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WebAssembly (Wasm) is a binary code format that is a compilation target
for high-level languages, that allows them to run on a browser with near-
native performance. Besides its multiple advantages due to its compact format,
WebAssembly allows for the presence of vulnerabilities on Web programs, just
like in x86 binaries. Due to being a relatively recent technology, its presence
in real-world websites was not yet properly studied, but it has the tendency to
be more and more prevalent on the Web, as well as its vulnerabilities.

In this work, we present WebAF, a scalable web crawling framework
enabling us to obtain webpages with WebAssembly submodules. It can collect
a representative dataset of WebAssembly binaries that are useful for testing
automated exploits on the found vulnerabilities. We also present WebAssault,
our automatic exploitation framework, and show that it can generate simple
proof-of-concept exploits.

1 INTRODUCTION
Due to JavaScript’s poor performance when it comes to web-based
applications, new languages have emerged to overcome this problem.
Emerging languages also include new features and can give stronger
safety guarantees. Some alternatives that have been developed to
overcome this performance problem are Asm.js [1] and Google Na-
tive Client [2]. As of now, the most popular is WebAssembly [3], a
compilation target for languages like C and Rust, which is a byte-
code language intended for a portable virtual machine, i.e. uses a
virtual Instruction Set Architecture (ISA). Also known as Wasm,
WebAssembly can run with a near-native performance which makes
it very attractive to port existing applications to it. Due to WebAssem-
bly’s benefits and popularity, the other two mentioned alternatives
have been deprecated and are no longer maintained [4, 5].

Although WebAssembly code is sandboxed and features a stack-
based virtual machine that is type-checked after every instruction,
security vulnerabilities are still common and can sometimes be ported
from the source code originally written in unsafe languages like C
or C++ to the WebAssembly binary. Because WebAssembly is a
virtual ISA, it can run on multiple platforms such as web browsers
or server-side web containers. This means that undetected security
vulnerabilities can transition to WebAssembly, e.g., buffer overflows
can cripple many applications that depend on WebAssembly code
running across various platforms. As a consequence of this, several
tools have been developed in order to detect the possible vulnerabili-
ties that can occur in this low-level language, being Wasmati [6] and
WASP [7] the most relevant ones for a part of our work.

To better identify the possible vulnerabilities that the byte-code
language may inherit from its source, the strategy used in other
languages was also applied in Wasmati and WASP: recurring to static
analysis and symbolic execution, respectively, to detect bugs in the
code. On the static analysis side, we have Microsoft PREfast [8] that
analyses C and C++ source files, JSLint [9] to check on JavaScript
code, and RIPS [10] which checks the interactions between sources,
sinks, and sanitizations in PHP files. Along the same vein as these
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tools, Wasmati employs static analysis to detect vulnerabilities in
WebAssembly binaries. However, although these techniques are very
efficient, they can generate a lot of false positives, requiring a great
deal of manual effort to validate if the vulnerabilities flagged by the
tool are true or false.

On the symbolic execution side, we have tools like Manticore [11]
for smart contracts and binaries, WANA [12] for WebAssembly, and
KLEE [13] for C/C++ and Rust, which are all symbolic execution
engines that find bugs in their specific area. Likewise, WASP is a
robust concolic execution tool for WebAssembly. The potential of
these tools is that they can accurately prove the presence of a given
vulnerability by generating an input that can trigger the vulnerable
code path. However, a central drawback of symbolic execution, in
general, is scalability and performance. In general, tools of this nature
have to make simplifications in the code exploration algorithms in
order to deal with path explosion problems. This is necessary because
symbolic execution takes significant time to execute, and programs
generally have many execution paths that need to be explored.

In work, we aim to investigate the possibility of combining the
best of both worlds in order to improve vulnerability detection capa-
bilities for WebAssembly code. In theory, we can prune out the false
positives generated by Wasmati by manually checking if the detected
vulnerabilities are exploitable or not. However, testing the exploitabil-
ity of vulnerabilities may not be achievable by hand because they
might be numerous, and exploits are time-consuming to write. To
speed up this process, our idea is to employ automatic exploit gen-
eration, as first proposed in [14]. With this approach, we strive to
simultaneously identify vulnerabilities and test their exploitability
by software in a fully automated fashion. This way, developers can
prioritize the vulnerabilities that must be patched first.

Toward this end, however, we need to obtain a representative
dataset of WebAssembly binaries so that we can evaluate the ef-
fectiveness of our technique in finding security vulnerabilities. Un-
fortunately, as of the time of this writing, no such dataset has yet
been collected by the research community. Moreover, there is no
prior study focused only on investigating how prevalent Wasm bi-
naries have become on the Internet. As a result, we cannot be sure
how common WebAssembly vulnerabilities are in real-world web
applications: if they are present on a small number of websites or if
tech giants are also affected. Therefore, to test the viability of our
vulnerability detection technique we must first collect such a dataset
which in itself requires the development of a scalable web crawling
framework for fetching webpages containing subcomponents written
in WebAssembly.

1.1 Objectives
In light of the context clarified above, this thesis has three main goals:

• Obtain an up-to-date dataset of real-world webpages, con-
taining HTML, JavaScript, and WebAssembly, allowing us



to perform multiple types of analyses and queries on the
obtained data.

• Characterize the obtained dataset according to the presence
of WebAssembly and JavaScript data types being used and
shared between the two languages.

