
Social Agents in Minecraft

Carlos Marques1

1 Instituto Superior Técnico, Lisbon, Portugal

Abstract— Games keep expanding in scope, providing the player with increasingly bigger worlds to explore and fully immerse themselves
in. And with bigger worlds, comes the need for designers to populate them with interesting characters, that feel like part of the world and
that the player can forge a bond with. However, the effort required to individually author each character to reach this desired depth
is unfeasible. Our research goal is to remove the need for individual authoring and provide a framework where designers dictate how
characters should behave, but still do not need to concern themselves with the minutia of the task. We aim to apply a model that allows
for a large-scale character network to be deployed, with characters that behave like they are members of society, and have interpersonal
relationships with each other. In order to test our framework, we created two villages of agents in Minecraft, one very expressive and
sociable, and one not as much. We had our subjects play Minecraft, and follow the lumberjack of the sociable village, who worked with
their other village counterpart, for a full day. This allowed the subjects to observe each agent’s behavior and contrast them. Results were
mixed, but promising, with agents doing great in many of the parameters set for believability, but having a lot of technical problems.

Keywords—Non-Player Character (NPC), Authoring Effort, Society, Video Games

I. INTRODUCTION

G ame worlds keep getting bigger and bigger, as hard-
ware limits keep getting pushed. Exploration has al-

ways been a big component of gaming, going back to the
1980s with Atari’s Adventure [1] and Nintendo’s The Legend
of Zelda [2], which featured large worlds for the player to
explore, instead of single screen arenas, or linear scrolling
levels.

Of course, exploration was already a part of gaming before
they became electronic, as Dungeons & Dragons, and other
tabletop role-playing games (RPGs) already let its dungeon
masters (DM), players who run the game, create their own
maps for the party, the players who created characters to role-
play as in order to play the game. These maps were populated
by characters created and performed by the DM, non-player
characters (NPCs), and they could give out quests, hints, re-
wards or just provide conversation to enhance the world [3].

Video games owe a lot to the games that came before them,
and as technology got better, games could have NPCs, just
like tabletop games, but limited of course, as a computer
script will always be limited in creativity and adaptability
against a person. Filling these worlds with interesting NPCs
was already a challenge, but the worlds keep getting bigger,
and the demands of the players increase. NPCs started out
as characters that stood in one spot, repeated the same dialog
when approached, and had very limited possibilities of inter-
action. Nowadays, games can have whole cities populated
with NPCs with various voice lines, simulating a bustling
sidewalk; games can have NPCs that react in subtle ways to

Contact data: Carlos Marques, carlos.a.marques@tecnico.ulisboa.com

what the player does; games can have thousands of NPCs
interacting together, as part of a social group.

While what we can do with NPCs expands, so does the
workload required for creating them. Scripting all their in-
teractions and coding them into the game is a hefty process.
So much so, game companies keep looking for ways to speed
up the process, by leaving it up to procedural generation.
As such, there have been attempts to create frameworks that
would allow developers to achieve it. Our project is just that.

The objective of this work is to create more robust NPCs.
By this we mean NPCs that exhibit a larger scope of social
affordances, that can develop relationships with each other in
a meaningful way, and that have interactions with the player
and the world that do not feel overtly stock or scripted. To
achieve this we will expand upon the preexisting SocialCraft
framework and use it to endow agents with social behaviors
like daily social routines, social roles, and interpersonal rela-
tionships. The NPCs will have an opinion of each other. The
player must see the agents as a thriving society.

II. BACKGROUND

Our framework could not be tested unless there was a sce-
nario that could be created for users to interact with. Hence,
Socialcraft was developed to work with Minecraft.

This section covers what is Minecraft, its main mechanics,
why it was chosen and how it has been previously used in
research, as well as other tools we used like Prismarine and
Docker.

a. Minecraft

Minecraft is an incredibly open sandbox game, that offers
players a lot of affordances when it comes to collaborating,
whether to gather resources or to put them to use in vari-

1



ous creative builds and crafts. It features two main modes.
The first is survival, where players have limited health and
hunger and start with nothing and must gather resources to
survive and eventually grow strong enough to slay the Ender
Dragon. The other mode is creative, where players do not
have to worry about health and hunger, they can fly around
and there is access to an infinite stock of every item in the
game. The survival mode poses a great challenge to players,
as they must search through the world for resources, manage
their items, health and hunger, and think carefully about how
they will spend their time and what they will craft next.

The fact that it is so open-ended, with so many possible
actions, constructions, mechanics, and items, means that de-
signers have a lot of options when creating NPCs, without
having to add new features to the game. There are also pub-
lic and private chat features, meaning players and agents can
communicate with each other, allowing for dialog.

b. Prismarine

PrismarineJS is a Minecraft-compatible server (flying-
squid), bot (mineflayer) and Application Program Interface
(API) (minecraft protocol), all written in Javascript [4]. It
has four main projects:

1. Minecraft data : Language independent module pro-
viding Minecraft data for Minecraft clients, servers and
libraries.

2. Mineflayer: Create Minecraft bots with a powerful, sta-
ble, and high-level JavaScript API.

3. Flying-squid: Create Minecraft servers with a power-
ful, stable, and high-level JavaScript API.

4. Minecraft protocol : Parse and serialize mine
Minecraft packets, plus authentication and encryption.

These projects allow programmers to tinker and modify
the game, and in our case, create bots whose behavior can be
coded. This is how we implemented SocialCraft. Of these,
we used the following.

1. Minecraft data

Minecraft data is a library that contains information about
every block (including id, name, hardness, if they’re dig-
gable) and other entities of Minecraft, like biomes and items.
These are all Java Script Object Notation (JSON) files, that
contain all the various properties of each object.

Other Prismarine projects use this library as well, to en-
sure they all can get information about the Minecraft world
in a consistent fashion.

