
Extending the Concert Framework to Verify Solana Programs

João Maria Correia Ramalho Marcelino Gomes
joao.m.r.gomes@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2022

Abstract

Smart contracts are programs stored on a blockchain that help the agreement between two parties without involving an external trusted
party. Since smart contracts may carry huge amounts of cryptocurrency and cannot be modified once deployed to the blockchain, it is
crucial to ensure their correctness and that they are bug and vulnerability-free. Solana is a recent blockchain that features smart contract
capabilities. This blockchain is rapidly growing due to its low transaction fees and speed and is seen as an Ethereum competitor.

In this thesis, we adapt and extend the already existing smart contract verification framework ConCert developed in Coq. Our
extension allows the embedding of Solana contracts by introducing Solana concepts, like accounts and ownership. It is also possible
to extract smart contracts written in Coq to Rust, programs that are nearly ready to be deployed onto the Solana blockchain. The
extended ConCert allows the verification of existing Solana contracts and the development of verified contracts.

The extended framework was evaluated by measuring the proofs accomplished in the model, measuring the complexity of contracts
that the framework was able to embed and extract, the time to extract, and the overhead of the extraction. We observed that due to
the expressiveness of our model we were unable to embed complex contracts and, as a result, were not verified nor extracted. However,
we were able to embed and extract simple contracts with a negligible overhead in terms of extraction time but a noticeable overhead
after the extraction.

The main contribution of this thesis is thus the possibility of writing verified contracts in Coq and extracting them to the Solana
blockchain.
Keywords: Blockchain, Smart Contracts, Solana, Formal Verification, ConCert, Coq

1. Introduction
1.1. Motivation
Blockchain technology has captured the interest of both re-
searchers and the industry. A blockchain is a distributed ledger
technology that allows transactions to be committed without a
trusted third party. Ethereum was the first blockchain that sepa-
rated the consensus layer from the execution of smart contracts.

Smart Contracts are programs that are executed in blockchains,
like Ethereum, and allow transactions of resources between parties.
Even though these programs tend to be short, it is easy to acciden-
tally introduce errors during development. Smart contracts often
control large amounts of cryptocurrency, as such, the presence
of one single bug/vulnerability can lead to large financial losses.
As a result of these high-value transactions, smart contracts are
becoming more appealing to attackers, and as such, there have
been some attacks that lead to huge losses, e.g. TheDAO [12],
Parity’s multi-signature wallet [23] and, more recently, Nomad’s
crypto bridge [13]. There has been an effort by the community to
introduce formal methods and formal verification to this domain.
Some examples are the formalization of Yul [19], Ethereum’s in-
termediate language, and the Mi-Cho-Coq framework [20] that
aims to verify tezos smart contracts.

Solana is a blockchain written in Rust that achieves consen-
sus using the Proof-of-History mechanism. Both Solana and
Ethereum have smart contract capabilities (used for DeFi and
NFT), and with the recent rapid expansion of Solana’s ecosystem,
they have inevitably been compared. Solana is a recent blockchain
hence, as far as we know, there are no published solutions that
aim to verify smart contracts in its ecosystem.

The goal of this thesis is to formally verify smart contract prop-
erties for the Solana blockchain using the Coq proof assistant. For
that, we will use the smart contract verification framework Con-
Cert1 [21, 6, 3], together with Coq and its specification language

1https://github.com/AU-COBRA/ConCert

Gallina we will implement and verify smart contracts. These veri-
fied contracts can then be extracted into a set of target languages,
including multi-paradigm languages, web development languages,
and functional languages. Despite ConCert being prepared to ex-
tract for Rust, it is not yet prepared to extract to the Solana
blockchain. In this work, we also extend ConCert so it is able to
embed Solana contracts and subsequently extract them to Solana.

1.2. Problem
Once a contract is deployed onto the chain, in most cases, it is
impossible to modify it. This feature combined with the lack of
smart contract verification leads to unwanted bugs and vulnera-
bilities and, as a result, provides attackers with an attack vector.
Without the use of smart contract verification techniques, bugs
and vulnerabilities will keep on appearing and causing huge fi-
nancial losses to both companies and users of the blockchains.
However, many different tools can and are being used to verify
smart contracts for distinct blockchains [30].

Since Ethereum is the leading blockchain with smart contract
capabilities, several tools can be used to verify contracts written
in Solidity (Ethereum’s smart contract language), e.g Etherscan2

[29], an Ethereum blockchain explorer that also offers a source
code verification service, Sourcify3, is another tool for source code
verification that is open-source and decentralized that aims to be
the infrastructure for other verification tools, etc.

Solana is a recent Ethereum competitor that thrives on the
premise of having high transactions per second and low transaction
fees. However, being a recent blockchain, Solana, to the best of
our knowledge, has no tools in its ecosystem capable of verifying
smart contracts. We aim to fill this gap by extending an already
existing framework, developed for a different blockchain, in a way
that it is possible to encode most of the existing smart contracts

2https://etherscan.io/verifyContract
3https://github.com/ethereum/sourcify

1

and verify and deploy them to the chain. The ability to verify
smart contracts before deploying them on the Solana blockchain
makes it possible to reduce the number of contracts deployed with
bugs and vulnerabilities onto the chain.

1.3. Objectives
Taking into consideration the number of bugs and vulnerabilities
present in smart contracts and the huge financial losses they cause,
the focus of this thesis is to develop a framework capable of em-
bedding, executing, verifying, and extracting smart contracts for
the Solana blockchain. More precisely, we aim to:

1. Extend the ConCert framework execution layer by allowing it
to represent the Solana blockchain, along with some of its
fundamental concepts, and Solana contracts;

2. Extend the ConCert framework extraction layer, more ex-
actly, develop a new Rust extraction tailored to the Solana
blockchain, such that they can be deployed onto it;

3. Implement smart contracts using the new execution layer,
make use of them to exhibit the newly created Coq to Solana
extraction and the new features in the ConCert framework,
and formally verify some contract-specific properties.

1.4. Contributions
The main contributions of this thesis are:

• An extension to the ConCert smart contract verification
framework. More specifically, an extension of the already
existing ConCert execution model to allow Solana programs
to be written in Coq. Furthermore, this extension allows the
verification of small correctness properties of the developed
contracts.

• An extension to the ConCert Rust extraction. The cur-
rent ConCert’s Rust extraction is aimed at the Concordium
blockchain and cannot be directly used for other chains. Our
extraction extension allows for contracts developed in Coq to
be printed in Rust that targets the Solana blockchain. The
extracted code will then be deployed onto the chain.

