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ABSTRACT
Magnetic Resonance Imaging (MRI) is an expensive medical imag-
ing technique typically associated with long scanning times. MRI
acquisition can be potentially accelerated by decreasing the spatial
coverage and reducing the number of measured slices. However,
this results in a lower MRI resolution and can eventually lead to
misleading medical interpretations. An alternative solution comes
from recent breakthroughs inMachine Learning, which have shown
that high-resolution images can be recovered via super-resolution,
particularly through Generative Adversarial Networks. This the-
sis conducts a review on GAN-based SR methods, exhibiting the
immersive ability of GANs on upscaling MRIs by a ×4 scale factor
while at the same timemaintaining trustworthy and high-frequency
details. Despite quantitative results suggesting SRResCycGAN out-
performs other popular deep learning methods in recovering ×4
downgraded images, qualitative results show Beby-GAN holds the
best perceptual quality and proves GAN-based methods hold the
capacity to reduce medical costs and enable MRI applications where
it is currently too slow or expensive. Additionally, Tumor Segmen-
tation is utilized to validate the proficiency of GANs in the MRI
reconstruction task. Tumor Segmentation of the synthesized im-
ages advocates marginal dissimilarities, thus there is a window
for improvement. Furthermore, this thesis suggests that a chain of
processes for a faster diagnosis can be conceived by merging both
Super-Resolution and Tumor Segmentation. Essentially, tumor seg-
mentation algorithms benefit from the improved spatial resolution
derived from super-resolution. The diagnosis process is accelerated
by acquiring low-resolution MRIs and subsequently upscaling them
(via super-resolution) to detect tumors.
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1 INTRODUCTION
Magnetic resonance imaging (MRI) is a medical imaging technique
that is predominantly necessary across patient diagnoses and med-
ical tracking of ongoing diseases. The detailed information of or-
gans, soft tissues, and bones extracted from an MRI scan allows
physicians to effectively evaluate, adjust and control treatments. A
relevant problem that arises is the prolonged MRI acquisition time.
Moreover, a slight movement from the patient can ruin the scan,
requiring retesting. Hence, patients have to lie still in the scanners
and even hold their breath for thoracic or abdominal imaging [6]
since even the slightest movement of breathing can ruin the results.

Therefore, the slow acquisition of MRI scans manifests discomfort
among subjects and presents inconvenience in healthcare.

The desired image quality also impacts the acquisition time. The
decrease in acquisition time is proportional to the spatial resolution
reduction. If an MRI is acquired with half the resolution, then the
acquisition time is practically halved [5] (excluding scanning prepa-
ration and/or pre-scanning time). Therefore, the ability to infer
a high-resolution (HR) image from a low-resolution (LR) image
yields a massive impact on the performance of image analysis and
MRI acceleration. A convenient concept in Machine Learning was
introduced, called Image Super-Resolution (SR), referred to as the
task responsible for the reconstruction of an image from low to
high resolution. After running an MRI scan faster and gathering
less raw data, an SR method can be exploited to reconstruct the
MRI. Since collecting that data is what makes MRI so slow, this
concept can speed up the scanning process significantly.

In general, SR methods are based on Generative Adversarial
Networks (GANs), which were introduced in 2014 by Goodfellow et
al. [7] and have recently gained a lot of attention. GANs introduce
an alternative way of conceiving models capable of generating data,
entitled generative models, and recently they have been used for
several image-based applications. To complement Super-Resolution
and provide a more sophisticated and fast diagnoses, automated
tumor segmentation can be considered. MRIs have been widely
utilized to detect and evaluate brain tumors. However, the amount
of detailed information present in MRIs poses a significant problem,
as it prevents manual segmentation in a reasonable time. Distinct
tumoral subregions can be perceived, and accurately detecting
these regions within the MRI is consequential. Similarly to super-
resolution, there is a concept in Machine Learning entitled Semantic
Segmentation (SS). It is the process dedicated to associating each
pixel of an image with a class label.

Succeeding a rigorous analysis of the state-of-the-art, several
GAN-based models were selected based on a comprehensive selec-
tion criteria that took into consideration several key aspects, such
as the performance under multiple applications and the publication
date. The performance of these models is evaluated over FastMRI
[30]. Furthermore, super-resolved MRIs having similar results as
ground-truth MRIs in the tumor segmentation task is suggestive
of an accurate recovery of the details inherent to high-resolution
MRIs. Therefore, tumor segmentation algorithms and techniques
were considered to employ a task-based evaluation intended to
assess the GAN-based super-resolution performance. Essentially,
the super-resolution performance is estimated by assessing the
tumor segmentation performance of the super-resolved brain MRIs.
Additionally, through the application of tumor segmentation meth-
ods, not only the reconstruction quality of GANs is exposed, but it
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also supports the idealized pipeline for a faster diagnosis, where
Super-Resolution and Tumor Segmentation are consolidated.

2 RELATEDWORK
2.1 Super-Resolution
2.1.1 Interpolation-based Upsampling Methods. Image Inter-
polation is the task of resizing images from one pixel grid to another
by estimating the pixel intensities of the interpolated points. Inter-
polation algorithms, such as the Nearest Neighbor, Bilinear, and
Bicubic Interpolation, can be very efficient and easy to implement.
However, despite being the simplest way to upscale an image, these
interpolation methods oversimplify the SR problem and in most
cases attain solutions with excessively smooth textures [4].