2. Mineflayer

Mineflayer is an API that allows users to program bots, as in,
AI-controlled player characters, for use in Minecraft. There
are a variety of functions and events that can be used to ac-
complish this, and bots can be ordered to mine blocks, craft
items, go to a certain position, write in the chat box, sleep,
etc... All actions that would be expected of a regular player
[5].

Pathfinder

Mineflayer-pathfinder is a mineflayer module that allows
users to set goals (such as a specific coordinate, a point ad-
jacent to a block, somewhere in the range of a coordinate,
etc..), as well as movement options (if bots can dig, place
blocks, sprint, etc...) for each of the bots. Then it will calcu-
late the shortest path to that point and the bots will traverse
that path until the goal is met [6].

Collectblock
Mineflayer-collectblock is an expansion of pathfinder,

where there is only one goal: to find a block, select the best
tool, break it, and collect its dropped item. Unlike pathfinder,
you can directly code what happens after the goal is achieved,
without having to check if it already has been completed [7].

c. Docker

Docker is a tool that using OS-level virtualization, allows
software to be delivered in packages known as containers [8].
We used Docker to not only deploy the Minecraft server for
our agents to populate, but also the Socialcraft agents them-
selves. These containers, using Docker Volume, can persist
even after being shut down, allowing us to check their logs
and persist their data [9]. There are more details to go into,
but those are best left for the implementation section of the
document.

III. RELATED WORK

a. Mods

A mod is an unofficial modification of a game made by peo-
ple outside of the game’s development team. A lot of games,
like Doom (id Software, 1993) encourage modding and create
tools specifically for them. In Doom’s case, the whole game
was even made open source [10]. Minecraft Java Edition,
the original version and the one we use, unlike its counter-
parts has no such tools but several mods have arisen because
developers have managed to reverse-engineer its Java code
[11]. In this section we will take a look at two mods with
goals similar to our objective.

1. Socialcraft

It makes sense that the first mod we discuss is in fact the pre-
vious version of SocialCraft. It worked by letting designers
and coders create a configuration file, with a list of identities,
agents and locations, such as houses and workplaces. Agents
can have a number of identities assigned to them. An iden-
tity dictates how the agent will act at any given time, as in,
their available actions. The agent can hold many identities,
but only embody one at any given time. Each identity has a
salience function, which will determine how likely it is for
the agent to pick it at any time, as well as the code required
to execute it, which is a series of commands given to an agent
for them to perform.

So take the Lumberjack identity in listing 1 for exam-
ple. It has a Salience function where if the agent has energy
and they are running low on wood, or their favorite wood is
nearby, then they are very likely to go and chop wood. This
is executed by locating nearby wood blocks, going to and
digging them.

1 {

2



2 name: "Lumberjack",
3 variables: {
4 necessary: ["wood_stock"],
5 optional : ["favourite_wood"]
6 },
7 salience: [
8 function() {
9 if(this.kb.getValue(’energy’)

> 30){ //how much it wastes to mine a block
10 return (this.kb.getValue("

wood_stock") > 15 ? 0 : 0.6)
11 }
12 else{
13 return 0
14 }
15 },
16 function() {
17 if(this.kb.getValue(’energy’)

> 30){
18 return this.kb.

wasPerceivedVicinity(this.kb.getValue("
favourite_wood")) * 0.9

19 }
20 else{
21 return 0
22 }
23 }
24 ],
25 execute: function () {
26 const woodBlocks = [35, 36, 37,

38, 39, 40, 46, 41, 42, 43, 44, 45] /*wood
blocks ids*/

27 this.locateBlockInArea(woodBlocks ,
this.get_Forest)

28 this.digBlock(woodBlocks , this.
get_Forest)

29 }
30 }

Listing 1: Lumberjack identity code
There are other identities like Eat, Sleep and Socialize dic-

tating when and how the agent will perform those actions.
It should be noted that Identities should not be thought of as
actions that an agent can perform. They are identities they as-
sume and that dictate their actions. They are not meant to be
granular, as in, an identity per action. That implementation
of the Lumberjack identity is very limited, for example. A
full implementation would have a much larger salience func-
tion, not only assessing the overall wood stock, but the vari-
ous different types, how much other NPCs require, what time
of the day it is, how durable are their tools right now, etc...
Similarly, the execute function would be much larger to ac-
count for everything a Lumberjack would do besides chop-
ping wood: fixing their tools, depositing the wood they chop,
and much more.

The biggest limitation of the previous iteration of Social-
Craft is the authorial effort to craft authentic and rich iden-
tities. While this framework makes it much easier to deploy
an agent of this depth, it still needs a lot more identities to be
coded before it reaches the goals that are set out.

b. A Simple and Method for Evolving and Large
Character and Social Networks

Talk of the Town [12] is a text-based game that “simulates
a socially oriented American small town from 1839 until
1979.“ And it is a whole town, a large network, as it contains
several dozen NPCs, each with mutable but coherent social
relationships with each other. This paper presents a gener-
alized approach to creating networks like this, with simple

systems that evolve over time from basic social mechanisms.
Though the interactions between NPCs are basic they end up
creating a rich web of relationships. It operates on one prin-
ciple: similar characters will bond together, while different
characters will antagonize each other. From this, friendships
and romances are born. Though nuance is sacrificed, this
method allows the generation of a network with hundreds
of characters, as opposed to the handful in Versu and Prom
Week. In this system, characters’ affinities change according
to the social exchanges they partake in with another char-
acter. If the other character accepts the exchange, both the
character’s mutual affinities increase, otherwise, the rejected
character will lower their affinity towards whoever rejected
them. It is in essence a lower fidelity version of CiF. It is
even lower fidelity than that, as the exchanges are even more
abstract. They are functions that evolve affinities, instead
of heavily scripted behaviors, with a wide array of repercus-
sions and reactions possible. Each character has two core no-
tions towards another character: Charge: which is a scalar
value representing a friendship/affinity with another charac-
ter, that increases/decreases in accordance to how compat-
ible/incompatible the agents around them are; and Spark:
which is like charge, but for romantic feelings. It evolves
similarly to Charge.

