Core Server and not with the Ground Sta-
tion, the throughput of the network is influenced
by the distance between these nodes, as every RDP
segment needs to be sent through a TCP tunnel,
eventually crossing many internet nodes.

3.1.6 Gateway Interface

The Gateway interfaces to send INCP commands to
the satellite are not standardised. This lack of stan-
dardisation is notable not only trough the distinct
utilized connection types, but also from the used
data formats. The Core Server resorts to TCP when
establishing a connection with either ground station
and to USB when connecting to the EGSE gate-
way. The data formats used are AX.25 fields, AX.25
frames or INCP messages depending on whether the
target gateway is a traditional radio ground station,
a SDR based ground station or a EGSE gateway,
respectively.
This design decision is tied to an increased pro-

gram organization complexity, leading to less main-
tainability. It also results in the unnecessary proxy-
ing of data affecting the goodput between the Core
Server and the satellite.

3.1.7 Automation

In order to execute a satellite operation, a connec-
tion between a GSCTL instance, the Core Server, a
gateway and the satellite must be established. This
connection is required since the automation’s con-
trol flow is decided in the GSCTL.

Even though the capabilities provided by GSCTL
can be leveraged to achieve lights-out operation, the
process to reach such goal is not practical nor robust.
As an example, the operator could schedule the op-
eration to run in their computer during a satellite
pass. However, this would require their computer to
be on, and connected to the internet at the specified
time and during the full pass duration.
It would be preferable to allow the schedule of

operations directly in the Core Server, entrusting
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it with the chore of executing the appropriate op-
eration at the correct time. This solution is more
robust as it reduces the number of points of failure.

3.1.8 Data Visualiser

The data visualiser complements GSCTL, allowing
the operator to visualy analyse the telemetry and
mission data stored in the database. This is achieved
through a web based GUI that enables the creation
of different panels, according to the data organisa-
tion.

3.1.9 Security

Connections between the Core Server and ground
stations or GSCTL happen through TCP sockets as
such all the data exchanged between both parties is
in plain text.

3.2. Proposed Architecture
While re-designing the ground segment of ISTSAT-
1, the initial architecture was taken into account
trying to reuse most of the components in order to
ease the development efforts. The proposed solution
aims to solve the exposed issues with the previous
design. Figure 2 depicts the proposed changes to the
ground segment architecture.
The Core Server should be hosted in a dedi-

cated machine, along with the Data Visualiser and
database, providing an increase in processing power
and availability to the service.

Each gateway should initiate the connection pro-
cess with the Core Server, ensuring that there is no
need for the ground operator to monitor the state
of these connections. As soon as the system is avail-
able, it’s controller will establish a connection with
the Core Server. This controller also exposes the
system’s API.

Virtual Private Server

Core Server

DatabaseGrafana

Operator's PC

Gsctl

Web Browser

Operation Queue

SDR Ground Station

GNU-Radio Script

Controller

Traditional Ground
Station

TNC Proxy

Controller

EGSE

EGSE Gateway

Controller

Figure 2: Ground Segment Architecture

3.2.1 Communication Protocols

Instead of the previously exposed heterogeneity in
the message format accepted by each gateway, every
gateway handles INCP messages.

3.2.2 Stand-alone Electrical Ground Sup-
port Equipment (SEGSE)

The presented architecture assumes that there is al-
ways an Internet connection. There are cases where
this assumption might not be correct, preventing
the operation of the satellite. Therefore, it is crucial
to define a system that still allows the debug of the
satellite even without an internet connection.
This system is referred to as SEGSE. It is com-

prised of a general purpose computer and a micro-
controller board, connected via USB. The computer
is running the Core Server, EGSE Controller, Data
Visualiser, and a local database. While the micro-
controller is running the EGSE Gateway.
In order to operate the SEGSE, the operator’s

computer is linked to the computer directly, using
an RJ45 cable to connect both devices via Ethernet.