• Two small case studies demonstrating that our extension is
capable of developing and partly verifying contracts and ex-
tracting them to Rust.

All our code and case studies are available at
https://github.com/siimplex/ConCert.

1.5. Dissertation Outline
This document is structured as follows. chap:back presents the
background of blockchain and smart contracts, an analysis of the
blockchain Solana and of the programming language Rust, and
an overview of Coq and two frameworks MetaCoq and ConCert.
In chap:relatedwork, an overview of existing works related to pro-
gram extraction, execution of languages, smart contract verifica-
tion, and verification in Solana. In chap:proposal, the pipeline of
the proposed tool, and the developed execution model are pre-
sented and, lastly, the extraction to Solana and its details are
discussed. In chap:evaluation, the execution model is evaluated,
as two case studies of implemented and extracted contracts and
a comparison with the framework that served as the basis for this
tool. Finally, chap:conclusion concludes this document, including
limitations and future work.

2. Background

2.1. Blockchain
A blockchain is a form of distributed ledger technology where
the committed transactions are stored in a chain of blocks that
is endlessly growing. This concept was first introduced in 1991
by Stuart Haber and W. Scott Stornetta [14] and later, in 2008,
the Bitcoin model was proposed, but only in 2009, it was imple-
mented by Satoshi Nakamoto. Bitcoin was the first decentralized
blockchain implementation using a peer-to-peer network to solve
the double-spending problem [20], i.e. when a single coin is spent
simultaneously more than once.

With today’s high computational capacity where a single com-
puter can compute thousands and thousands of hashes per second
using hashing as block security is just not enough to prevent tam-
pering. As such, to mitigate this problem, blockchains use differ-
ent consensus mechanisms like PoW and PoS to regulate the cre-
ation of blocks. These systems vary depending on the blockchain,
e.g. Bitcoin’s PoW makes each miner compute a hash until it
finds a correct one by using CPU power, Cardano’s PoS uses con-
siderably less CPU power and the validating capability depends on
the stake in the network.

2.2. Smart Contracts
Smart contracts were proposed in the 1990s by Nick Szabo
[26, 27], long before the creation of Bitcoin, and made great
progress after 2013 when the altcoin Ethereum [10] appeared.
Smart contracts are just like traditional contracts in the way that
they both can be seen as an agreement with specific terms be-
tween two or more entities. These digital contracts are programs
that keep the agreement terms between the buyer and the seller
directly into lines of code, they automatically execute only when
set predefined conditions are met.

The contracts are stored on a blockchain-based platform which
allows the enforcement of terms of an agreement between parties
without the need for a trusted third party. Once contracts are
on the chain they inherit the chain’s immutable property, in the
sense that once created and deployed it is not possible to modify
or tamper with the code of the contract.

Ethereum was the first decentralized open-source blockchain to
launch smart contract functionality. It is currently the most used
altcoin and the second-best cryptocurrency only falling behind
Bitcoin. This blockchain-based platform aims to give an alterna-
tive protocol to building distributed applications, or dApps, whilst
providing different sets of trade-offs that emphasize development
time, security, and the ability to efficiently interact with other
dApps. To develop smart contracts and dApps, Ethereum pro-
vides a virtual general-purpose machine, EVM, where the smart
contracts are executed in stack-based machine language. But,
since low-level is not that convenient to the programmer, most
smart contracts are written in higher-level languages, for exam-
ple, Solidity.

Ethereum is the current leader in DeFi but, in the past few years,
other promising altcoins appeared, one of them being Solana.

2.3. Solana Blockchain
Solana [31] just like its competitor Ethereum, is a blockchain-
based platform that allows the development of smart contracts
and dApps. Solana has been steadily growing, in the year 2021
SOL (Solana’s token) went up more than 10000% according to
CoinGecko4.

4https://www.coingecko.com/en/coins/solana

2

init : Chain -> ContractCallContext -> Setup -> option State

Listing 1: init definition in ConCert.

Solana claims to be the fastest-growing ecosystem in the crypto
environment and the fastest blockchain on the planet. There are
two main reasons for this, high TPS, which is owed to its PoS
jointly with PoH and its asynchrony, and secondly, it has a really
low cost per transaction compared to its competitors, e.g., gas
fees in Ethereum. PoS is a consensus algorithm in which all the
network stakeholders agree on the validity of the shared data and
secure that data on the blockchain. The blockchain network can
only move on to a new block of data once the previous one is
secured. Solana, unlike Ethereum and Bitcoin’s PoW, uses PoS
with PoH. PoS can be seen as an evolution in consensus mecha-
nisms because its less energy-intensive than PoW and provides a
major increase in speed and efficiency.

Traditional EVM-based blockchains combine both logic and
state into a single contract. Solana takes a slightly different path.
Solana’s smart contracts are read-only[31], meaning that they do
not contain any state data, only contain program logic. Once a
contract is deployed on-chain it can be accessed by external ac-
counts. During these interactions, if allowed, the program may
store information on the accounts that initiated the interaction.

Solana on-chain programs are compiled using the LLVM com-
piler infrastructure [15] to an ELF file containing a variation of the
BPF. Hence smart contracts can be written in any programming
language that can target the LLVM compiler, such as C, C++,
and Rust. Using these programming languages it is possible to
develop high-performance smart contracts, moreover, Rust solves
issues of memory safety and thread concurrency.

2.4. ConCert Framework
ConCert5 is a smart contract verification framework written in
Coq for Coq. ConCert [6] allows the embedding of functional
languages into Coq by using meta-programming. In ConCert,
there are two ways of representing functional programs: as an
AST, deep embedding, and as a Coq function, shallow embed-
ding. Each representation has its advantages: deep embedding is
fitting for meta-theoretical reasoning whilst shallow embedding is
fit for proving the properties of concrete programs. To connect
these two representations of functional programs ConCert uses
some of MetaCoq’s facilities.

The ConCert framework is split into three layers. The Embed-
ding Layer, which features the embedding of smart contracts into
Coq, λsmart , together with its proof of soundness, and the Execu-
tion Layer and the Extraction Layer. The latter two are the layers
most relevant to our work.

2.4.1 Execution Layer

The Execution Layer provides a model with which is possible to
reason about contract execution traces, making it possible to state
and prove the properties of interacting smart contracts. In this
model smart contracts are comprised of two functions: init and
receive. The init function is called after the smart contract is
deployed onto the blockchain (Listing 1)

The first parameter of type Chain represents the blockchain,
the second parameter ContractCallContext contains all the data
about the call to the contract, i.e., who initiated the transaction,
the address that sent the call, the address of the contract being
called, the balance of the contract being called and the number

5https://github.com/AU-COBRA/ConCert

receive : Chain -> ContractCallContext -> State -> option Msg -> option (State

* ActionBody)↪→

Listing 2: reveice definition in ConCert.

of tokens being passed in the call. The third parameter of type
Setup contains user-defined information to be used in the function.
Lastly, this function returns None if it fails, and returns the initial
state if it succeeds.