• Generate proof-of-concept exploits for WebAssembly vulner-
abilities in the dataset, showing the viability of static analysis
and symbolic execution as a precursor to automatic exploit
generation.

1.2 Contributions
The contributions of this work are the following:

• A web analysis framework capable of navigating the web
and scanning any Wasm binaries for security vulnerabilities
they could contain.

• An up-to-date and representative web dataset.
• Proof-of-concept exploits generated by combining Wasmati

and WASP.

2 RELATED WORK
In this section, we discuss the related work. We start by taking a
look at some of the efforts to detect vulnerabilities in WebAssembly
binaries. Then, we present some of the existing tools and methods
that have been used for automatic exploit generation. Finally, we
review some of the existing web crawlers and web datasets used in
previous studies.

2.1 Vulnerability Scanning Tools for WebAssembly
Programs

Apart from Wasmati and WASP, we survey other tools that have been
developed to detect vulnerabilities specifically for WebAssembly and
to help developers avoid mistakes when writing their code.

Wasabi. Wasabi [15] is a framework developed for dynamic anal-
ysis of WebAssembly programs through binary instrumentation. It al-
lows us to develop analysis functions in JavaScript that will be called
by the instrumented binary through the usage of hooks which will
receive these functions as a callback. It uses on-demand “monomor-
phization” to handle polymorphic instructions, in order to avoid wast-
ing memory by storing a lot of code that is not going to be used. It is
useful for call graph analysis, dynamic taint analysis, crypto miner
detection, and memory access tracing, as well as studying branch
and instruction coverage and profiling basic blocks and instructions.

Wassail. In [16], the authors’ proposed Wassail, a static taint anal-
ysis tool that uses compositional analysis. It works by creating a call
graph of the module and then identifying the Strongly Connected
Components (SCCs) of the generated graph. It generates an infor-
mation flow summary of a function based on how the information
propagates from the function’s parameters and global variables to
the function return value and globals after the execution. Next, it
analyses the SCCs in topological order so that when a function is
analyzed it will either use a function that has already been fully ana-
lyzed or another function in the same SCC and, in the latter case, it
is rescheduled for analysis. In the end, we obtain the resume of the
module.

Fuzzm. Fuzzm [17] is a grey box fuzzer, based on Google’s AFL
fuzzer1 that works directly with WebAssembly binaries. In order to
identify stack overflows, it instruments every function in the program
with code that inserts a canary, on function entry, onto the current
stack frame in linear memory, and that checks its integrity upon exit.
For the heap, a chunk is surrounded by canaries that are going to
be checked when it gets deallocated, which may not be ideal since
overflows can occur without being detected if a chunk is not freed.
These canaries work as oracles in order to guide fuzzing toward
exploring all paths in a program and finding crashing inputs. The
program is also instrumented such that all return instructions are
rewritten to a jump to the code that validates the canary.

2.2 Automatic Exploit Generation
Detecting bugs in programs is very important to prevent unwanted
behavior in them, especially security-critical ones. There are many
tools whose goal is to find them. However, a program can contain a
huge number of bugs, and deciding which ones to fix first may be a
very complicated issue.

In order to fix this issue, Automatic Exploit Generation (AEG) [14]
was proposed in 2011 as a way to automatically detect bugs, deter-
mine which ones are exploitable, and then generate an exploit that
spawns a shell. However, this type of automatic analysis is not cur-
rently available for WebAssembly, being mostly applied to x86 bina-
ries. AEG analyses the source code of a program and uses KLEE [13]
as the backend for symbolic execution, with some modifications that
implement their techniques and heuristics in order to find exploitable
bugs more quickly and pruning from the space state inputs that
are not large enough to cause an overflow. After finding a bug that
crashes the program, the binary is instrumented and stops when the
vulnerable function is called so that the stack can be analyzed in
order to obtain the location of the return address and the location of
the buffer containing the shellcode generated by AEG. These values
are then passed to STP2, a constraint solver, in order to solve the
exploit constraints and concretize the input if the given constraints
are satisfiable.

2.3 Web Crawling Systems
A web crawler, sometimes known as a web spider, is a computer
software that searches the Internet by accessing websites. Crawling
is primarily used to create an index of the websites visited by the
tool. Web scraping can be performed by web crawlers because it
is well interconnected with the crawling activity since it consists
in extracting data from the accessed sites. Web scraping is widely
performed by search engines, like Google [18] or Bing [19] since
they need to store the contents of the pages to fulfill the queries
made by the users. Due to this, both activities are almost always done
simultaneously.

We now present some of the current web crawlers, their architec-
tures, and their limitations.

curl. Curl [20] is a command line tool for transferring data. It
supports multiple protocols, like HTTP, HTTPS, FTP, GOPHER, and
SMTP. This tool allows a user to override the User-Agent parameter
1https://github.com/google/AFL
2https://github.com/stp/stp
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it uses so that websites that block the default one think the request
was made by a browser, for example.

Selenium. With Selenium [21], we are able to automate web crawl-
ing using a browser since it supports using all the major web browsers.
Selenium is a browser automation framework that exposes an inter-
face that can handle all browsers in a generic manner. Specific fea-
tures and configurations of each browser can also be used, however,
using them makes a solution less portable when changing testing with
other web browsers. Since it uses a browser, it is able to handle all
the requests made by JavaScript and load all the contents of the web
page. This tool has an API available for a big number of languages,
allowing it to be embraced by many other projects without much
effort. It provides an interface to execute JavaScript commands and
also to interact with the DOM and alert boxes.

