
C++ implementation of OSPFv2 extension for the support of
multi-area networks with arbitrary topologies

Xavier Carneiro Gomes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Rui Jorge Morais Tomaz Valadas

Examination Committee

Chairperson: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur
Supervisor: Prof. Rui Jorge Morais Tomaz Valadas

Member of the Committee: Prof. João Miguel Duarte Ascenso

November 2022





Acknowledgments

First, I would also like to thank my dissertation supervisor professor Rui Valadas for his valuable guid-

ance and support throughout the development of our work and writing of this dissertation. This disser-

tation would not have been possible without his help.

I would also like to thank my family and friends for their constant encouragement and support throughout

the years, and for keeping pushing me forward.

Last but not least, I would like to thank my girlfriend, for her company, love and support.

To each and every one, thank you very much.

i





Abstract

OSPF is a popular intra-domain Internet routing protocol, and to allow for better scalability, it implements

multi-area routing. However, this multi-area routing is based on a Distance Vector approach, which in-

troduces several limitations: (i) the topology is limited to a two-level hierarchy, with a single area at the

upper level, and (ii) globally optimal routing is not ensured. In this MSc Dissertation, we propose an ex-

tension to address these issues, by taking instead a Link State approach to multi-area routing in OSPF.

This extension is meant for OSPFv2 and introduces new types of Link State Advertisements, used by

the Area Border Routers (ABRs) to build and maintain an overlay and its respective graph, representing

a logical network over the physical one, used for multi-area routing calculations. Due to these additions

being exclusively used by ABRs, this extension is mostly transparent to all other types of routers. We

implemented this extension using the C++ programming language, and based our work on an existing

OSPFv2 implementation, written using this same language. We then tested the extended implementa-

tion, for both its correction and network convergence times. The results show that the extension operates

as expected, without having a significant impact in the network convergence times.

This MSc dissertation is supported by Instituto de Telecomunicações.
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Resumo

O OSPF é um protocolo intradomı́nio de encaminhamento na Internet bastante popular e, para permitir

uma melhor escalabilidade, implementa um encaminhamento multi-área. No entanto, este encamin-

hamento é baseado numa abordagem do tipo Distance Vector, que introduz várias restrições: (i) a

topologia fica limitada a uma hierarquia de dois nı́veis, com uma única área no nı́vel superior, e (ii)

as melhores opções de encaminhamento não são garantidas. Nesta dissertação, propomos uma ex-

tensão para ultrapassar estes problemas, que passa por adotar uma abordagem do tipo Link State

para o encaminhamento multi-área no OSPF. Esta extensão destina-se ao OSPFv2 e introduz novos

tipos de Link State Advertisements (LSAs), usados pelos Area Border Routers (ABRs) para construir

e manter um overlay e o grafo da sua topologia, que representa uma rede lógica sobre a rede fı́sica,

usada para os cálculos efetuados para o encaminhamento multi-área. Devido a estas adições serem

usadas exclusivamente por ABRs, esta extensão é praticamente transparente a todos os outros tipos de

router. Implementámos esta extensão usando como linguagem de programação o C++ e baseámos o

nosso trabalho numa implementação existente do OSPFv2, desenvolvida com essa mesma linguagem.

Testámos também a implementação estendida, tanto para a sua correção como para os tempos con-

vergência da rede. Os resultados mostram que a extensão funciona como esperado, sem ter um im-

pacto significativo nos tempos de convergência da rede.

Esta dissertação foi apoiada pelo Instituto de Telecomunicações.

Palavras Chave

OSPF; Internet; Protocolos Link State; Encaminhamento.
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1.1 Motivation and Objectives

Communication over the Internet is crucial for information to be transmitted between devices. To sup-

port this communication, several routing protocols are used. There are two main groups of protocols,

Interior Gateway Protocols (IGPs) and Exterior Gateway Protocols (EGPs). IGPs are further split into

two subgroups of protocols, Distance Vector Routing (DVR) Protocols and Link State Routing (LSR)

Protocols.

DVR protocols, such as Routing Information Protocol (RIP), rely on the transmission of messages

(distance-vectors), containing (destination, cost) pairs to disseminate the routing information across the

network. In this approach, routers know nothing of the network topology besides who they and their

neighbors are. This approach can present several problems and is very limited when it comes to scaling

of network.

LSR protocols, such as Open Shortest Path First (OSPF) or Intermediate System to Intermediate

System (IS-IS), provide each router with a complete view of the network. This approach prevents the

issues and limitations of DVR protocols. One very known and used protocol in Internet routing is OSPF,

presenting two versions, OSPFv2 (for IPv4) and OSPFv3 (for IPv6). To provide better scalability, OSPF

networks can be divided into areas, to reduce the amount of data that the routers must store, and

improve its scalability. This raises some problems, as currently, OSPF’s multi-area routing uses a DVR

approach. OSPF’s multi-area routing approach might prevent OSPF networks from achieving globally

optimal routing, and it limits the network topologies, as these areas are limited to a two-level hierarchy,

with a single upper-level area (the backbone).

For this MSc Dissertation, we proposed and implemented an extension to OSPFv2 to address the

existing issues present in OSPF’s multi-area routing, ensuring globally optimal routing, allowing the use

of arbitrary multi-area topologies, and also addressing some of the current restrictions that can be found

in current implementations. This solution was implemented using the C++ language and based on an

already existing OSPFv2 implementation, by John T. Moy, as specified in RFC 2328 [2] and thoroughly

described in its majority in [3]. Since we will be using C++, we also aimed to maintain the overall network

convergence times from the base version of this implementation. This extension has been previously

developed for OSPFv3, and this work can be found in [5].

1.2 Contributions

We proposed and developed an extension for OSPFv2, using the C++ programming language, allowing

the protocol to configure arbitrary multi-area topologies, while overcoming some restrictions present

in current implementations. We used John T. Moy’s OSPFv2 implementation [3] as the base for our

development. We also tested and measured convergence times for this extended implementation. From

2



the results obtained we confirmed its correct operation and potential improvement over current OSPF

implementations. The convergence times noted were not significant when faced with the restrictions and

limitations that were overcome.

1.3 Structure of the document

The next chapters of this Dissertation are organized as follows. In Chapter 2 we introduce two ap-

proaches to routing, DVR and LSR, and we provide more detailed insights over a known LSR protocol,

OSPF. In Chapter 3 we introduce and describe some key aspects of the implementation we will use as

the base for our work. In chapter 4, we give an overview of the solution proposed and developed for

this work. In chapter 5, we describe the changes and additions we implemented over the base imple-

mentation to accommodate our extension. In chapter 6 we describe the tests applied over our solution,

presenting and discussing the obtained results. Finally we make our final conclusions in chapter 7.
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2.1 Computer Networking

In routing, we can find three main types of network elements, the end devices, or hosts, the switching

equipment, and the communication media. These elements connect to form what we know as a com-

puter network, enabling routing and data transmission. In the end devices, such as laptops or smart-

phones, are where the information originates and where it is delivered. Switching equipment is what

performs the routing function, keeping routing tables describing how each destination can be reached.

Finally, the communication media provides a means of connection between switching equipment and/or

end devices, for instance via optical fiber or some form of wireless connection.

Alongside these elements, we also have routing protocols, to compute the best routes between the

network elements, both switching equipment and end devices, building routing tables in the switching

devices, and describing the routes to take for each destination. These routing protocols run on the

switching equipment and operate by exchanging control messages between themselves and neighboring

devices, excluding the hosts. Firstly, we can divide the routing protocols into two categories, inter-domain

(EGPs), and intra-domain (IGPs). As can be inferred from the names, these types of protocols are meant

to route information between several domains and within one, respectively. This report focuses on intra-

domain routing protocols and inter-domain protocols will not be addressed.

2.2 Intra-domain Routing

There are two main different approaches to intra-domain routing, i.e., routing within a single domain.

These two categories are DVR and LSR.

2.2.1 Distance Vector Routing Protocols

DVR protocols aim to implement a distributed and asynchronous version of the Bellman-Ford algorithm,

where each router sends to its neighbors its calculated cost to every network destination. Each router

determines these costs using two components, the cost advertised by their neighbors to the destina-

tions and the cost associated with the outgoing interface connecting the router to its neighbor. After

computing these costs, the routers will select the next-hop router providing the shortest path cost to

each destination, updating their routing tables and advertising its computed costs to their neighbors,

via a broadcasted message, the Distance Vector (DV), carrying (destination, cost) pairs. If a failure is

detected by a router regarding one of its neighbors, the cost the router attributes to it will be set to infinity

(∞).

This is the way the RIP [6] operates, in a general way. For each destination, it will store only the

information received from the best neighbor(s), the one(s) who can provide the shortest path cost for

6



Figure 2.1: Count-to-infinity problem
Adapted from [1]

that destination. If receiving a better cost to one of its already routed destinations, a router will update

its own cost to that same destination. Furthermore, if the neighbor that provided that new cost was not

the current next-hop router, it will be set in the router to be. In RIP, the cost to a destination usually

represents the number of hops needed to reach it. In RIP, DV are periodically transmitted using a 30

second interval.

One of the biggest known issue with DVR approaches is the Count-to-infinity problem. To illustrate

this problem, consider figure 2.1, where DiA represents the distance (in hops) from router i to router A

and nh the next hop router in the direction of A. Let’s also consider the network to be stable at t=0. By

then, B registers a cost of 1 hop to reach A, C a cost of 2, and D a cost of 3, with the expected next hop

routers, A for B, B for C, and C for D, as they should. Now let’s assume that right after t=0 the connection

between A and B fails. Realizing the failure, at t=1, B will send a cost of ∞ to C, while simultaneously C

sends its stored distance of 2 to B and D. In the next iteration, at t=2, B will advertise a cost of 3 (cost

advertised by C plus B’s cost to it), and C will increase its cost to 4 since it now believes it must take the

route offered by D to reach A. In the next iteration (t=3), because C was advertising a cost of 4, both B

and D will update their costs to 5, as both of them believe C to be their next-hop router to A. This cycle

then goes on indefinitely if nothing is done regarding the issue.

There are several ways to mitigate this problem. For example, in RIP infinity is ”redefined” to 16

hops. A destination with a cost of 16 will be considered unreachable and will therefore be eliminated

from the routers’ routing tables. This introduces serious topological restrictions, as RIP cannot support

paths with more than 15 hops. Also, if an error occurs, the time interval until the network converges to

a stable state could be significant. Other approaches are possible, such as triggered updates or split

horizon, allowing for faster convergence times after a failure occurs.
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2.2.2 Link State Routing Protocols

Contrarily to DVR, where each router only stores its information regarding the network destinations, in

LSR protocols, each router maintains a complete view over the network, building their routing tables

from this routing information. Each router maintains a Link State Database (LSDB), in which they store

the routing information needed to build their routing tables, updating it as the protocol is run and the

network changes. There are three types of information to consider:

• Topological information, describing the routers, the links that connect them, and the costs as-

signed to their interfaces.

• Addressing information, describing the routable destinations and their connection to routers and

their links. This type of information can be further distinguished as domain-internal or domain-

external.

• Link information, describing the addresses used to transport packets across neighbors in a link.

This information is local to each router and is not maintained in the LSDB.

Also, the LSDBs at all routers must be kept up to date, meaning there should exist synchronization

among them. To that end, several synchronization mechanisms are used. These are described from

Sections 2.3.6 to 2.3.11.

With an increase of a network’s dimension, the resulting LSDB size will also increase. This enlarge-

ment of the LSDB size might not be supported by all routers. To cope with this limitation, LSR protocols

structure the networks in several smaller areas, where each area has its LSDB. Routers only need to

store the LSDB of the area they belong to. To communicate between areas, a special type of router is

used, the Area Border Router (ABR). These routers are placed in the border between at least two areas,

belonging to all the ones they directly attach to and storing all the associated LSDBs. For communica-

tion to be possible across different areas, information of the destinations inside each area is advertised

to other areas, through the ABRs. To exchange this kind of information, ABRs run an inter-area routing

protocol, besides the intra-area one, to gather the information that needs to be injected within the areas

they directly attach to.

These are some general descriptions of what exists and is implemented in LSR protocols. Two main

protocols, very similar to one another, are the OSPF and the IS-IS. In the next sections, we will go

deeper into how OSPF works, and the features it has implemented. As this work focuses only on the

IPv4 version of OSPF, only this version of the protocol will be discussed in detail. IS-IS will not be

discussed, but its features are described and compared to those of OSPF in [1].
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2.3 The Open Shortest Path First protocol

OSPF is currently one of the standards of LSR, with two versions available, OSPFv2, for IPv4, defined

in Request for Comments (RFC) 2328 [2], and OSPFv3, for IPv6, defined in RFC 5340 [7]. OSPF

implements the main aspects described in the previous section, with some limitations to its multi-area

routing, and precisely the motivator for this work.

2.3.1 The structure of the OSPF routing domain

As we stated, OSPF’s routing domains are usually structured into more than one area. But this separa-

tion into areas has its limitations, as it is restricted to a two-level hierarchy, with one area on the upper

level, called the backbone, and all the others on the lower level, where all inter-area communication

needs to cross the backbone area. Multi-area networks are then designated as hierarchical networks.

Also, a distance vector approach is taken for multi-area routing, and thus the issues verified for DVR

protocols are also present.

Within an OSPF routing domain, routers can be of three types, either an Autonomous System Border

Router (ASBR), an ABR, or an area-internal router. ASBRs establish connections to external routing

domains, via an EGP, such as the Border Gateway Protocol (BGP). ABRs connect the backbone area

to lower-level areas, and exchange information regarding the areas they connect to with neighboring

ABRs. Area-internal routers simply represent the routers internal to each area.

A simple example of the structure of the OSPF routing domain is presented in figure 2.2, where R1

represents an ASBR, R3, R4, and R8 represent ABRs and the remaining routers represent area-internal

routers.

2.3.2 Link types and element identifiers

There are five types of links, point-to-point, point-to-multipoint, Non-Broadcast Multiple Access (NBMA),

broadcast, and virtual links. For this work, we will mainly focus on point-to-point and broadcast links,

also designated as shared links. Point-to-point links are the most common, directly connecting two

routers. Shared links can be seen as smaller networks, with the capability of interconnecting several

devices, such as hosts and routers. Shared links can be divided into two types. If only one router

attaches to the link, it is a stub shared link. If there are two or more routers attached, it is a transit

shared link. This distinction is also illustrated in figure 2.2. For each transit shared link in the network,

there must be an elected Designated Router (DR), and if possible, a Backup Designated Router (BDR).

We will designate the transit shared links simply as shared links.

In the network, both routers and links need to be properly identified. Routers are identified by the

Router ID (RID), unique within the routing domain it belongs to. Unlike in OSPFv3, in OSPFv2, the
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Figure 2.2: Structure of the OSPF routing domain

configuration of this RID is not mandatory, and if it is not done, the address of the interface with the

highest address in the router will be used as RID. Links are identified through the Hello protocol (see

Section 2.3.7). Point-to-point links are represented through the RID of the router’s neighbor on that link,

in combination with the outgoing interface attached to that same link, to distinguish among parallel links.

Shared links, in OSPFv2, are identified by the address of the DR interface (the DR’s interface connecting

to the link, not the DR’s RID). In OSPFv3, the shared links are identified through a combination of the

DR’s RID with a local tag generated by them.

2.3.3 The LSDB elements

In OSPF, the LSDB elements are called Link State Advertisements (LSAs). LSAs carry the addressing

and topological information needed to correctly build the network view at each router. LSAs can be

flooded independently, but in OSPFv2 some of them do not separate topological and addressing infor-

mation. Figure 2.3 shows a summary of the structure of the OSPFv2 LSAs. In this figure, the repeatable

fields/groups of fields are indicated with darker rectangles.

All LSAs share a common header, with only slight differences from OSPFv2 to OSPFv3. The LSA

is uniquely identified by three of the fields in the header, the Advertising Router, the LS type, and the

Link State ID. Also, three other fields define the LSA’s freshness, which can be useful to resolve some
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Figure 2.3: Structure of the OSPFv2 LSAs. (a) single-area routing LSAs and (b) additions for multi-area routing
Adapted from [1]

conflicts, as we will describe in upcoming sections. These fields are the LS Sequence Number, the LS

Age, and the LS Checksum.

The LSA types we will discuss are the ones present in OSPFv2, namely the Router-LSA, Network-

LSA, and AS-External-LSA, for single-area routing, and Network-Summary-LSA and ASBR-Summary-

LSA for multi-area routing, in Section 2.3.12. Some differences exist between these LSA versions in

OSPFv2 and OSPFv3, besides the addition of two more LSA types in OSPFv3, the Intra-Area-Prefix-

LSA, and Link-LSA, providing a better separation of addressing and topological information by the LSAs.