3.2.3 Operation Queue

The proposed design keeps the functionality that
allows GSCTL to execute operations, while allowing
those same operations to be scheduled in the Core
Server. This is achieved by the Operation Queue,
a software module, that ideally runs in the same
machine as the Core Server and is responsible for
establishing the connection between them.
To schedule an operation, the operator, notifies

the Core Server about its name and desired times-
tamp for the execution. Then, if the Operation
Queue is connected, the Core Server forwards it the
request. The Operation Queue registers the informa-
tion regarding the execution of this operation, and
saves it in the database. As soon as the time for
execution arises, the Operation Queue executes the
desired operation, behaving like a GSCTL instance.

3.2.4 Graphical User Interface

In order to incorporate a new UI into this ground
segment, there are two main approaches. One is
to create a program that runs on the operator’s
computer and directly calls the endpoints exposed
by the Core Server’s API. This is the technique
employed by GSCTL. Another approach would be
to host a service, like a web server, that provides a
UI, translating user requests into calls to the Core
Server API.

4. Implementation
At the time of implementation, the satellite was at
the end of the final test campaigns. As such, mod-
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ifications to the current design took into account
the already written test procedures and, where pos-
sible, respected them, avoiding changes to already
approved documents. That being said, the proposed
solution was implemented in two distinct phases.
During the first phase, the ground segment’s ar-

chitecture was altered to encompass the necessary
changes to the working features. These changes take
priority over the implementation of new function-
ality because they may invalidate already written
procedures. Solving these issues first, ensures that
if backwards compatibility is broken, there is more
time to correct the affected documents. It also means
that the documents that still need to be written will
already take into account the new architecture.
The second implementation phase, consisted on

adding new functionality to the ground segment.
A GUI was included and the automation process
improved with the development of the Operation
Queue.

4.1. Core Server Interfaces and Gateway Be-
haviour

Core Server’s gateway interface had to be modified
to allow the sending and receiving of INCP messages,
as well as the commanding of each gateway, depend-
ing on its capabilities. Ideally this traffic would be
sent over one connection, reducing the number of
connections, and thus the load on the server.
The Core Server, as the vast majority of the

ground segment, is implemented in the Python1 pro-
gramming language, and uses the Trio2 library to
manage asynchronous input and output.

The current client API provided by Core Server re-
sorts to Trio-RPC. Trio-RPC is a Remote Procedure
Call (RPC) library, developed in-house, that takes
advantage of Trio in order to process requests asyn-
chronously. However this library only allows commu-
nication through a traditional client-server model,
where the client sends a request and the server an-
swers with a response. Although this approach is
acceptable in the case of GSCTL, it is unacceptable
in this particular circumstance, as gateways must
be able to push and receive INCP messages as soon
as possible.
Since Trio-RPC was developed in-house, it was

altered to allow servers to call functions registered
in the client, thus enabling it to be used for in this
scenario. It was also improved to support Transport
Layer Security (TLS) and execution of multiple re-
quests concurrently.

4.1.1 Trio-RPC

This library allows the execution of asynchronous
remote functions. The most important component

1https://www.python.org/
2https://trio.readthedocs.io/en/stable/

of this system is the class RPCNode. It enables the
sending and receiving of requests and responses, as
well as their handling. Since the interface with this
class provides a lower level interface than most appli-
cations will need, classes to abstract the intricacies
of the system were developed.

These classes are named RPCClient and RPC-
Server. While both expose methods to register func-
tions that can be remotely called. The RPCServer
contains a method to start waiting for new connec-
tions, and the RPCClient one for establishing them.

Whenever a connection is established between a
RPCServer and a RPCClient, they start a new task
to handle it. This task is controlled by an instance
of the class RPCNode, lives for the duration of the
connection, and starts at least two child tasks, an
handler and an executer. The number of executor
tasks is the same as the number of concurrent re-
quests the RPCNode is able to process.