OpenWPM. In [22], the authors propose a crawling framework,
OpenWPM, which was developed to study 1 million websites in
order to identify online tracking (either stateful or stateless) sites,
among other privacy issues on the Internet. It supports the running
of multiple browser instances providing higher speed than single
browser solutions, however, has a more complex architecture. This
tool is composed of three pieces: a task manager which distributes
commands to the browser managers; browser managers which au-
tomate web browsers through Selenium [21]; and finally the data
aggregator which instruments the requests of the browser. This is a
very promising approach since it uses a leader process to distribute
the work to the working process.

2.4 Web Datasets and Related Studies
Through the usage of web crawling techniques and tools like the
ones we presented in Section 2.3, many datasets have emerged with
multiple goals in mind. Also, many studies have been performed
on the web and on the datasets generated by crawlers. Although
these datasets may exist in big numbers, some are incomplete, do
not represent the web nowadays, or are not suitable for all types of
studies.

We now present some web page datasets and studies performed by
the scientific community, as well as some of their limitations:

Minified and Obfuscated Code. In [23], the authors analyze mini-
fied and obfuscated JavaScript code. This code, due to the processes
that have passed, is very hard to read by humans, so it is easy to
hide malicious programs this way. It contained scripts from the top 1
hundred thousand websites of the Majestic Million service3.

OpenWPM. The authors of OpenWPM [22] developed their tool
to measure online tracking on the top 1 million websites of Alexa4.
Since this study was performed in January 2016, WebAssembly was
not even a minimum viable product, so it was not present on the Web
or was in a very small amount, due to it only starting to gain traction
in the last years. However, with the rise of Wasm, we can see more
diverse ways of fingerprinting and tracking.

3https://de.majestic.com/reports/majestic-million
4https://alexa.com
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WasmBench. In [24], the authors present us with a dataset more
focused on WebAssembly, in order to evaluate the usage of these
binaries, their source languages and to test them for vulnerabilities.
They have gathered them from multiple sources: crawling, source
code repositories, package managers, and live websites (manually).

3 FRAMEWORK DESIGN
This section presents our approach to generating a dataset of web
pages that will later be analyzed. To accomplish this, we devel-
oped our analysis framework named WebAF. We start by giving
an overview of the framework, its division, and how its parts inter-
act. Lastly, we present each of its parts and the challenges of their
implementation.

3.1 Framework Overview
WebAF is the framework that we developed in order to generate
and analyze a part of the web, seeking for websites featuring We-
bAssembly code and analyzing them. Our framework is composed of
two main parts: a crawler and a scraper, each with a different role.
The crawler will simply access the websites and store information
about them, e.g., if they contain WebAssembly or make use of the
WebAssembly JavaScript keyword. On the other hand, the task of
retrieving the actual contents is left to the scraper, as well as the task
of analyzing the web page contents.

In terms of their respective architectures, the crawler and the
scraper are very independent of each other. The only point they
have in common is the PostgreSQL database which is where the
scraper obtains its data to process – the websites signaled by the
crawler. The crawler functions in a microservices architecture, al-
lowing it to scan a wider range of websites faster. We decided that
the scraper would not need such a complicated architecture since
it would scan only a smaller subset. The crawler and the scraper
can be run in parallel, but we need to keep feeding the new data to
the scraper because the crawler stores data in PostgreSQL, and the
scraper queries MongoDB. Also, if following this approach, we need
to be careful not to export the same data twice from PostgreSQL,
because this will affect the results we will obtain in the end. Next,
we present these two components in detail.

3.2 Crawler
Our web crawler uses Puppeteer [25] at its core and navigates through
the web obtaining and making a quick analysis of the received data.
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As we can see from Figure 1, our tool is loaded with the data pro-
vided by Amazon Alexa (which has recently been shut down by
Amazon [26], however, its API is still available [27]) – the websites
ranking based on traffic. It contained the top 1 million most accessed
websites on the Internet, so it would be a good source for analyzing
patterns in them. Those websites may be following the most recent
trends to keep their users engaged and achieve better performance.

This list is then passed to the Scheduler component, which selects
a batch to load to a cache database (Redis [28]). By default, this
value is set to 1000 websites. The scheduler then retrieves an URL
from the cache and puts it into a RabbitMQ [29] queue to be then
consumed and accessed by a Worker node. If the number of inserted
URLs in the queue is different from the number of worker nodes, it
will retrieve more until this condition is met. Then, it will wait until
a response is emitted from one worker. When this happens, it parses
the response from the worker and stores it into Postgres [30], our
persistent storage database. Lastly, it proceeds to get another URL
from Redis and the cycle repeats itself until the batch reaches its end,
in which case it will load the next batch, or there are no more links
and the scheduler waits for the remaining responses and exits.

When a worker node is started, it first bootstraps Mitmproxy[31]
with the available plugins and then starts the Puppeteer[25] compo-
nent, also loading the plugins accessible. Then, it waits for an URL to
be available so it can start working. As soon as one becomes available,
the crawler accesses it, and when a response is emitted by the server,
the proxy calls the plugins in order to perform the needed actions
on the page. Then, the Puppeteer modules come into place to over-
ride anything that may be needed – in our case, the WebAssembly
plugin overrides attempts to create or run a WebAssembly module.
Only after these steps the response reaches the browser and is then
executed.