After being deployed, each time the contract gets called the
receive function is executed (Listing 2)

The first two parameters are the same as the ones in the init

function. The third parameter, with type State, contains the cur-
rent state of the contract. Msg is a message type previously de-
fined by the user. Finally, if the function succeeds it returns the
resulting state with a list of actions to execute if any. The action
can only be one of three types: transfers, calls to other contracts,
or contract deployment.

2.4.2 Extraction Layer

Finally, the Extraction Layer [3] provides facilities to extract a
smart contract written in Coq into a program in a FSCL. To ex-
tract to different FSCL, ConCert maps the abstractions of the
Execution Layer to the corresponding abstractions in the target
FSCL. This layer works as an interface between the smart con-
tracts written in Coq and the extraction functionality. ConCert
currently allows the extraction to Liquidity [4], CameLIGO [5]
(both smart contract languages), Midlang, Elm (web program-
ming), and Rust (a multi-paradigm language with a functional
subset) [2]. To extract smart contracts they must go first through
a process of erasure, and to achieve this ConCert uses MetaCoq
erasure with extensions. MetaCoq’s verified erasure procedure will
erase any type of term into a box, and in specific cases, it can
erase an entire term into a box. ConCert [6] erasure procedure
extension generates type annotations, which are needed to help
with the typing of the target languages. Without these type anno-
tations, there would be ambiguities that cannot be solved by the
type checker. Also in this first extension, the erasure procedure
for type schemes allows for handling type aliases, i.e., Coq defini-
tions that return a type, which is present in the standard library.
The second extension of MetaCoq’s verified erasure is deboxing,
which consists of an optimization process that removes boxes that
were left behind by the erasure step. After the erasure process,
with extensions and the optimization process, the optimized code
is pretty-printed to the target language.

3. Related Work
3.1. Extraction to Statically Typed Languages
Here extraction means getting source code in a target language,
the source code must be accepted by the language compiler and
must also be able of being integrated into the targeted systems.
Coq [17, 18] is one of the several proof assistants that facilitates
the extraction of functional languages such as Haskell and OCaml
(from Coq proofs or programs). Agda is another proof assistant
capable of extraction, it has mechanisms for defining custom back-
ends, but the GHC backend is the most approved.

The ConCert framework [6] extends Coq’s proof assistant ex-
traction [3, 4] using MetaCoq’s erasure [2]. The current Con-
Cert extraction allows the extraction to a multi-paradigm general-
purpose language (Rust), functional smart contract languages
(Liquidity, Simplicity), and a functional language for web devel-
opment (Elm). Coq proof assistant’s current extraction is not

3

verified due to unverified optimisations that are done during the
extraction process. This separation makes it difficult to compare
it with the formal procedure given by Letouzey [17], on the other
hand, ConCert’s separation between erasure and optimisation fa-
cilitates such comparisons.

3.2. Execution of Dependently Typed Languages
Related works in this section are related to compiling code from
a dependently-typed language to low-level code.

In [21] Nielsen and Spitters present a model specification of
smart contracts in Coq, that features inter-contract communica-
tion and allows modeling both depth-first execution blockchains
and bread-first execution blockchains. This work later served as
the basis for the execution layer of ConCert in [6].

The CertiCoq project [1] is a verified compiler for Coq which
closes the gap between certified high-level systems and compiled
code in machine language. CertiCoq uses the MetaCoq project
quoting capabilities, it uses Template-Coq at the first step and
verified erasure at the first step. After a few more steps C code
is produced and later compiled with CompCert certified compiler
[16] to the machine target language.

3.3. Smart Contract Verification
It is essential to use a proof assistant like Coq, Isabelle/HOL [22]
or Agda [9], to prove properties of smart contracts with theorem-
s/lemmas. In [7] Arusoaie uses Coq proof assistant to formally
verify financial derivatives (written in a purely declarative in a
DSL - Findel) by developing an infrastructure that allows to for-
malise and prove properties that, if proved, will exclude several
potential vulnerabilities. Mi-Cho-Coq [8], a Coq framework that
formalises the Michelson language (used in the Tezos blockchain),
implementing a Michelson interpreter and a way to encode lan-
guage expressions. Furthermore, it uses the weakest precondition
calculus defined as a proven correct function.

Chapman et al. [11] develop a System F, which is a typed λ -
calculus that extends the simply-typed λ -calculus. Using Agda,
Chapman et al. present one of the first System F that is intrinsi-
cally typed and formalised.

3.4. Solana Contract Verification
The related works in this category are concerned with discovering
vulnerabilities and verifying smart contracts in Solana.

Pierro et al. [24] develop a web tool capable of verifying the
ownership of smart contracts by comparing the source code of the
contract, written in a high-level language, with the bytecode de-
ployed in the Solana blockchain. This tool yields some interesting
results, the program address advertised by the owner corresponds
to the bytecode in the blockchain, thus increasing the trust of the
users on the blockchain.

Tavu in his thesis [28] investigates real-smart contracts to dis-
cover common vulnerabilities. These vulnerabilities are generally
known by Solana developers, and to automate this process veri-
fication tools can be used. The author uses different tools with
different approaches and run they against real-world contracts,
finding vulnerabilities in some of them.

4. Implementation
4.1. Pipeline
This thesis aims to provide a tool that can be used by Solana
Smart Contracts developers’ giving them the possibility to develop
verified contracts. Hence, contributing to the overall safety of the
Solana ecosystem.

The tool pipeline can be seen in Figure 1 where the contribu-
tions have been highlighted in italic bold and green.

print

Coq Proof Assistant

quote

ConCert
Smart Contracts

Escrow
Counter
...
Testing + Verification

MetaCoq

translate Template
Coq

erase

extract types

PCUIC
Untyped Lambda
Calculus + Typing

information

pre-processing steps
(eta-expension, inline, ...)

+ generate proofs

optimise

Target Languages

Liquidity
CameLigo
Rust
(Concordium)
Elm
Rust
(Solana)
...Solana

Execution
Model

Figure 1: The tool pipeline, starting from a written contract in Gallina and ending
with the extraction to the target language.