2.1.2 Deep Learning Methods. In practice, super-resolution
is a problem of missing data. Lost data cannot be recovered by
further processing, i.e, information that is not present cannot be
inferred. This is where Neural Networks manifest significant value,
considering they can learn to conceive details based on some prior
information they have extracted from a large training sample.

GANs employ a clever strategy to train a generative model by
posing the super-resolution task as a supervised learning problem.
They consist of two adversarial Neural Networks that compete with
each other. The first network, denoted as Generator, captures the
data distribution, while the second one, named Discriminator, esti-
mates the probabilities of samples being real or fake. A generalized
application of GANs applied on the SR task is shown in Figure 1.

Ground Truth
Images

Generator

Real Image

Fake Image

Discriminator

Real

Fake

Discriminator
Loss

Generator 
Loss

Backpropagation

Backpropagation
LR Image

Figure 1: Main concept behind GANs.

2.2 Tumor Segmentation
2.2.1 Conventional Methods for Semantic Segmentation.
Classical methods were usually based on pixel value comparisons
between regions. These methods perceive image features locally
while considering variations and gradients of pixel values. They
are divided into three main categories: threshold-based [11], edge-
based [3] and region-based [26].

2.2.2 Deep Learning Methods for Semantic Segmentation.
Semantic Segmentation based on Neural Networks (NN) is feasible
due to the unfolding of large medical datasets and the reduction of
computing requirements necessary to process them. Furthermore,
developments in the deep learning field have greatly advanced the
performance of these state-of-the-art visual recognition systems,
thus leading neural networks to surpass the hard work of traditional
machine learning models.

Among the diverse CNN-based models, Fully Convolutional Net-
works (FCNs) [15] introduced a novel strategy to solve semantic
segmentation (see Section 5.2). They received a lot of attention by
exhibiting that convolutional networks can be trained to accommo-
date pixel-level classification in an end-to-end manner.

Furthermore, built upon the concept of FCNs, U-Net was pro-
posed by Ronneberger et al. [21]. It was designed for biomedical
image segmentation. However, it has proven to be generalizable for
practically any semantic segmentation task.

The main difference compared to FCN is that U-Net network
is symmetric, i.e, the second half of this architecture, regarded as
the decoder, is the mirror version of the first half, the encoder.
Reasoning, the popularity of encoder-decoder architectures for
semantic segmentation was solidified with the onset of works U-
Net.

3 SUPER-RESOLUTION GENERATIVE MODELS
3.1 SRGAN
Most methods reviewed in this work were inspired by SRGAN [14],
which was a novel super-resolution approach using the GAN con-
cept. Before SRGAN, the most relevant work had largely focused on
minimizing the mean squared reconstruction error (MSE), however
the resulting estimates failed to match the fidelity present at the
high resolution domain. To cope with this issue, SRGAN introduces
a new GAN architecture (see Figure 2) and diverges from MSE as
the single target for optimization.
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Figure 2: Basic architecture of SRResNet (SRGAN). Figure
adapted from [14].

3.2 ESRGAN
Based on the SRGAN pioneer work [14], a model named Enhanced
SRGAN (ESRGAN) [28] was introduced to reduce unpleasant arti-
facts present in the SRGAN generated data. ESRGAN revisits three
key components to improve the previous approach: network archi-
tecture, adversarial loss and perceptual loss.

The original SRGAN model is built with residual blocks [8] and
optimized using a perceptual loss in a GAN framework. Meanwhile,
ESRGAN improves the generator structure by removing Batch Nor-
malization (BN) layers and introducing the Residual-in-Residual
Dense Block (RRDB), which is of higher capacity and easier to train
(see Figure 3).
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Figure 3: Batch normalization removal on the left. On the
right, Residual in Residual Dense Block is embedded in the
model. Figure adapted from [28].

3.3 RankSRGAN
Perceptual quality can be assessed by perceptual metrics, such as
Perceptual Index (PI) [2], Natural Image Quality Evaluator (NIQE)
[19], and Ma [16], which are highly correlated with human percep-
tion. However, existing methods cannot directly optimize these met-
rics. Therefore, to optimize a network in the direction of these per-
ceptual metrics an approachwas proposed consisting of a GANwith
a Ranker, named RankSRGAN [32]. The Ranker adopts a Siamese
architecture to learn the behaviour of perceptual metrics as depicted
in the middle section of Figure 4.

Figure 4: Overview of RankSRGAN. Essentially, RankSRGAN
consists of a generator (G), a discriminator (D), a fixed fea-
ture extractor (F ) and a ranker (R). Figure adapted from [32].

3.4 SRResCycGAN
Inspired by the success of CycleGAN [33] in image-to-image trans-
lation applications, a new deep cyclic network structure was pro-
posed, named SRResCycGAN [25]. In essence, a GAN is trained to
achieve LR to HR translation in an end-to-end manner. MRI acqui-
sition can contain a significant amount of noise caused by operator
performance, patient motion, equipment or environment, leading
to unpleasant results. SRResCycGAN overcomes this challenge and
maintains the domain consistency between the LR and HR data
distributions by following the CycleGAN structure, as shown in
Figure 5.

3.5 BSRGAN
Single Image Super-Resolution (SISR) methods would not perform
well if the assumed degradation model deviates from those in real
images. Therefore, a model named BSRGAN [31] was proposed
along with a degradation model. A deep blind ESRGAN is trained
based on the degradation model, which consists of randomly shuf-
fled blur, downsampling and noise degradations as shown in Figure
6.