These differences can be seen in detail in chapter 5.7 of [1].

2.3.4 Router-LSAs and Network-LSAs

Each router advertises one Router-LSA per area they are attached to. Router-LSAs are used to de-

scribe the router, its outgoing interfaces, and the addresses assigned to either itself or its interfaces.

The originating router is identified through the Advertising Router field of the LSA header. Also, the

Router-LSA is uniquely identified within the LSDB through a combination of the Advertising Router with

the LS Type.

The Router-LSA contains a Number of Links field, indicating the number of link descriptions carried

in that LSA. Also, a repeatable set of fields is used to describe the router interfaces, where each set

represents a link description. Each link description is characterized by four fields, Type (type of link), Link

ID, Link Data, and Metric. Depending on the type of element being described, the fields may contain

different kinds of information.
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The Network-LSA, contains a Network Mask field, followed by a repeatable number of Attached

Router fields. Network-LSAs are used to describe the transit shared links (see Section 2.3.2) of the

network. The Network Mask field contains the mask of the prefix advertised by the link, and all the

attached routers are identified through their RIDs in the Attached Router fields. The link is identified by

its IPv4 address, in the Link State ID field of the header, along with its network mask. For a shared link,

its Network-LSA is originated by the link’s elected DR.

With the information carried by the Router-LSAs and Network-LSAs, it is possible to describe the

whole intra-domain area topology, including routers, point-to-point links, and shared links. Also, all the

prefixes from within the domain become known, namely, the prefixes assigned to the routers themselves,

to point-to-point links, to transit shared links, and to stub shared links. This is true for OSPFv2, but

in OSPFv3, addressing information is instead described by Intra-Area-Prefix-LSAs. The topological

information is described the same way in both versions of the protocol, with small changes in the LSAs

structures and link descriptions.

2.3.5 The AS-External-LSA

In OSPF, ASBRs, inject domain-external information into the domain they belong to. Despite their

name, these routers can serve as domain border routers and not only as Autonomous System (AS)

border routers. To advertise domain-external prefixes into their domain, ASBRs use AS-External-LSAs,

generated by themselves.

In OSPFv2, the external address is described by its prefix address, carried in the Link State ID field,

and the prefix network mask, carried in the Network Mask field. Each AS-External-LSA can only carry

information about one external prefix, being a new one originated for each prefix. ASBRs can also use

these LSAs to inject default routes into their AS (by advertising the 0.0.0.0/0 address).

AS-External-LSAs carry a special E-bit flag, defining how routers receiving the LSA should calculate

their costs to the external prefix. The Metric field carries the external cost to the advertised prefix, and

the E-bit can either be set to 0 or 1. With the E-bit set to 0, the routers consider the route to the external

prefix to be an E1 external route, with its cost being calculated as the sum of the external path cost

of Metric with the internal path cost from the router to the ASBR. Otherwise (E-bit set to 1), the route

is considered an E2 external route, where the cost is considered to simply be the external path cost

advertised. This bit can be used to influence the choice of ASBR to external routes by the routers.

2.3.6 Control Packets

We now leave the single-area networks’ part of the LSDB structure to begin with the synchronization

mechanisms present in OSPF. Before addressing the mechanisms, we need to understand the control
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packets used by OSPF. These are almost identical for OSPFv2 and OSPFv3, with slight differences

in the headers and in one of the packets’ structures. The OSPF packets are encapsulated in Internet

Protocol (IP) packets, using IP(v4/v6) 89, relative to OSPF.

There are five types of control packets:

• HELLO packets, supporting the Hello protocol ;

• LS UPDATE packets, used to disseminate LSAs across the network, resulting in possible updates

to the LSDBs of the routers;

• LS ACKNOWLEDGMENT (LS ACK) packets, used to acknowledge the reception of an LSA at the

router;

• LS REQUEST (LS REQ) packets, used to request one or more specific LSAs from another router;

• DB DESCRIPTION (DB DESC) packets, used by a router to advertise a summary of its LSDB at

the current state.

Just like with the LSAs, all the control packets share the same structure for the packet header. The

packet type is identified by the Type field of the packet header. A summary of the structure of these

control packets (the OSPFv2 version) can be seen in figure 2.4.

Figure 2.4: OSPFv2 control packets structure
Adapted from [1]
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There are two ways of transmitting packets in shared links, either unicast the packets or using one

of the OSPF multicast addresses. These addresses are the AllSPFRouters, targeting all the routers in

a link, or the AllDRouters, targeting only the DR and the BDR (if there is one) of the shared link.

Finally, some rules should be met for arriving packets to be accepted at the routers. In OSPFv2,

there are rules for accepting IPv4 packets at OSPF processes and for accepting OSPF-specific packets.

This set of rules can be found in Section 6.1.4 of [1] and are designated as interface acceptance rules.

2.3.7 Hello protocol

One of the synchronization mechanisms used in OSPF is the Hello protocol, used by the routers to con-

nect with their neighboring routers, as well as to maintain those connections, allowing for the detection

of possible failures in neighbors.

The Hello protocol uses HELLO packets. These packets include the RID of the sending router (RID

field in the header) and the RIDs of its neighbors (repeatable Neighbor field). As each interface in OSPF

needs to be assigned to one and only one area, this information is also carried in the packets (Area ID

in the header), to determine if an adjacency between routers is possible (the interfaces must belong to

the same area). There is a slight difference between the OSPFv2 and OSPFv3 HELLO packets, namely

the replacement of the Network Mask field (in OSPFv2) with the Interface ID (in OSPFv3).

Routers periodically broadcast HELLO packets to their neighbors. This period value is indicated in

the HelloInterval field, with a default value of 10 seconds. The relationships are maintained by verifying

that neighbors keep sending packets. If a neighbor stops sending HELLO packets, it is considered

dead if a time interval, advertised in the RouterDeadInterval (default value 40 seconds) field, is reached

without receiving a packet from the neighbor.

The Hello protocol determines if two neighbors can become adjacent, as they need to be for their

connection to be part of the network map. For two neighbors to be adjacent, the HELLO packets ex-

changed between them must verify the interface acceptance rules, referred to in the previous section,

and the communication between the neighbors must be bidirectional. A router determines this is true if

it finds its RID in the HELLO packets sent by the neighbor.

The Hello protocol works according to a state machine, the Neighbor State Machine (NSM). Each

router interface has its instance of the state machine. Figure 2.5 shows a summary of the NSM. The

NSM is fully described in Chapter 10 of [2]. This state machine is divided as the figure suggests. The

Hello protocol uses the fraction represented in figure 2.5.a, which is described in both Chapter 10.3 of [2]

and in Section 6.2.4 of [1].
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Figure 2.5: The Neighbor State Machine (a) as used by the Hello protocol (b) and by the Initial LSDB
synchronization
Adapted from [2]

2.3.8 Designated Router and Backup Designated Router election

The Hello protocol is also used to elect a shared link’s DR and BDR. The BDR replaces the DR in

case of failure. As the Hello protocol supports this election process, HELLO packets carry, besides the

Neighbor field(s):

• The Designated Router field, carrying the link’s DR RID;

• The Backup Designated Router field, carrying the link’s BDR RID;

• The Router Priority field, carrying the advertising router’s configured priority value.

The DR and BDR are determined by the sending router’s local election process outcome. The identifi-

cation of the shared links is addressed in Section 2.3.2.

The election process is part of the Interface State Machine (ISM). Each router interface runs its

instance of the state machine. The ISM is described in Section 9 of [2]. Figure 2.6 shows a summary of

the ISM.

The ISM is described both in Chapter 9.3 of [2] and in Section 6.3.2.1 of [1]. The interfaces start in

the Down state when switched off. For shared links, they move into the Waiting state when switched

on. The interface leaves this state to run the election algorithm when it either establishes a bidirectional

connection with an interface claiming to be the DR or BDR of the link or when a Wait Timer (set to 40

seconds by default) expires. After running the algorithm, the interface will end up in one of three states:

• DR, if the interface is the link’s DR;

• Backup, if the interface is the link’s BDR;
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• DR Other, if the interface is neither the link’s DR or BDR.

When an interface is elected DR or BDR, it won’t abandon that role until it leaves the link.

The election process must be run again when a change occurs in the link. This change can be one

of four:

• Attaching a new interface to the link;

• An interface abandoning the link;

• A neighbor starting to declare itself as DR or BDR;

• A neighbor changing its Router Priority.

Figure 2.6: The Interface State Machine
Adapted from [2]

The election algorithm is run locally for each interface attaching to a shared link, and it favours the

already elected DRs and BDRs. The election algorithm is fully described throughout Section 6.3.2 of [1].

When a new DR is elected, it must update the shared link identifier, and originate a new Network-LSA

to replace the outdated one describing that shared link. Routers attached to the link must also update

their Router-LSAs due to the same change in the link ID.

2.3.9 Flooding Procedure

OSPF uses a controlled and reliable flooding procedure to disseminate information, in the form of LSAs,

across the network. When an LSA is originated at a router, it transmits that LSA on all of its interfaces. If a

router receives a new or fresher instance of an existing LSA at an interface, it will, in turn, retransmit that

LSA on all of its interfaces, excluding the one where it was received, and install it in its LSDB. Otherwise,

the LSA is simply discarded. Whether the router accepts an incoming LSA or not, the receiving router

must acknowledge its reception back to the sender.
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The LSAs and their acknowledgments are carried in LS UPDATE and LS ACK packets, respectively.

Both these packets can carry information regarding multiple LSAs. While this is true, each LSA needs

an individual acknowledgment, and not for the LS UPDATE packet it came in. Every LSA that a router

transmits is placed in a list, the Link state retransmission list, keeping all the LSAs whose reception is

yet to be acknowledged, and retransmitting them according to a timer, the RxmtInterval (default time is

5 seconds), until their reception is acknowledged.

To flood an LSA into a shared link, a router will first send it to the link’s DR, by using the AllDRouters

multicast address. The DR will retransmit the LSA to all the other routers, using the AllSPFRouters

multicast address. Then all the routers must acknowledge the reception of the LSA to the DR, again

using the AllDRouters address. If the DR fails, the BDR will retransmit the packets. If retransmission

of LSAs is needed, it will be done individually (unicasted) for each router that didn’t acknowledge the

reception in time.

There are optimizations to minimize the number of LS ACK transmissions, namely the delayed ac-

knowledgment and the implicit acknowledgment mechanisms.

2.3.10 Updating procedure

The arrival of routing packets at routers is usually associated with either the insertion, update, or deletion

of LSAs at the LSDB. These actions may or may not be executed, depending on the packets’ freshness

and on a defined validity period. Furthermore, the action to take might vary depending on whether the

router is the LSA’s originating router. As was described in Section 2.3.3, the LSA header contains three

fields used to determine the LSA’s freshness, the LS Sequence Number (LS SN), the LS Checksum,

and the LS Age. When originating a new instance of an existing LSA, the router will increment that LSA’s

LS SN by one and reset its age.

A set of rules used to determine which instance of an LSA is fresher can be found in detail in Section

6.5.2 of [1].

For deleting information from the LSDB, coming in the form of LSAs, OSPF the premature aging

mechanism. When a router seeks to delete one of its originated LSAs from the LSDB, it will update that

LSA’s Age field to the MaxAge value (3600 seconds/1 hour) and flood it. When receiving the LSA, a

router will compare it to its stored instance, if there is one. Given the set of rules we referred to, unless

the stored instance has a higher LS SN (or equal LS SN and higher LS Checksum) nor has it reached its

maximum age, the received LSA instance will be considered fresher than its counterpart and will replace

the old instance in the LSDB. Because this new LSA has reached its maximum age value, it will then be

deleted from the LSDB.

When receiving an LSA, different actions can be carried out, depending on the freshness of the

received and stored LSAs and on whether the received LSA was originated by the router receiving it
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(self-originated). These actions are described and can be found in Section 6.5.4 of [1].

LSAs must be refreshed before their age reaches their maximum value. For that, the LSA’s originat-

ing router periodically generates a new instance of the LSA with an increment to the LS SN field. By

default, this is done every 30 minutes (LSRefreshTime). If an LSA timer expires, reaching the maximum

age value, the non-originating routers will remove the LSA from their LSDBs, while if it happens to its

originating router, a delete indication is issued for that LSA.

2.3.11 Initial LSDB synchronization

When a router joins a new link, it needs to synchronize its LSDB with all point-to-point neighbors, or

with the DR and BDR in the case of shared links. We will designate this process as the Initial LSDB

Synchronization. This process uses almost all of the control packets, the DB DESC, LS REQ, LS

UPDATE, and LS ACK. This process, just like the Hello protocol (see Section 2.3.7), follows the NSM.

However, this process follows the part of the state machine indicated in figure 2.5.b. This part of the state

machine is described in Section 6.6.1 of [1] and again Chapter 10.3 of [2]. This process is only necessary

if two neighbors need to become fully adjacent. In Section 2.3.7, we have seen the conditions for two

routers to become adjacent. Besides this, to become fully adjacent, two neighbors must synchronize

their LSDBs.

This process consists of two main sub-processes, the Database description process and the Loading

process. This whole process, along with a complete example, is fully described and can be found

throughout Section 6.6.1 of [1].

After establishing an adjacency relationship, two routers start the LSDB synchronization process by

establishing a master-slave relationship, where the master conducts the process. The whole process is

protected by a Stop-and-Wait protocol, also controlled by the master. The master is the router with the

highest RID.

The Database description process consists of the two routers establishing their master-slave rela-

tionship and then using DB DESC packets to describe the summarized contents of their LSDBs. In this

process, the headers of all LSAs present at each router LSAs are put into a local list, the Database

summary list and sent to the neighboring router. These LSAs are removed from this list when their

reception is (implicitly) acknowledged. DB DESC packets are exchanged until this list is empty in both

routers, signalling the end of the Database exchange process.

During the Database description process, if any of the routers receives an LSA header of fresher

instances or new LSAs, it will place the corresponding LSA ID (its three fields) in a list called Link state

request list. If by the end of the Database description this list is not empty, routers will request the LSAs

within the list to be flooded, using LS REQ packets. The neighbor will respond by flooding the requested

LSAs in LS UPDATE packets. The received LSAs are then removed from the list of requests. This
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goes on until the list is empty on both routers. When this happens, the process ends, and the neighbors

become fully adjacent.

2.3.12 Hierarchical Networks

Currently, OSPF multi-area structures are restricted to a two-level hierarchy, with a single area at the

upper level, the backbone area. The lower-level areas must directly attach to the backbone and direct

communication between lower-level areas is not allowed, meaning it must cross the backbone. For

multi-area routing, a DVR approach is taken, which can be limiting to the networks in some aspects, as

discussed in Section 2.2.1.

In OSPF, areas are identified by the Area ID, a 32-bit number written in dotted notation. Each router

interface is associated with exactly one area, and in the case that multiple interfaces are assigned to the

same link, they must all belong to the same area.

To communicate across areas, the ABR, introduced in Section 2.2.2, is used. Each ABR must have

at least one interface directly attached to the backbone and another one to a lower-level area, belonging

to all the areas they directly attach to. ABRs store the LSDB of every area they directly attach to. Routers

can be identified as ABRs or ASBRs through their B-bit and E-bit flags, respectively, contained in the

Router-LSAs.

The area-internal routing information of each area is described as for single-area networks, using

the same LSAs and mechanisms. For multi-area routing, ABRs must originate as many Router-LSAs as

the number of areas they directly attach to.

The area-external routing information is carried as DVs, to reach the ABRs that will inject that infor-

mation into the areas they attach to. The area-external prefixes are advertised in Network-Summary-

LSAs. These LSAs are flooded with area scope and communicate the prefixes from one area to neigh-

boring ABRs. The ABRs then flood that information into other areas, reaching their neighboring ABRs,

disseminating the information throughout the network. The advertised prefixes are defined by their IPv4

address, carried in the Link State ID (in the header), and the Network Mask field. The Metric field carries

the intra-area shortest path cost from the advertising ABR to the prefix it advertises. Each Network-

Summary-LSA can carry information regarding only one prefix. OSPFv3 takes a similar approach to this

but uses a different type of LSA, the Inter-Area-Prefix-LSA.

For domain-external information, besides the AS-External-LSAs, introduced in Section 2.3.5, which

is flooded with a domain scope and describes the external prefixes being advertised, ASBR-Summary-

LSAs (or the Inter-Area-Router-LSA in OSPFv3) are used. This LSA is originated by ABRs, and it

describes the ASBRs existing in the areas they directly attach to. These LSAs are disseminated as DVs

and flooded with area scope. They carry the RID of the ASBR they mean to advertise. The ASBR-

Summary-LSA only features one specific field, the Metric, representing the intra-area shortest path cost
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from the advertising ABR to the ASBR.