To start the pipeline, it is necessary to write a smart contract
in Gallina using the new Execution Model. During this phase, it is
possible to test and verify the properties of the written contracts.
The remaining passes, i.e. quoting, translation, erasure, and op-
timisations, were all borrowed in their entirety from the original
ConCert’s pipeline. This denotes that MetaCoq [25] is also an
integral part of this tool. Furthermore, the certifying passes and
optimisations are still applied to mean that the new execution
model did not affect this transformation/optimisation phase.

To finalize the pipeline process, the optimised code can be
pretty-printed using the already existing pretty-printer developed
directly in Coq. This tool uses a new pretty-printer to Rust (based
on the already existing one) that has been fine-tuned to be able
to print deployable contracts for the Solana Blockchain.

4.2. Solana Execution Model in Coq
4.2.1 Basic Implementation

To extend the existing ConCert execution model it is necessary
to consider Solana core concepts6 such as accounts, transactions,
programs, rent, and calling between programs. Moreover, it is
also necessary to consider Solana’s Rust program support.

A Solana contract can be represented in Coq as a function
that receives the blockchain information (type Chain), an array
of accounts (type SliceAccountInformation), and instruction
data (option Msg): Chain represents the view of the blockchain
that a contract can access and interact with (e.g. current chain
height, finalized height, etc);
SliceAccountInformation is a type alias for an array of

AccountInformation records; and option Msg is the instruc-
tion data that has been deserialized into the Msg type. When this
function is called it can either be successful or it can fail with an
error type, ProgramError, which differs depending on the con-
tract error.

The Coq record AccountInformation (Listing 3) is a direct
replica of the Solana Rust struct AccountInfo, with the exception
of the field rent epoch which is not relevant to this model. Sim-
ilar to ConCert, this representation allows dealing with the con-
tracts in a generic manner. However, it makes reasoning harder,
and for this reason, the Contract type is preferred to reason with,
since it has no SerializedValues and has concrete types in their
place.

In addition to accounts and their state, it needs to be possible
to interact with other programs and accounts. It is possible to
do so by using monads and helper functions that ease the use of
actions throughout contract behavior.

In this design, the contracts can interact with the blockchain
and other programs by transferring lamports, calling programs
(act call), deploying programs (act deploy), and using special
calls (act special call) (Listing 4).

6https://docs.solana.com/developers

4

Record AccountInformation :=

build_account {

account_address : Address;

account_is_signer : bool;

account_is_writable : bool;

account_balance : Amount;

account_state : SerializedValue;

account_owner_address : Address;

account_executable : bool;

}.

Listing 3: Coq’s AccountInformation definition.

Inductive ActionBody :=

| act_transfer (to : Address) (amount : Amount)

| act_call (to : Address) (msg : SerializedValue)

| act_deploy (c : WeakContract)

| act_special_call (to : Address) (body : SpecialCallBody)

with SpecialCallBody :=

| transfer_ownership (old_owner account new_owner : AccountInformation)

| check_rent_exempt (account : AccountInformation)

| check_token_owner (account : AccountInformation)

with WeakContract :=

| build_weak_contract

(process :

Chain -> (* chain *)

SliceAccountInformation -> (* accounts *)

option SerializedValue -> (* instruction data *)

result unit ProgramError).

Listing 4: Solana Action Body definition in Coq.

Special calls is a newly added constructor that facilitates the
execution of different context-specific functions. This way these
context-specific actions do not clutter the ActionBody inductive.
Moreover, it facilitates reasoning and extraction to Solana. In
this design, there are three special actions: transfer ownership,
check rent exempt, and check token owner. Special action
transfer ownership will transfer ownership of one program, i.e.
change the program’s owner address. In addition to the destina-
tion address, it needs three accounts: the current contract owner,
the contract that will transfer ownership, and the contract’s new
owner. Secondly, the special action check rent exempt checks if
an account is rent exempt, i.e., if it has more than two years’ worth
of rent in lamports. Lastly, the special action check token owner

is straightforward as it checks if the queried account’s owner is the
token program. And, just like the previous one, this special action
does not modify the environment.

Unlike the original ConCert execution model where they ob-
tained a clear separation between contracts and their interaction
with the chain, this separation is no longer that clear with this
design. Actions are called in the middle of the program and their
effects take place when they are executed.

The Action type resembles what is usually considered a trans-
action, but just like the authors of ConCert, the Action and
Transaction (respectively Listing 5 and Listing 6) types are dif-
ferent [21]. The two aforementioned types differ from each other
because an Action is done by a user and modifies the blockchain
state. The latter can be seen as a fully specified action and addi-
tional information.

Solana’s transaction model allows for transactions to contain
more than one instruction (or action) per transaction. To ease
reasoning on transactions and their effects on the chain, our model
restrained each transaction to a single instruction (or action).
Moreover, the transaction format has been simplified from the
Solana docs, specifically the transaction array of signatures which

Record Action :=

build_act {

act_origin : Address;

act_from : Address;

act_body : ActionBody; }.

Listing 5: Solana Action definition in Coq.

Record Tx :=

build_tx {

tx_origin : Address;

tx_from : Address;

tx_to : Address; !\label{lst:tx!

tx_amount : Amount;

tx_body : TxBody;

}.

Listing 6: Solana Transaction definition in Coq.

Record Environment :=

build_env {

env_chain :> Chain;

env_account_balances : Address -> Amount;

env_account_owners : Address -> option Address;

env_contracts : Address -> option WeakContract;

env_contract_states : Address -> option SerializedValue;

}.

Listing 7: Environment definition in Coq.

are used to check if a user authorized that transaction.

Finally, the Solana calling between programs concept can be
achieved using the act call in a program. Program-derived ac-
counts are not explicitly implemented in the execution model like
the other core concepts. However, they are implicitly used in the
special action transfer ownership when this action is converted
into actual Rust code (Section 4.3) delves deeper into this concept
and conversion from Coq inductive to Rust code).

In summary, the Contract and WeakContract definitions were
modified. The record AccountInformation was added to rep-
resent the accounts. The record Tx remained the same, but the
inductive type TxBody was modified according to the new actions
added in the inductive ActionBody.

4.2.2 Semantics of the Extended Execution Layer

In this section, we start by looking at the Environment which con-
tains all the information related to the blockchain and accounts,
then we present the ActionEvaluation which is used to evaluate
the actions and their effects on the chain. Finally, we present the
ChainHelpers class that is used to aid contract implementation
and extraction.

The Chain type mentioned previously, has some information
about the blockchain but it is not enough to allow the blockchain
to execute actions. It needs to be possible to look up deployed
contract information. ConCert’s original Environment definition
allows the look up of the contract’s functions and state. But,
since Solana has some concepts that were not in the original de-
sign the environment was extended with look up functions for
program ownership (env account owners) and program balance
(env account balances) (Listing 7).