Figure 5: SRResCycGAN structure. Figure adapted from [25].
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Figure 6: Proposed BSRGAN degradation model for a scale
factor of 2. For scale a factor of 4, an additional bilinear or
bicubic downscaling is applied. The type of blur employed is
denoted by B𝑡𝑦𝑝𝑒 and N𝑡𝑦𝑝𝑒 is the type of noise. Meanwhile,
D𝑠𝑐𝑎𝑙𝑒
𝑡𝑦𝑝𝑒 stands for the downsampling applied under a defined

scale. Figure adapted from [31].

3.6 Real-ESRGAN
The previous ESRGAN approach is extended to achieve superior
visual performance on various datasets. Real-ESRGAN [27] aims to
restore general real-world LR images by synthesizing training pairs
with a more practical degradation process. In essence, starts by im-
proving the VGG-style discriminator in ESRGAN to a U-Net design
[22]. Then, employs the Spectral Normalization (SN) regulariza-
tion [20] to stabilize the training process, since the U-Net structure
and complicate degradations also increase the training instability.
Real-ESRGAN uses a synthetic data generation process as depicted
in Figure 7. Consequently, Real-ESRGAN robustness is improved
and is capable of restoring more realistic textures for real-world
samples, while other methods either fail to remove degradations or
add unnatural textures.

Figure 7: High-order Degradation Model. Figure adapted
from [27].
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3.7 Learning Strategies
This section discusses learning strategies utilized in super-resolution.
Furthermore, a concise comparison of the numbers of parameters
and generator losses from each GAN model regarded in this work
is given in Table 1.

Table 1: Comparison of GAN-based SR models. LP repre-
sents the perceptual loss, LG the adversarial loss, LR the
rank-content loss, LCYC the cyclic loss, LBB the best-buddy
loss, LTV the total-variation loss and L1 the content loss.
Moreover, _, [, \ and𝜙 are coefficients to balance the different
loss components.

Method Parameters Loss

SRGAN 16.7M LP + _LG

ESRGAN 16.7M LP + _LG + [L1

RankSRGAN 1.55M LP + _LG + [LR

SRResCycGAN 380k LP + LG + LTV + _L1 + [LCYC

BSRGAN 16.7M LP + _LG + [L1

Beby-GAN 16.7M _LBB + [LBP + \LP + 𝜙LG

Real-ESRGAN 16.7M LP + _LG + [L1

3.7.1 Perceptual Loss (LP ). Proposed by Johnson et al. [10] to
measure the perceptual similarity between two images and enhance
the visual quality by minimizing the error in a feature space rather
than pixel space. Perceptual loss can be expressed in the equation
below:

LP =
1
𝑁

𝑁∑︁
𝑖=1

LVGG =
1
𝑁

𝑁∑︁
𝑖=1

𝜙 (
𝑥𝑟𝑖

)
− 𝜙

(
𝑥𝑔𝑖

)2
2 , (1)

where 𝑥𝑔𝑖 represents the generated HR image and 𝑥𝑟𝑖 is the corre-
sponding ground truth image. Moreover, 𝑁 represents the number
of training samples and 𝜙 (·) denotes the image feature maps ob-
tained by some convolution layer within the VGG19 network [23].

3.7.2 Adversarial Loss (LG). The standard GAN loss function
introduced by Goodfellow et al. [7] corresponds to a min-max game
approach, therefore it is also known as the min-max loss. The gener-
ator tries tominimize the following functionwhile the discriminator
tries to maximize it:

min
\G

max
\D
E𝑥𝑟 [log(D\D (𝑥𝑟 ))] + E𝑦 [log(1 − D\D (G\G (𝑦)))], (2)

where 𝑥𝑟 denotes a real image and 𝑥𝑔 = G\G (𝑦) represents a gen-
erated HR image when given input LR image 𝑦. Additionally, E𝑥𝑟
corresponds to the expected value over all real data instances and
D\D (𝑥𝑟 ) is the discriminator’s estimate of the probability that a real
data instance 𝑥𝑟 is real. Meanwhile, E𝑦 is the expected value over all
input LR instances 𝑦 and, in consequence, the expected value over
all generated fake instances 𝑥𝑔 . In addition, D\D (G\G (𝑦))) is the
discriminator’s estimate of the probability that a generated image

is real. Moreover, \G and \D denote the weights and biases that
parameterize the generator network G and discriminator network
D, respectively.

The generator and discriminator are jointly optimized with the
objective given in function (2). Looking at it as a min-max game, this
formulation of the loss enables the function above to be categorized
into two equations formulating the Discriminator and Generator
losses. Accordingly, the generator loss LG is defined based on the
discriminator’s output and only affects the right term of the expres-
sion (2), the term that reflects the distribution of the generated data.
Therefore, during the generator’s training the left term is dropped,
since it only reflects the distribution of the real data. In essence, the
adversarial loss for the generator can be represented as follows:

LG =
1
𝑁

𝑁∑︁
𝑖=1

− log(D\D (G\G (𝑦𝑖 ))), (3)

where 𝑁 represents the number of LR training samples and 𝑦𝑖 is a
input LR image.

3.7.3 Content Loss (L1 𝑎𝑛𝑑 L2). Reasonably the most used op-
timization target in SR applications due to its simplicity and decent
results. From this class of loss functions many variants are formu-
lated, such as L1 and L2. These loss functions are in charge of
optimizing the error between pixel values corresponding to the
generated and ground truth images. Reducing the distance between
pixels can effectively ensure the quality of the reconstructed image
and therefore hold a higher peak signal to noise ratio value.