Each instance of RPCNode exposes a method that
allows the execution of functions in its remote coun-
terpart. This is done by sending a request message
to the connected node, which processes it and re-
sponds with a response message. Messages follow
the javascript object notation (JSON) format.

Concurrency In order to handle requests concur-
rently, each RPCNode makes use of executor tasks.
This implies that there are a maximum number of
requests that can be executed concurrently.

Another solution would be to create a new task
per request. However, the time it takes to launch a
new task would increase the processing time of each
request. This solution also allows a malicious client
to spawn an arbitrary number of tasks, eventually
reducing the available time to handle other requests.
This attack is known as a denial-of-service.

Syntax The way a user interacts with a library
greatly influences its usability and adoption. This
library’s API tries to accommodate most use cases
by providing a generic client and server implemen-
tation. While this implementation should fit most
use cases, it is expected that some applications may
require changes to the default behaviour. For this
reason, its inner workings are exposed, allowing the
user to implement their own version of either the
client or server, to better suit their needs.

Security Both the RPCClient and RPCServer
support TLS encryption and peer authentication
facilities. To resort to these features, the appropri-
ate SSLContext should be given as an argument to
the ”connect” method of RPCClients and to the
constructor of RPCServers.
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Backwards Compatibility The interface to in-
voke remote calls has been kept unchanged. When
porting code using the old version of this library,
the only sections requiring intervention are related
to the RPCClient’s connection process.

4.1.2 Core Server

The Core Server exposes two endpoints, the previ-
ously defined client API, and a new API to handle
incoming connections from gateways.
The client API allows client programs to issue

commands to the satellite, while the gateway API en-
ables the handling of gateways. When a gateway es-
tablishes a connection with the Core Server, it must
provide its identifier and capabilities. The identifier
is the label used to uniquely identify each gateway.
The capabilities are a list of functionalities available
for the connected gateway. Since different gateways
might provide different functionalities, it is necessary
to inform the Core Server about which functionali-
ties are exposed by which gateway. The available
capabilities are ”gateway”, ”ground station” and
”tiva”. Each gateway can implement any combina-
tion of the three.
The ”gateway” capability ensures that the gate-

way allows remote calls to the function ”send” that
sends INCP messages, and that as soon as it re-
ceives an INCP message from the satellite, it pushes
it to the Core Server by invoking the function ”de-
liver incp message”.

Unlike ”gateway”, the ”ground station” and ”tiva”
capabilities do not notify the Core Server as
soon as some event happens. Instead they just
handle requests made by the Core Server. The
”ground station” capability exposes functions re-
lated to ground station control, while ”tiva” im-
plements functions to manage the Tiva-C device
utilised by the EGSE to debug the spacecraft.
When defining a new function to be invoked

through the client API, the developer needs to anno-
tate which capabilities it requires. This allows Core
Server to inform the client when they issue an API
call using a gateway that does not expose all the re-
quired capabilities to execute the desired function.

4.1.3 Ground Station

This gateway implements the ”gateway” and
”ground station” capabilities. It is composed of
three main software modules, the controller, GNU-
Radio script and modulation changer.
The GNU-Radio script resorts to a SDR to com-

municate with the satellite via radio. The sending
and receiving of messages to this script happens
through a TCP connection, exploited by controller
to transmit and receive AX.25 frames to and from
the spacecraft. In order to change the modulation in

use, the running GNU-Radio script must be stopped
and a new one started. This is done via the modu-
lation changer, that exposes a TCP socket allowing
an external program to stop the currently running
script and start a new one. The modulation changer
also detects if the modulation script running has
crashed and restarts it. The controller takes advan-
tage of the modulation changer to allow the Core
Server to change the modulation used by this ground
station.

4.1.4 EGSE

This gateway implements the ”gateway” and ”tiva”
capabilities and is composed of a single software
module, the controller. This module interacts with
the Tiva-C and allows the debug of the spacecraft.