Like most of the concepts and definitions described in this
section, action evaluation is also based on the original action
evaluation in ConCert. When actions are executed it is neces-
sary to evaluate the effects of the actions. This is defined as a
”proof-relevant” relation ActionEvaluation in Coq, with type
Environment −→ Action −→ Environment −→ Type [21].

This relation is defined by four cases: transfer tokens, contract
deployment, contract calls, and special calls. In Listing 8, it is
presented the details of the transfer case.

The special call case is evaluated as any of the other cases but
has a specific evaluation relation SpeciallCallBodyEvaluation

to evaluate the body of this call.

Now with the Environment, there is enough information to
evaluate actions. ConCert further augments this type to keep
track of actions to execute and also define the meaning of a step

5

Inductive ActionEvaluation

(prev_env : Environment) (act : Action)

(new_env : Environment) (new_acts : list Action) : Type :=

| eval_transfer :

forall (origin from_addr to_addr : Address)

(origin_acc from_acc to_acc : AccountInformation)

(amount : Amount),

amount >= 0 ->

amount <= env_account_balances prev_env from_addr ->

account_address origin_acc = origin ->

account_address from_acc = from_addr ->

account_address to_acc = to_addr ->

address_is_contract to_addr = false ->

act = build_act origin from_addr (act_transfer to_addr amount) ->

EnvironmentEquiv

new_env

(transfer_balance from_addr to_addr amount prev_env) ->

new_acts = [] ->

ActionEvaluation prev_env act new_env new_acts

| eval_deploy :

...

| eval_call :

...

| eval_special_call :

...

.

Listing 8: Action Evaluation relation in Coq.

Class ChainHelpers :=

build_helpers {

next_account : SliceAccountInformation -> Z ->

result AccountInformation ProgramError;

deser_data (A : Type) : SerializedValue -> result A ProgramError;

deser_data_account (A : Type) : AccountInformation -> result A

ProgramError;↪→
ser_data {A : Type} : A -> SerializedValue;

ser_data_account {A : Type} : A -> AccountInformation ->

result unit ProgramError;

exec_act : WrappedActionBody -> result unit ProgramError;

}.

Listing 9: ChainHelpers class and functions in Coq.

in a chain with three inference rules. This part of the execution
model was not required to suffer any major changes and, as such,
it was kept almost fully. The only exception was a few small
changes to accommodate previously mentioned additions to the
chain and some lemmas and theorems that needed to be adjusted
to be accepted.

Finally, to help with the extraction process the class
ChainHelpers was created. This class contains the function sig-
natures that are to be used during contract implementation (List-
ing 9).

4.3. Solana Extraction from Coq
The extraction presented in this thesis is an extension of the ex-
traction in ConCert. More specifically, the new extraction adds
a new Rust pretty-printer that targets the Solana blockchain and
makes some minor changes to the actual Rust extraction proce-
dure.

4.3.1 Execution Model Helper Functions

To facilitate the extraction procedure to Solana, several helper
functions and definitions were implemented. The aforementioned
functions are needed because some of the existing functions from
the execution model core cannot be used by the extraction due to
visibility issues. Moreover, these functions are used as placeholders
in contract development, and after extraction, they are replaced
by calls to Rust functions that were previously developed. Most
of them do not directly affect the chain/environment and as such
do not have any lemmas or theorems to prove their effects.

There are two classes of helper functions that were cre-
ated to facilitate the extraction process: AccountGetters and
ChainHelpers (Listing 8). To ensure that both of these classes’
functions are visible by the extraction, all of them are declared as

Definition WrappedActionBody_to_ActionBody (wact: WrappedActionBody) :

ActionBody :=↪→
match wact with

| wact_transfer from to amount => act_transfer (account_address to) amount

| wact_call to msg => act_call (account_address to) msg

| wact_deploy contract => act_deploy contract

| wact_special_call to body => act_special_call (account_address to) body

end.

Listing 10: WrappedActionBody example in Coq.

global.
The AccountGetters consists of a total of seven get-

ter functions that are used to get information from the
AccountInformation record, one for each field.

The ChainHelpers class consists of a broad range of functions
from serialization and deserialization functions to a function to
simulate action execution.
WrappedActionBody is an inductive type like ActionBody how-

ever instead of each constructor receiving arguments with Address
type, they receive arguments with AccountInformation (Listing
10).

4.3.2 Extraction Approach

The ConCert Framework extraction targets several languages, one
of them being Rust for the Concordium blockchain. The extrac-
tion procedure is, as we have seen before, composed of trans-
formations, translations, and optimizing passes. ConCert’s con-
tract extraction to Concordium builds upon this procedure with a
pretty-printer made specifically so that the contracts are allowed
on-chain. The new Solana extraction follows the same idea of hav-
ing a pretty-printer precisely to print contracts that use Solana’s
crates/libraries.

The approach used can be split into three different parts: gener-
ated code from the contract, directly printed code, and remapped
code.

Generated Code Code that is generated from contracts that
are developed using the Execution Model. This code is generated
using the Rust extraction present in the ConCert framework, which
will convert all the Coq functions used in the contract into Rust
methods.

Directly Printed Code The extraction presented in this project
has many functions that consist of directly printed code, i.e. pro-
gram preamble, contract entrypoint, and functions that convert
actions into instructions.

The program preamble consists mainly of auxiliary functions
that together with inductive remapping can be used by the con-
tract. Moreover, this preamble contains the Rust crates imports
needed for the proper functioning of the contract.

Solana’s Rust program exports an entrypoint that is used by
Solana runtime to call and invoke that program. In Solana Rust
contract development one sets the entrypoint by using its macro
and giving the function name as an argument. The given function
(usually called process instruction) must have three specific
input arguments: program id, list of accounts, and an array of
bytes with the instruction data.

To simulate the actions used in the Coq contracts it must be
possible to convert each constructor of ActionBody into Rust
code that has an equivalent behaviour. Listing 11 shows the Rust
function that is extracted in order to convert actions and the
instruction that are executed for each action. This conversion
function however does not allow converting deploy or call actions.

6

fn convert_action(&'a self, act: &ActionBody<'a>)

-> Result<(), ProgramError> {

let cact = if let ActionBody::Transfer

(donator_account, receiver_account, amount) = act {

if **donator_account.try_borrow_mut_lamports()? >= *amount {

**receiver_account.try_borrow_mut_lamports()? += amount;

**donator_account.try_borrow_mut_lamports()? -= amount;

} else {

return Err(ProcessError::Error.into());

};

} else if let ActionBody::SpecialCall(to, body) = act {

return self.convert_special_action(to, body);

} else {

return Err(ProcessError::ConvertActions.into());

};

Ok(())

}

Listing 11: Function that converts enum ActionBody into code.