Regarding L1, also known as Mean Absolute Error (MAE), it is
computed by averaging the sum of the absolute differences between
predictions and actual observations:

L1 =
1
𝑁

𝑁∑︁
𝑖=1

G(𝑦𝑖 ) − 𝑥𝑟𝑖


1 , (4)

where G(𝑦𝑖 ) represents a generated HR image 𝑥𝑔𝑖 when given an
LR image 𝑦𝑖 and 𝑥𝑟𝑖 is the corresponding ground truth image.

Concerning L2, also known as Mean Square Error (MSE) or
quadratic loss, it is computed by averaging the sum of the squared
differences between generated and real images:

L2 =
1
𝑁

𝑁∑︁
𝑖=1

(G(𝑦𝑖 ) − 𝑥𝑟𝑖 )2, (5)

Due to the squaring operation, the predictions that are far away
from the actual values are heavily penalized in comparison to those
less deviated.

3.8 Implementation Details
3.8.1 ESRGAN. The ESRGAN model training is performed with
mini-batch size set to 16. The generator is trained with a learning
rate of 1× 10−4 and decayed every 1× 105 mini-batch updates by a
rate of 2. The optimizer employed is Adam [13] with 𝛽1 = 0.9 and
𝛽2 = 0.999.

3.8.2 RankSRGAN. The ranker is trained over DIV2K [1] and
Flickr2K [24] datasets. For optimization, the Adam optimizer [13]
is used with a weight decay of 1 × 10−4. The learning rate is set to
1 × 10−3 and is decayed with a factor of 2 every 1 × 105 iterations.
Concerning the pre-trained RankSRGAN network, the training is
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carried out with a mini-batch size of 8. The optimization target
is defined in Table 1, where _ = 5 × 10−3 and [ = 3 × 10−2. To
optimize the network, the Adam optimizer [13] is employed with
𝛽1 = 0.9 and 𝛽2 = 0.999. Both generator and discriminator learning
rates are initialized to 1 × 10−4 and halved every 1 × 105 iterations.

3.8.3 SRResCycGAN. The training phase is carried out with a
batch size of 16 over 51×103 iterations. For optimization, the Adam
optimizer [13] is employed with 𝛽1 = 0.9, 𝛽2 = 0.999 and no weight
decay. The learning rate is initialized to 1 × 10−4 and decayed with
a factor of 2 every 104 iterations.

3.8.4 BSRGAN. Pre-trained with batch size of 48 over a unified
dataset including DIV2K [1], Flick2K [24], WED [17] and FFHQ [12].
BSRGAN is trained byminimizing a weighted combination of losses,
as shown in Table 1, where _ = 0.1 and [ = 1. For optimization,
the Adam optimizer [13] is employed with a fixed learning rate of
1 × 10−5.

3.8.5 Real-ESRGAN. Since the same generator architecture from
ESRGAN [28] is adopted, then initially a network from ESRGAN is
finetuned for faster convergence. Both the generator and discrim-
inator of Real-ESRGAN model are trained for 4 × 105 iterations
with Adam [13] as optimizer. The learning rate is set to 1 × 10−4
with 𝛽1 = 0.9, 𝛽2 = 0.99 and no weight decay. For optimization, the
equation in Table 1 is minimized, where _ = 0.1 and [ = 1.

4 SUPER-RESOLUTION EXPERIMENTS
4.1 Data
4.1.1 FastMRI Dataset. To test every GAN method mentioned
in section 5 the FastMRI dataset [30] was employed. FastMRI is a
large-scale release of raw MRI data. It consists of two collections:
knee MRIs and brain MRIs. Each collection is split into training,
validation, and downsampled/masked test sets. Considering both
collections and all splits, FastMRI contains a total of 8344 MRI vol-
umes, corresponding to 167.375 slices, where each slice corresponds
to one 2D image. In this work only the knee collection is consid-
ered, for instance, 973 volumes were used from the single-coil knee
training set.

4.1.2 Image Preprocessing. The training set yields, for each
slice, the k-space data and the corresponding ground truth. To
evaluate the super-resolution performance it is necessary to for-
mulate LR-HR image pairs. Consequently, a preprocessing step is
employed to simulate the degradation inherent to MRI acquisition
under few measurements. At the beginning of the test phase each
k-space data of every MRI slice is downsampled through bicubic
interpolation with a downscale factor of ×4, resulting in LR-HR
pairs holding the downsampled k-space data and the ground truth
(reconstructed from fully-sampled multi-coil acquisitions using the
simple root-sum-of-squares method).

4.2 Image Quality Metrics
Several Image Quality Metrics (IQMs) are used to evaluate models’
performances quantitatively.

4.2.1 Mean Squared Error (MSE). Among the many IQM used
to evaluate the HR image quality, Mean Squared Error (MSE) is

the most popular metric. It is computed by averaging the pixel-
wise squared differences between the generated HR image and the
corresponding ground truth. The MSE between two images is given
as follows:

𝑀𝑆𝐸 =
1

𝑊𝐻

𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

(𝑥𝑟 (𝑖, 𝑗) − 𝑥𝑔 (𝑖, 𝑗))2, (6)

where𝑊 denotes the image width and 𝐻 the image height. More-
over, (𝑖 , 𝑗 ) define the pixel position, while 𝑥𝑟 and 𝑥𝑔 represent the
ground truth and generated HR images, respectively. Evidently,
both images must share the same size.