In order for the simulation to work, basic modeling of
time, space, and character personality is necessary. The first
two are pretty straightforward, the first is already provided
to us in Minecraft: the time of day. And the position of the
character is given to us in two ways, coordinates, and also by
locations in SocialCraft. To recap, SocialCraft has locations
set by bounding boxes, which can be houses, workplaces,
or social hubs. We can use them to see if two agents are at
the same location and also the coordinates to see which are
closer together. The final prerequisite is the most compli-
cated, yet most open-ended, as the user can set it however
they want, as long as characters have a personality model
and a degree of sociableness. There must be a way to calcu-
late how likely a character is to engage in a social exchange.
It can be a weighted sum of various values, each represent-
ing a personality trait from -1.0 to 1.0, for example, though
there is a lot of room for different approaches. Additionally,
some higher notions are required such as a notion of charac-
ter proximity (knowing which characters are near others at
a certain timestep), friendship compatibility (extroverts will
pick more friends, characters of the same gender are more
likely to become friends, etc...) as well as how they affect
the calculation of their charges, and finally a notion of ro-
mantic attraction, which the paper does not elaborate on to
save space. Last but not least, a subroutine that lends it-
self perfectly to fixing our lack of routine problem: placing
characters at certain locations on certain timesteps. Charac-
ters cannot be placed around randomly. In Talk of the Town
characters have routines, like going to work, making errands,
etc... Since this approach actually requires routines, it solves
our previous problem of how to integrate them into one of
the solutions. The algorithm itself is described in Figure 1.

The paper does mention possible extensions of the sys-
tem, like different kinds of affinity such as reputation, hav-
ing more status relationships (for example. Talk of the Town
has boss-employee and elder family member-younger family
member) as well as more nuanced charge/spark decay, but

3



Fig. 1: Talk of the Town world simulation algorithm

these might be outside of the current scope of SocialCraft.
Still, this is the most relevant solution so far.

The current implementation of Socialcraft features many
of these concepts. There are personality traits (though cur-
rently, only one), there are friendships (charge), and loves
(spark) represented by scalar values. Even the algorithm
finds its way in, as characters check others in their location
to see if and how they will interact with them. Interactions
have to be accepted, and according to the outcome, they can
raise/lower the respective friendship/love value. Though, we
do not place characters at locations according to the timestep.
The agent’s actions dictate where the agent will be (though
specific actions can only occur at certain times).

IV. IMPLEMENTATION

a. Core Concepts

Socialcraft is comprised of many different classes, all of
which need to be explained in order to understand how it
works as a whole. These concepts are very intertwined, so
I will have to mention some of them before they are fully
explained.

1. Agent

While we can use agent to describe the character the user sees
move around the Minecraft world, and thus, all the code that
goes towards accomplishing that is part of the agent, there is
an actual Agent.js class.

It stores information about the agent from the deployment
process (their friendships, jobs, knowledge, beds, etc...) and
also has functions to provide the most salient practices and
update its identities, jobs, and knowledge base.

It also stores the corresponding bot. What is the difference
between a bot and an agent? A bot is what is deployed by
mineflayer, and contains info about the player character that
is running on the server. The agent is part of Socialcraft. The
best way to describe it is, the bot is the body, while the agent
is the mind. The bot cannot execute orders without the agent
selecting them. The bot can let us know about the world, like
its current coordinates, time of day, if it is raining, and other
bots in the world, while Socialcraft parses it into instructions.
The agent class is the part that makes decisions and stores
personal knowledge, but there is the database, which stores
general knowledge of practices and jobs, concepts that are
also part of Socialcraft. Data for the agent’s deployment is
stored in JSON and contains all the information we want the
agent to know when it spawns.

2. Database

Before the loop described in d runs, the agent is created, and
then a database is formed that contains all the Jobs, Identities,
Practices, and Locations so that this information is accessible
to each class that needs it. Besides storing the information,
this class features many functions that help access it in an
easier fashion.

b. Location

Locations are defined in Socialcraft as Axis Aligned Bound-
ing Boxes (AABB). Location data is stored in a JSON file
like the agents’ data and they are comprised of two vertices
and a height. Each vertex should share the same y-value,
i.e. be on the same plane, as to form a cuboid. Both ver-
tices should represent a corner, each diagonally opposed.
With those vertices and the height, we can define a three-
dimensional box. An agent is in a location if they are in that
box.

When locations are added to the database, they are sorted
by smallest area first, because when iterating over the list to
check which location the agent is in, if there is a location in-
side another (a house inside a village, a room inside a house,
etc...), the smallest, most accurate one gets returned.

There are three types of locations:

1. Houses have an extra property: coordinates for the bed
where the agent sleeps.

2. Social Places have an extra property: social appropri-
ateness. It’s a multiplier that is applied to the salience
of each social practice if it is happening in that location.

3. Work Places have an extra property: can dig and stack.
If true, that means agents can place and break blocks
inside that location. Unless a location is a workplace
where you can dig and stack, it is impossible to do so.

1. Practice

A practice is an action that the agent can perform. There is
a parent Practice class, from which every individual Practice
inherits from. This means there is a .js file for each individual
action the agents can do. A practice has eight mandatory
functions:

constructor is where the practice is created, given its name,
its timeout (more on that in hasEnded below), and as-
signed its bot and agent.

getSalience is the function that returns the salience of the
practice, i.e. how likely the agent is to perform this ac-
tion.

setup is the function where preparations to begin the action
take place. If the action is to chat with someone, the
agent needs to find out who they will talk to, and where
they are. If the action is to break a wood block, they
need to search to see if those are available nearby and
get their location.

isPossible is the function that checks if the practice can go
ahead. If everything went right during setup, the agent

4



is in the necessary state and has the necessary resources,
this will return true.

start is the function where the practice sets into motion.
Pathfinder goals are set, items are equipped, etc... It
is also where the starting time (again, more on that in
hasEnded below) is set.

update is the function where we can either check on the
progress of the practice or perform something to fur-
ther advance it. Unlike the previous functions, which
are called only once, update is called periodically. As
such, it is used to check if the agent has already reached
a certain location, or to trigger events that can not hap-
pen on start, that must start later.

hasEnded is the function that checks if the practice has
ended. This can usually happen in two ways: the prac-
tice has ended naturally and achieved what it set out
to do, or, the agent has been performing the practice
for longer than the timeout value set in the construc-
tor (hence why we needed a starting time in start. This
may happen because the agent got stuck, or the practice
took longer than expected.

exit is the function called when the practice ends. It usu-
ally is used to set attributes like the starting time or the
pathfinder goal back to null.