Definition remap_blockchain_consts : list (kername * string) := [

remap < @Address > "type ##name##<'a> = Pubkey;";

remap < @SliceAccountInformation > "type ##name##<'a> =

&'a[AccountInfo<'a>];"].

Listing 12: Address and SliceAccountInformation.

Moreover, if these appear in a contract its execution will result in
an error due to their behaviour not being implemented in Rust.

Remmaped Code As mentioned before, remaps are also a rel-
evant part of the extracted code. The execution model uses the
type Address to identify the contracts. When extracting a con-
tract this type must be remapped to the address type in the tar-
get programming language used by the target chain. Also, in
the Execution Model, the contract’s Process function receives a
SliceAccountInformation type, which in Coq is represented as
a list of accounts. Listing 12 presents the remap of these two
types.

Both helpers classes’ functions ChainHelpers and
AccountGetters must be remapped to their equivalent code in
Rust.

In order to use the correct actions in Rust it is necessary to
remap the Coq inductive type WrappedActionBody into the Rust
enum ActionBody. This is done using by remapping each Coq
constructor to a Rust constructor (Listing 13).

When extracting a Coq contract, the extraction combines the
three parts of the extracted code, function remaps and inductive
remaps, directly printed code, and the generated code. This code
is then printed onto a file, where after setting it up with cargo it
can be compiled and deployed onto the Solana blockchain.

5. Evaluation
In this section, the developed extension is evaluated. First, we
discuss the model expressiveness, i.e., what can and cannot be
written using the extended framework. Afterward, we present
which properties of the execution model have been proved. Then
we will present one case study, an Counter contract where both
implementation and extraction will be analyzed. Finally, in the last
section, we will compare the proposed extension and the original
framework.

Definition remap_WrappedActionBody : remapped_inductive :=

{| re_ind_name := "ActionBody<'a>";

re_ind_ctors := ["ActionBody::Transfer"; "ActionBody::Call";

"__Deploy__Is__Not__Supported"; "ActionBody::SpecialCall"];

re_ind_match := None |}.

Listing 13: ActionBody remapped to Rust.

5.1. Model Expressiveness
The Execution Model allows the user to develop a multitude
of contracts. These contracts can contain common actions like
transferring tokens between accounts, calling other contracts, and
creating new accounts (despite some of these actions cannot be
extracted). Furthermore, the execution model allows for more
Solana specific actions like verifying if an account is rent exempt
and transferring ownership of an account with the help of the
token program.

The developed model has most of Solana’s core concepts iden-
tified in Section 4.2.1. Rent is one of the missing concepts since
it is usually only used to verify if a contract is rent exempt or
not. To do so we use a special call action that does this check.
However, this check is most meaningful when the contract is ex-
tracted and the code is converted to the actual action of verifying
the contract’s balance.

Accounts were fully implemented having all fields except its rent
related field. It is possible to access all the fields and modify them
accordingly.

Transactions are implemented and can be used to analyze the
chain, despite not being used when writing contracts. Each trans-
action has exactly one instruction, unlike Solana, as explained in
Section 4.2. This differs from the Solana documentation but fa-
cilitates reasoning when analyzing a chain.

In this model calling between programs is highly abstracted
and program derived accounts are not implemented explicitly. For
instance, the special action used to transfer ownership would use
program derived accounts if they were explicit (in fact, they are
used but only in the extracted program).

In a contract, it is possible to iterate over the list of accounts
and check each account’s owner and address. For each account,
it is also possible to check if it is writable, executable and if it
is a signer of that call. Also, it is possible to deserialize and
modify an account state and serialize it back to the account.
Each contract can have many types of messages, depending on
the received message the contract can have different behaviors.
All of these features allow for a variety of contracts to be written
and reasoned with.

On the other hand, it is not possible to implement contracts
that require making complex calls to other programs and Solana’s
existing programs. For instance, contracts that require heavy in-
teractions with the Solana ecosystem or with external programs
that are not represented in the framework.

5.2. Model Properties Proved
The developed tool can be split into two parts: extraction and
execution. As aforementioned, the new extraction builds upon the
existing one by adding a new print printer that targets the Solana
blockchain. Due to this, there are no new proofs or modified
proofs in the extraction process.

On the other hand, with the new Execution Model being an ex-
tension of ConCert’s Execution model, there is the need to update
the existing proofs and, in a few cases, add new ones. However,
in a few cases, it was not possible to finish the proofs or add new
ones for the new concepts due to time constraints.

Helper Classes Proven Properties Since there was a need to
have auxiliary functions such as the ones in the AccountGetters

and ChainHelpers classes there are some lemmas and theorems
that prove their behavior. For instance, for each account get-
ter, there is a small lemma that ensures that the auxiliary getter
returns the same value as using the record projection from the

7

Lemma undeployed_contract_no_out_queue contract state :

reachable state ->

address_is_contract contract = true ->

env_contracts state contract = None ->

Forall (fun act => (act_from act =? contract) = false) (chain_state_queue

state).↪→

Listing 14: Undeployed contracts do not have actions Lemma in Coq.

Record State := build_state { count : Z ; active : bool ; owner : Address }.

Listing 15: Counter program state.

record AccountInformation. The ChainHelpers class, on the
other hand, is missing lemmas for every function to ensure their
correct behavior when used in contract implementation due to
time constraints.

Core Elements Proven Properties Regarding proofs of core el-
ements of the Execution Model, all of them were kept and if
needed were updated/completed. We proved that for any chain
trace (i.e. list of chain states) the ending state will not have any
actions from undeployed contracts (Listing 14). Furthermore, it
was proven that undeployed contracts do not have both outgoing
and incoming transactions or calls.

We also demonstrated two properties related to contracts states
and addresses: if a state is reachable and a contract state is stored
on an address then that address must also have some contract
deployed to it; and if a state is reachable and a contract state
is stored on an address then that address must be a contract
address. Furthermore, it was proven that if a state has a contract
state on some address then any other state reachable through the
first state must also have the same contract on the same address.

That being said, there are many proofs that were not finished
in time, i.e., the lemma is defined but the proof was not finished.
The extension presented in this thesis overall removes some of the
formal verification done by the original framework since a moder-
ate amount of proofs were not finished in time.

5.3. Case Study A—Counter Contract
As an example of our extension, we consider the implementa-
tion of a counter contract. This type of contract allows arbitrary
users to have a counter which they can increment or decrement.
Contracts like this one are standard uses of smart contracts and
appear in many blockchains. This particular implementation is an
adaptation of the existing one in ConCert’s repository.