4.2.2 Peak Signal-to-Noise Ratio (PSNR). It is commonly used
to measure the reconstruction quality, and is inversely proportional
to the logarithm of the MSE between the ground truth and the HR
generated image. PSNR is expressed in the following equation:

𝑃𝑆𝑁𝑅 = 20 · log10
(

𝑀𝐴𝑋𝐼

𝑅𝑀𝑆𝐸 (𝑥𝑟 , 𝑥𝑔)

)
, (7)

where𝑀𝐴𝑋𝐼 corresponds to the maximum possible pixel value, for
instance, 255 regarding 8-bit images.

4.2.3 Structural Similarity Index Measure (SSIM). Structural
Similarity Index Measure (SSIM) is based on luminance, contrast,
and changes in structural information. The key idea behind con-
sidering structural information changes is that pixels are strongly
correlated especially when they are spatially close. SSIM can be
defined as follows:

𝑆𝑆𝐼𝑀 =

(
2`𝑥𝑟 `𝑥𝑔 + 𝑐1

) (
2𝜎𝑥𝑟𝑥𝑔 + 𝑐2

)(
`2
𝑥𝑟

+ `2𝑥𝑔 + 𝑐1
) (

𝜎2
𝑥𝑟

+ 𝜎2𝑥𝑔 + 𝑐2
) , (8)

where `𝑥𝑟 and `𝑥𝑔 represent the means of the ground truth and
the generated HR image, respectively. Accordingly, 𝜎𝑥𝑟 and 𝜎𝑥𝑔 are
the standard deviations of 𝑥𝑟 and 𝑥𝑔 . Moreover, 𝜎𝑥𝑟𝑥𝑔 denotes the
covariance between both images, while 𝑐1 and 𝑐2 are constants set
to avoid instability.

4.3 Quantitative Results
All experiments were conducted on Google Colab using an Intel
Xeon CPU with 2.20GHz and 13GB of RAM. Results can be seen in
Table 2. For every method the LR images were obtained with bicubic
downsampling and a scaling factor of ×4. Time (ms) column shows
the average time in milliseconds spent to reconstruct an 80 × 80
degraded MRI slice into a HR one with size 320 × 320. Moreover,
the scale column denotes the upscaling factor.

As can be seen in Table 2,MSE, PSNR, and SSIM suggest SRResCy-
cGAN outperforms every other GAN-based method in recovering
×4 downgraded images.

4.4 Qualitative Results
Ultimately, despite quantitative results suggesting SRResCycGAN
outperforms other popular deep learning methods in recovering
×4 downgraded images, qualitative results (see Figure 8) show
Beby-GAN holds the best perceptual quality and proves GAN-based
methods hold the capacity to reduce medical costs, distress patients
and even enable new MRI applications where it is currently too
slow or expensive.
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Table 2: Results Comparison. Red color indicates the worst performance overall and Green color the best. Gray color stands for
the additional time derived from the denoise step.

Method Input Scale Optimizer Datasets MSE PSNR SSIM Time (ms)

ESRGAN Bicubic ×4 Adam DIV2K, Flickr2K 297.46 24.47 0.5939 4417

RankSRGAN Bicubic ×4 Adam DIV2K, Flickr2K 266.94 24.99 0.6319 651

SRResCycGAN Bicubic ×4 Adam AIM2020 RISR 228.00 25.94 0.7456 2602

BSRGAN Bicubic ×4 Adam DIV2K, Flick2K, WED, FFHQ 254.11 25.33 0.7157 3652

Beby-GAN Bicubic ×4 Adam DIV2K, Flickr2K 264.76 25.11 0.6493 3819

Real-ESRGAN Bicubic ×4 Adam DIV2K, Flickr2K, OutdoorSceneTraining 274.40 24.99 0.7137 3715
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Figure 8: Super-Resolution qualitative results.

4.5 Discussion
Using perceptual loss as a term in the loss function will encourage
natural and perceptually pleasing results. However, this can be
misleading in the medical imaging context, for instance MRI, since
the reconstructed MRI may look natural and real, but not equal
to the ground truth. This dissimilarity due to artifacts inclusion
or omissions of relevant details can lead to erroneous conclusions.
The same occurs in adversarial training with GANs, usually used to
attain photo-realism. The discriminator predicts relative realness

instead of the absolute value. Consequently, realistic fake patterns
can be wrongly conjectured as real even if they are far from the
ground truth. However, the function that perfectly recovers the
target image might be impossible to estimate, since the reconstruc-
tion problem is inherently ill-posed, i.e., for any distorted image
there can be multiple plausible solutions that would be perceptually
pleasing. Therefore, GANs remain a solid candidate to spatially
resolve MRIs and accelerate their acquisition.

Additionally, optimizing to the content loss usually leads to un-
natural and overly smooth reconstructions with low perceptual
quality. In contrast, the distortion-based performance is improved,
since they focus on minimizing pixel-wise errors. Alternatively,
focusing on the adversarial loss leads to a perceptually better recon-
struction, but as aforementioned it tends to decrease the distortion-
based quality. Therefore, finding a balance between both optimiza-
tion targets is the best option. Nonetheless, it is evident that the ideal
loss function depends on the application where super-resolution
is employed. For example, approaches that hallucinate finer detail
might be less suited for medical applications or surveillance.