4.2. Graphical User Interface

Instead of implementing an in-house interface, the
cloud based command and control solution, Major
Tom, was integrated into the ground segment. This
decision aimed to reduce the development and main-
tainability efforts while allowing the possibility of
utilising their pre-integrated GSNs.

As a bonus, Major Tom, provided an academic
program, where it allowed university projects to take
advantage of their service free-of-charge.

When integrating Major Tom into a new ground
segment, the only required module is a gateway.
Based on their notation, a gateway is a software com-
ponent that receives messages in JSON and trans-
lates them into a format capable of being interpreted
by the satellite. This gateway is responsible for es-
tablishing the connection with Major Tom, and the
data it produces is forwarded either to Major Tom,
in order to be sent using an integrated GSN, or to
a specific gateway directly connected to the Core
Server.

Instead of altering the Core Server to establish
connections with Major Tom, a new software mod-
ule, Major Tom Translation Layer was created. This
module establishes a connection between Major Tom
and the Core Server, and translates the communi-
cation between both. This decision allowed the inte-
gration of Major Tom, without requiring changes to
the already stable Core Server, by leveraging Core
Server’s client API (the same used by GSCTL).

The process of integrating Major Tom into the
ISTSAT-1’s ground segment can be decomposed into
two parts, the command definition, and the devel-
opment of Major Tom Translation Layer.

4.2.1 Command Definition

In order for Major Tom to provide a GUI capable
catering to the different needs of multiple missions,
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it needs to be configurable. The process of configur-
ing Major Tom’s UI is achieved through the upload
of JSON objects to Major Tom’s website. These
objects, refered to as command schema, define the
commands that are available for a specific satellite
or ground station.

ISTSAT-1’s commands Communication with
the satellite happens through the INCP protocol.
The ISTSAT-1 is composed of subsystems and each
subsystem has different data variables, reports, con-
figurations, commands, and enumerations. These
are described in a YAML Ain’t Markup Language
(YAML)3 file that is processed to generate subsys-
tem specific libraries, defining the available instruc-
tions.
Data variables represent the value of a metric at

some point in time. Reports are groups of data vari-
ables, they allow the request of multiple data vari-
ables in a single call. Configurations are parameters
that determine the behaviour of the satellite, and can
be altered in runtime. Commands are parametris-
able procedures that execute on a subsystem.

The Core Server provides, through its client API,
functions to interact with each spacecraft subsystem.
These functions are ”data req”, that requests the
value of some data variable or report, ”config get”
and ”config set”, that, respectively, get and set the
value of some configuration, and ”cmd”, which issues
a command. These procedures are the basic building
blocks that enable all satellite operations.
In order to create the full command definition

schema, a program was written to parse the INCP
description file, and extract the required information.
The command definition schema was then uploaded
to Major Tom in order to customize its GUI to the
mission requirements.

4.2.2 Major Tom Translation Layer

After successfully configuring Major Tom, a service
to establish a connection between their servers and
Core Server still needed to be developed. This ser-
vice is the Major Tom Translation Layer. It estab-
lishes a WebSocket[5] connection with the Major
Tom’s servers, allowing them to send the requests
issued by the client via their GUI. When it receives
the issued command, translates it, and calls the ap-
propriate function through Core Server’s client API.
As soon as response is received from the Core Server,
it is translated to Major Tom’s format and sent.

Telemetry As is, this module already enables the
utilisation of Major Tom’s UI to communicate with
the spacecraft. However, the Grafana interface inte-
grated into Major Tom is only being populated when

3https://yaml.org/

responses to commands, issued from this client, are
received. As such, telemetry data is also not being
used to populate this Grafana’s database.
In order to solve this issue, a new command was

created in the Core Server, enabling a client to re-
quest to be notified as soon as new satellite data is
received. From this moment on, whenever the Core
Server receives data variables or reports from the
spacecraft, it forwards it to all the interested clients.
To implement this behaviour, it calls the function
”on data” on the clients that wish to be notified.