After getting to the browser, we collect all the anchors that are
present in the website and randomly select a subset to be analyzed
next (the number of elements of this subset is four by default but can
be altered by changing an environment variable). The worker node
then proceeds to queue the selected subset on Puppeteer, to later be
accessed. This process continues until we reach the maximum depth
from the original website (by default the maximum depth is one
website, but can also be changed) in which case we will not select
more URLs and proceed to crawl URLs that are on the same level
or on the levels above. In the end, the worker generates a response
with all the URLs that served as an entry point for all the others,
with the accessed URLs, and with the results signaled by each of
the plugins in case they have made any work. This response is put
into the result queue and is then handled by the Scheduler. Finally,
we remove the URL from the job queue to prevent other nodes from
performing repeated work. If a node does not perform this operation,
after a while the URL will reappear in the queue to be processed,
indicating that a worker node has failed and its work was lost.

Given the microservices architecture, our web crawler is an excel-
lent candidate to be scaled in multiple machines, like in a Kubernetes
(K8s) [32] cluster. Using this technology, we can launch containers at
will without concern about which machine should they be deployed
to and how they will communicate with other containers that may be
placed in different physical devices after the cluster has already been
set up. Since we had our own infrastructure with multiple powerful

machines, we wanted to host a Kubernetes cluster there, so we could
be able to run our tool.

The first step was to deploy virtual instances on the physical
machines, so we started to build our Vagrant config with one virtual
machine for each host, with all the CPUs of the host except four and
with all of its RAM except 4GB.

The next step was to then deploy a Kubernetes cluster using these
machines. A Kubernetes cluster has two types of machines:

• Control plane. Instance which controls the whole cluster,
namely, scheduling of the containers, detecting and respond-
ing to events such as new deployments being made or re-
sources being deallocated, among others [33].

• Node5. Instance where the containers are run and report
events to the control plane. This type of instance runs on
every machine of a cluster meaning a device in the cluster
can both be a control plane and a worker node.

In addition, because we are using our own infrastructure – which
is not a private cloud – and the need to deploy a production-grade
cluster, we had to set up our cluster using kubeadm [34], a tool that
facilitates the bootstrapping of a Kubernetes cluster.

For the container runtime, we decided to go with Docker [35]
because it is the most widely used platform for running containers
both for users and companies [36] and is easy to set up and install.
After installing Docker, all that was needed to do was to install
kubeadm [34], kubelet [37] and kubectl [38].

Lastly, we were missing the networking solution which is needed
for the nodes and pods to communicate with each other (and conse-
quently pods and containers) and to be accessible from the outside.
We went ahead with Calico [39] because it has high performance, is
open-source, and is already very mature - suitable for production.

At this point, all the requirements are met to proceed with the
installation. After initializing the controller node, we must issue a
command on the other nodes we want to join to the cluster. In order
for this to work, the machines need to communicate with each other,
so in the Vagrantfile we need to create a new interface for each
one of them because by default they are behind a NAT and do not
communicate.

We had our small cluster deployed in one virtual machine, so we
needed to make a quick test on the crawler. It was deployed using our
own Docker images and some Helm [40] charts. Helm charts are basi-
cally packages that we can easily install in our cluster, like containers
that are very easy to configure. For the external technologies used
by the crawler, we relied on Bitnami’s [41] Helm charts as they are
very well documented besides having some modifications over the
original images. For our docker images, we needed to have a private
docker registry and to accomplish this, we decided to simply host a
docker registry as a container on the master node. After setting it up
and pushing the images there, we were able to deploy the crawler
on the Kubernetes cluster and make a quick run to check everything
worked properly.

The solution we found to connect multiple virtual machines from
different physical machines was to use the bridged mode [42] for the
virtual machines, which assigns one IP to each virtual machine as if
it was a physical node in the network.

5To avoid ambiguity, this type of node will be called worker node from now on
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After solving all network-related issues, we still needed to manage
how a cluster with multiple masters was set up. After reading the
Kubernetes documentation [43], which mentioned the use of a load
balancer, we chose to deploy a virtual machine that would only serve
this purpose. We decided to go with HA Proxy [44] since it is very
mature, is open-source, and has an excellent performance. Also, with
a load balancer, we could be able to easily check if a master node is
down and take action to bring it back up and running.

To sum up, our final deployment was composed of three Kuber-
netes masters, twenty Kubernetes worker nodes, and one load bal-
ancer, corresponding to a virtual machine each with a public IP. The
VM deployment was configured with Vagrant and their provisioning
with Ansible, using roles. The number of virtual machines and other
parameters can be configured to adjust to the available devices. After
the machines were ready, we just deployed our application in the
cluster with a hundred crawler worker pods and started crawling the
web.

3.3 Scraper
Now we will present the scraper we used to collect the data that was
marked by our crawler, and discuss some of the challenges we faced
during its implementation.

Our scraper is a very simple tool that will work with the results
of the crawler. It is developed in Python 3 [45] and uses Mon-
goDB [46] as its storage. The data gets exported from Postgres using
psql [47] with the ROW_TO_JSON function, present in this Data-
base Management System, and is imported into MongoDB through
mongoimport [48].