2. Social Practices

Social Practices extend Practices further and are actions that
involve dialog between agents. They have the exact same
functions as the Practice class (in fact, while every social
practice inherits from SocialPractice.js, that very class inher-
its from Practice.js), but with one new addition. The accepts
function, which will be explained shortly. Though it retains
the same functions, they are used in slightly different fashion.

A social practice behaves as such: Agent A initiates it,
and Agent B reads it in chat. If agent B accepts the social
exchange, they will reply, which will be detected by Agent
A, and end the practice. Greet is a practice that begins a
social interaction. Each agent can have a current social part-
ner, who they are chatting with. Greet assigns it, beginning
the interaction, while Goodbye does the opposite, terminat-
ing the interaction and setting each agent’s social partners to
null. Let us explain further by using the Greet social practice
as an example.

Look at listing 2. When we create the practice, we also
set an event: when someone chats "Hello" followed by the
agent’s name, the agent will see if they accept the social in-
teraction, and if they do not already have a social partner,
will assign it, as well as mark the agent as socializing. The
thing about the code is that only here, with the assistance
of booleans (a type of variable that can only have two val-
ues: true or false), can the agent know if they are Agent A or
Agent B. That is why we keep track of a _chatted boolean,
to know if the agent already has spoken. If they have not
chatted yet, that means they are Agent B detecting Agent
A’s message, and thus, they must reply (which we also store
as a boolean). Otherwise, this means Agent A has already
greeted Agent B, they are detecting Agent B’s reply, and that
the practice is done.

1 constructor(bot, agent , timeout = 20) {
2 super(bot, "Greet", agent , timeout);
3 this._bot.on("chat", (username , message)

=> {
4 if (message === ’Hello , ’ + this._bot.

username) {
5 if (this.accepts(username) && !

this._agent._socializing) {
6
7 this._agent._socializing =

true;
8
9 function getBotByUsername(

username , bot) {
10 let players = Object.

values(bot.players);
11 for (let i = 0; i <

players.length; i++) {
12 let botAux = players[i

]
13 if (botAux.username

=== username && botAux.entity != null) {
14 return botAux
15 }
16 }
17 return null
18 }
19
20 this._currentTarget =

getBotByUsername(username , this._bot)
21
22 //if I haven’t said hello , I

must reply
23 if (!this._chatted) {
24 this._mustReply = true
25 }
26 //if I have said hello , then I

got a reply , and I’m done
27 else {
28 this._done = true
29 }
30 }
31 }
32 })
33 }

Listing 2: Greet.js constructor

Next, there is the getSalience function, shown in Listing
3 It begins with an if statement, to check if the player is al-
ready socializing. If they are, that means they have already
received a message. Thus we need to use the _mustReply
boolean to check if it is Agent A or Agent B. Let me remind
you, that for the agent to be already socializing, that means
the chat event triggered and they already accepted the inter-
action. This means, it is a question of whether they must
reply or not. At that point, we consider nothing more impor-
tant than replying (or in the case of ignoring the other agent,
unimportant). That is why we use positive and negative in-
finities as saliences. Positive if they must reply, negative oth-
erwise. If the agent is not socializing, that means they have
not chatted, and have not yet decided to chat. So the agent
iterates over the others surrounding them, sees who they are
more likely to chat with (a mix of the agent’s own agreeable-
ness and their friendship value towards others), and returns
that. The agent also remembers their current target, i.e. the
person who they are more likely to talk to.

1 getSalience(context) {
2 //if it accepted , then it must reply thus

a high salience
3 if (this._agent._socializing) {

5



4 return this._mustReply ? Number.
POSITIVE_INFINITY : Number.NEGATIVE_INFINITY

5 } else {
6 //else see if there is someone around

you want to greet
7 let highestSalience = -1;
8
9 for (let i = 0; i < context.

_listOfSurroundingPeople.length; i++) {
10 let otherBot = context.

_listOfSurroundingPeople[i]
11 let currentSalience = this._agent.

_personality_traits["Agreeableness"] * (this.
_agent._friendships[otherBot.username])

12 if (currentSalience >
highestSalience) {

13 highestSalience =
currentSalience

14 this._currentTarget = otherBot
15 }
16 }
17 return highestSalience;
18 }
19 }

Listing 3: Greet.js getSalience

Moving on to accepts, in listing 4 the function which is
exclusive to Social Practices. If two agents accept to partake
in a social interaction, their mutual friendships will go up.
Thus there needs to be a check for it, that if true, increases
their mutual affinity, or else, decreases it. The check for greet
is identical to the salience, and returns true if that value is
bigger than 2.

1 accepts(username) {
2 let accepted = (this._agent.

_personality_traits["Agreeableness"] * this.
_agent._friendships[username]) > 2

3 if (accepted) {
4 this._agent._friendships[username] =

clamp(this._agent._friendships[username] +
0.2, 0, 10)

5 } else {
6 this._agent._friendships[username] =

clamp(this._agent._friendships[username] -
0.2, 0, 10)

7 this._done = true
8 }
9 return accepted

10 }

Listing 4: Greet.js accepts

socialPractice.js includes in its start code to set a
pathfinder goal towards the social partner, and update has
code that not only updates the target (because the partner may
move), but also sets a _nearTarget boolean to true, which
each individual social practice may use to trigger their dia-
log. After an agent speaks it is marked as having chatted,
though only in the case where the agent had to reply (thus,
they were Agent B), is the practice marked as done and ready
to exit.