As stated in Section 2.2.2, one of the main purposes for these areas is to reduce the amount of

information that each router must store. To further improve this aspect, and as specified in Section 6.3

of [8], a special type of lower-level area can be used, the Stub Areas. These Stub areas are meant

to include routers with limited resources, such as router memory. They have more restrictions than to

normal areas, since AS-External-LSAs are not flooded into these Stub areas. Furthermore, the flooding

of Summary-LSAs is optional. With the lack of support for this type of LSAs, the Stub Areas cannot

support the configuration of Virtual Links or contain ASBRs and must be configured in the edges of

the OSPF domain. External routing can then be done exclusively via the default routes injected by the

areas ABRs. This can drastically reduce the resource usage in routers, and so improving the area’s

scalability, with the possible trade-off of not being able to calculate the optimal routes to every area-

external destination.

2.3.13 Limitations over the current multi-area networks

Besides the hierarchy-imposed restrictions, which are overcome in OSPF with the use of the virtual links,

there are two main restrictions on the way the DVs are advertised in multi-area routing that may prevent

optimal routing. Currently:

• It is not possible to inject DVs into an area when they advertise paths to an area-internal destination

(from an external source)

– ABRs don’t advertise routes to destinations within the areas they are injecting information into

• It is not possible to inject DVs into an area when these advertise paths to external prefixes that

cross that same area (ABRs don’t consider area-internal paths when advertising their costs to

external prefixes)

– ABRs don’t advertise routes crossing the area they are advertising the information into

Apart from these, another feature that can hinder optimal routing is the preference of area-internal

routes over area-external ones. These multi-area-related issues are the motivators for this work, and our

solution focuses on overcoming them. To better illustrate some of these current restrictions over current

OSPF multi-area routing, we leave in Section 2.3.14 an experiment performed by us and as described

in Section 11.2 of [1].

2.3.14 Experiment on the current OSPF multi-area routing restrictions

For this experiment, we used the network topology of figure 2.7, where each router is a Docker container

running the base implementation described in Chapter 3. This topology has 4 routers and 2 areas. R1

20



and R2 are routers internal to Area 1, while R3 and R4 are ABRs connected to both Area 0 and Area

1, with a link connecting them through Area 0. Four subnets exist, 222.222.10.0/24, 222.222.20.0/24,

222.222.30.0/24 and 222.222.40.0/24. All of these belong to Area 1, except for the last one, which

belongs to Area 0. The routers are connected as we see in the figure, and apart from the eth0 interface

of R2, presenting a cost of 100, all router interfaces are configured with a cost of 10.

Figure 2.7: Network topology used to test multi-area routing restrictions

Under normal operation, following the illustrated network configuration, we obtain the routing tables of

R2 and R4 and Network-Summary-LSAs of R3 and R4, from area 0 and relative to subnet 222.222.20.0

(subnet 20 from now on), shown in figure 2.8. From figure 2.8.a we can see that R2 is not taking the

shortest path to subnet 20. As we can see the cost to the destination is 120, through R1, and the real

shortest path cost is 30, through R4. R3 and R4 cannot advertise their Network-Summary-LSAs relative

to Area 1 into the area, even if it would provide a better option for R2 to reach subnet 20.

We can see the contents of the Network-Summary-LSAs from R4 and R3, respectively, advertised

in Area 0 relative to subnet 20 in figures 2.8.c and 2.8.d. These LSAs are stored in the LSDBs of R3

and R4. From this information, R4 knows it could provide a path to subnet 20 with a cost of 20. Finally,

we will look at figure 2.8.b, showing the routing table of R4. We know from the network topology that R4

can reach subnet 20 through R3 or R2. From R4’s routing table we can see that it chose to go through

Area 1, presenting a cost of 120, instead of 20 which could be achieved by crossing Area 0 instead.

This is a result of R4 learning that it can reach subnet 20 directly through its area, and it the current

implementation, it will prefer intra-area routes over inter-area ones, even if these provide lower path

costs. This happens because, when building the routing table, the router will first try to use intra-area
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paths, and only if that is not possible will it try inter-area paths.

Figure 2.8: Restrictions on the shortest path selection - (a) Routing table of R2, (b) Routing table of R4, (c)
Network-Summary-LSA of R4 (area 0) relative to subnet 222.222.20.0 and (d) Network-Summary-LSA

of R3 (area 0) relative to subnet 222.222.20.0

If we were to shutdown interface eth0 of R2, then both R2 and R4 wouldn’t be able to reach subnet

20 through area 1 anymore, and only then would they consider the area-external path to reach it. Figure

2.9 shows the routing table of R2 (figure 2.9.a), the routing table of R4 (figure 2.9.b) and the Network-

Summary-LSA generated by R4 for area 1, relative to subnet 20 (figure 2.9).

R2 and R4 are now reaching subnet 20 through area 0. But this is only happening because area

1 is partitioned and the intra-area path is unavailable. This change makes it so that R1 and R2 are

essentially considered to be in different areas. R4 cannot advertise the Network-Summary-LSA relative

to its intra-area path to subnet 20. So, it will instead advertise the Network-Summary-LSA calculated

from the one injected into area 0 by R3. From this LSA, generated by R4 and injected into the area

partition where R2 is, R2 is also able to reach the subnet.
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Figure 2.9: Restrictions on the shortest path selection, after shutting down eth0 for R2 - (a) Routing table of R2,
(b) Routing table of R4, (c) Network-Summary-LSA of R2 (area 1) relative to subnet 222.222.20.0
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This work has as its base a C++ OSPFv2 implementation, based on John Moy’s implementation,

according to RFC 2328 [2] and as described in [3]. This code is an updated version of the implementa-

tion described in [3], and we will be using its version 2.16, already supporting the use of Opaque-LSAs,

which will prove useful for our solution. The code is written using the C++ coding language and uses

an Object-Oriented Programming (OOP) approach. RFC 2328 [2] is fully supported by this implementa-

tion, meaning the OSPF description given throughout Chapter 2 holds. In this chapter, we cover some

aspects of the base implementation, although not all of them. More complete descriptions can be found

in [3].

3.1 Software Architecture

3.1.1 Data Flow

The data flow of this base implementation follows the representation presented in figure 3.1. The ini-

tialization code serves to create a system interface that will perform basic lower-level operations, such

as sending protocol packets or changing the machine’s routing table entries. This code section also

reads the OSPF configuration after creating the top-level OSPF object (see Section 3.1.2). Through

an OSPF Application Programming Interface (API), this initialization section and the code’s main loop

communicate with the OSPF instance.

The main loop of this implementation serves five main purposes:

• Receiving input in the form of (re)configuration;

• Keeping track of the elapsed time, as well as calling the OSPF’s timing function;

• Reading arriving OSPF packets;

• Detecting changes in the states of the interfaces;

• Receiving input in the form of monitoring requests.

3.1.1.A Packet Flow

The OSPF packets received by the main loop are passed down to the OSPF code via the OSPF::rxpkt()

method. The packet type is then demultiplexed and forwarded to the corresponding function to process

it. The protocol must maintain a synchronized LSDB across the network. For that, adjacencies are

built and maintained between neighboring routers. Receiving or stopping to receive HELLO packets

from a neighbor will cause the creation or destruction of an adjacency, respectively. Receiving DB

DESC and LS REQ packets will progress an adjacency through the states of the NSM, in order to
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Figure 3.1: Data flow in the base implementation
Adapted from [3]

achieve synchronization between the neighbors LSDBs (see Section 2.3.11). After this synchronization

is achieved, it is maintained through the flooding of LS UPDATE packets, as we described in Section

2.3.9. Besides the periodic HELLO transmissions and LS UPDATE transmissions whenever a router

originates a new LSA, packets are mostly transmitted as a response to packets received at the router.

An example of this is the acknowledgment of received LSAs through the LS ACK packets or flooding of

requested LSAs with the LS UPDATE packets.

3.1.1.B LSA Flow

As described in Section 2.3.3, the LSDB stores the LSAs collected at each router. Some aspects of this

implementation’s LSDB are discussed in Section 3.2. LSAs can be installed in the LSDB either when

they are received from neighbors or when they are originated at the router. Based on its current active

interfaces and established adjacencies, a router will (re)originate its Router-LSA. Similarly, for each link
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in which the router is the DR, it will also generate the corresponding Network-LSA. Furthermore, based

on routing calculations results, the routers might also generate Network/ASBR-Summary-LSAs and AS-

External-LSAs. LSAs are continually aged, for the protocol to know when to refresh or delete them, for

instance. When a new LSA is successfully installed in the LSDB, it is flooded with its respective scope.

Also, to keep the routing table up-to-date, the appropriate routing calculation is done based on the newly

installed LSAs.

3.1.1.C Timers

This implementation also relies highly on timers, for periodic transmissions (of HELLO packets) or

needed retransmissions, for packets not yet acknowledged, for example. These timers are also im-

portant for the LSA aging within the LSDBs. To not overload the routers, timers can also limit the rate

on some of the mechanisms, such as the importing of AS-External-LSAs into the network. Timers can

also implement some of the optimizations referred in Section 2.3.9, such as the delayed acknowledg-

ment. Finally, some of the mechanisms described for the state machines introduced might rely on timed

events, as we have seen, for example, in Section 2.3.8 for the Interface State Machine.

3.1.2 Major Data Structures

As the major data structures present in this implementation, we highlight four classes. Figure 3.2 sum-

marizes the organization of these major data structures. The first of them is the OSPF class. This single

class is pointed at by the ospf global variable and serves not only as the starting point to all other data

structures but also as the bridge for the platform-specific code to access the OSPF application, as was

said in the previous section, by calling the OSPF::rxpkt() method. There are many data items present

in this and other classes, and these will not be described unless necessary. Most of these, with detailed

descriptions, can be found throughout [3].

As a main data structure to store groups of similar elements, this implementation uses AVL trees,

represented by the AVLtree class. These are balanced binary trees, in which its elements use up to two

indexes to identify themselves and keep the tree balanced upon an item addition or removal. The tree

elements are represented by the AVLitem class, and all other classes that need to keep a organized

structure must inherit from it. There are operations defined to add or remove, given the pointer to the

item, and iterate or find a specific item, given one or both its indexes for this last case. This is highly

used to keep lists of all types of LSAs, and depending on each specific LSA characteristics, they might

use one or more attributes as indexes in the tree.

Next, we highlight the SpfArea class. Each instance of this class is used to represent an OSPF Area,

such as the ones described throughout Chapter 2. It’s possible to scan through the areas to which the

router is attached to with the AreaIterator class. Because most of the mechanisms used in OSPF are
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used within each area, this class maintains some of the basic OSPF data. But especially, the SpfArea

maintains most of the LSDB for each area, keeping separate trees (using the AVLTree class) for each

type of LSA.

Another important structure is the SpfIfc class. As we have seen, several types of interfaces can be

used in OSPF (see Section 2.3.2). Each of these types is represented as a different class, all inheriting

from SpfIfc. SpfIfc branches out into three classes:

• DRIfc (Interface types that need to elect DRs), branching further down into:

– BroadcastIfc (broadcast/shared interfaces)

– NBMAIfc (NBMA interfaces)

• PPIfc (point-to-point interfaces), also serving as the base class for:

– VLIfc (virtual links)

• P2mPIfc (point-to-multipoint interfaces)

The interfaces of the router running the program can be scanned using the IfcIterator class. It can

either scan all the router’s interfaces or only those attaching to a specific area. As we can see from

figure 3.2, each area can have several associated interfaces. However, each interface must belong to

exactly one area, as stated in Section 2.3.12.

Finally, we have the SpfNbr class. This class represents the neighboring routers connected to the

router running the program through its interfaces. The neighbors are attached to the router through a

specific interface. If an interface has more than one neighbor (e.g., a broadcast interface), separate

SpfNbr instances must be created, one for each neighbor. The neighbors associated with an interface

can be scanned with the NbrIterator class. Most of the elements contained in this class are concerned

with the synchronization mechanisms between neighbors.

3.2 The Link-State Database

3.2.1 The LSDB Fundamentals

As we have seen in Section 2.3.3, LSDBs store information in the form of LSAs. In this implementation,

LSAs have two types of representation, the internal representation, for when they are installed in the

LSDB, and the network representation, as described in figure 2.3, used to transmit the LSAs across

the network. There is a class to represent each different type of LSA. However, all these classes

inherit from a base class LSA (which inherits from the AVLitem class, for storage purposes). The main

LSA class can be split into two intermediate classes, depending on the role of the LSA in the routing
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Figure 3.2: Summary of the organization of the major data structures in the implementation
Adapted from [3]

calculations. These classes refer to the internal representation of the LSAs. The first is the TNode class,

the base class for the rtrLSA and netLSA classes, representing the Router-LSAs and Network-LSAs,

respectively. The TNode class represents the elements that will be used as the topology nodes, when

building its graph. The second one is the rteLSA, where the summLSA (Network-Summary-LSAs),

asbrLSA (ASBR-Summary-LSAs), and ASextLSA (AS-External-LSAs) fall into. Besides storing the

LSA header fields, the LSA class also stores several other types of information regarding the LSA, such

as the area to which it belongs (LSA::lsa ap), and provides methods such as LSA::cmp instance(),

allowing to compare a newly received instance with its stored counterpart to determine which one is

fresher. A complete description of the fields present in this class can be found in Section 6.1 of [3].

Since each area has its own LSDB, it makes sense that each LSA type having area scope is

stored in that area’s SpfArea class. This list contains all the LSAs already described (rtrLSA, netLSA,

summLSA, and asbrLSA) except the ASextLSA (as it has AS scope). This last type of LSA is instead

kept directly in the OSPF class.

3.2.2 Database Operations

Several operations can be executed over the databases, which we also highlighted. We start with the

LSA *OSPF::FindLSA (or LSA *OSPF::myLSA for self-originated LSAs), used to find a specific LSA.
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Next, we have the OSPF::AddLSA function, used to add an LSA to the LSDB. LSAs are not stored

in the same format in which they are received, so an OSPF::ParseLSA function is used to convert

the new LSA to the desired format, easier to use in the routing calculations (see Section 3.5). This

function then calls a type-specific parse function for that LSA type. Another important function is the

OSPF::DeleteLSA, used to delete an LSA from the LSDB. As the LSAs need to be parsed when

added to the LSDB, they must also be unparsed when removed, using the OSPF::UnParseLSA. This

function also calls a type-specific unparse function, depending on the LSA type. Finally, to restore the

network format of the LSAs from the internal format, to transmit LSAs to neighbors, or to compare LSA

instances, for example, an LShdr *OSPF::BuildLSA function can be used. This function also resorts to

type-specific build functions. The inner work of each of these functions is described in detail in Section

6.2 of [3].

3.3 Originating LSAs

There are several reasons why we might want to originate or re-originate an LSA. To cope with local

changes, replace old self-originated LSAs on the LSDB, or keep the ones already there from being

removed (LSA refreshing). This implementation considers these the three triggers that will cause LSAs

to be originated (or re-originated).

This process starts by calling a type-specific function to originate an LSA. After this, we must find

out where is the copy of the originated LSA in the LSDB, if there is one, resorting to the OSPF::myLSA

function. Then the OSPF::ospf get seqno function is called, to determine the next sequence number

for that LSA. This function can result in a postponed origination if it determines that the LSA cannot

be originated yet (e.g., because of a minimum guard time over the origination of successive LSAs). If

the LSA origination is possible, its contents are then created, both the header and the body. If after

this creation, the body of the LSA is empty, then it is flushed instead of being (re)originated. Otherwise,

an OSPF::lsa reorig function is called, indicating the end of the process and, if the new LSA instance

presents changes from the old one stored (or if it is forced, via a flag in the function’s parameters), it will

be updated in the LSDB and flooded. The detailed functionalities of the OSPF::ospf get seqno and

OSPF::lsa reorig can be found in Section 7.1 of [3].

The previous process is the general operation of the LSA origination process. However, each LSA

type may present specific particularities, due to different fields or scopes. An example of this is the

Router-LSA, where a different one needs to be originated for each area to which the router attaches (its

origination function is defined in the SpfArea class), and the Network-LSA, which a router might need to

originate for each interface it is using to connect to a shared link (its origination function is defined within

the SpfIfc class).
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Some LSAs cannot be generated when the origination function is called, because the minimum

interval between consecutive LSAs has not yet been met (guard time). These are scheduled by the

function to be originated when possible. When this interval is met, the OSPF::deferred lsas function is

called to originate all the LSAs in this situation.