The scraper can be decomposed in the items we can see in Figure 2:

• Controller. Controls which websites to visit and passes the
results to the Analyzer.

• Selenium [21]. The browser controller which accesses the
websites.

• Mitmproxy [31]. Serves the same function as it did in the
crawler: obtain all the requests and responses, allowing us to
analyze them through the use of plugins.

• Filter. Is a Mitmproxy plugin that analyzes the responses
obtained by the scraper.

• Analyzer. Perform an analysis of HTML, JavaScript, and
WebAssembly (described in Section 4).

The scraper is initialized with multiple threads (the number can
be configured on startup) and each one of them will scan a different
website. The controller will start a Mitmproxy instance with the Filter
plugin and set up its Selenium browser instance to make requests
through the proxy. Then, it will contact the database, get one link to
visit, and load it into the browser, to access it. When the responses are
obtained, they are passed to the Analyzer, which will filter and accept
only valid HTML, JavaScript, and WebAssembly. These responses
are stored, hashed to only save repeated responses once, and then
passed to the Selenium browser so that it can process the page and
make any new requests.

When all is done, the Controller continues its job and forwards
the findings to the Analyzer, which will perform a series of static
analyses on the obtained files. Finally, both the responses and the
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Fig. 2. Scraper low-level architecture

results of the analyses are sent to the database where they are going
to be stored and later processed.

All accesses to the database are mediated by a wrapper that we
defined and they are synchronized, in order to avoid repeating saved
requests. This wrapper is shared among all threads, and this is how
we can guarantee that each thread gets a different URL to analyze.

We decided to simplify this part of our framework since it will
only visit a subset of the URLs the crawler has accessed. The scraper
runs on a single machine and can take advantage of multiple cores.

The biggest challenge in the implementation of this tool was
whether to first obtain all the results and then analyze them, or ana-
lyze them first and then store them. The first approach allowed us to
scan more websites more quickly but when it came to analyzing their
contents, it became too slow, possibly due to retrieving big responses
from MongoDB, from multiple collections. The whole process of
retrieving the contents to analyze and then storing the results was
just too slow, so we decided to put the analysis step in between ac-
cessing the website and storing its contents - the second approach.
This showed itself the best way to tackle analysis since we already
had the contents in memory and did not need to fetch them again
from the database. It takes a little more to access the same amount
of websites as the first approach but we can obtain the results right
away and the overall progress is not that slow in comparison.

One of the other challenges we had to overcome when imple-
menting the scrapper was how to handle the failures of Mitmproxy,
because it fails silently, meaning that the Selenium browser would
not receive an error, just an empty response for every request. The
way we handled this was to kill the current Mitmproxy instance,
close the browser instance and start the proxy in a new port. This
would only affect one of the threads, leaving the others intact, since
each one has a different instance of the proxy.

Finally, to handle failures from a thread (in case an exception
occurred and we could not finish the request), we did not want its
website to be forgotten and its results missed, so we implemented a
cache in the system with the Least-Recently Used policy. The cache
has a number of entries equal to the number of threads running.
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Fig. 3. Distribution of sizes of the analyzed websites.

Using this approach, we guarantee that a website is only removed
after being processed and its results saved. This cache is invisible
to the controller and is handled in a wrapper to the database. It is a
synchronization point, meaning only one thread at a time is able to
request a website, allowing us not to repeat the same work multiple
times.

4 DATASET
This section presents the methods that WebAF uses to be able to
analyze the data it gathered from the web pages it connected to. We
begin by giving an overview of our techniques and explaining in
more detail what were the conditions when the dataset was generated.
Then, we take a look at the WebAssembly analysis.

4.1 Collected Dataset and Generic Analysis
The scraper described in Section 3.3 performs multiple analyses on
the obtained data. The type of analysis depends on the type of content
retrieved from the web. Since we are only dealing with code, the gen-
erated dataset contains only HTML, WebAssembly, and JavaScript.
To the best of our knowledge, this is the first study that investigates
the relationship between JavaScript and WebAssembly only focusing
on real web pages. This also constitutes the first study to evaluate
the prevalence of WebAssembly in the wild. With this evaluation, we
want to better characterize the web nowadays, regarding the usage of
WebAssembly, its interaction with JavaScript, and how it is loaded,
either directly from JavaScript or from HTML.

Since WebAF is separated into two independent parts, we chose to
run the crawler and the scraper at two different times, because the
available resources on our infrastructure are limited and due to time
limitations, since the resources are shared with other researchers and
need to be allocated for a well-defined period of time.

Before performing analysis on the specific resources of a web
page, we wanted to get some generic insights on the obtained dataset.
For that, we chose to study the size of whole websites (excluding
images and other resources that were not relevant to our study), as
it allows us to perceive how big (or small) the web is on average. It
also enables us to evaluate the percentage of each type of resource.
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(a) Percentage in size.

HTML

24.405%

JS

75.592%

WASM0.002%

Percentage of files

(b) Percentage in files.

Fig. 4. Percentage of each resource in terms of number of files (left)
and size (right)

Minimum size 0.0B
Average size 2.3MiB
Maximum size 85.8MiB
Percentile 25 444.4KiB
Percentile 50 1.4MiB
Percentile 75 3.2MiB
Total size 261.8GiB
Total URLs 116101

Table 1. General statistics of the dataset.