The Major Tom Translation Layer was then
changed to request the Core Server to be notified
when data is received from the spacecraft. When
this data is received, it is translated into the Major
Tom format and sent to their servers to be stored
in their database.

4.2.3 Impediment

Despite the working condition of the implemented
GUI, due to contractual changes, Major Tom
stopped providing their software free-of-charge for
university projects. As such, this command and con-
trol service is no longer a viable solution for the
ISTSAT-1’s ground segment.

4.3. Alternative Graphical User Interface
Since the previously integrated UI stopped being
viable, a new GUI was developed, in-house. The
decision to develop a new interface, instead of inte-
grating another one into the ground segment, was
motivated from the experience with Major Tom. In-
tegrating a general command and control mission
software into the ground segment does not provide
the ideal flexibility nor customization levels, and
entails the loss of control over the decisions made
by the software provider. By developing the inter-
face internally complete control over these factors is
guaranteed.

The developed interface was a web server. It runs
in the same machine as the Core Server and the
operator accesses the interface through its browser.
In order to ease the development process, this

module was programmed in Python using the pglet4

framework. This framework allows the creation of
GUIs through the use of pre-built components.

This UI focuses on providing a simple interface to
ping, request data, edit configuration values, and is-
sue commands to the satellite. Throughout this doc-
ument, this interface will be referred to as ”Smooth
Operator”.

4.3.1 Interface

The GUI is subdivided into two parts, the navigation
bar, on the left side, and the operational interface on

4https://pglet.io/
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the right. Figure 3 displays the interface to request
data variables and reports from the satellite.

Figure 3: Smooth Operator’s Data Request Interface

Each page contains a response section at the bot-
tom of the operational interface where the last issued
request is displayed. The ”History” tab contains a
list with information about all the requests issued
in this session.

4.3.2 Security

Pglet provides built-in support for authentication
through the sign in with a GitHub, Google, or Mi-
crosoft account. This functionality was used to block
unwanted access to the application.

However, traffic between the client’s browser and
the web server still happens over an unencrypted
connection. During the deployment phase, this needs
to be taken this into account, proxying the data
through a TLS termination proxy.

4.4. Operation Queue

The Operation Queue was developed to enable the
scheduling of operations. When this module boots,
it automatically establishes a connection with the
Core Server’s client API. After the connection is
established, it notifies the Core Server that this client
is an Operation Queue.

When another client wants to schedule an opera-
tion, it issues a remote call to the Core Server provid-
ing the operation name, and the date and time for
when this operation needs to take place. The Core
Server then proxies this message to the connected
Operation Queue that registers it in its queue of
operations and waits for the next timestamp. When
it is time to execute the operation, the Operation
Queue, runs it.

5. Validation

ISTSAT-1 is part of European Space Agency
(ESA)’s Fly Your Satellite! (FYS)[7] programme. As
such, in order to launch the spacecraft, it has to en-
dure a panoply of tests. Some of these tests, while
assessing the functionality of the satellite, also test

the ground segment, as they require a close interac-
tion between both parties.
At the end of the first development phase, both

the satellite and the ground segment, enrolled on
a testing campaign (Mission Test (MT)), aimed at
verifying that the ISTSAT-1 is able to perform its
intended mission and withstand contingency scenar-
ios. Since the satellite needs the ground segment to
be able to complete its mission, by extension, it was
also tested.

After the Mission Test (MT), the satellite enrolled
on another test campaign, the Vibration Test (VT),
that intended to verify that the spacecraft can with-
stand the random vibrations expected for the launch
phase. Despite the ground segment not being the
main target of this test campaign, it can once again
be used to validate its behaviour.