The mechanisms described for premature aging, to delete information, or for refreshing LSAs are

also supported by the implementation, and can be found in Section 7 of [3].

3.4 Area Routing

Area Routing is implemented in the code in a way that follows the description given in Section 2.3.12.

For that reason, it suffers from the same constraints described in Section 2.3.13. In this section we leave

a number of short notes on the main mechanisms in play when it comes to Area Routing.

Summary-LSAs are core elements to implementing Area Routing. They are advertised by ABRs

into the areas they directly attach to, to disseminate the routing information across the AS. In this

current implementation, ABRs must advertise these LSAs into the backbone area, for it to adver-

tise them into all other lower-level areas. These LSAs are installed either when received (with the

SpfNbr::recv update method) or originated (with the OSPF::sl orig method). When that happens, in

case the LSA is changed, a full calculation (OSPF::full calculation) must be performed by the ABR

in order to correctly (re)originate the correspondent Summary-LSA (should the routes change) to be

advertised into the areas in which they were not generated.

All area border routers must connect to the backbone area (Area ID 0.0.0.0), either directly or through

a sequence of configured Virtual Links (VLs). This is done so that all inter-area communication cross the

backbone, even if it is between two adjacent lower-level areas. These areas where VLs are configured

so that they carry traffic neither originated from nor destined to those areas are called transit areas. The

ABR endpoints in these transit areas then set their V bit in their Router-LSA. Also, stub areas can be

configured to perform ass described in Section 2.3.12.

These mechanisms are present in the current base implementation, and a more complete and tech-

nical description can be found in Section 10.2 of [3].

3.5 Routing Calculations

In this implementation, when adding new or updated LSAs to the LSDB, routing calculations are trig-

gered. As for new LSAs calculations will always be triggered. For LSA updates, the LSA::cmp contents

method is called, to differentiate actual updates from simple refreshments. Then, when an update or

new addition is detected, the appropriate routing calculation is either performed or scheduled with the
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OSPF::rtsched method, passing the LSA that is being updated. Based on this LSA type, the calculation

type might vary, with The most common cases being installing new or updated Router-LSAs, Network-

LSAs and both Network and ASBR-Summary-LSAs.

If a Router-LSA or Network-LSA are passed on to the scheduling method, a complete calculation

will be scheduled, by setting the OSPF::full sched flag to true. As for the Summary-LSAs, as well as

for the AS-External-LSAs, since these refer to a single routing table entry each, it is possible to perform

more specific calculations, exclusively over the affected entries, and possibly over the entries referred to

by those LSA previous instances.

The full calculation, or the intra-AS calculation, is scheduled rather than directly performed, in order

to limit the frequency of this heavier calculation, by default to a maximum of one run per second. It is

divided into several steps, and each router will perform it with the information stored in its LSDB and

considering itself the root of the calculation. The main steps of this calculation are the following:

1. A Dijkstra’s Shortest Path First algorithm (described in detail in Section 4.8 of [8]) is run for all the

areas to which the router attaches to, with the algorithm Nodes being the LSAs of inheriting the

TNode class (see Section 3.2.1). This is used to calculate all of the routers’ shortest intra-area

routes;

2. After the intra-area routes calculation is finished, a routine, OSPF::update brs, is used to check if

the best paths to any of the ABRs has changed from previous calculations;

3. The router’s IP routing table is iterated through (by the OSPF::rt scan method), and a set of

operations is performed over each one:

• Old intra-area routes not updated by this run’s Dijkstra calculation are deleted;

• Inter-area routes are calculated for network segments present in distant areas (to which the

router is not directly attached);

• The system’s kernel routing table is updated to contemplate the changes noted in this calcu-

lation process;

• Network-Summary-LSAs referring to the changed routes that the router should (re)originate

are updated.

4. The best routes to each ASBR are calculated, based on all the calculations done so far and the

existing ASBR-Summary-LSAs present in the LSDB. If the chosen route to any ASBR is altered,

the routes to the AS-external destinations are scheduled to be recalculated as well.

A full and detailed description of the Routing Calculations present in this implementation can be

found throughout Section 11 of [3].
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4.1 The ABR Overlay

In this report, we propose the implementation of an OSPFv2 extension to support multi-area networks

with arbitrary topologies to overcome the restrictions and sub-optimal routing, as described in Section

2.3.12. To achieve this, we must change the routing protocol being run by ABRs for inter-area commu-

nication, from a DVR approach to an LSR approach, as described in Section 3 of [1] and in [4].

The ABRs form a routing overlay over the physical network, to run the inter-area routing protocol,

representing an ABR-only network, in which the ABRs will exchange the inter-area routing information.

To do this, ABRs need to become overlay neighbors, i.e., each of them must have at least one interface

attached to the same area, and not necessarily be directly connected. This exchange is done through

the flooding mechanisms, so no new synchronization mechanisms are used to this end. So, the ABRs

can store and advertise (via their common LSDBs) their intra-area costs to their ABR neighbors. The

area-external prefixes can then be injected into the areas resorting to the already existing LSAs. To

serve as an example of the ABR overlay and the Overlay LSAs, we have figure 4.1.

Figure 4.1.a shows a network composed of 8 routers and structured in 4 areas. Routers R2 to R6

present ABRs, R8 an ASBR, and R1 and R7 area-internal routers. Three address prefixes need to be

advertised, ap1, assigned to R1, ap2, assigned to R7, and ap3, injected by R8 into the AS. Next to

the links, we can see their associated costs. Figure 4.1.b shows the overlay graph corresponding with

the network of figure 4.1.a. Here, the nodes represent the ABRs and the links represent the shortest

intra-area path between neighboring ABRs (not necessarily direct connections) with its associated costs

also displayed next to them. Furthermore, the ABRs have (destination, cost) pairs labelled next to

them, representing the prefixes or ASBRs and the intra-area shortest path cost to them, available at the

areas they directly attach to. Finally, figure 4.1.c shows the Overlay LSAs and their contents, used to

completely describe the overlay graph shown.

As we said, this extension aims to implement a link-state multi-area routing approach. For this to

happen, the ABRs must have a complete view of the overlay, building a graph just like what is done in

OSPF for each area. First, each ABR has to flood its local view (who their ABR overlay neighbors are and

their intra-area shortest path cost to them) of the overlay to all other ABRs (with domain scope flooding).

To flood this information, the existing flooding mechanism is used, more specifically, the mechanism

used to flood the AS-External-LSAs, since the same flooding scope must be used. With the views from

each ABR stored, the ABRs can build an overlay LSDB, much like the area LSDBs introduced, and with

the same goal, to represent the overlay topology and its routable prefixes. To describe the overlay LSDB,

three new types of LSA must be introduced. Figure 4.2 shows the summary of the structure of these

new LSAs.

The ABR-LSA is used to describe the topology of the ABR overlay. This LSA describes the orig-

inating ABR (in the Advertising Router field from the header) and it’s neighbor ABRs (in the Neighbor
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Figure 4.1: (a) An example of a multi-area network, (b) its corresponding ABR overlay and (c) LSAs describing the
overlay

Adapted from [4]

RID field), as well as the intra-area shortest path cost to them (in the Metric field). These costs are

obtained through the area’s LSDB. The combination of a Neighbor RID and Cost can be repeated for

each neighbor in the same LSA.

The Prefix-LSA is used to describe the address prefixes available at each area. Each ABR originates

the LSA associated with the prefixes available at the areas they directly attach to. This LSA contains a

prefix advertised inside an area (Subnet Address and network Mask fields) and the intra-area shortest

path cost from the advertising ABR to it (Metric field). This information can be obtained from the area’s

Router-LSAs and Network-LSAs.

The ASBR-LSA is used to describe the existing ASBRs in an area. As the external prefixes are

already advertised by the AS-external-LSAs, there is no need to repeat this information. Thus, the

ASBR-LSA is used by the ABRs to describe the ASBRs existing inside the areas they directly attach to

(through their RID in the Destination RID field), and their intra-area shortest path cost to them (Metric

field).

For each prefix or ASBR being advertised, a new Prefix-LSA or ASBR-LSA must be originated, re-
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Figure 4.2: Structure of the OSPFv2 Overlay LSAs.
Adapted from [4]

spectively. The three new LSAs introduced will be flooded with domain scope. Just like for area-internal

routing, if the ABRs detect changes regarding the overlay that require an update to the advertised LSAs,

they must originate new instances of these Overlay LSAs and flood them.

As the information is spread across the network and stored into the overlay LSDB, the ABRs must

build and maintain a graph of the ABR overlay, with the nodes representing the ABRs and the links

their shortest intra-area path to each other, with the associated costs. With this graph built, the ABRs

must then compute their costs to the routable addresses advertised, to inject this information into the

areas they directly attach to. This, just like what happens internally to the areas, is done using Dijkstra’s

algorithm.

The information is then injected into the areas using the already existing LSA types used for those

purposes, in this case, the Network-Summary-LSAs for area-external prefixes and ASBR-Summary-

LSAs for information regarding the ASBRs. Other routers will not need to change the way they process

the information for this approach to work, this extension is transparent to all routers but ABRs.

4.2 Opaque-LSAs

These new LSAs can be introduced into the protocol by using Opaque-LSAs. The Opaque-LSA aims

to provide better extensibility to the protocol. This type of LSA can be used to support new LSA types,

such as the ones described. The Opaque-LSA is fully described in [9]. The Opaque-LSA uses the

same header structure, in terms of the packet space it requires, as regular LSAs. The only difference

is the way the Link State ID bits are used. For other LSAs, this field alone uses 4 bytes (32 bits). The

Opaque-LSA uses these 32 bits differently, splitting them into two new fields, the Opaque Type (8 bits)

and Opaque ID (24 bits). To illustrate difference we compare in figure 4.3 the header structure of regular

and Opaque LSAs. When flooding the Opaque-LSAs, this difference is not noted as it is not represented

in the implementation’s code, and they can be flooded as any other LSA, as long as their LSA type is

accepted by the routers.

The current version of our base implementation already supports the use of Opaque-LSAs. The class
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representing the Opaque-LSA, the opqLSA class derives from the base LSA class, this meaning that

the header structure as well as some basic operations is similar enough to share this same super-class.

Figure 4.3: Structure of the (a) General LSAs and (b) Opaque-LSAs

The body of the Opaque-LSA is stored under the form of bytes, without any particular structure and

with an arbitrary length. It is then up to us to configure our own Opaque Types and how they should be

stored and used. Generalized functions to originate (OSPF::opq orig), parse (opqLSA::parse), and

unparse (opqLSA::unparse) these LSAs are already part of the base implementation.
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In this chapter we address the implementation of the extension proposed in this dissertation and

described in Chapter 4. This extension has been developed using the C++ coding language, over

the base implementation briefly described throughout Chapter 3 and fully detailed in [3]. Another key

aspect, that made this direct integration of the extension into the original version possible, was the fact

that this implementation already supported the use of Opaque-LSAs, which is not addressed in [3] nor

present in earlier versions of the source code. We will leave, in Appendix A, a list summarizing all the

files/functions/classes that were added or changed to accommodate our extension.

The changes made to the base implementation can be divided into several main steps, these being:

1. Including the new LSAs in the protocol’s implementation;

2. Defining the operations that must be done over these new Overlay LSAs by the ABRs;

3. Performing the full Overlay routing calculation:

• Using the Overlay LSAs information to build and maintain an ABR Overlay graph;

• Using the resulting graph together with the Overlay LSAs information to calculate all the routes

within an AS;

4. Injecting the routing information resulting from the calculation into the areas to which the ABRs

directly attach, reaching the area-internal routers.

In the next sections we will describe how each of these main steps were accomplished. Furthermore,

we will not only describe the supporting mechanisms created and put to use to better accommodate

the main features but also provide the necessary context from the base version of this implementation

whenever deemed necessary.

Although we started by defining the operations to accommodate all three Overlay LSAs in our im-

plementation, we have decided, since we would only test this extension within a single AS, to focus

our development in both the ABR-LSA and the Prefix-LSA, since the ASBR-LSA requirements are very

similar to those of the Prefix-LSA. With this in mind, the next Sections will mainly refer to the ABR-LSA

and Prefix-LSA, with the ASBR-LSA still being mentioned when supported in the changes made.

5.1 Inclusion of the Overlay LSAs

The first step in implementing this extension is to include everything necessary for the current imple-

mentation to support the existence of the Overlay LSAs. As we state in Section 4.2, this is done with the

help of the already supported Opaque-LSAs.

We started by defining the Opaque Type for these LSAs. According to Section 9 of [9], four OSPF

extensions already use Opaque-LSAs, and values up to 4 for this Opaque Type are already assigned.
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Considering that, and even though not all these are depicted in the base version of our code, we opted

to assign the first available values to our extension, with an Opaque Type of 5 to ABR-LSAs, 6 to Prefix-

LSAs and 7 to ASBR-LSAs. With this simple assignment, the new types can be recognized as valid

Opaque-LSA types.

We then defined the structure for each of the LSAs’ bodies, by adding them as structs within the

lshdr.h file, and following the structure presented in figure 4.2, in which:

• The ABR-LSA uses a repeatable set of two fields, the Metric and the Neighbor Router ID;

• The Prefix-LSA uses a single set of three fields, the Metric, the Subnet Mask and the Subnet

Address;

• The ASBR-LSA uses a single set of two fields, the Metric and the Destination Router ID.

5.2 Operations over the Overlay LSAs

After including the Overlay-LSAs in our implementation, we must define how and when these LSAs will

be created and processed. Here we include the origination of the LSAs, as well as the parsing done

when being installed into the database and the unparsing done before deleting these LSAs. Within the

context of this work, we consider origination the LSA building and subsequent flooding by its advertising

router. Parsing means to process the information contained in the LSA (received or self-generated) into

the form in which we will need it for routing calculations. Unparsing an LSA is the reverse of the parsing

procedure, undoing the processing done.

All matters related to the origination of both Summary-LSAs and Overlay LSAs and to the processing

of the Overlay-LSA specific parts of Opaque-LSAs were made unavailable to area-internal routers, since

these should be exclusively handled by ABRs from now on. The only feature kept available to area-

internal routers is the ability to process received Summary-LSAs, which ABRs no longer do, since all of

their inter-area routing will be based on the new Overlay LSAs.

5.2.1 Originating the Overlay-LSAs

Before we address the origination of the LSAs, we will introduce the structures that will support it. With

the Prefix-LSAs, we use the INrte class, representing an IP routing table entry that should be installed

into the Operating System (OS)’s routing table. If we do not explicitly indicate otherwise, we will be

referring to routing table as the one stored within the OSPF implementation. Similarly to the Prefix-

LSAs, the ASBR-LSAs use the ASBRrte class, representing the routing table entries to AS-internal

ASBRs. Both the INrte and ASBRrte classes inherit from the RTE class, the super class for all types of
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routes (e.g., routes to destinations and routes to routers). This class contains the elements common to

all types of routing table entries, such as the cost, type of route or the set of intra-area next-hops to the

destination. Finally, the ABR-LSA uses the newly defined ABRNbr class, where we store the information

relative to ABRs connected to the same areas as the ABR running the implementation, i.e., the router’s

ABR neighbors. This class includes the ABR neighbor’s Router ID, the intra-area cost to reach it, and

links itself (by storing a pointer to the correspondent object) to its corresponding Router-LSA and to the

area in which it was advertised, used to differentiate alternative paths (across different areas) to the

same ABR.

5.2.1.A Gathering the LSA required information

The creation and value attribution for these ABRNbr instances is done in two separate occasions. Figure

5.1 shows two simple and summarized diagrams, illustrating what is done in these two occasions.

The first occasion (figure 5.1.a) is during the parsing of a Router-LSA as it is installed into the

database. If (i) our router is an ABR and (ii) if the received LSA comes from an ABR (B bit is set),

they are ABR neighbors. If no object of the ABRNbr class is linked to a previous instance of this Router-

LSA, it will be created and linked to it, by storing its pointer. Otherwise, if this link is already created, the

ABRNbr object will be reset if an error is detected with its link to the previous instance of the received

LSA. This is done within the rtrLSA::parse routine.

The second occasion (figure 5.1.b) is during the intra-area Dijkstra calculation. By then, all the

required fields in the ABRNbr are set but the cost, as it is only set during the Dijkstra calculation. During

the calculation (see Section 3.5), the TNode (see Section 3.2.1) inheriting objects (Router-LSAs and

Network-LSAs) within each attaching area are processed to create the intra-area topology graph. Then,

when processing an ABR during that calculation, if that ABR’s Router-LSA is linked with an ABRNbr

object, we check if the ABRNbr stored cost differs from the recently calculated intra-area cost to the

router. If so, we update that cost with the new intra-area cost and schedule the (re)origination of our

router’s ABR-LSA. This is done within the OSPF::dijkstra routine.