Ultimately, despite quantitative results suggesting SRResCyc-
GAN outperforms other popular deep learning methods in recov-
ering ×4 downgraded images, qualitative results show Beby-GAN
holds the best perceptual quality and proves GAN-based methods
hold the capacity to reduce medical costs, distress patients and
even enable new MRI applications where it is currently too slow or
expensive.

5 MODELS FOR TUMOR SEGMENTATION
5.1 Traditional Machine Learning Methods
A clever strategy to perform semantic segmentation is by merging
all the conventional techniques to extract a set of features. After-
wards, a traditional machine learning algorithm, such as Random
Forest, Support Vector Machine, or XGBoost, can be trained with
these features to recognize patterns and make pixel-level predic-
tions.
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Figure 9: Main concept behind Semantic Segmentation with
Traditional Machine Learning algorithms.

5.2 Deep Learning Methods
5.2.1 FullyConvolutionalNetwork (FCN). Fully Convolutional
Networks (FCNs) were a pioneer CNN architecture designed to
solve spatially dense prediction tasks. Long et al. [15] suggested the
removal of the fully connected layers from CNNs, as these layers
can be thought of as doing 1× 1 convolutions. From this work three
distinct architectures were proposed (see Figure 10).

Figure 10: Architecture of FCN-32s, FCN-16s and FCN-8s.
Feature maps are illustrated in a distinct colormap (not
grayscale) for visualization purposes and ease of comprehen-
sion. Activation functions are omitted for the same reason.

5.2.2 U-Net. The FCN architecture is modified and extended by
Ronneberger et al. [21] in order to excel with very few data and yield
precise segmentations. From this work, an FCN-based semantic
segmentation architecture entitled U-net was proposed. The name
U-net comes from its peculiar U-shaped architecture (see Figure
11) and consists of an encoder that downsamples the input image
to a feature map and a decoder that adversely upsamples back
the feature map to the input image size using learned upsampling
layers.

5.2.3 Open BraTS Solution. Henry et al. [9] trained multiple U-
Net based neural networks to automate and standardize brain tumor
segmentation. Two independent ensembles of models from different
training pipelines were trained. In each pipeline, the execution
of a model was repeated several times and at the end the saved
weights were averaged, effectively creating a new self-ensembled
model. Afterwards, both pipeline segmentation maps were merged,
taking into account the performance of each ensemble for each
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Figure 11: U-Net Architecture. Dashed orange lines denote
skip connection and concatenation operations.

specific tumor subregion. The network employed follows a 3D U-
Net architecture with convolutional and max pooling layers in the
encoder part. Regarding the decoder, is consists of convolutional
and upsampling layers. A 1 × 1 × 1 convolution follows the last
step of the upsampling to map each feature vector to the desired
dimensionality (see Figure 12).
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Figure 12: Open BraTS Solution Architecture. Dashed orange
lines denote skip connection and concatenation operations.

5.3 Learning Strategies
5.3.1 Dice Loss (L𝑫𝒊𝒄𝒆). This loss derives from the Dice Similar-
ity Coefficient (see Section 6.2.1), a widely used metric in computer
vision to estimate the similarity between two images or volumes,
for instance, segmentation masks. High Dice scores translate to
high-fidelity segmentations. Therefore, this loss can be defined,
directly in terms of the Dice coefficient, as follows:

L𝐷𝑖𝑐𝑒 =
1
𝑁

𝑁∑︁
𝑛=1

1 − 𝐷𝑖𝑐𝑒 (�̂�𝑡 ,𝑚𝑝 ), (9)

where 𝑁 denotes the number of training samples, �̂�𝑡 is the ground
truth segmentation mask and𝑚𝑝 the predicted mask. Reasoning,
the smaller the Dice score, the greater the loss.
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5.3.2 Jaccard Loss (L𝑱 𝒂𝒄𝒄𝒂𝒓𝒅). The Jaccard loss is frequently
referred to as the intersection-over-union (IoU) loss. Similar to Dice
Loss and derived from the Jaccard Index (see Section 6.3), this loss is
employed to optimize the segmentation task through minimization
of the given equation:

L𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 =
1
𝑁

𝑁∑︁
𝑛=1

1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (�̂�𝑡 ,𝑚𝑝 ), (10)

where 𝑁 denotes the number of training samples, �̂�𝑡 is the ground
truth segmentation mask and𝑚𝑝 the predicted mask. Implicitly,
minimizing equation (10) implies maximizing the Jaccard Index,
which consequently advocates a superior segmentation quality.

5.3.3 Cross-Entropy Loss (L𝑪𝑬 ). Cross-Entropy (CE) intends
to measure the differences in information content between the
ground truth and predicted segmentation maps. The segmentation
output is required to be a distribution of probabilities. Essentially,
each pixel has an estimated probability distribution representing
the predicted probability for each class. CE punishes how close to
zero is the predicted probability of the actual ground truth class.
The penalty is logarithmic, yielding larger absolute values for prob-
ability estimations that are close to zero and smaller values for
estimations tending to one. Cross-Entropy loss is defined as fol-
lows:

L𝐶𝐸 =
1
𝑁

𝑁∑︁
𝑛=1

𝐶𝐸
(
�̂�𝑡𝑛 ,𝑚𝑝𝑛

)
=

= − 1
𝑁𝑊𝐻

𝑁∑︁
𝑛=1

𝑊∑︁
𝑖=1

𝐻∑︁
𝑗=1

𝐶∑︁
𝑐=1

𝑃𝑐𝑡𝑛 (𝑖, 𝑗) · log(𝑃
𝑐
𝑝𝑛

(𝑖, 𝑗)),
(11)

where 𝑁 denotes the number of training samples, 𝐶 is the number
of classes present,𝑊 is the width of the segmentation maps, and 𝐻
is the height. Moreover, �̂�𝑡 is the ground truth segmentation mask,
𝑚𝑝 is the predicted mask, and 𝑃𝑐𝑡 (𝑖, 𝑗) is a binary signal that is equal
to one if the pixel in position (𝑖, 𝑗) of the ground truth segmentation
map 𝑛 has class 𝑐 . Essentially, it emulates the true class probability
distribution of a pixel from the mask �̂�𝑡 . Furthermore, 𝑃𝑐𝑝 (𝑖, 𝑗)
represents the predicted probability of a pixel (𝑖, 𝑗) being of class 𝑐 .

5.4 Implementation Details
5.4.1 Tree-basedMethod. Afive-fold cross-validation technique
was employed with a Random Forest classifier, training 175 trees
per fold. The maximum depth of each tree was fixed at 60. Only
20 volumes were considered due to computation constraints. The
function selected to measure the quality of a split was Gini impurity.
Meanwhile, the optimization target was a multiclass Dice Score.
Prior to training, a feature selection process was conducted on a
five-fold cross-validation pipeline, where a Random Forest Classifier
was trained with 100 trees per-fold.

5.4.2 Open BraTS Solution. A U-Net based model is trained for
60 epochs over the BraTS dataset (see Section 6.1.1). For optimiza-
tion, the Ranger optimizer [29] is used with a learning rate set to
2 × 10−4 and no rate decay. The batch size selected was 1. Addi-
tionally, the optimization target was simply a batch-wise Dice loss
without weighting. None of the pipelines from [9] were considered,

and the ensemble strategy was discarded. The base model from
pipeline A of [9] was trained once.

6 TUMOR SEGMENTATION EXPERIMENTS
6.1 Data
6.1.1 BraTS Dataset. Since FastMRI did not hold segmentation
maps for eachMRI scan, then to perform the semantic segmentation
experiments, the BraTS dataset [18] was used. BraTS compromises
a collection of volumetric brain MRIs that have tumoral regions.
The training split provided for the BraTS2021 challenge included
1251 brain MRIs, along with the segmentation annotations of the
tumorous regions.

6.1.2 Data Preprocessing. To proceed with the evaluation of the
tumor segmentation, a hold-out technique was employed. The train-
ing set was shuffled into two splits, training and testing. The new
training split contains 80% of the data from the original split, while
the testing split has the remaining 20%. Every volume was cropped
to a central 128×128×128 region, thus improving data balancing and
reducing computations required, as redundant background voxels
(label 0) on the borders of each volume are cropped. Furthermore,
two new datasets were consummated to validate the reconstruction
quality of Super-Resolution GANs. From the original BraTS, a tricu-
bic interpolation was used to downsample the whole training and
testing splits generated by the hold-out technique. The downscaling
factor adopted was 2. Thus a new dataset, entitled Low-Resolution
BraTS (LRBraTS), was formulated. Simultaneously holding BraTS
and LRBraTS means LR-HR pairs are present, thus the conditions
to perform Super-Resolution are met. The Real-ESRGAN model,
discussed in Section 3.6, was used to super-resolve the LRBraTS by
an upscale factor of ×2, resulting in a new dataset, SRBraTS. The
implementation details of Real-ESRGAN are described in Section
3.8.

6.2 Evaluation Metrics
6.2.1 Dice Similarity Coefficient. A successful prediction in-
tends to maximize the overlap between true and predicted labels.
Dice similarity coefficient (DSC), also known as F1-score or Sørensen-
Dice index, is a metric that aims to mathematically quantify how
good this overlapping is. DSC is defined as:

Dice(𝐴, 𝐵) = 2 · ∥𝐴 ∩ 𝐵∥
∥𝐴∥ + ∥𝐵∥ , (12)

where 𝐴 and 𝐵 denote two binary segmentation masks for a given
class, ∥𝐴∥ represents the norm of 𝐴, and ∥𝐴 ∩ 𝐵∥ corresponds to
the overlap given by the intersection between both masks.

6.3 Jaccard Index
Similarly to DSC, it can be used to measure the similarity between
two segmentation maps. It is also known as the Intersection over
Union (IoU), as is defined as follows:

IoU(𝐴, 𝐵) = ∥𝐴 ∩ 𝐵∥
∥𝐴 ∪ 𝐵∥ , (13)

where 𝐴 and 𝐵 denote two binary segmentation masks for a given
class.
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6.4 Hausdorff Distance (95%)
The Hausdorff Distance (HD) is the maximum perpendicular dis-
tance between the closest points from the contours of two regions.
Essentially, it is complementary to the DSC, as it measures the
maximum distance between the margin of the two regions. It is
computed as follows:

H(𝐴, 𝐵) = max
(
max
𝑎∈𝐴

min
𝑏∈𝐵

𝑑 (𝑎, 𝑏),max
𝑏∈𝐵

min
𝑎∈𝐴

𝑑 (𝑏, 𝑎)
)
, (14)

where 𝑑 (𝑎, 𝑏) denotes the distance between two pixels, 𝑎 and 𝑏, in
the border of two region included in the segmentation masks, 𝐴
and 𝐵, respectively.