In Figure 3, we can see that 50% of the webpages we visited are
around 2MiB or less in size, which is a big number, since we are only
measuring code, so the pages may take a little while to load. It also
shows us that there are only a small amount of websites that are very
small.

We also evaluated the prevalence of each resource (HTML, JavaScript,
and WebAssembly) on each website, and obtained both their percent-
age relative to the size of each content (Figure 4a) and relative to the
number of files found (Figure 4b). We can see that besides being very
popular in the last years, Wasm only holds a very small percentage
both in size (possibly due to being a binary format, so very compact)
and also in the number of files. JavaScript holds the position of the
most used resource on the web, allowing us to infer that most of the
modern web is driven by this powerful language since there are more
JavaScript scripts than HTML content. Most of the content nowadays
is loaded through JavaScript, not being present in HTML statically.

We can see that we were able to obtain data from a total of 116101
websites, making a total of 261.8GiB6. The minimum size of a
website we obtained was 0.0B, meaning we did not obtain any data
from them, either due to encoding errors processing the returned data
or the website did not respond, although it accepted our connection.
Taking a look at Figure 3 in conjunction with percentile 25 from
Table 1, we observe that there are a lot of websites with very low
size, meaning those websites were signaled by the crawler so they
have been active in the past. However, since the time of crawling
was different from the time of scraping, some of them might not be
available at the time of scraping due to Internet dynamism. We can

6This is the total amount of data we would store if we did not deduplicate data.
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Fig. 5. Distribution of WebAssembly file sizes.

Minimum size 0.0B
Average size 1.9MiB
Maximum size 20.7MiB
Percentile 25 41.2KiB
Percentile 50 627.4KiB
Percentile 75 2.3MiB
Total size 70.0MiB
Total unique files 36
Maximum number of reuses 19

Table 2. WebAssembly statistics of the dataset.

see that half of the dataset is 1.4MiB in size, which we consider an
amount similar to what we could the real world. Due to the time a
website may take to load, developers want to ensure it does not take
too much time but also that it transmits all the needed information
for it to work properly, this is considered a reasonable value by us.
Percentiles 50 and 75 are not too far from each other, meaning that a
big range of websites falls into these two values. Given the maximum
value of 85.8MiB, we can see it is too far from 3.2MiB, as we would
expect since it would import an enormous amount of code and take
many seconds (or even minutes) to finish a request, making a user
give up on the website quickly. Next, we present our analysis of the
websites’ subcomponents.

4.2 WebAssembly Analysis
The main focus of our study is in WebAssembly binaries, so this
analysis is the core of our investigation. We studied the amount of
imported and exported functions as it constitutes the main point of
interaction of WebAssembly code to the outside, mainly JavaScript
code. We also wanted to take a look at the size of the binaries we
were able to find.

In Figure 5 we can see that 20% of the total collected WebAssem-
bly files is around 50KiB or less, meaning they are very small, as one
would expect from a file in a binary format. We can see two spikes
between 256KiB and 4MiB, meaning this is where the biggest num-
ber of WebAssembly binaries is located, which we consider being a

Emscripten

47.2%

Rustc

11.1% Unknown

41.7%

Identified WASM compilers

Fig. 6. Compilers of Wasm binaries in the dataset.

range close to one of the real world, because a binary that is a lot less
than 256KiB probably has very little function and may not be worth
its existence, and one bigger than 4MiB is more likely to be a very
important program, which handles big chunks of data, most likely a
fully-featured application or a library, which are not very common
yet.

The number of binaries we found was way below what we were
expecting, but still, we believe 36 is a reasonable number for our
dataset. The minimum size we observed was 0B, meaning we could
not receive and analyze the response from the website. We can see
that the average is almost three times the value of percentile 50,
meaning that data is not well balanced, so we have fewer files that
are bigger, as we saw in the CDF plot. So we also expect percentile
75 to be far from the maximum size we collected since data is very
sparse in this area.

Taking a look at the averages of both parameters, they are higher
than our expectations, which are around half of the presented values.
We did not expect that WebAssembly programs would interact this
much with the outside, opening space for the existence of vulnerabil-
ities.

Finally, we also tried to identify the compilers that generated the
binaries we collected. We performed this analysis in a very simple
way, just to have a very high-level overview of the toolsets used
currently. The results are presented in Figure 6 and we can see that
Emscripten is the most popular one, as we would expect since most
code bases still rely on unsafe languages like C/C++. Followed by
it, there is a piece where we could not identify the compiler due
to the very naive approach we took. Then, we have Rustc with a
non-negligible percentage, allowing us to infer that there is also a
small yet significant presence of Rust in the web, making the arising
of vulnerabilities more complicated.

5 PROOF-OF-CONCEPT EXPLOITS
This section presents WebAssault, the tool that we envision to au-
tomatically create exploits in JavaScript that trigger vulnerabilities
in WebAssembly code. It is an initial step towards generating com-
plex exploits for vulnerabilities present in WebAssembly binaries.
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We begin with an overview of the design of our tool (Section 6). In
Section 6.1, we present some of the challenges we faced. Lastly, we
discuss implementation details (Section 6.2) and evaluate the tool
with a handmade exploit (Section 6.3).

6 OVERVIEW

Wasmati

Trace
Instrumenter WASP

.wasm

WebAssault

Input

.js

Output

Exploit

Instrumented
Binaries

Exploit
Generator

.json

Vulnerability
Report

.json

Analysis
Report

Fig. 7. System architecture.