3. Jobs

A job is a vocation that the agent can have. Right now,
it is represented as a scalar value, so in essence they have
saliences just like practices do. Though, in the current im-
plementation of SocialCraft, those values are constant, and
do not change during the course of the simulation. This is

so future iterations can have the job the agents take on in the
future be more mutable.

A job essentially describes three things:

1. Where the agent works

2. When the agent works

3. What the agent can do when they work

Each job, besides their name and affinity, has a workplace,
where the agent is supposed to work, and a list of Time
Blocks.

4. Time Blocks

A Time Block is an object with start and end times, both in
hours (so 9 is 9 o’clock, and 9.5 is 9:30 o’clock in Minecraft
time), and a list of practices. Meaning, while the agent has
a certain job, during the time intervals set by a time block,
they can only execute these practices. Thus we can prevent
the player from eating outside of lunch hours, or trying to
mine ore while they are a Lumberjack, or even partaking in
excessive socialization.

5. Job Definitions

There is a file in the project, jobDefinition.js, which contains
the definition for each job: their name, location and time
blocks.

6. Context

Context includes all that is surrounding information relevant
to the agents’ decision making, that they already don’t know
themselves, but they gather from surroundings. Their loca-
tion, the weather, who is in the same location as them, and in
future iterations, even more data.

c. Identities

An identity is almost like a persona that an agent can embody.
Depending on the context of the situation, they may choose to
adopt one or multiple of them. If they are surrounded by peo-
ple they dislike, they may adopt the "Enemy" identity, while
if they are working, they will adopt the "Working" identity.

Each identity checks if they are valid for that context, as in,
if the agent should embody them. An identity, boiled down
to its simplest definition, is a set of rules that define how the
salience of each action is affected. Let us look at listing 5, for
the salience rules of the identity "Friend". When the agent is
surrounded by friends, he will be friendly. As such, practices
such as "Greet" and "Complement" get a bigger multiplier,
so they become more salient. While practices like "Insult"
get such a low multiplier, they are practically guaranteed not
to occur.

1 this._salienceRules = {
2 "Greet": 1.2,
3 "Compliment": 1.75,
4 "Insult": 0.1,
5 "Goodbye": 0.9,
6 "AvoidPeople": 0.3
7 }

Listing 5: Salience Rules in the constructor of friend.js

6



When an agent goes to check the salience of their avail-
able practices, the multiplier for each of the currently valid
identities is applied.

d. Agents’ Main Loop

Each agent, throughout their lifetime, executes the same core
loop, similarly to the algorithm in Talk of The Town, as
shown in Figure 1. The loop is as such:

Algorithm 1 Socialcraft Agent Main Loop

1: function ASYNCBASICAGENT-
LOOP(handler,agent,normalMove,digAndStacMove)

2: ongoingPractice← null
3: while true do
4: if bot is not sleeping then
5: check which job agent will pick
6: gather context of surroundings
7: gather location from context
8: set movement type according to location
9: activate valid identities

10: if ongoingPractice ̸= null then
11: if ongoingPractice is no longer possible

OR ongoingPractice has ended then
12: exit ongoingPractice
13: ongoingPractice← null
14: else
15: update ongoingPractice
16: end if
17: else
18: get availablePractices
19: get mostSalientPractice from

availablePractices
20: if mostSalientPractice ̸= null then
21: ongoingPractice ←

mostSalientPractice
22: setup ongoingPractice
23: if ongoingPractice is possible then
24: start ongoingPractice
25: else
26: ongoingPractice← null
27: end if
28: end if
29: end if
30: end if
31: end while
32: end function

There are a few more bells and whistles in the implemen-
tation, for logging purposes, and to ensure that if an agent
finishes a practice too soon, they don’t immediately pick an-
other, but this is how selection of the agents’ actions is han-
dled. This function is in the main.jsv, the default class that
the bot runs when deployed.

e. Deployment

f. Bots

Socialcraft’s deployment was created by Diogo Rato, with
a few later tweaks by myself. In essence, for each agent,
a Docker container is created. By building a Dockerfile,

we can install on the container the Node Package Manager
(npm) packages required for the agent to run (like mineflayer
and its sub-projects), and copy the Socialcraft handler.

The handler is a class that makes the bridge between the
system that deploys the agents and the containers. The agents
are deployed using a Python script, deploy.py, that reads the
info of the scenario from <the SON files (one for the agents,
another for the locations), connects to the specified Minecraft
server and deploys bots with certain environment variables,
i.e., the information that was on the JSON files. The han-
dler not only spawns the bots on the server, it allows users to
access the information on the servers inside the containers.

1. Server

To deploy a server, we used Docker Compose. That means,
we created a YAML Ain’t Markup Language (yml/yaml) file,
that contains information about the server we want to create.

For starters, we have to specify what we wanted to run on
the containers. In our case, we used itzg’s Docker Minecraft
server, which allows you to host a Minecraft server on a
Docker container [13]. Then, we specify the port, and
Minecraft servers default to port 25565. We also used a pre-
vious version of Minecraft, 1.12, to ease the load on our ma-
chine as an older version takes less resources.

Following that, there are environment variables, that allow
us to control details of the world we are spawning. For exam-
ple, in our case, we prevented the spawning of other NPCs,
as well as monsters which could kill the agents. We set a max
world size, as there was no use having a gigantic world, etc...

Finally, in our case, we specified the volume. Usually,
Docker creates a virtual volume in Windows, which was
what we used. It is in essence a virtual storage unit which
hosts the containers, and cannot normally be accessed. The
other alternative is bind mounting, where the container’s files
are stored directly on the host machine. To quote directly
from Docker’s documentation:

Volumes have several advantages over bind mounts:

• Volumes are easier to back up or migrate than bind
mounts.