5.1. Mission Test
In order to verify that the satellite is able to fulfil
its mission, this test simulated the interactions with
spacecraft during its first orbits.
Both the nominal and contingency operation

phases were operated remotely, due to COVID-19
restrictions.

This test campaign took place in Instituto de En-
genharia de Sistemas e Computadores - Microsis-
temas e Nanotecnologias (INESC-MN)’s clean room.
To perform this test, all the required equipment to
operate the satellite had to be transported to this
location. The necessary equipment was the EGSE
and the SDR ground station.

5.2. Vibration Test Campaign
During this test, the spacecraft was supposed to be
vibrated on its three axis, assuring that it will not
be damaged during the launch. Before and after
vibrating the satellite, it had to be subject to an
Reduced Functional Test (RFT), to ensure that the
vibration did not harm the spacecraft.

This test campaign took place in the CubeSat
Support Facility (CSF), an assembly integration and
testing facility for CubeSats, located at the ESA Ed-
ucation Training Centre, based at the ESEC-Galaxia
facility in Transinne, Belgium. As with the MT, the
EGSE and the SDR ground station were transported
to the site, because they are required to execute the
RFT.

The ground segment architecture followed was the
same as the one used in the MT.

5.2.1 Challenges

After configuring both gateways to connect to the
local Wi-Fi network, none was able to establish a
connection with the Core Server. Due to the lack
of time, there was no chance to properly investigate
the root cause of the issue. However, it is possible
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that the router was configured to block outbound
traffic to the port where the Core Server is hosted.

This issue was solved through the use of a mo-
bile hotspot. Another possible solution, would be to
setup a SEGSE, avoiding the need for an internet
connection.

5.3. Results

The MT verified that both gateways were able to
connect to the Core Server without any kind of net-
work configuration. As soon as both components
had internet access, provided by INESC-MN’s Wi-Fi,
they established a connection with the Core Server,
enabling any client to use them to communicate
with the spacecraft.

Due to the extensive use of ground segment func-
tionality, this test also ensured that none of the pre-
viously implemented features were broken, and that
the ground segment is able to be controlled remotely.

Despite the challenges described, the Vibration
Test (VT) campaign validated once again the work-
ing condition of the ground segment.

6. Conclusions

Throughout this work, changes to the ISTSAT-1’s
architecture were proposed and implemented, aim-
ing to improve the goodput of the satellite, as well
as the usability of the UI leveraged to operate the
ground segment and, by extension, the spacecraft.

To this end, the connection mechanisms and inter-
faces between gateways and the centralised server
where standardised with the purpose of reducing
the network load, increasing maintainability, and
providing a clear commanding interface. The de-
sign decisions made to accomplish these goals, mo-
tivated the extension of an in-house RPC library,
to allow servers to issue remote calls on clients,
which greatly simplified the implementation process.
These changes were validated during two test cam-
paigns.

The work on the UI for the ground segment re-
sulted in the integration of the cloud based, com-
mand and control solution Major Tom. While this
service proved to be an adequate solution to inter-
face with the functionality provided by the ground
segment, due to contractual problems, the partner-
ship with this company did not proceed; motivating
the development of a new GUI. This UI provides
a simpler interface, more tightly coupled with the
needs of this specific ground segment.

On the automation front, an approach to the
scheduling of operations was discussed and imple-
mented. Enabling users to calendar the execution of
operations directly through the centralised server.

6.1. Future Work

In order to improve upon this work, the GUI devel-
oped should be subject to user trials, evaluating its

performance when compared to the CLI, both for
new and proficient users.
Another way of expanding on this work would

be to allow interested people to contribute to the
telemetry data collection process. This can either
be achieved by integrating the ground segment with
a GSN, or by openly distributing the software for
the ground stations. If the latter option is chosen,
any person could use their ground station to collect
telemetry, and automatically send it to the Core
Server. In order to incentivise contributions, the
satellite data could be displayed in a public manner,
with a leaderboard listing the most active contribu-
tors.
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