Figure 7 sketches the architecture of our tool, WebAssault, which
aims to generate exploits for WebAssembly vulnerabilities. Dashed
lines represent components developed by us whereas the solid ones
represent already-existent components. It is composed of multiple
stages with different purposes:

(1) Wasmati: A WebAssembly binary is fed into Wasmati for it
to create a CPG which will be queried for the common vul-
nerabilities. A report (vulnerability report) with the findings
is then generated in JSON format showing the function(s)
where the bug(s) is(are) present, the type of the vulnerabil-
ity(ies), and a small description of it(them).

(2) Trace Instrumenter: This component receives the WebAssem-
bly binary and for each vulnerability reported, we trim the
possible paths that WASP would try in order to prevent it
from exploring paths that will not lead to the vulnerability
we are testing. We need access to the binary in order to patch
it with instructions that guide WASP to the possibly vulner-
able path. Multiple instances of instrumented binaries may
be generated, depending on the number of vulnerabilities
detected by Wasmati.

(3) WASP: Executes the instrumented binary provided by the
trace instrumented. WASP’s concolic execution is guided to
execute the program along the path that was selected in the
previous step. If the path leads to a real vulnerability, we will
get as output a JSON report (analysis report) containing the
input value(s) of the program that can trigger the vulnerabil-
ity, and consequently the information needed to generate a
simple exploit.

(4) Exploit Generator: The last component of our system uses as
input the analysis report produced by WASP in order to gen-
erate the exploit that triggers this vulnerability in the code. If
the vulnerability can be triggered, it outputs an exploit writ-
ten in JavaScript that when executed will also take advantage
of it. Otherwise, it will simply disregard this vulnerability, as
WASP could not find an execution path so it will not receive
any meaningful input.

6.1 Implementation Challenges
For our tool to fulfill the task of automatically generating exploits,
using Wasmati and WASP, meaning, static and dynamic7 analysis,
respectively, we need to implement the modules we pictured as
dashed in Figure 7. We aim at generating multiple binaries based on
the vulnerabilities Wasmati identifies. The main challenge here is to
trim all of the possible paths on a binary, for it to follow only the one
intended, as we will explain in Section 6.1.1. Because we are dealing
only with the WebAssembly file it may also be hard to find the exact
type of arguments that are being passed on to a Wasm library. To
handle this issue we need to analyze the code flow in JavaScript,
which we discuss in Section 6.1.2.

6.1.1 Trimming Paths in the Concolic Execution. Concolic
execution works by exploring all the possible paths a program can
go through, using both symbolic and concrete executions. The main
challenge of this approach is the well-known path explosion problem.
However, in our work, since we have the trace from Wasmati, we
want to test only a single path at a time, so we need to cut all the other
ones in order to obtain the inputs we need in a timely manner. Also,
because WASP extends the WebAssembly syntax, we have support
for more instructions that can help us guide concolic execution in the
way we desire.

Specifically, our idea to guide WASP’s concolic execution is as
follows. Since we have access to the CPG of the module we are
testing, we are able to get the execution paths by analyzing the
control flow graph, allowing us to trim the ones we do not want to
test by patching the WebAssembly binary with instructions that will
make the path condition automatically false in these zones.

To cut a path, we can simply add the instructions i32.const
0; sym_assume, because we need the value on top of the stack
to be 0 and we also need to tell the concolic execution engine to add
this value to the path condition. These instructions are inserted in the
branches that we know are not needed for our execution, allowing us
to explore the path we need quicker. The path-trimming technique just
described will be implemented by WebAssault’s Trace Instrumenter.

6.1.2 Generating Symbolic Inputs from JavaScript Calls. To
determine the correct symbolic type of a variable, we should be able
to know how it is declared, or in the case of a function parameter,
how it is called. Since a high percentage of WebAssembly code is
used on the web, it needs to be called by JavaScript code in order to
run. Unfortunately, as of today, WASP cannot determine correctly
the proper symbolic type to assign to symbolic variables. In some
cases, this limitation is due to the fact that they may be a reference to
variables in WebAssembly’s linear memory (arrays). Since variables
are only referenced using an index, it is quite hard to determine their
length. Therefore, our solution is to analyze the data type when the
function is called in JavaScript, where we can clearly determine the
type of each variable being used.

To showcase our approach we consider an example of an array
being passed from JavaScript to be sorted by a WebAssembly module.
By analyzing only the WebAssembly code, we would not be able
to determine the length of the variable that we use as parameter. In
contrast, since we have access to the JavaScript calling the function,

7By dynamic analysis in this context we mean concolic execution.
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we can clearly see that it’s type and size. With this new information,
we can create a new function in the WebAssembly module, that will
create a symbolic array of the corresponding elements and will later
be recognized as so by WASP. This new array would then be used
as an argument to call the function called by JavaScript, enabling
us to more accurately determine if in fact, a bug is present in the
code or if it is just a false positive reported by the Wasmati tool. If
there are multiple calls to the same function and they use arrays of
different sizes, we run WASP multiple times for the same path, but
with different symbolic types in order to better test all the possible
values we can get.

With this approach, we could inject code in the original We-
bAssembly binary to explicitly assign symbolic types to variables
and then call the function we want to analyze with them.