• You can manage volumes using Docker CLI commands
or the Docker API.

• Volumes work on both Linux and Windows containers.
• Volumes can be more safely shared among multiple

containers.
• Volume drivers let you store volumes on remote hosts

or cloud providers, to encrypt the contents of volumes,
or to add other functionality.

• New volumes can have their content pre-populated by a
container.

• Volumes on Docker Desktop have much higher perfor-
mance than bind mounts from Mac and Windows hosts.

In addition, volumes are often a better choice than per-
sisting data in a container’s writable layer, because a volume
does not increase the size of the containers using it, and the
volume’s contents exist outside the lifecycle of a given con-
tainer. [14]

While we used volumes for the bots’ containers, we used
bind mounting for the server. This is because, we wanted
to make it so each time a test subject went into the server,

7



the map was identical. Volumes allow for persistence, which
means even as we shut down the server, when we restarted
it, the map’s changes would still be there. What we needed
was a way to initiate the server identically each time. So, we
bind mounted it, setting the files to a folder called "data" in
our project repository, as well as creating a "world" folder,
to store worlds we wanted to deploy. We extracted the map,
as a zip file, from the data folder, and placed it in the world
folder. Finally, we added an environment variable, WORLD,
that pointed to the zip file. Thus, this means, each time we
deploy the server, as long as we delete the container and the
data folder, it clones that world directly.

V. EVALUATION

a. Evaluation Goals

1. Believability of the agents

Our believability metrics came from Metrics for Charac-
ter Believability in Interactive Narrative [15], which studied
how Disney brings characters to life through narrative and
animation and took those principles to enumerate various di-
mensions of believability that can be used to gauge how be-
lievable and AI agent is. They are as follows: Behaviour co-
herence; Change with experience; Awareness; Behaviour un-
derstandability; Personality; Emotional Expressiveness; So-
ciability; Visual Impact; Predictability.

By measuring through factors, designers can identify
where their agents lack. If they lack in personality, they could
try to give them more unique traits or interactions, while if
they lack visual impact, there need to be more or more elab-
orate animations.

So as the paper suggests, there are Likert scales on the
questionnaires, asking subjects how much they agree with
the fact that the agents present each of these characteristics.

Emotional expressiveness will not be tested, because that
requires a more in-depth analysis of a single agent by the sub-
ject, and requires us to ask questions like "What was agent
X feeling at this particular time?" with multiple choice an-
swers. Given how Socialcraft is not really scripted so the
same things happen every time.

2. Sense of society

In addition, we are including questions about if the agents felt
like they were part of a bigger society and if they had notice-
able daily routines. Though the test in [15] was designed for
a single agent, we are adapting it to many, because our goal
is to deploy a society of agents, a large number, with little
authoring effort, and these two traits are part of our goals.

3. Flexibility of the framework

We also wanted to evaluate Socialcraft’s flexibility, i.e. how
many different kinds of agents it can generate, even with
shared building blocks (practices, jobs, and identities), just
by altering individual agents’ properties, like their person-
ality traits and affinities to other agents. This is why we
decided to have two different societies that provide contrast
with each other. If the differences were noticeable to sub-
jects, that would indicate that goal was achieved.

b. Scenario

1. Test Environment

For the test, we built a Minecraft map, featuring two villages:
Village A and Village B, which when the subject spawns in,
are to their left and right, respectively. Village A features the
agents:

• Alex (Lumberjack)
• Ash (Miner)
• Billie (Gatherer)
• Bobbie (Fisherman)

The only buildings in the village are four nearly identical
houses, one for each agent. The agents of this village were
designed to have low agreeableness and to have low friend-
ship values with the other agents, thus, making them overall
less sociable. They conduct their activities solo, and rarely
partake in social practices.

Village B on the other hand is much more sociable. It
features the agents:

• Casey (Lumberjack)
• Charlie (Miner)
• Fran (Farmer)
• Jamie (Guard)

The village features a farm and three buildings: a shared
house with four rooms, one for each agent, a canteen, and
a bar. These users are not only more agreeable and friendly
with each other, but they also conduct a lot more activities
together like their meals, and at night, before sleeping, they
hang out together at the bar. The map featured other key lo-
cations: a forest for the lumberjacks to chop trees on, a mine
for the miners to mine ore, and a wharf for the fisherman to
fish. Fran works on the Village B farm, harvesting carrots,
Billie gathers plants from all around the world, and Jamie
patrols the Village B walls.

For each test, we hosted a Minecraft server and the bots
on our machine, while asking remote subjects to connect us-
ing their own version of Minecraft Java Edition 1.12. Tests
were monitored over video calls where users would share
their screens. For the test, users were tasked with following
Casey around from 9 a.m. to 7 p.m. (Minecraft Time, just
over 8 real minutes), which encompasses a whole work day,
and post-work socializing. Casey was chosen as she works
with Alex, providing a direct contrast between agents from
both villages.

The goal was for the test subject to use this opportunity to
observe a routine with various activities and contrast it with
one more plane like Alex’s, though we must stress, and we
did to each subject, the goal was to observe all of the agents,
as the questionnaire was about all of them.

Each time the subject connected to the server, we used
its command line to give them some baked potatoes (in case
their character got hungry or lost health from a fall) and set
the time to 8 a.m. After this, we began the spawning of the
agents, so when 9 a.m. began, the subjects were already in
place to follow Casey. The routine is roughly as follows:

1. Leave Village B and go to the forest to work with Alex
from 9 a.m. to 1 p.m.

8



2. Ditch Alex, and go to the canteen to have lunch with the
rest of Village B’s residents until 2 p.m.

3. Return to the forest and resume working with Alex until
5 p.m.

4. Ditch Alex, and go to the canteen to have dinner with
the rest of Village B’s residents until 6 p.m.

5. Go to the bar and socialize with the other residents of
Village B until 7 p.m.

6. Go to sleep

A number of different social interactions can occur in be-
tween. After the subject saw Casey go to sleep, we shut down
all Docker containers, and output their logs to text files using
the Windows Powershell, keeping logs of all containers for
each of the test subjects. The agents’ logs contained infor-
mation about their location, coordinates, practice, identities,
and decision-making, at frequent time intervals.