Each contract must define its state structure and the permitted
messages. The Counter contract is a simple contract, it has a
state with three fields (Listing 15) and three possible instructions
(Listing 16). The state fields contain an integer that holds the
counter value, a boolean that tells if the count is active and the
address of the owner of the program. The three possible instruc-
tions consist of an initializing function, a function to increment
the counter, and a function to decrement it.

Each program instruction results in a new state (Listing 17)
that is then returned and serialized into the counter account.

The contract is defined by an entry point function that receives
a Chain, a list of accounts, and an instruction. The entry point
function checks if there is an instruction, if not it will throw an

Inductive ContractInstruction :=

| Init (i : Z)

| Inc (i : Z)

| Dec (i : Z).

Listing 16: Counter program instructions.

Definition counter_init (owner_address : Address) (init_value : Z) : State :=

{| count := init_value ; active := false ; owner := owner_address |}.

Definition increment (n : Z) (st : State) : State :=

{| count := st.(count) + n ; active := true ; owner := st.(owner) |}.

Listing 17: Counter program state init and increment.

Lemma counter_increment_correct {prev_state next_state i} :

increment i prev_state = next_state ->

0 < i ->

prev_state.(count) < next_state.(count)

/\ next_state.(count) = prev_state.(count) + i.

Listing 18: Counter program state init and increment.

error, otherwise, it executes the main functionality of the pro-
gram. This main function iterates over the accounts and obtains
the counter program state and, according to it and the received
instruction will modify the state accordingly.

When the contract is fully defined in Coq it is possible to verify
simple properties regarding its behaviour. For instance, in Listing
18 we verify the correctness of the increment function (can be
seen in Listing 17).

At this stage, the Counter contract is ready to be extracted.
Once the extraction is complete, a Rust program is generated as
it was explained in Section 4.3.

All the previous contract functions are extracted and have both
a curried and an uncurried version. This is done to close the gap
between Coq and Rust partial applications disparity [3].

Finally, the whole program comes together and can be accessed
and interacted with through the Solana contract entrypoint stat-
ically defined in the extraction. The program definition7 and ex-
tracted code8 can be seen in the repository.

5.4. Extension Comparison
The tool proposed in this thesis is an extension of the smart con-
tract verification framework ConCert. In this section, we compare
our extension to the original framework. More specifically, it is
compared the number of contract examples and variety, i.e., what
is possible to write. Moreover, the counter and escrow implemen-
tation and extraction will be compared, and the proofs accom-
plished by each model will be compared.

The implemented extension has two contract examples, a
Counter contract and an Escrow contract which represents what
is possible to implement using the extended Execution Model. It
is, however, possible to implement additional contracts but they
are limited to the existing actions. Since many Solana programs
require calls to other programs (e.g. system program, token pro-
gram, token swap program) it would be needed to develop the
Execution model further. The ConCert framework, on the other
hand, has a wide variety of contracts in their repository9 imple-
mented using their execution model. Furthermore, many of these
contracts are partly or fully verified, whereas in our extension there
is not a fully verified contract.

In Table 1 we present a comparison between the implemented
contracts using the extension and the same contracts implemented
in the original framework. The contracts prefixed with ”Solana”
are the contracts implemented with the extension and extracted
to Rust (Solana) the ones without a prefix are implemented using
ConCert and extracted to Rust (Concordium). The column ”Coq
Lines” contains roughly the amount of lines needed to implement
the contract in Coq. The column ”Extraction Time” contains

7https://github.com/siimplex/ConCert/blob/master/execution/examples/CounterSolana.v
8https://github.com/siimplex/ConCert/blob/master/extraction/examples/extracted-

code/solana-extract/counter-extracted/src/lib.rs
9https://github.com/AU-COBRA/ConCert

8

the average time (in seconds) needed to extract each contract to
Rust using the corresponding extractions (i.e. for new contracts
the new Rust extraction was used). The column ”Rust Extracted
Lines” contains the number of lines of the Rust code generated
by the extraction procedure.

Contract Coq Lines Extraction Time (s) Rust Extracted Lines

ConCert’s Counter 82 4.368 501
ConCert’s Escrow 125 41.048 1496

Table 1: Contract implementation and extraction comparison.

Both Counter contracts are similar in the three aspects, the
main difference is the number of lines needed to implement the
contract and the additional time to extract it.

Regarding proofs achieved, since our model builds upon Con-
Cert, the proofs in each model are, for the most part, the same.
With the exception of the helper classes implemented which proofs
were implemented. However, modifying the execution model in-
validates some of the existing proofs, and as such those proofs
need to be updated accordingly but, as previously mentioned in
Section 5.2, it was not possible to complete some of the existing
proofs within the time frame of this work. This means that whilst
the ConCert model is verified our model is only partly verified
since some of the proofs are still to be completed.

6. Conclusions
Blockchain technology and smart contracts are two quickly ad-
vancing research topics that have resulted in many platforms with
a wide array of applications. Smart Contracts transactions can
have huge amounts of cryptocurrency, and consequently, if a vul-
nerability or bug is found it could easily lead to a significant finan-
cial loss. There are previous works that allow smart contracts to be
developed, verified, and extracted for blockchains like Ethereum,
Concordium, Tezos, and others but, to the best of our knowledge,
there is not any work that does this for Solana programs.

This thesis presents an extension to the existing smart contract
verification framework in Coq, Concert. This extension aims at
reducing the overall amount of bugs and vulnerabilities present
in Solana smart contracts by allowing users to develop and ver-
ify contracts in Coq and then extract them to Rust to later be
deployed onto the Solana Blockchain.

This extension is split into two parts, Execution and Extraction.
The Execution allows users to develop and implement existing
Solana contracts in Coq with basic contract actions (e.g. contract
call, transfer, and deployment) and Solana specific actions (e.g.
check account rent and transfer ownership). Furthermore, once a
contract is implemented, it is possible to verify its behavior and
other properties. The Extraction grants the user the ability to
implement contracts using the Execution Model and extract them
to Rust so they can be deployed onto the Solana Blockchain.

6.1. Limitations and Future Work
This dissertation proposes an extension to the existing smart con-
tract verification framework ConCert to allow for Solana programs
to be implemented using the Execution model and extracted using
the Extraction. Although the current extension proves to be useful
to address the problem, it can be further improved. This section
will discuss the existing limitations together with suggestions to
solve them, and suggestions for future work.