6.2 Implementation
We decided to start with the instrumentation of the binaries. To im-
plement the instrumenting behavior on Wasmati, we created another
visitor which allows us to write Wasm files in text format. We also
defined a new data structure that could encode the execution flow
paths that can reach the vulnerabilities. This new structure stores a
list of CPG nodes in reverse order, representing the path from the vul-
nerability to all the possible sources that can trigger it. We achieved
this by creating a path with just a single node - the one where the
vulnerability is identified - and performing a modified Breadth-First
Search (BFS) algorithm on it.

This BFS runs from the vulnerable node, in reverse order, until
we reach the Module node, which is used in the CPG to represent
the root of the graph. If a path we were taking did not reach this
node, it is discarded. To obtain all the possible paths to the vulnerable
node this BFS maintains a queue of paths that need to be expanded
and it expands each one of them separately. Whenever we reached
a branching point or a function that could be called by JavaScript
(i.e. exported by the module), we would clone the path and add the
source nodes of the branching point to the original path and its copy.
One of the nodes would continue to be expanded and the other one
would be appended to the queue.

After this, the found execution paths are returned and converted
to JSON so that the relevant labels of the nodes can be printed to
the vulnerability report generated by Wasmati and allow the user to
make a manual inspection if desired.

Finally, we create a directory named instrumented where we
will place the instrumented WAT files. In this phase, we receive the
paths we obtained from all the vulnerabilities and run the previously
mentioned visitor on each one of them. The wat-instrumenter
is fed with the CPG and a path. It starts traversing the graph by the
root module, trying to reconstruct a file very similar to the one that
generated it, in text format. Whenever it encounters a function node it
tests if it is the function where the vulnerability was found, if it was it
will trim the paths inside of it, otherwise it will just print the regular
function. We followed this approach because other functions in the
module can have multiple execution paths and some of them may be
useful to our path, but since we could not decide on which ones were
and which did not, we took a conservative perspective and allowed
them to be fully present. This allows us to decrease the number of

false positives WASP could issue due to calculating function outputs
that could not be generated by a given function, but since we would
have defined them as symbolic, they would be valid for WASP. As
stated in Section 6.1.1, we were able to prune branching conditions
using the described technique where the path should not be taken.

The instrumentation functionality can be activated for Wasmati
using the flag -instrument, which will activate the -native
flag since we need to have the native queries determine vulnerabilities
in order to instrument the file accordingly.

We applied the process described earlier on buffer overflow vulner-
abilities with static allocation size and we were also able to generate
functional WebAssembly binaries. To generate the test case for each
of the runs, we used C and then compiled them with WASP-C. How-
ever, since WASP-C compiles a file and already fills it with the hooks
needed for WASP, we needed to perform a modification if we wanted
the file not to receive these modifications because Wasmati would
not be able to read the instructions WASP uses. After doing this, we
ran Wasmati on the generated file and it gave us the vulnerability we
wished for and an instrumented file. After passing this instrumented
file through the post-processing WASP needs, we were able to make
WASP find an input that would trigger the vulnerability.

6.3 Evaluation
We came up with the very simple buffer overflow where there is a
function named vuln that receives an argument. In this function, we
dynamically allocate a buffer with 256 bytes and then we check if
the argument we received was 1337. If it did not correspond to this
number, everything is fine, however, if the argument was 1337, then
we would write 10000 bytes on a buffer that can only fit 256. We can
see that WASP was capable of determining the correct input and so,
we could generate an exploit that would be vuln(1337), which
would call the Wasm module’s function.

Because of all the limitations of WASP and Wasmati, we only
managed to generate PoC exploits for WebAssembly, so we are not
confident enough to test WebAssault on real-world binaries. However,
we showed that it is possible to apply this technique to Wasm using
static and dynamic analysis together.

7 CONCLUSIONS
WebAssembly is a new format that is becoming more present in the
modern web by running code more efficiently in the browser and
also by being very compact. To the best of our knowledge, no study
has been performed that evaluated the prevalence of WebAssembly
in the wild, so there also does not exist a dataset comprised of only
wild Wasm binaries. We also are not aware of any tool capable of cre-
ating automatic exploits for vulnerabilities present in WebAssembly
binaries.

We evaluated the web by generating a representative dataset that
was later analyzed to the relative presence of different file types and
other metrics specific to the file type. We saw that besides being
popular, Wasm’s footprint is almost negligible on the current web,
but we hope to see an increase in the coming years. We proposed
WebAF as a web analysis framework and verified it could scale very
well, allowing for multiple parallel scans to occur.
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We propose WebAssault as the first framework capable of gen-
erating Proof-of-Concept exploits for WebAssembly vulnerabilities
using static and dynamic analysis. We were capable of generating a
functional exploit for a handmade vulnerability.

7.1 Future Work
In the future, we would like to improve the crawler present in our
framework, allowing it to be more easily deployed, and study how
it could scale to more than one scheduler, enabling it to improve its
scalability. Due to time constraints, we could not address all of the
challenges we intended to in WebAssault, so, we would like to solve
the JavaScript’s types analysis challenge. One thing that could be
improved in this framework is the Exploit Generator because it is not
finished so it is not fully automatic. Since we were only able to test
the exploit framework with a very simple example, we would like
to test it with more complex data, as well as overcome some of the
limitations of WASP and Wasmati, so we could use a wider range of
tests and could work with more vulnerabilities. Finally, we would
like to automate the whole WebAssault framework, as it requires us
to run the programs manually.
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