6.5 Quantitative Results

Table 3: Tumor segmentation results comparison between
the super-resolved and ground truth brain MRIs. Red color
indicates the worst performance overall and Green color the
best.

Method Input Scale Optimization Target DSC IoU HD95

Tree-based SRBraTS ×2 Multiclass DSC 0.26 0.26 28.76

Tree-based BraTS - Multiclass DSC 0.29 0.28 57.81

Open BraTS SRBraTS ×2 Multiclass DSC 0.61 0.52 21.4

Open BraTS BraTS - Multiclass DSC 0.82 0.75 8.35

All metrics suggest that tumor segmentation with the ground
truth MRIs outperforms tumor segmentation performed over the
super-resolvedMRIs. Despite Super-ResolvedMRIs exhibiting photo-
realistic details, they did not manifest the best results for the seg-
mentation of tumors. However, the algorithms were intensively
trained with the ground truth images, which evidently may slightly
benefit the tumor segmentation of the ground truth images. Al-
though super-resolved images are reconstructions of the ground
truths, the distributions between them can have minor dissimi-
larities. For instance, Super-Resolution algorithms can marginally
change pixel value intensities in some regions, which can subse-
quently lead to an inferior segmentation. Furthermore, the Super-
Resolution algorithm used (Real-ESRGAN) was not trained over
the BraTS dataset, thus the Super-Resolution has the potential to
be improved further. Nonetheless, super-resolving medical images
is a complex task, and despite having all these constraints, the
tumor segmentation still manifested satisfactory results over the
super-resolved dataset.

6.6 Qualitative Results
Qualitative results advocate an adequate Super-Resolution and a
non-optimal but decent tumor segmentation of the super-resolved
MRIs. Looking at Figure 13 it is possible to see a few dissimilarities
between the predicted segmentations of the super-resolved and
the ground truth MRIs. The difference is not large despite IoU
suggesting that the tumor segmentation over SRBraTS is inferior
by some margin.

SR MRI GT MRI SR MRI GT MRI

SR Pred GT Pred SR Pred GT Pred

GT Mask GT Mask

Figure 13: Tumor Segmentation results with BraTS and SR-
BraTS. The first row exhibits the super-resolved MRIs and
the corresponding ground truths. Below each MRI is the pre-
dicted segmentation map that was obtained from it.

6.7 Discussion
Matching the tumor segmentation performance over SRBraTS with
the performance over BraTS can be suggestive that the super-
resolution was reliable. Looking at Tables 3, it is possible to ac-
knowledge that a few dissimilarities were present. A reason can be
the usage of content loss as an optimization target. Accordingly,
this leads to overly smooth results, as discussed in section 4.5, or
marginal changes in the pixel value intensities of some areas, conse-
quently confusing the segmentation model into interpreting some
regions as tumors, which can cascade to a larger region and jeop-
ardize the prediction. This explains the impact on the prediction
of peritumoral edematous (ED — label 2), which was the region
that suffered the highest impact. Since it contains the tumor bor-
der, the SR algorithm can get confused due to the transitions of
tissue inherent to that region. Additionally, the Super-Resolution
model employed was not the best model from the experiments of
section 5. This suggests an additional extent for improvements.
For instance, if the Super-Resolution algorithm was trained inten-
sively with MRIs holding tumoral regions, then the SR algorithm
could have learned patterns to better mimic the data distribution
of the high-resolution images and reconstruct tumoral regions ac-
cordingly instead of interpreting them as downsampling artifacts.
Furthermore, if the models for tumor segmentation were trained
with the super-resolved images and their corresponding annota-
tions, then the segmentation performance with SRBraTS would
possibly be substantially higher.

7 CONCLUSIONS
A knee MRI scan usually takes 30 to 60 minutes but can take as
long as 2 hours. Acquiring less amount of k-space data will reduce
the acquisition time. However this results in MRIs with relatively
low spatial resolution. Furthermore, medical imaging techniques
often have low resolution, inherent noise, and lack of structural
information. Therefore, making a correct diagnosis judgment in the
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medical field becomes a significant challenge. This work has proven
that high-frequency details can be recovered from Low-Resolution
signals, and GAN-based super-resolution has the potential to quar-
ter the acquisition time (not considering the negligible period of
time to reconstruct the MRI, which does not affect the patient in
any manner). Therefore, GAN-based techniques are promising CS-
MRI reconstruction methods, enabling resolution improvements,
zooming into images, and data acquisition acceleration. Addition-
ally, denoising solutions led to performance boosts on the super-
resolution task, with manifested reduction of the checkerboard
pattern inherent to GAN synthesis.

Although the task-based evaluation showcases space for im-
provements in the performance of GANs, they still provide good
perceptual quality. Tumor Segmentation of Super-Resolved images
exhibited an inferior performance relative to tumor segmentation
with ground truth images. However, several constraints coexisted
that impacted these results. The tumor segmentation still mani-
fested satisfactory results over the SRBraTS dataset. Furthermore,
fully convolutional neural networks exhibited solid results in seg-
menting tumors, thus solidifying the proficiency of Deep Learning
in the medical image context. Merging both Super-Resolution and
Tumor Segmentation can provide an automatic pipeline for diag-
noses that healthcare can substantially benefit from. Ultimately,
two new datasets were formulated to use Tumor Segmentation to
validate the Super-Resolution quality in medical image reconstruc-
tion.
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