The first limitation relates to the Execution Model expressive-
ness. The presented model allows the implementation of a variety
of contracts that are not complex and do not require interacting
with other deployed or native Solana programs. However, complex

contracts, like DeFi protocols, or contracts that interact heavily
with the Solana ecosystem cannot be implemented using the cur-
rent model.

The second limitation relates to the verification of the Execu-
tion Model. Due to time constraints, we were unable to complete
all the proofs of the present model, and as such, the model is not
fully verified. Verifying the entire model, like it has been done
in ConCert [21, 6], would increase the reliability and trustworthi-
ness of this extension. Furthermore, completing the proofs in the
execution model would improve the trustworthiness of properties
verified in smart contracts.

The third limitation relates to the Extraction aspect of the ex-
tension. The current extension can extract both contracts used for
case studies, however, both extractions result in a Rust program
that cannot be immediately compiled. Most of the compilation
issues stem from Rust lifetimes, which require updating most of
the lifetimes present in the extracted contract functions. Another
error preventing compilation originates from Rust borrow checker
however, it can be easily solved by following the compiler hints
and error descriptions.

As future work is driven by the present work and existing limi-
tations, the next step would be to optimize the extension, i.e. the
Execution Model and Extraction. The existing Execution Model
is limited in terms of the complexity of contracts it can represent.
Further developing the model and optimizing the way Solana spe-
cific actions are implemented would increase the model’s expres-
siveness. Fully verifying the model would be the vehement next
step.

In the Extraction procedure, the evident next step would be to
generate code that can be automatically compiled by the target
language which would allow the generated program to be directly
deployed on the target blockchain. Thus, preventing possible bugs
or vulnerabilities introduced during the generated program debug.

An interesting path for future work would be the implementa-
tion of a DeFi protocol (fully or partially), verifying correctness
and safety properties, and finally extracting it to Rust and deploy-
ing it onto the Solana blockchain. This would prove difficult with
the current model and extraction procedure but it would result in
a reliable and useful framework that could produce safe contracts.

Finally, even if the Execution Model is fully verified and the con-
tracts implemented using it are fully verified there is no guarantee
that these verified properties will hold after the extraction proce-
dure. Thus, as future work, it would be interesting to verify the
entire extraction procedure as it would allow users to develop and
verify contracts and extract them directly to the blockchain with
the guarantee that the deployed contract is bug and vulnerability
free.

References
[1] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou,

R. Pollack, O. S. Belanger, M. Sozeau, and M. Weaver. Cer-
ticoq: A verified compiler for coq. In The third international
workshop on Coq for programming languages (CoqPL), 2017.

[2] D. Annenkov, M. Milo, J. B. Nielsen, and B. Spitters. Ex-
tending metacoq erasure: Extraction to rust and elm. The
Coq Workshop 2021, 2021.

[3] D. Annenkov, M. Milo, J. B. Nielsen, and B. Spitters. Ex-
tracting functional programs from coq, in coq, 2021.

[4] D. Annenkov, M. Milo, J. B. Nielsen, and B. Spitters. Ex-
tracting smart contracts tested and verified in coq. Proceed-

9

ings of the 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs, Jan 2021.

[5] D. Annenkov, M. Milo, and B. Spitters. Code extraction
from coq to ml-like languages. ML Workshop, 2021.

[6] D. Annenkov, J. B. Nielsen, and B. Spitters. Concert: a
smart contract certification framework in coq. Proceedings of
the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, Jan 2020.

[7] A. Arusoaie. Certifying findel derivatives for blockchain.
Journal of Logical and Algebraic Methods in Programming,
121:100665, 2021.

[8] B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson.
Mi-cho-coq, a framework for certifying tezos smart contracts.
In International Symposium on Formal Methods, pages 368–
379. Springer, 2019.

[9] A. Bove, P. Dybjer, and U. Norell. A brief overview of
agda–a functional language with dependent types. In In-
ternational Conference on Theorem Proving in Higher Order
Logics, pages 73–78. Springer, 2009.

[10] V. Buterin et al. Ethereum whitepaper, 2013.

[11] J. Chapman, R. Kireev, C. Nester, and P. Wadler. System
f in agda, for fun and profit. In International Conference
on Mathematics of Program Construction, pages 255–297.
Springer, 2019.

[12] P. Daian. Analysis of the dao exploit, Jan 2016.

[13] C. Faife. Nomad crypto bridge loses $200 million in ’chaotic’
hack, Aug 2022.

[14] S. Haber and W. S. Stornetta. How to time-stamp a digital
document. In Conference on the Theory and Application of
Cryptography, pages 437–455. Springer, 1990.

[15] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Inter-
national Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75–86. IEEE, 2004.

[16] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In Conference
record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 42–54, 2006.

[17] P. Letouzey. A new extraction for coq. In International Work-
shop on Types for Proofs and Programs, pages 200–219.
Springer, 2002.

[18] P. Letouzey. Extraction in coq: An overview. In Conference
on Computability in Europe, pages 359–369. Springer, 2008.

[19] X. Li, Z. Shi, Q. Zhang, G. Wang, Y. Guan, and N. Han.
Towards verifying ethereum smart contracts at intermediate
language level. In International Conference on Formal Engi-
neering Methods, pages 121–137. Springer, 2019.

[20] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review, page 21260, 2008.

[21] J. B. Nielsen and B. Spitters. Smart contract interactions in
coq. In International Symposium on Formal Methods, pages
380–391. Springer, 2019.

[22] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a
proof assistant for higher-order logic, volume 2283. Springer
Science & Business Media, 2002.

[23] S. Palladino. The parity wallet hack explained, Jul 2017.

[24] G. A. Pierro and A. Amoordon. A tool to check the ownership
of solana’s smart contracts. In 2022 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering
(SANER), pages 1197–1202. IEEE, 2022.

[25] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster,
F. Kunze, G. Malecha, N. Tabareau, and T. Winterhalter.
The metacoq project. Journal of Automated Reasoning,
2020.

[26] N. Szabo. Smart contracts. 1994. Virtual School, 1994.

[27] N. Szabo. Smart contracts: building blocks for digi-
tal markets. EXTROPY: The Journal of Transhumanist
Thought,(16), 18(2), 1996.

[28] T. N. Tavu. Automated Verification Techniques for Solana
Smart Contracts. PhD thesis, 2022.

[29] E. Team. Etherscan: The ethereum block explorer. URL:
https://etherscan. io, 2017.

[30] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li. A survey
of smart contract formal specification and verification. ACM
Computing Surveys (CSUR), 54(7):1–38, 2021.

[31] A. Yakovenko. Solana: A new architecture for a high perfor-
mance blockchain v0. 8.13. Whitepaper, 2018.

10