Also during the complete intra-area calculation, routes with changes signal this, via a RTE::changed

flag. After the Dijkstra calculation is complete and all intra-area costs have been assigned to their routes,

the OSPF::rt scan routine is called to iterate over all routes, to check which ones present changes from

previous calculations. Here, we must decide whether to originate the route’s corresponding Prefix-LSA.

This is done by verifying if (i) our router is an ABR, (ii) the route is reachable within one of our directly

attached areas (via a intra-area path), and (iii) by confirming that we already advertised our first ABR-

LSA into the AS. This last step indicates if there are more ABRs within the network. There is no need

to use Overlay LSAs if only one ABR exists. If that is the case, we would directly originate the Network-

Summary-LSAs for the destinations into our attached areas, instead of their Prefix-LSAs.
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Figure 5.1: Simple representation of how ABRNbr objects are (a) created/reset and (b) assigned a cost

A final routine is then called within the full intra-area calculation, the OSPF::update asbrs routine.

This routine will call the ASBRrte::run calculation routine for all the currently known ASBR routing

table entries. This routine will then (re)calculate the best path to each ASBR. If available, the best intra-

area path will always be stored (path and cost), even if it is not used for routing. If we find an intra-area

path, by the end of the routine we as for the Prefix-LSAs. Granted (i) we are an ABR and (ii) changes

are detected from previous calculations, (iii) if our first ABR-LSA has been advertised, we advertise the

ASBR’s corresponding ASBR-LSA. Otherwise, we directly advertise its ASBR-Summary-LSA.

We found the need to separate the storage of the existing intra-area paths and costs from the ones

that will be used in forwarding. This extension requires that differentiation to properly generate the

Overlay LSAs, even if the router opts for an inter-area route to a destination. We did this by changing

the RTE::new intra routine, where we associate a new intra-area path and cost to a given destination.

If no changes were applied, this routine would simply replace the current path with an intra-area path, if

an inter-area route was being used.

When reaching the decision point on whether to advertise the Prefix-LSAs/Network-Summary-LSAs

and the ASBR-LSA/ASBR-Summary-LSAs, a flag is set in their correspondent routing table entries,

RTE::adv overlay, indicating these entries are ready to be advertised to the ABR Overlay. This is done

as the Overlay LSAs might not be generated at that time, and instead marked to be generated whenever

possible.
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5.2.1.B Building the Overlay LSAs

ABRs will most certainly originate several Prefix-LSAs and ASBR-LSAs. For this reason, we must

properly use the LS ID field to differentiate LSAs of these types advertised by the same ABR. Opaque-

LSAs are differentiated from each other through two elements, (i) their advertising router’s ID and (ii)

the LS ID field, which in this case depicts the combination of Opaque Type and Opaque ID. Figure 5.2

shows the identifying elements of the Overlay LSAs. Since each ABR will only originate one ABR-LSA,

we only need to consider the Opaque Type, the one chosen by us to define the ABR-LSA, when building

it. This is not true for the other two LSAs. We must also decide how the Opaque ID portion of the field

will differentiate the LSAs among each other. As only 24 bits remain available after the Opaque Type is

defined, we decided to implement a simple unique ID (each router assigns locally a unique ID to each

existing routing table entry), that would not be assigned to the Overlay LSAs but to the routing table

entries, as a new parameter of the INrte class, named INrte::uid. This unique ID increments by one

with each new routing table entry added by the router. Although this could eventually present issues, by

limiting the number of possible destinations that would be covered by this unique ID, these issues were

not addressed in this work.

Figure 5.2: Summary of the identifying elements of Overlay LSAs

The process of building the body of Overlay LSAs is simple, since the necessary verifications are

done before calling the routines to originate the LSAs. The construction of the Prefix-LSAs and ASBR-

LSAs is the most straightforward. This consists of (i) defining what the LS ID field will be (the concate-

nation of the Opaque Type defined for the LSA with the unique ID assigned to the routing table entry

described) and (ii) building the fixed length LSA body, by assigning a value to each of the fields, taken

from the corresponding routing table entry.

Building the ABR-LSA is not as simple, not only because the body length is not fixed but also because
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some ABR neighbors might be reachable through multiple areas. Building the ABR-LSA body consists

in only adding the best path to each ABR neighbor, where each possible path is represented by an

object of the ABRNbr class. To help with this, we opted to include a flag (ABRNbr::use in lsa) that

indicates whether that instance should be considered in the LSA. When building the ABR-LSA body, we

keep track of how many neighbors are considered in the LSA. We start by clearing the use in lsa flag in

all the ABRNbr objects, so that old instances aren’t incorrectly considered. We then iterate over all the

ABRNbr objects, performing the following set of steps for each object to determine whether to consider

it for the LSA body:

1. If a cost is not assigned, we skip to the next instance, and repeat this step for the next ABRNbr

object (this is not likely but can occur if a new ABR neighbor discovery causes the scheduling of

the ABR-LSA origination and a new Router-LSA arrives from a neighboring ABR before a new

intra-area calculation takes place and after the ABR-LSA origination process begins);

2. If the cost is assigned, we check if another object referring to this ABR is already being considered

in the LSA body; If not, we move to step 3, otherwise we go to step 4;

3. Since no other objects referring to this ABR are being considered yet, we set the use in lsa flag

to true, increase the counter of the number of neighbors considered by one and move on to the

next object.

4. If there is an object for the same ABR already being considered, we compare the costs assigned

to these objects; the object presenting the lower cost will have its use in lsa flag set to true and

the other one will have it set to false; If there is a draw, the new object is used; we then repeat the

cycle for the next object, if any exists.

After deciding which objects of the ABRNbr class will be used to build the LSA, we iterate over them,

adding their Router ID and cost to the LSA body. We then calculate the body length by multiplying the

number of added neighbors by the size each of them uses in the body. After building and sending out

the LSA, we signal that our first ABR-LSA has been flooded to the network, by setting a global flag,

OSPF::first abrLSA sent, to true. This flag is used in other areas of the code to determine if this event

has occurred. This serves mainly to determine whether we should advertise the Prefix-LSAs and ASBR-

LSAs right away, when their needed information has been determined (see Section 5.2.1.A). If this flag

had not yet been set to true, we also schedule the origination of all Prefix-LSAs and ASBR-LSAs that

are ready to be advertised.

The (re)origination of the ABR-LSAs is scheduled when updates to our ABR neighbors are detected,

these being (i) a change in the shortest intra-area path cost to it, (ii) the recognition of a new ABR neigh-

bor, or (iii) when an ABR neighbor is deemed unreachable within the area in which they are neighbors.
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For all the three Overlay LSAs, a general routine, OSPF::opq orig, is called after building the LSA

body, to build and advertise the Opaque-LSA. Among others, this routine takes as input parameters the

LS Type, to determine the flooding scope of the LSA, the LS ID, to correctly identify it, and the LSA body

and its corresponding body length, to correctly store the LSA body as part of the Opaque-LSA.

5.2.2 Parsing the Overlay-LSAs

When installing a new LSA into the database, either received or generated, the protocol will parse that

LSA. When an Opaque-LSA is received or generated, the OSPF::ParseLSA routine is called at the end

of the process of installing the LSA into the database (via the OSPF::AddLSA routine). This ParseLSA

routine will call the Opaque-LSA specific parse routine, opqLSA::parse. To parse the Overlay LSAs,

we verify (i) that our router is an ABR and (ii) that the Opaque Type corresponds to one of the assigned

types for the Overlay LSAs. Meeting these two conditions, the opqLSA::parse routine forwards the LSA

to the newly created opqLSA::parse overlay lsa routine, to parse the LSA based on its Opaque Type.

All three Overlay LSAs use new classes created to store the relevant information needed for the

Overlay routing calculations. These are the overlayAbrLSA, overlayPrefixLSA and overlayAsbrLSA,

for the ABR-LSA, Prefix-LSA and ASBR-LSA, respectively. These classes keep a pointer to the Opaque-

LSA that generated them, since it was not possible to directly inherit these classes from the opqLSA

class. Objects of these classes are stored in global structures, the AVLtrees (see Section 3.1.2), with a

separate tree existing for each class. Within this structure, the class objects need a way to differentiate

themselves, mainly for searching for a specific item within the tree. Each class uses different indexes

for this. ABR-LSAs use the advertising router, Prefix-LSAs use a combination of the advertising router

with the advertised subnet address, and the ASBR-LSA uses the combination of the advertising router

with the router ID of the advertised ASBR.

Inside the parse overlay lsa routine, we verify the Opaque Type, and from there go into the LSA

specific portion of the routine. Inside the specific sub-routine, we verify, through the identifying attributes

of their corresponding classes, if an object of that LSA class is already stored. If so, we use the stored

object for the next steps. Otherwise, we create a new object of that class. We then store a pointer to

this object in the Opaque-LSA class object being parsed, to link the Opaque-LSA object to the specific

Overlay-LSA class object. This is the first step, common to all Overlay LSAs. Beyond that, the parsing

routine differs greatly between the ABR-LSA and both the Prefix-LSA and ASBR-LSA. As this routine

follows the same steps for both Prefix-LSAs and ASBR-LSAs, only differing in the structures addressed,

we will only describe it for the ABR-LSA and Prefix-LSA. Figure 5.3 shows an overview of the parsing of

the ABR-LSA and Prefix-LSA.
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Figure 5.3: Parsing of the (a) ABR-LSA and (b) Prefix-LSA

5.2.2.A ABR-LSA parsing

For the ABR-LSA, after the common first step, we calculate and store the number of neighbors being

described, by dividing the length of the LSA body by the size that each described neighbor uses. We

then proceed to locally store the descriptions of each neighbor advertised in the LSA.

For this, we have a simple class, the AbrLSAItem, of which each object stores the description of

one neighbor ABR and links itself, through pointers, to the next and previous neighbors described in the

LSA, if they exist, creating a linked list. Besides links to list elements, each object of this class stores the

Router ID and intra-area cost to the described neighbor ABR. Each ABR-LSA will have an independent

list formed with objects of this class. This is done by storing a pointer to the first item of the list in the

overlayAbrLSA object.

If the current overlayAbrLSA object does not yet have an item linked to it, we create and link the first

AbrLSAItem to it, assigning it the values for the cost and router ID of the first ABR neighbor described

in the LSA being parsed. If it has a list element linked to it from previous parsing routines, we instead

update that first list item’s stored information. This process is then repeated (using the first AbrLSAItem

as the root instead of the overlayAbrLSA) for following ABR neighbor descriptions, if any, and until no

more ABR neighbors are described in the LSA. Finally, if our own ABR-LSA has already been advertised

49



to the AS, we schedule a full overlay calculation. Otherwise, the full calculation will be scheduled when

our ABR-LSA is generated.

5.2.2.B Prefix-LSA parsing

For the Prefix-LSA, after the first common step, we access the advertised LSA body to store it and to

either create and link or simply link (if already created) the corresponding routing table entry to that

overlayPrefixLSA instance.

Each existing IP routing table entry (INrte class, and one per destination) stores a linked list of all

the Prefix-LSAs, received from different ABRs, referring to itself, to later iterate through all the possible

Prefix choices for that destination. As we process the new/updated Prefix-LSA, we link the current

overlayPrefixLSA instance to its corresponding routing table entry’s list of Prefix-LSAs.

Finally, if (i) our first ABR-LSA has been advertised and (ii) our first full overlay routing calculation

has been performed, we (re)compare all the Prefix-LSAs linked to the destination at hand, re-originating

the Network-Summary-LSA for that destination if a new and better path is chosen.

5.2.3 Unparsing the Overlay-LSAs

There are some cases in which we might want to delete our generated Overlay LSAs. If all of an

ABR’s neighbors become unreachable, it will delete (age prematurely) its ABR-LSA from the database

and reset the OSPF::first abrLSA sent flag, changing its behaviour to as if it is the only ABR in the

network. As for Prefix-LSAs and ASBR-LSAs, these will be prematurely aged when an intra-area route

to a destination is no longer available to the advertising router.

When we delete an LSA from the database, we must unparse it before fully deleting it from the

database. In the case of Overlay LSAs, unparsing essentially means to remove any pointers between

objects (e.g., the pointer to the Prefix-LSA stored within the routing table entry) and, if necessary, re-

determine the best possible path to the corresponding destination, for Prefix-LSAs. The UnParseLSA

routine is called before an LSA deletion, from which the LSA specific unparse routine is called. Simi-

larly to the opqLSA::parse, a reverse opqLSA::unparse routine redirects the LSA to a newly created

opqLSA::unparse overlay lsa routine.

This new routine operates like its opposite, filtering the LSA based on its Opaque Type before entering

the LSA specific processing. The unparsing of overlayAbrLSA objects clears the fields, such as the

number of neighbors and their respective information, and breaks the link between that object and its

corresponding Opaque-LSA.

The unparsing of Prefix-LSAs and ASBR-LSAs is again very similar, and only the Prefix-LSA is

addressed here. When we unparse a Prefix-LSA, we remove it from the list of overlayPrefixLSA objects

stored in its corresponding routing table entry. We must also be aware that, if the Prefix-LSA being
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deleted is the one currently being considered for the destination’s Network-Summary-LSA, we must re-

determine which of the remaining Prefix-LSAs should replace it. If the Prefix-LSA being deleted was in

fact the one our ABR used to generate the Network-Summary-LSA for that destination, we recalculate

what Prefix-LSA should be considered to advertise the corresponding Network-Summary-LSA, possibly

re-originating that LSA, after removing the Prefix-LSA from the list in the routing table entry. Finally,

we clear the links between the Prefix-LSA and its corresponding routing table entry and between the

Prefix-LSA and the Opaque-LSA from which it originated.

5.3 The Full Overlay Routing Calculation

With most of the processing already done for Overlay LSAs, it becomes significantly easier to implement

the remaining processes relative to the full overlay routing calculation. This calculation is scheduled

before it is performed, similarly to the intra-area full calculation. To trigger both these calculations, a

global timer set to trigger every second is run to find if the calculations are scheduled. Only ABRs

can access the full overlay calculation routine, and this same routine is limited (like the intra-area full

calculation) to a rate of one run per second, imposed by the timing function from which it is called. It

would have been possible to implement an event-driven alternative to this, performing the calculation

as soon as possible, but we opted for this option, to aggregate possible consecutive triggers for the

calculation within a short time. An event-driven alternative could slow the protocol down, as this can

be a heavy operation, since it processes all the destinations and ABRs existing in the network. The full

overlay calculation is composed of three main routines:

• The Overlay Dijkstra calculation, to build the ABR Overlay Graph;

• A simple routine to determine the next hop ABRs to reach each ABR included in the overlay;

• The scan of Prefix-LSAs and ASBR-LSAs generated for each destination, to determine the globally

optimal path to it.

5.3.1 Building the Overlay Graph

To build The ABR overlay graph, we implemented a Dijkstra Shortest Path First algorithm, similar to what

is done for the intra-area routing calculations. As nodes, this algorithm uses the stored overlayAbrLSA

objects, each representing a different ABR.

This Dijkstra algorithm uses two structures, the PriQ class, or Priority Queue, and the PriQElt class,

or Priority Queue Element. The overlayAbrLSA class inherits from the latter. The queue elements

have one or more (in this case, one suffices) costs assigned (designated PriQElt::cost0), which in this
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case depicts the current cost to an ABR. When adding an element to the queue, it will be placed so

that the element with the lowest cost is placed at the head of the queue. We call this priority queue the

candidate list. There are three possible states for each ABR, DS UNINIT (meaning it has not yet been

added to the candidate list), DS ONCAND (the element is placed in the candidate list) and DS ONTREE

(the element has been placed in the overlay graph and does not require further processing). This state

is stored inside a variable called t state, as part of the overlayAbrLSA class.

Figure 5.4 shows a representation of how the Overlay Dijkstra algorithm proceeds.