All the tests were conducted remotely with people who
owned their own copies of Minecraft Java Edition. We asked
the subjects to open the questionnaire which you can find in
Appendix B (??). The first page explained what Socialcraft
was and some demographic questions about their level of ex-
perience with Minecraft.

Following that, the questionnaire explained how they were
to proceed with the test on the server, and we also explained
and assured them of what to do. They proceeded to follow
Casey around for the day.

Once that was finished, while we stored the logs of the
Docker containers, the users answered filled out a series of
Likert scales, regarding the metrics discussed in sections 1
and 2.

After that, we asked them to write about the differences
between the agents in both villages, and finally gave them
the option to write some feedback, if they wanted to.

In the end, we thanked them for their participation.

VI. RESULTS

Following the test, subjects were asked to fill out the rest of
the form. They were presented with several statements, and
given Likert scales, that went from 1 - Strongly Disagree to
5 - Strongly Agree. We will consider [1,2] as not agreeing,
[3] as being ambivalent, and [4,5] as agreeing. NOTE: for
brevity we will only include results related to agent believ-
ability.

For each of the survey’s questions we will calculate the av-
erage, and sum the values to a possible score of forty (which
is five times eight, as for reasons explained in section b, will
be clear). This value will give us an idea of how successful
our agents were.

a. Predictability

1∗2+2∗2+3∗10+4∗5+5∗1
20

= 3.05 (1)

When it came to predictability, half the subjects answered
3, ambivalence. This is not necessarily bad, as mentioned in
[15], if agents are too predictable, it is hard for them to be
believable. This is a problem older NPCs had, with a stock
set of interactions, the type of problem we are attempting to

fix. Conversely, too much unpredictability is borderline in-
coherence, so the fact the average turned out near the middle,
3.05, as seen in formula 1 is not a cause for alarm. We feel
it should be a bit higher, but improving the practices should
help fix that.

b. Final Tally

3.70+2.85+3.30+3.85+2.90+3.80 = 20.40 (2)

In the end, our agents got a score of 20.40 out of a possible
30 points, as seen in formula 2. Though we should note, since
predictability is an attribute that we do not want to be maxed
out, as explained in ??, we did not include it.

20.40∗100
30

= 68 (3)

Using a rule of three to convert that to a more readable
100-point scale, as shown in formula 3 we get a final score
of 68 out of 100, which while not terrible, is also not great.
As we pointed out in each category there is a lot of room for
improvement.

VII. CONCLUSIONS

At the start of this thesis, our goal was to create a tool to de-
ploy robust agents into Minecraft, by expanding on the previ-
ous iteration of Socialcraft. When designing the framework,
we tried our best to not only keep it simple, but also easy for
designers to set up and adjust, and also to add new content
to it. The overall results were mixed. The framework itself
was well conceived and developed, leaving a good setting-off
point for further expansion. And we are confident the frame-
work itself was fine because given how the scenario content
went, we would not have achieved even these results without
it. We had daily routines, we had the basis for social interac-
tions, and we had context that affected decisions, identities,
and much more. Sadly there were a lot of setbacks. Due to
burnout and poor time management, the project kept getting
delayed. With an over-ambitious scope, it led to not as much
getting done as we wanted, and that hurt the final product,
and thus, the test results.

Having that said, the results were not wholly negative, and
there were a lot of aspects like awareness, visual impact, pre-
dictability, daily routines, and sociability, which are already
in good places. We can not fully measure our contribution to
authoring efforts yet, as there is still a lot of work to be done.
But also, a lot of work has been done, and it will be easier
for our successors to keep going.

a. Achievements

• Deployment of the server and agents - using Docker, we
have provided a streamlined and easy way to achieve the
deployment

• Development of a framework for agent behavior - the
core concepts and code for the agents’ behavior, as men-
tioned in section a, were well conceived and imple-
mented

9



• Creation of a small society - while there were problems,
Village B’s villagers did end up feeling and behaving
like a society

b. Limitations

• Lack of finished content - it is clear that when creating
the practices, we did not use mineflayer to its fullest
potential, and they were incomplete

• Difficulty in creating map JSON - going around finding
the corners and height of each building/location to insert
them into JSON is very impractical compared to the rest
of the deployment process

• Mineflayer and Docker technical problems - the bugs
and memory shortages mentioned in ?? need to be fixed,
as the current solution is not stable enough.

• Poor testing - it is very hard to have a test subject ob-
serve a whole society of agents, let alone two. And it is
clear we did not find the correct solution.

• Lack of evaluation of authoring efforts reduction - this
is still a key question we could not answer, partly be-
cause we were the only ones who deployed a society
and frankly, it is not something we can ask just any-
body to do. Testing needs to be done with people who
have experience in the matter, but not with Socialcraft.
It should happen in the next iteration, as such tests are
as important as the ones conducted so far.

c. Future Work

In the future there are several things that could be done:

• Reduce repeated code in practices by better-using hier-
archies - for example, right now there are two nearly
identical practices: Eat and EatSocial. In the former,
the agent eats on the spot, and in the latter, they go to a
social place, in our case the canteen, first. They are very
similar and reuse a lot of code, which could be solved by
using hierarchies even for implementations of the Prac-
tice class. This might help fix the problem of multiple
agents trying to do the same thing like chopping wood,
as there can be variations on the task.