Figure 5.4: Graphic representation of the Overlay Dijkstra algorithm

We begin the Dijkstra calculation by adding our own ABR-LSA to the candidate list, changing its state

to DS ONCAND and assigning it a cost0 of 0, as it is the root for the calculation. All other ABR-LSAs

remain in the DS UNINIT state. We then begin iterating through the candidate list until no elements

remain. Each iteration, we remove the head element from the queue and process its information:

1. Before processing the current ABR-LSA, we change its state to DS ONTREE, locking its place in
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the overlay graph, and assign it the cost (in a overlayAbrLSA::cost variable) it currently holds in

cost0. This represents the total cost to reach this ABR;

2. We then iterate through the ABR neighbors described in the LSA, stored as AbrLSAItem objects

(see Section 5.2.2.A). For each neighbor, and until none remain:

(a) We access the corresponding overlayAbrLSA object of the current neighbor;

(b) If this neighbor is already in the DS ONTREE state, we continue to the next one;

(c) Otherwise, we assign a total cost, resulting from the sum of the cost assigned to the current

ABR-LSA (cost0 in step 1) with the cost advertised in the LSA for this neighbor;

(d) If the current neighbor is already placed in the candidate list (DS ONCAND state), we must

determine if this new cost is better than the one it already had assigned to it. If so, we remove

the neighbor from the candidate list, to later be re-added. Otherwise, we continue to the next

described neighbor;

(e) If the neighbor being processed is still in the DS UNINIT state, or if its new cost is better than

a previous one, it will be (re)added to the candidate list, assigning its cost0 variable the cost

calculated in step 2.c and changing its state to DS ONCAND.

(f) When adding a neighbor to the candidate list, we also keep track of which ABR is the par-

ent node of the added neighbor (which ABR added it to the list), which will be the current

ABR-LSA, whose neighbors are currently being described. This information is stored in the

overlayAbrLSA::t parent variable, and is used to determine our next hop ABR to each ABR.

With the Overlay Dijkstra algorithm complete, the overlay graph is built. We then go on to define

our next hop ABRs to each of the ABRs described in the overlay graph. This is done to determine the

physical next hop that must be taken to each destination. This is determined from the next physical hop

to the next hop ABR, which is determined during the intra-area full calculation. Although we will store

the Overlay information, we can still only fully decide on the paths that are taken inside the areas we

attach to, since ABRs do not have information about the intra-area topologies of other areas.

The process of setting the next hop ABRs to each ABR is simple, as for each ABR-LSA stored, we

simply trace back the parent nodes up to the ABR which has our router as its parent. Essentially, this

process informs the ABRs which of their own ABR neighbors should be used as a gateway to reach

other ABRs.

5.3.2 Calculating the Overlay Routes

As the final step to complete the full Overlay calculation, we scan all the destinations advertised in

Prefix-LSAs and ASBR-LSAs by ABRs across the AS. We will only describe the process of scanning
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the destinations advertised in Prefix-LSAs, since the process is almost identical for ASBRs, only differing

in the type of routing table entry and LSA used.

For this we call the OSPF::prefix scan routine. This routine iterates through the routing table entries

for all stored destinations. For each routing table entry, we call the OSPF::adv best prefix routine. In

this routine, we determine which Prefix-LSA, from those advertising this destination, is the best option

for our ABR to originate the corresponding Summary-LSA from.

• First, we verify if the destination has Prefix-LSAs linked to it, through the INrte::prefixes field of

the IP routing table entry class, storing a list of all the Prefix-LSAs currently advertising it. If no

Prefix-LSAs are associated with this destination yet, we skip to the next entry;

• Otherwise, we keep track of the best total cost advertised for the destination, as well as which

Prefix-LSA (and ABR) is advertising it. For this, we iterate through all the Prefix-LSAs linked to the

current routing table entry. For each one and until none are left:

– We access the overlayAbrLSA instance of the ABR advertising the current Prefix;

– We calculate the total cost to the destination, as the sum of the cost to the ABR (calculated

during the Overlay Dijkstra algorithm) with the cost advertised in the Prefix-LSA;

– If this cost is better than the current best cost, we update the current best cost, the Prefix-LSA

that originated it, and the ABR advertising it;

• After verifying all the Prefix-LSAs, we will update our own chosen route to the destination and

advertise its corresponding Network-Summary-LSA if at least one suitable candidate was found

and if (at least one of the following):

– The destination was not yet advertised in a Network-Summary-LSA;

– The Prefix-LSA used to advertise the Network-Summary-LSA has changed;

– The cost advertised in the previous Network-Summary-LSA differs (not necessarily for the

best) from the newly determined best cost;

To update our own route to the destination we simply update the routing table entry, in which we (i)

update the cost, with the new best cost, (ii) the type of route, depending on whether we choose our own

Prefix-LSA to advertise the destination or the cost matches our intra-area cost, and (iii) the path taken.

The path to the destination is either the intra-area path to the destination or the path to the next hop

ABR to reach that destination, depending on the type of route used. This update is done inside a routine

created for that purpose, the OSPF::update path overlay, receiving as input the routing table entry, the

ABR that originated the chosen Prefix-LSA and the best cost determined for that destination.
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Finally, we will address the installation of the determined paths into the OS’s routing table. This

is always done at the end of full intra-area and Overlay routing calculations, for all routes presenting

changes. Occasionally, when only one specific route is processed, its need for an OS update is checked.

It is done by calling a system function and passing the relevant parameters: (i) the subnet address and

(ii) mask, (iii) the cost assigned to it, and (iv) the path taken to reach it, this last one being limited to the

intra-area portion of the path.

5.4 Injecting the routing information into the attached areas

If the conditions have been met to update the path from the ABR to a destination based on the selected

Prefix-LSA for it, described in Section 5.3.2, before exiting the OSPF::adv best prefix routine, we also

generate the Network-Summary-LSA relative to that destination. The origination of Network-Summary-

LSAs has been subject to a few changes, relatively to the base implementation. A couple of verifications

prevented the LSAs from being advertised inside the areas containing the destinations, which have also

been removed. These were (i) the comparison of the router’s area with the destination area and (ii) the

verification of the path to the destination. If the router’s area was the same as the destination’s, or if the

remaining path to the destination was fully contained within the destination area, the LSA would not be

advertised into that area.

The Network-Summary-LSA is then originated and advertised into the areas to which the ABRs

directly attach to. Upon receiving these LSAs, ABRs not process them for any inter-area route calcula-

tions. The area-internal routers, on the other hand, may only process the Network-Summary-LSAs, as

they already did, and not the Overlay LSAs.

Area-internal routers must now consider that inter-area approaches for all routes, and for that we

defined that instead of resorting to the Network-Summary-LSAs only when an intra-area path is not

available, it will always be done, replacing the intra-area path if it presents a better cost to the destination,

independently of the router’s or the destination’s areas. To accommodate this, slight changes were

required to the inter-area path calculation for each destination (represented by the INrte::run inter area

routine). These consist of (i) preventing the function from exiting if we already had an intra-area route

available to the destination and (ii) to compare the calculated inter-area route with the possibly existing

intra-area route, in order to always choose the globally best route.

Essentially, these all the main differences from the base version that affect the area-internal routers.

This means that although it is almost there, this extension (at least for this specific implementation)

is not completely transparent to area-internal routers, as they see slight changes to their end of the

implementation.
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To prove the correct operation of this extension, we submitted the developed implementation to a

number of test cases, with a predictable outcome, and with a topology complex enough to cover all the

aspects we aim to address. This chapter will be divided in two main sections, one for functional tests

to our extension, and another for convergence time tests, in which we will determine and compare our

solution convergence times when reacting to changes to those of the base version used for this imple-

mentation (see Chapter 3). As we did not develop a full implementation of the OSPFv2 protocol, but only

the proposed extension over an existing implementation, for this work we will assume the base version

of the code to be correctly implemented and functional. This refers to all the pre-existing mechanisms

present in the code and described throughout Chapters 2 and 3, e.g., the Hello Protocol, or the Initial

Database Synchronization.

Our extended version of the code, as well as its base version, was deployed in Docker [10] containers,

and these containers were run inside a GNS3 [11] Virtual Machine (VM) instance. We rely solely on

these containers to represent the routers in our tests, since we could not achieve interoperability with

the Cisco Router Images available in GNS3. Docker containers use a static interface configuration,

made available by GNS3. Appendix B contains a set of instructions on how to install and configure the

Docker containers with the implementations used. We also rely on a monitoring tool accompanying the

base implementation as well as on Wireshark [12] packet captures to gather our results.

For our functional tests, we used the topology shown in figure 6.1. This topology is composed of three

areas, Area 1 (with an Area ID of 0.0.0.1), Area 2 (Area ID 0.0.0.2) and Area 3 (Area ID 0.0.0.3). There

is a total of seven routers, each one running in a separate Docker container. Each router is identified

by its unique Router ID, assigned in the form 0.0.0.x and from now on designated as Rx (for simplicity),

with x being the router number assigned to them in GNS3, as show in the figure. R1, R5 and R7 are

area-internal routers, belonging to Areas 1, 2 and 3, respectively. R2, R3, R4 and R6 are all ABRs. R2

attaches to Areas 1 and 2, R3 and R4 both attach to Areas 1 and 3, and R6 attaches to Areas 2 and

3. There is a total of 9 subnets configured. Subnets 11.0.0.0/24, 12.0.0.0/24 and 13.0.0.0/24 belong

to Area 1, subnets 21.0.0.0/24 and 22.0.0.0/24 belong to Area 2 and subnets 30.0.0.0/24, 32.0.0.0/24,

33.0.0.0/24 and 34.0.0.0/24 belong to Area 3. By default, all outgoing interfaces have been assigned

a cost of 10. Any change to these costs for our tests will be indicated. The connections between the

routers are as presented in the figure, with the interface addresses being formed as the subnet address

to which they connect, ending with the router number.

In these tests, we purposely avoided the use of a Backbone area (Area ID 0.0.0.0), and created a

cycle in the network. Such cycle will most likely cause problems in a plain OSPF implementation. For

our tests, we will not cover the use of ASBRs or ASBR-LSAs, as the ASBR-LSAs function is extremely

similar to that of the Prefix-LSAs. For that reason, we shall refer to the Network-Summary-LSAs simply

as Summary-LSAs throughout this chapter.
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Figure 6.1: Multi-area cyclical network topology

6.1 Functional tests

This section includes tests to prove the correct operation of our developed extension to the base version

of the protocol implementation. First, we will show the database portion containing the originated Overlay

LSAs for the given topology and how the Summary-LSAs are now being advertised into the areas where

the destination they advertise is contained. Then, we will demonstrate that the current OSPF limitations

have been overcome. Finally, we will leave a set of three tests, to illustrate the reaction to changes in the

topology, by both ABRs and area-internal routers. In here we will include changes to costs, the removal

of a link between two routers and the removal of an ABR.

To support our tests, and provide visual results, we used data gathered from a monitoring tool in-

cluded with the base implementation (ospfd mon), which communicates directly with the running pro-

tocol to obtain information, and Wireshark packet captures. To see the representation of the Overlay

LSAs, simple additions were made to the monitoring tool so that these LSAs would present a structured

body, instead of a string of bytes. A list of the available commands within this tool is shown in figure 6.2.
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Figure 6.2: Summary of the commands available in the ospfd mon monitoring tool

From these commands we highlight three, which we used the most, (i) the routes command, that prints

out the router’s current routing table, (ii) the opq command, included by us, to print out the database

portion containing the AS-scoped-LSAs (in this case, only the Overlay LSAs) and (iii) the adv command,

used to print out the contents of a specific LSA, by receiving as additional inputs the LSA’s Type, LS ID,

Advertising router ID and Area ID. In future figures shown with information gathered from this monitoring

tool, the used command will be included in the top of the figure. The parameters of the adv command

in these figures are the ones described and by that same order.

6.1.1 Changes to Summary-LSA reachability and Overlay LSAs

In this first test, we show how the Summary-LSAs are now advertised into the areas in which the ad-

vertised destination is contained, and also the correct origination and flooding of the Overlay LSAs, as

well as the contents of their LSA bodies. We performed a single Wireshark capture, over the link that

represents sub-network 30.0.0.0/24.

We start by examining the Wireshark packet capture obtained, presented in part in Figure 6.3. This

capture was performed in subnet 30.0.0.0/24, but it could have been performed in any other location,

since it shows the AS-scoped Overlay LSAs. In figure 6.3.a we see the moment when the first set

of Overlay LSAs were originated and flooded to the AS. Because Wireshark does not recognize the

Opaque Type described in the LSA header, it signals the packet, more specifically the Opaque Type,

as unknown. From analyzing the packet headers presented in figure 6.3.b, we can see that this packet

refers to the origination of the ABR-LSA (Opaque Type 5, seen immediately after the LSA header) and

several Prefix-LSAs (Opaque Type 6) from R3.

We now move on to the information gathered with the ospfd mon monitoring tool. We start by

showing, in figure 6.4 the resulting routing table of routers R1 (6.4.a), R3 (6.4.b), R5 (6.4.c) and R7

(6.4.d). The routes with the SPF Type refer to intra-area paths, while the ones of Type SPFIA refer to

the inter-area paths. By analyzing the information contained in the routing tables alongside the provided

topology in figure 6.1, we can see that all the presented routes are using the shortest available paths to
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(a)

(b)

Figure 6.3: Wireshark packet capture for the first functionality test
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(a) (b)

(c) (d)

Figure 6.4: Routing tables for routers (a) R1, (b) R3, (c) R5 and (d) R7

the destinations. As an example we can look at the entry presented in R3 to both subnets 21.0.0.0/24

and 22.0.0.0/24. These subnets are contained in Area 2, not directly reachable by R3, and the router

takes different paths to each of the routes, using R1 and R7 as next hops, respectively, to these destina-

tions, and presenting a cost of 30 to reach both of them. We did not yet provide the network with better

inter-area paths to destinations than their possible intra-area alternatives. However, in our next test, we

will change interface costs in a way that some inter-area paths are preferable to the intra-area path to

that same destination.

We proceed to show the contents of the portion of the LSDB containing the Overlay LSAs. To confirm

that these contents are consistent across the whole network, we have figure 6.5. In this figure we see the

global portion of the LSDB, not attached to any specific area, storing the Type 11 (AS-scoped) Opaque-

LSAs (in which the Overlay LSAs are advertised), seen by routers R2 (6.5.a), R4 (6.5.b) and R6 (6.5.c).

By analyzing the contents of the databases, namely the LSAs’ Sequence Numbers, which present the

same values for the same LSAs in all routers, we can confirm that the information is consistent among

the ABRs. In this database we have one ABR-LSA originated by each of the ABRs, as well as Prefix-

LSAs originated by each router equal to the number of destinations reachable by them through intra-area

paths. This high volume of Overlay LSAs is expected, as each ABR should advertise exactly one ABR-

LSA and one Prefix-LSA for each prefix reachable through an intra-area route. For this topology, this

means seven Prefix-LSAs generated by R3, another seven by R4, for all destinations present in Areas 1

and 3, five Prefix-LSAs generated by R2, for the destinations in Areas 1 and 2, and six Prefix-LSAs by

R6, for the destinations in Areas 2 and 3. For each ABR we count one more, for its ABR-LSA. This leads
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(a) (b) (c)

Figure 6.5: Overlay LSAs stored in routers (a) R2 (b) R4 and (c) R6

to a total count of twenty nine Overlay LSAs. We can confirm through the ADV RTR column present in

the figure that each ABR generated the number of Overlay LSAs they were supposed to.

We also show in figure 6.6 two of the Overlay LSAs, as seen within the monitoring tool. In this case,

we see, in figure 6.6.a, the ABR-LSA originated by R4, seen by R2, showing each of R4’s ABR neighbors

and the intra-area cost to reach each of them. In figure 6.6.b, we can see the Prefix-LSA, generated

by R2 and seen by R6, for the subnet 11.0.0.0/24, clearly showing its subnet address, mask and the

intra-area cost to reach it from the originating router.

To confirm that Summary-LSAs are now being advertised into the areas to which the destinations

belong, we have figure 6.7. Figure 6.7.a shows the database for Area 1, stored in R1, while figure 6.7.b

shows the database for Area 2, stored in R5. From analyzing these, we can see that the Summary-LSAs

for the destinations present within those areas are represented in their respective databases. In fact,

both databases have a number of Summary-LSAs for each destination equal to the number of ABRs

attaching to the area they belong to, i.e., each ABR attached to these areas generates one Summary-

LSA for each of the network destinations (In this case 9 Summary-LSAs generated per ABR). This

shows that all Summary-LSAs are being originated and advertised by the ABRs, providing the necessary

information to area-internal routers for them to choose the best possible route to each destination, as we

would expect and wish from the extended version of the implementation. In the base implementation,

only the prefixes not available in the destination areas would be advertised.