• Turn Socialcraft into a Minecraft mod - while the tests
were run with a server deployed by us, who also ran
the deployment, making it much easier so a broader au-
dience can access it would be a benefit. Using Java
code, we could theoretically do a Minecraft mod, like
Minecraft Comes Alive, which is much easier to in-
stall and runs the proper command line arguments in
the background to launch agents onto a server.

• Fix map building - We built our map by hand, it would
have been nice to have a Docker-compatible tool to fa-
cilitate the process.

• Have a simulation manager - One of the problems of the
current implementation is that each agent exists wholly
independent from each other. A mineflayer bot can get
access information of another bot, but not the Social-
craft agent. This means, for example, a Lumberjack
has no way of knowing if an agent around them is a
Lumberjack. This could be resolved by adding it to the
knowledge base of the agents, but for a large number of
agents that is a lot of work to do manually. We could

have the bots whisper (a private chat not displayed to
all) questions to each other to get information. But ide-
ally, a manager of the whole simulation each bot can
access would be best. This would also be a good place
to store the Database, instead of each agent keeping a
copy.

• Conduct tests on Authoring Efforts reduction - as ex-
plained in section b.

REFERENCES
[1] J. Valcarcel, “How one man invented the console adventure game,”

Wired, Mar. 2013, acessed October 2022. [Online]. Available:
https://www.wired.com/2015/03/warren-robinett-adventure/

[2] G. E. Team, “15 most influential games of all time,” Gamespot,
acessed October 2022. [Online]. Available: https://web.archive.org/
web/20100515053341/http://www.gamespot.com/gamespot/features/
video/15influential/p9_01.html

[3] T. Kogod, “11 ways dungeons dragons influenced
video games,” TheGamer, Sep. 2020, acessed Octo-
ber 2022. [Online]. Available: https://www.thegamer.com/
ways-dungeons-dragons-influenced-video-games/

[4] P. Team, “Prismarinejs,” GitHub, acessed on October 2022. [Online].
Available: https://prismarine.js.org/

[5] M. Team, “Mineflayer,” PrismarineJS, acessed October 2022.
[Online]. Available: https://mineflayer.prismarine.js.org/#/

[6] M. pathfinder Team, “Mineflayer-pathfinder,” GitHub, Oct. 2022,
acessed October 2022. [Online]. Available: https://github.com/
PrismarineJS/mineflayer-pathfinder#readme

[7] M. collectBlock Team, “mineflayer-collectblock,” GitHub, May
2022, acessed October 2022. [Online]. Available: https://github.com/
PrismarineJS/mineflayer-collectblock

[8] D. D. Team, “Overview,” Docker Docks, acessed October 2022.
[Online]. Available: https://docs.docker.com/get-started/

[9] ——, “Persist the db,” Docker Docs, acessed October 2022. [Online].
Available: https://docs.docker.com/get-started/05_persisting_data/

[10] J. Carmack, “Readme.txt,” GitHub, Dec. 1997, acessed October 2022.
[Online]. Available: https://github.com/id-Software/DOOM

[11] E. Maiberg, “Why gamers are worried about ’minecraft: Win-
dows 10 edition’,” Vice, Jul. 2015, acessed Jan 2022.
[Online]. Available: https://www.vice.com/en/article/53984z/
why-gamers-are-worried-about-minecraft-windows-10-edition

[12] J. Ryan, M. Mateas, and N. Wadrip-Fuin, “A simple and method for
evolving and large character and social networks,” 2016.

[13] itzg, “Readme,” GitHub, Oct. 2022, acessed October 2022. [Online].
Available: https://github.com/itzg/docker-minecraft-server

[14] D. D. Team, “Use volumes,” Docker Docs, acessed October 2022.
[Online]. Available: https://docs.docker.com/storage/volumes/

[15] P. G. A. P. C. M. A. Jhala, “Metrics for character believability in inter-
active narrative,” Tech. Rep., 2013.

10

https://www.wired.com/2015/03/warren-robinett-adventure/
https://web.archive.org/web/20100515053341/http://www.gamespot.com/gamespot/features/video/15influential/p9_01.html
https://web.archive.org/web/20100515053341/http://www.gamespot.com/gamespot/features/video/15influential/p9_01.html
https://web.archive.org/web/20100515053341/http://www.gamespot.com/gamespot/features/video/15influential/p9_01.html
https://www.thegamer.com/ways-dungeons-dragons-influenced-video-games/
https://www.thegamer.com/ways-dungeons-dragons-influenced-video-games/
https://prismarine.js.org/
https://mineflayer.prismarine.js.org/#/
https://github.com/PrismarineJS/mineflayer-pathfinder#readme
https://github.com/PrismarineJS/mineflayer-pathfinder#readme
https://github.com/PrismarineJS/mineflayer-collectblock
https://github.com/PrismarineJS/mineflayer-collectblock
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/05_persisting_data/
https://github.com/id-Software/DOOM
https://www.vice.com/en/article/53984z/why-gamers-are-worried-about-minecraft-windows-10-edition
https://www.vice.com/en/article/53984z/why-gamers-are-worried-about-minecraft-windows-10-edition
https://github.com/itzg/docker-minecraft-server
https://docs.docker.com/storage/volumes/

	I Introduction
	II Background
	a Minecraft
	b Prismarine
	1 Minecraft data
	2 Mineflayer

	c Docker

	III Related Work
	a Mods
	1 Socialcraft

	b A Simple and Method for Evolving and Large Character and Social Networks

	IV Implementation
	a Core Concepts
	1 Agent
	2 Database

	b Location
	1 Practice
	2 Social Practices
	3 Jobs
	4 Time Blocks
	5 Job Definitions
	6 Context

	c Identities
	d Agents' Main Loop
	e Deployment
	f Bots
	1 Server


	V Evaluation
	a Evaluation Goals
	1 Believability of the agents
	2 Sense of society
	3 Flexibility of the framework

	b Scenario
	1 Test Environment


	VI Results
	a Predictability
	b Final Tally

	VII Conclusions
	a Achievements
	b Limitations
	c Future Work