We finally show, in figure 6.8, a small number of examples of the various Summary-LSAs originated

by the ABRs. These Summary-LSAs are being advertised with the correct information, this being the

globally shortest path cost to the destinations advertised. In figure 6.8.a, we see the Summary-LSA
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(a) (b)

Figure 6.6: Representation of the bodies of (a) an ABR-LSA and (b) a Prefix-LSA

(a) (b)

Figure 6.7: Database stored in routers (a) R1 and (b) R5
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(a) Summary-LSA generated by R2 for sub-
net 22.0.0.0/24 (seen by R5)

(b) Summary-LSA generated by R2 for sub-
net 33.0.0.0/24 (seen by R5)

(c) Summary-LSA generated by R3 for sub-
net 11.0.0.0/24 (seen by R1)

(d) Summary-LSA generated by R6 for sub-
net 33.0.0.0/24 (seen by R5)

Figure 6.8: Examples of some Summary-LSAs originated by various ABRs

originated by R2 for subnet 22.0.0.0/24 and in figure 6.8.b, the Summary-LSA originated by R2 for

subnet 33.0.0.0/24. From the topology (figure 6.1) we can see that R2 here advertises an inter-area

path cost to this subnet, using the shortest path possible, through R1 and R3, which is the only possible

route to this destination presenting a cost of 30. Any alternative path would present a cost of at least

40 to reach the same destination. We also see, in figure 6.8.c, the Summary-LSA originated by R3 for

subnet 11.0.0.0/24, and in figure 6.8.d, the Summary-LSA originated by R6 for subnet 33.0.0.0/24.

6.1.2 Globally optimal routing choice

For this next test, we used the same topology of figure 6.1, with some changes to the interface costs

presented. We will assign a cost of 100 to R2’s eth1, rather than 10, thus making it better to access

the destinations contained in Area 2 from R6, independently of which router we are calculating the

route from. This means, for example, that R2 should take inter-area paths to the destinations within

Area 2, despite having intra-area paths available to reach those destinations. Also, we verified how R2

advertises different costs in it’s originated Summary-LSA and Prefix-LSA for the same destination, with

the best possible cost in the former and the best intra-area cost in the latter.
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(a) (b)

(c) (d)

Figure 6.9: Routing tables of routers (a) R1, (b) R2, (c) R3 and (d) R4

We start by verifying the routing tables of some routers. In this case we look into the routers affected

by this change, routers R1, R2, R3 and R4, which would have at least one route to a destination passing

R2. These routing tables are shown in figure 6.9, R1’s in figure 6.9.a, R2’s in figure 6.9.b, R3’s in figure

6.9.c and R4’s in figure 6.9. We can see, by comparing R1’s and R3’s routing tables obtained in the

previous test, presented in figures 6.4.a and 6.4.b, with this new ones, presented in figures 6.9.a and

6.9.c, respectively, that both present changes in the routes to at least one of the destinations. This

is the case as paths to these destinations were being directed through R2, which now advertises a

cost of 100 and 110 to subnets 21.0.0.0/24 and 22.0.0.0/24, respectively. From examining the routing

tables obtained for R2, present in figure 6.9.b, none of its advertised paths exit through its eth1 interface,

choosing the better inter-area paths instead to reach all destinations. A good example of this can be

seen in the routing table of R2. Without this change in cost, its cost to reach subnets 21.0.0.0/24 and

22.0.0.0/24 would be, respectively, 10 and 20. With this change to R2’s interface, we can see these

routes are being advertised with costs of 60 and 50, both as an inter-area route, and having R1 as its

next hop. In the base implementation, the worse intra-area paths with costs of 100 and 110 would still

be chosen over these inter-area paths.

We also take a look at the Overlay LSAs and Summary-LSAs originated by R2. These are shown in

figures 6.10 and 6.11, respectively. In figure 6.10.a, showing R2’s ABR-LSA, we can see its advertised

cost to R6 to be of 110, its intra-area cost to reach it, even though it can reach that same router with a

cost of 40, by taking the path advertised for subnet 34.0.0.0/24, which is in fact what is done. Similarly,

R2 advertises costs of 100 and 110 in its Prefix-LSAs referring to subnets 21.0.0.0/24 and 22.0.0.0/24,

illustrated in figures 6.10.b and 6.10.c, respectively. We can see the choice made by the router by
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(a) (b) (c)

Figure 6.10: Overlay LSAs originated by R2; (a) ABR-LSA, (b) Prefix-LSA for subnet 21.0.0.0/24 and (c)
Prefix-LSA for subnet 22.0.0.0/24

(a) (b)

Figure 6.11: Summary-LSAs originated by R2 for (a) subnet 21.0.0.0/24 and (b) 22.0.0.0/24

contrasting this Prefix-LSA advertisement with the Summary-LSAs advertised by R2 for those subnets,

which present costs of 60 and 50, as shown in figures 6.11.a and 6.11.b, respectively. The advertised

costs for these subnets correspond to those calculated and shown in the router’s own routing table. This

further proves the capacity of ABRs to always advertise the shortest path cost to a destination in their

Summary-LSAs, despite of the route type used.

6.1.3 Reaction to changes: Changes to costs

For this test we begin by analyzing the capacity of our extended implementation to react to changes in

interface costs within the network. A Wireshark capture was performed between routers R6 and R7, to

capture the packets that would be sent as a reaction to the change applied. First, we see how it adapts

to a change in the cost assigned to a specific interface. As a starting point we will be using the topology

from figure 6.1 as described. Then, after the network converges, we change the interface cost of R6’s
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interface eth1, from 10 to 100. After the network finishes converging, we change the same interface cost

to its initial value, ending up with the starting topology. We should see a change in some of the routing

choices made by certain routers, in this case R2 and R5, not only with the first change, but with the

second change as well, which should revert the changes made with the first change.

This test can then be separated into three phases:

1. The network converged previously to the cost change;

2. The cost change was applied and the network converged (R6’s eth1 from 10 to 100);

3. The cost change was reversed and the network converged to its initial state (R6’s eth1 from 100

to 10).

For each phase, we will analyze a certain amount of information, to evaluate the state of the network

at that point in time. Since we changed the cost of the entry point from R6 into Area 3, it is logical that

the routers mostly affected by this change would be R6 itself, R2 and R5, which would be using R6 as

the gateway to at least some subnets in Area 3. We will start by analyzing the routing tables of routers

R2 and R5, R6’s ABR-LSA, and both the Prefix-LSA and Summary-LSA originated by R6 for a subnet

contained in Area 3. This information can be seen in figures 6.12.a to 6.12.e, in the order described. We

can see that with all interfaces having a cost of 10, R2 uses R6 to reach subnet 34.0.0.0/24, R5 uses it

to reach all but one of the destinations in Area 3, R6 advertises intra-area costs of 20 to all its neighbor

ABRs, and both the Prefix-LSA and Summary-LSA, referring to subnet 33.0.0.0/24, advertise the same

cost of 20, reflecting the choice of intra-area routing from R6 to this destination.

We then changed the cost of R6’s eth1 interface, from 10 to 100, entering the second phase of this

test. We were able to see, via our Wireshark capture, the packets resulting from the reactions to these

changes, present in Area 3. This includes all Overlay LSA updates, and Summary-LSA updates within

Area 3. Note that a change to a Summary-LSA by R2 was not captured here. In figure 6.13 we see the

summary of the packets captured, including all the LS Update packets flooded into Area 3 as a reaction

to the cost change. Inside the four LS Update packets advertised by R6 is included the updated versions

of the router’s Router-LSA, ABR-LSA, all the Prefix-LSAs referring to the subnets contained within Area

3 and all the Summary-LSAs originated for the destination for which R6 previously used the changed

interface as the outgoing interface.

Besides this capture we gathered the same information as before, alongside the OS’s routing table

for router R5. This is the only case in which this was done, to prove the correct updating of the OS routing

table from the OSPF stored one through the comparison of the two tables. Figure 6.14 then presents,

in this order, from figure 6.14.a to 6.14.f, the routing table for R2, the routing table for R5, the kernel

routing table for R5, R6’s ABR-LSA, and the Prefix-LSA and Summary-LSA generated by R6 for subnet

33.0.0.0/24. We see a slight change with R2’s subnet 34.0.0.0/24 entry and bigger changes to R5’s
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(a) Routing table of R2 (b) Routing table of R5

(c) ABR-LSA of R6 (seen by R5) (d) Prefix-LSA generated by R6
for subnet 33.0.0.0/24 (seen
by R3)

(e) Summary-LSA generated by
R6 for subnet 33.0.0.0/24
(seen by R3)

Figure 6.12: State of the network during the first phase (before the cost change)

Figure 6.13: Summary of the packet capture portion referring to the first change applied
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(a) Routing table of R2 (b) Routing table of R5 (c) OS Routing table of R5

(d) ABR-LSA of R6 (seen by
R3)

(e) Prefix-LSA generated by R6
for subnet 33.0.0.0/24 (seen
by R3)

(f) Summary-LSA generated by
R6 for subnet 33.0.0.0/24
(seen by R3)

Figure 6.14: State of the network during the second phase (after the cost change)

routing table, which no longer uses R6 as the next hop to any destinations. We can also see changes to

the three LSAs generated by R6. Its ABR-LSA now advertises a cost of 110 to R3 and R4 (from 20), its

Prefix-LSA now presents a cost of 110 (from 20) to subnet 33.0.0.0/24 and the Summary-LSA for that

same destination advertises a cost of 50 (from 20).

Finally we move on to the third phase, by reverting the change on R6’s interface. As we would expect,

the outcome of this change was the restoring of the state of the network back to how it was presented in

figure 6.12. Figure 6.15 shows the portion of the packet capture corresponding to the reaction to this last

change. It contains the same type of information as that of the previous capture portion. Also figure 6.16

shows the information gathered after this change, in the same order as that indicated for figure 6.12.

We can see the restoration of the routing table of the routers, as well as of the information contained

in the advertised LSAs. With this, we prove that this extended implementation will adapt itself, not only

to better routing options, but also to negative changes, without issue, overcoming the count-to-infinity

problem (see Section 2.2.1).
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Figure 6.15: Summary of the packet capture portion referring to the second change applied

(a) Routing table of R2 (b) Routing table of R5 (c) ABR-LSA of R6 (seen by R3)

(d) Prefix-LSA generated by R6
for subnet 33.0.0.0/24 (seen
by R3)

(e) Summary-LSA generated by
R6 for subnet 33.0.0.0/24
(seen by R3)

Figure 6.16: State of the network during the third and last phase (after the second cost change, from 100 back to
10)
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6.1.4 Reaction to changes: Changes to links between routers

For the next test, we will not change any interface cost, but instead remove the link between two routers,

completely cutting off paths that would otherwise cross that link. For this test, start out with the topology

of figure 6.1, as described. A Wireshark packet capture was performed between routers R4 and R7,

on subnet 32.0.0.0/24. After the network converged, we removed the link between R6 and R7 (first

change), preventing all routes from crossing subnet 34.0.0.0/24. Note that this subnet is still available

at both routers R6 and R7, as their interfaces were kept running. Then, after the network converged

to a new state, we re-attached the link between these routers to see how the network reacted (second

change). The outcome of this test should be very similar to that of the previous test, with R5 being the

router most affected by this change. In this test we will see a difference in the nature of the change

detection, now done through the Hello Protocol (see Section 2.3.7). The expected result for this test

is an evolution by R5 similar to that of the previous test case, with the exception that the route taken

for subnet 34.0.0.0/24 remains the same. Also is the need to update the ABR-LSAs of ABRs attached

to area 3, since intra-area paths will cease to exist between R6 and both R3 and R4. Furthermore,

we should see the premature aging of R6’s Prefix-LSAs originated for all but one destination in Area 3

(subnet 34.0.0.0/24), alongside the update of some Summary-LSAs, similarly to the previous test case.

Just like the previous case, this test follows three simple steps. However, to show a different per-

spective over similar results we will present values over the steps for the same information, instead of all

the information after each step taken.

We start by examining the disturbances captured in Wireshark. The summary of this disturbances

is shown in figure 6.17. We examined these captures and seen that after the first change was detected

(figure 6.17.a), R7 updated its Router-LSA, by removing R6 related information from it, and deleted its

Network-LSA for subnet 34.0.0.0/24. After that, ABR-LSA updates come from both R3 and R4, also

removing R6 from the advertised ABR neighbors. Finally, another ABR-LSA update appears, this time

from R6, alongside the premature aging for three of its generated Prefix-LSAs, for subnets 30.0.0.0/24,

32.0.0.0/24 and 33.0.0.0/24. In figures 6.18.a and 6.18.b, we show a more detailed view of the contents

of packets 142 and 149, summarized in figure 6.17.a. Packet 142 shows R7’s updated Router-LSA (LS

Age value reset) and the premature aging of the Network-LSA of subnet 34.0.0.0/24 (LS Age value of

3600). Packet 149, although not recognized by Wireshark, shows the update of R6’s ABR-LSA (Opaque

Type 5) and premature aging of its three Prefix-LSAs (Opaque Type 6), from which we show one. The

second change, as we can see from figure 6.17.b, presents a higher number of packets generated.

By the order of the received packets, these were, in the first place, the updated Summary-LSAs from

R6, generated after the first change, which were probably held in a retransmission list, waiting for an

acknowledgment. After that we see the update of both R6’s and R7’s Router-LSAs, as well as the update

of the Network-LSA relative to subnet 34.0.0.0/24, shown in figure 6.19. After that, the update of the
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(a) (b)

Figure 6.17: Summary of the portions of the packet capture including the packets generated after the (a) first and
(b) second changes applied

ABR-LSAs of R3, R4 and R6, to their initial state, were flooded followed by the origination of three new

Prefix-LSAs that would replace the prematurely aged ones by R6. Finally, R6 floods into Area 3 the

Summary-LSAs of all destinations whose chosen routes were affected by the first change.

We now proceed to the findings from within the monitoring tool. For the next presented figures,

please consider that sub-figures a will refer to the state before the changes, sub-figures b will refer to

the state after reacting to the first change, and sub-figures c will refer to the final state, after the network

converges after the second change.

We follow up with the evolution of the global portion of the database, storing the Overlay LSAs. This

evolution is presented in figure 6.20. By comparing figure 6.20.a to figure 6.20.b, we can see there

are three Prefix-LSAs missing, all three generated by R6 in the first figure (for subnets 30.0.0.0/24,

32.0.0.0/24 and 33.0.0.0/24). We also see three updated ABR-LSAs, originated by R3, R4 and R6, as

we can see by comparing the sequence number of these ABR-LSAs, and which present a value for their

age much lower than the other LSAs in the second figure. These are the changes applied over the ABR

Overlay in reaction to the link removal. Finally, in figure 6.20.c, we can see the ABR-LSAs being updated

again, with the same verification, as well as three new Prefix-LSAs originated by R6, as we can see by

searching the lowest aged Prefix-LSAs, and presenting a sequence number of 1 and a LS Age value

lower than the remaining LSAs.

On this same note, we now see the evolution of both R4’s and R6’s ABR-LSAs, to give an example of

their correct update. These ABR-LSAs evolution is present in figures 6.21 and 6.22, respectively. Here,

we can see that after the first change was noticed, R4 removed R6 from its list of ABR neighbors, adding

it back when the link between R6 and R7 was reestablished. The same is true for R6, which only left R2

described in the LSA, restoring its Area 3 neighbor ABRs after the second change was applied. We also

show, in figure 6.23, the evolution of one of R6’ generated Summary-LSAs, in this case the one referring

to subnet 33.0.0.0/24. We can see the first advertised cost of 20 changing to 50 after the link removal,

cost of its inter-area path. After the link reattachment between routers R6 and R7, we can see this cost

going back to the previous 20, of the now available intra-area path.
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(a) (b)

Figure 6.18: Detailed views of packets (a) 142 and (b) 149

Finally, we can look into some of the routing tables resulting from these changes. Figures 6.24, 6.25

and 6.26 show the routing table evolution of routers R4, R5 and R6, respectively. We can verify the

reaction to the changes in any of these routing tables. In the case of R4, we can see that after the first

change, the only route using R7 as its next hop, other that the route to subnet 34.0.0.0/24, changed its

presented cost from 30 to 40 and next-hop router to R1, with this change being reversed after the last

step. Similar changes occur at the other routers routing tables (e.g., R5’s route to subnet 33.0.0.0/24,

with the cost changing from 30 to 40, or R6’s route to subnet 30.0.0.0/24, with the cost changing from

30 to 50).

6.1.5 Reaction to changes: Changes to ABR presence

For this last functionality test, we will be deleting (simulating a crash) one of the ABRs from the network,

adding a new instance of that router to replace it after the network converges from its removal. The ABR

we will remove is R6. We performed a Wireshark packet capture between routers R4 and R7 until the

ABR is removed from the network. Before launching the new R6 instance, we performed a new capture

between routers R5 and R6, to detect the initial synchronization process.

The initial synchronization process between ABRs is the only main feature we could not completely

achieve in this implementation. In the current version of the extended implementation, area-internal

routers store the Overlay LSAs, and perform the usual Database Description process with the ABRs,
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Figure 6.19: Detailed view of packet 191
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(a) Opaque-LSAs before link re-
moval

(b) Opaque-LSAs after link re-
moval

(c) Opaque-LSAs after reat-
taching the link

Figure 6.20: Evolution of the global portion of the database

(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.21: Evolution of R4’s ABR-LSA
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(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.22: Evolution of R6’s ABR-LSA

(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.23: Evolution of one of R6’s originated Summary-LSAs (generated for subnet 33.0.0.0/24)

(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.24: Evolution of R4’s routing table

(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.25: Evolution of R5’s routing table
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(a) Before link removal (b) After link removal (c) After reattaching the link

Figure 6.26: Evolution of R6’s routing table

(a) (b) (c)

Figure 6.27: Routing tables of (a) R3, (b) R5 and (c) R6 obtained before removing R6

with the addition of sending the Overlay LSAs to the requesting ABRs. We store the Overlay LSAs in

the area-internal routers, even though they never process them, not only for this reason but also due to

issues that would arise within the base implementation when we tried to discard them after the flooding

procedure. We decided to settle for this, since we aim, above other aspects, to guarantee a correct initial

synchronization process in the ABR side, and correct convergence afterwards. In a future version of this

extension, it would be ideal for area-internal routers to not store the Overlay LSAs, and a process similar

to the Initial Database Synchronization to be performed between ABRs, but exclusively for Overlay LSAs.

We started the test by initializing all the routers, following the topology of figure 6.1. The initial

convergence proceeded as usual. We leave figure 6.27 to show some of the information gathered with

the monitoring tool. Figure 6.27.a, figure 6.27.b and figure 6.27.c show the routing tables obtained in

routers R3, R5 and R6, respectively.

We also show, in figure 6.28.a, the initial state of the Overlay LSA portion of the database, and in

figures 6.28.b and 6.28.c the initially obtained ABR-LSAs for R3 and R6, respectively.

After we finished gathering the initial information, we removed R6 from the topology. When the Hello

Protocol detected that R6 could not be reached, the network reacted to this change, captured in part with

the Wireshark packet capture we first set up between routers R4 and R7. The summary of the portion

of this capture concerning the convergence of the network can be found in figure 6.29. The contents of

this captured packets is essentially the same as those for the network reaction to a link being broken

between two routers, including updates to R7’s Router-LSA, to the Network-LSA for subnet 34.0.0.0/24,

to R3’s and R4’s ABR-LSAs and to changed Summary-LSAs by R3 and R4. Figure 6.30 shows details

of one of the packets captured from this change, in this case of R4 updating its ABR-LSA, as it no longer

has an intra-area route available to reach R6.
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(a) (b) (c)

Figure 6.28: (a) Overlay database and ABR-LSAs, generated by (b) R3 and (c) R6, before removing R6

Figure 6.29: Summary of the packets captured after the ABR was removed

Figure 6.30: Detailed view of packet 146
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(a) (b) (c)

Figure 6.31: State of (a) Area 1’s database, (b) the database Overlay portion and (c) R3’s ABR-LSA after
removing the ABR

With the ABR removed, we re-examined the information available through the monitoring tool. In

figure 6.31, we see the updated database of Area 1 (figure 6.31.a), where the updated Summary-LSAs,

one generated by each remaining ABR, have an advertised age of under 200 (for subnet 22.0.0.0/24,

generated by R3 and R4, and for subnet 34.0.0.0, generated by R2). In figure 6.31.b, we see the state

of the Overlay LSA portion of the database, which did not change besides the update of the remaining

ABRs ABR-LSAs (entries with LS ID 5.0.0.0). In this case this is expected, since R6 did not have the

chance to delete its own LSAs before being removed. Figure 6.31.c shows the contents of one of the

remaining ABR-LSAs, in this R3’s, updated to exclude R6 from its ABR neighbors. The same has been

done for other ABRs as well.

We also show the resulting routing tables of routers R5 and R7, in figures 6.32.a and 6.32.b, re-

spectively. These are the routers where this removal made the most impact, placing them at opposite

extremes of the network. While verifying these routing tables, take into consideration that, under normal

circumstances, the only and highest cost route is the one from R5 to subnet 30.0.0.0/24, presenting

a cost of 40. Only among these two routers, the number of routes with costs greater or equal to this

increased from one to six.

To finish this test, we configured a new router to replace R6. The router has been configured exactly

as R6 and placed in its place, as shown in figure 6.1. Before initializing the router, we closed the

existing packet capture and performed a new one between R5 and R6, over subnet 22.0.0.0/24. We

then started the router, obtaining the packet capture shown in figure 6.33. This capture describes the

initial synchronization and subsequent Overlay routing calculation for R6. In this capture, R6 receives
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(a) (b)

Figure 6.32: Routing tables of (a) R5 and (b) R7 after removing the ABR

Figure 6.33: Summary of the packets captured after R6 was added back to the network
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Figure 6.34: Detailed view of packet 18

all the LSAs present in the database, including the Overlay LSAs. All self-originated LSAs received are

then deleted and reinstalled by R6, before performing its full Overlay routing calculations. Figure 6.34

shows one of the packets generated by R6 during the initial synchronization process, deleting some of

its self-generated LSAs, before advertising the new ones.

We show the updated database of Area 1 in figure 6.35.a, the Overlay LSA portion of the database

in figure 6.35.b, and the reinstalled ABR-LSA of router R6 in figure 6.35.c. As for the Area 1 database,

we can see that the Summary-LSAs previously updated, were updated again, reverting the previous

updates done. We also see that the Overlay LSA portion of the database now contains new LSAs, all

originated by R6, with a significantly lower Age attribute. We can also the restoration of the ABR-LSA

for R6, containing the same information as before being removed.

We also leave, in figures 6.36.a, 6.36.b and 6.36.c the final routing tables of routers R3, R5 and R6,

respectively, with stored information as the tables in figure 6.27 for these same routers.
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(a) (b) (c)

Figure 6.35: State of (a) Area 1’s database, (b) the database Overlay portion and (c) R3’s ABR-LSA after adding
R6 back to the network

(a) (b) (c)

Figure 6.36: Routing tables of (a) R3, (b) R5 and (c) R6 obtained after adding R6 back to the network
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6.2 Convergence tests

To test the convergence times of our extended implementation, we will be measuring the time it takes to

complete certain events. We did this manually, so we will be using a relatively small amount of samples

(15 for each event). We will cover the tests already described in Section 6.1, these being:

• The time it takes the network to converge after a cold network start;

• The time it takes to converge after changing the cost of a router’s outgoing interface;

• The time it takes to converge after changing an existing interface, both removal and reattachment;

• The time it takes to converge after removing or adding an ABR from the network;

These tests have been already covered, so we only address the obtained results. These tests will

also be performed for the base version of this implementation whenever possible, to allow us to compare

the results. We obtained these results by resorting to the log messages generated by each router, which

include a timestamp. Since all the router containers are run inside the same VM instance, their clocks

are synchronized. In this implementation, we can only ensure a precision of seconds (it’s the maximum

precision achievable with the timing function used in the implementation), which is not ideal, but suffices

for us to take concrete conclusions. We will calculate the convergence times as the timestamp difference,

in seconds, between an initial event and a final event indicating the convergence of the network. This

final event will be, in all cases, the last update among the routers’ routing tables. The initial event varies

with the test case, these being:

• Cold start - The time of the first router being turned on;

• Cost change - The time of the interface change;

• Link change - Neighbor failure detected by the Hello protocol (link removal); Neighbor detected

through the Hello packet exchange (link addition);

• ABR removal - First detection of the ABR down by the routers neighbors;

• ABR addition - Time of the router being turned on.

We will use the multi-area topology described in figure 6.1, and a two level hierarchical network

illustrated in figure 6.37. This topology is divided into three areas, Area 0 (Backbone, Area ID 0.0.0.0),

Area 1 (Area ID 0.0.0.1) and Area 2 (Area ID 0.0.0.2). There are nine routers in total, each one running

in its own Docker container. Routers are identified through their Router ID, composed as 0.0.0.x, with

x being the number assigned to the router in GNS3. Four of the routers are ABRs. These are R2 and

R3 connecting Areas 0 and 1, and R4 and R5 connecting Areas 0 and 2. The remaining routers are
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area-internal routers. R1 belonging to Area 0, R6 and R7 to Area 1, and R8 and R9 to Area 2. Ten

sub-networks were configured: subnets 11.0.0.0/24, 12.0.0.0/24, 13.0.0.0/24 and 14.0.0.0/24 in Area

0, subnets 21.0.0.0/24, 22.0.0.0/24 and 23.0.0.0/24 in Area 1 and subnets 31.0.0.0/24, 32.0.0.0/24 and

33.0.0.0/24 in Area 3. By default, all outgoing interfaces have been assigned a cost of 10.

Figure 6.37: Hierarchical topology used for the convergence times testing

We performed our tests for three topology/implementation combinations: base/hierarchical, extend-

ed/hierarchical and extended/multi-area. We use the base/hierarchical combination as a control for the

other combinations, since it uses the base implementation with a topology that was already possible to

use. We then use the extended/hierarchical combination to assess the overhead added by our exten-

sion, as it would not really be needed when using a hierarchical topology. Finally, the extended/multi-area

combination serves to verify what advantages can come from using a more arbitrary, cyclical multi-area

topology, instead of the hierarchical one.

For future reference, we show in figure 6.38 a summary of the obtained times, showing the average

and standard deviation for these three combinations.

We started by testing the convergence time of the network after all the existing routers are cold

started. These results are illustrated in figure 6.39. Here we see that, usually, the base version has
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Figure 6.38: Summary of the obtained times (in seconds) for the tested cases

shorter convergence times than the extended version, which maintain similar convergence times for

the different topologies used. On average, the time taken by the base version was only four seconds

less than that of the extended version. This initial convergence time includes the time taken by routers

to trigger a 40 second timer that will ultimately initiate the Database synchronization process between

them. These results are very positive, especially when we consider that the extended version limits

the rate of the overlay calculation to one run per second, while the base version will instantly process

and flood newly received Summary-LSAs. This rate limitation serves the purpose of not overloading the

routers’ processing capacity, since the full Overlay routing calculation can be a relatively heavy process.

However, it does not influence the correction of our implementation.

Figure 6.39: Boxplot of the results for a full network cold start

We then tested the reaction time of the network to a change in the cost of a router interface. The

obtained results are shown in figure 6.40. For the hierarchical network, we changed the costs in both

interfaces of R4. For the multi-area topology, we changed the costs in both interfaces of R6. For this
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test we only applied changes to ABR interfaces, as these would have a more similar type of reaction

among all version/topology combinations. For each interface, we applied a change in the interface cost

from 10 to 100, and back to 10 after that. To gather the time for each test run, we used the average from

both changes applied to each interface (10 to 100 and 100 to 10). Each event is then measured as the

average between (i) the time taken to converge after the interface cost is changed from 10 to 100 and (ii)

the time taken to converge after changing the interface cost from 100 to 10. For this test, we noted an

average convergence time of around 1.25 seconds for the base version, versus the 2.5 second average

time presented by the extended version. For this particular case, there is not a significant distinction to

be made about the different topologies used. These times can be mostly explained by the need that may

arise, after an intra-area calculation, to re-originate some Overlay LSAs, which can lead to a full overlay

routing calculation. This calculation is rate limited to one run per second. The base version however is

only limited by the intra-area calculation common to both versions. This means a faster time for the base

implementation, with the downside of possibly storing sub-optimal intra-area routes to destinations.

Figure 6.40: Boxplot of the results for changes in interface costs

We then tested the network reaction to the removal and subsequent addition of links between routers.

In the hierarchical network, we broke and reattached the links between routers R1/R4 and R4/R8. For

the multi-area topology, we did the same to the links between routers R5/R6 and R6/R7. For this test we

decided to affect the links connecting an ABR to an area-internal router. This keeps the test conditions

as equal as they can be for the different topologies used. Similarly to the values gathered for the cost

changes, each event time was measured as the average between (i) the time taken to converge after

the link is removed and (ii) the time taken to converge after the re-addition of the link. We chose not
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to separate these test cases because they resulting times were within the same level of magnitude.

The results of this are illustrated in figure 6.41. In this case, we can see the base version presenting

better values when compared with the extended version, for the same topology, but a considerable

improvement from using the multi-area topology. For the hierarchical topology, the worst times were

obtained for the changes made in the link belonging to the backbone, since these had the most impact

over the rest of the network. We also noted that when removing the link between R1 and R4, R4 no

longer had access to Area 0 and Area 1’s advertised destinations, since it could no longer reach any

other ABR through the backbone, even though this would be possible to do through Area 2. Although this

did not impact the convergence times of the network, it reinforces the current restrictions seen in OSPF.

On average, the resulting times went up by one second from the base implementation to the extended

version applied over the multi-area topology, and two seconds from the base version to the extended

version when used over the same topology. We did not consider the DR election process for this test,

as it relies on the Hello protocol. If we did, the times gathered would increase somewhat randomly (due

to the different timings used by the routers to send out Hello packets), by up to 5 seconds.

Figure 6.41: Boxplot of the results for changes in the existing interfaces connecting two routers

Finally, we tested the reaction times to the removal and addition of ABRs to the topology. We sepa-

rated the gathered times for removal and addition of these ABRs, as each of these cases have its own

particular aspects. For the hierarchical topology, we tested this by removing and re-adding R2, while

in the multi-area topology we did the same with R6. This choice is simply made by the fact that both

these routers are ABRs, following the same logic as for the other cases. The results for the removal and

addition of the ABRs are represented in figures 6.42 and 6.43, respectively. For this test, we have very

close average values for all test cases, with the lowest, and more consistent being those presented by
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the extended version applied over the multi-area topology, in the case of the ABR removal. Because

the multi-area network uses a cyclical topology, when a change is detected, it will be faster for the infor-

mation change to reach the remaining areas, as the information does not need to be spread down the

hierarchy to the routers farthest from the change, and can instead be disseminated through all remaining

possible directions. For other test cases this did not occur. This is most likely explained by the small

dimension of the used networks, which will not allow this new feature to be clearly shown.

For the addition of the ABRs, the average times are again similar to one another, with the extended

version over the multi-area topology having a slightly higher average value. For this initial version of

the extension, the added ABR is receiving Summary-LSAs, which it no longer requires, as it no longer

processes them. Depending on the size of the network used, this might lead to significantly longer times,

as most of the contents of LSDBs are Summary-LSAs, as we can see from the results gathered in our

functionality tests (e.g., figure 6.35.a, where all LSAs of Type 3 are Summary-LSAs). For the results

obtained for the extended version, we must keep in mind that the initial ABR synchronization process

is not featured as it ultimately should. However, given the overhead that is also added by including

Summary-LSAs in this process for ABRs, the resulting times would not likely vary. Again The higher

times presented here are a result of the high amount of information that must be exchanged between

the routers upon the ABR addition, followed, in the case of the extended version, by the full Overlay

routing calculations that must be (re)done by the networks ABRs.

Figure 6.42: Boxplot of the results for the removal of an ABR to the network
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Figure 6.43: Boxplot of the results for the addition of an ABR to the network
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The OSPF protocol currently uses a DVR approach to inter-area routing, which suffers from some re-

strictions, such as (i) the count-to-Infinity problem, inherent to this type of approach, (ii) the limitation

on the multi-area network topology configuration and (iii) possibly, sub-optimal path choice to some

destinations.

To overcome these restrictions, we proposed and implemented an extension, in this case over

OSPFv2, not only to allow the configuration of arbitrary multi-area topologies, but also to always guaran-

tee optimal routing across the whole network. This extension changes the inter-area approach used by

OSPF, from a DVR to an LSR approach. This is done by resorting to a newly introduced ABR overlay,

providing a simplified view of the whole AS over the physical network, by only including the network

ABRs in it. This overlay is synchronized among all ABRs across the AS, and stores the necessary in-

formation for ABRs to reach all destinations within the network. This information is stored by the newly

introduced Overlay-LSAs, and is processed and injected into the network areas through already known

LSAs, making this extension only visible to ABRs.

We based our implementation on an existing OSPFv2 implementation, developed by John T. Moy.

We aimed to integrate our extension into this existing implementation as simply and as effectively as

possible. We successfully developed an initial and functional, yet not completely stable nor optimized,

version of our extended implementation. We reached the conclusion that a final version for the integra-

tion of this extension in the base version would require an extensive and deep revision and refactoring

of the code, including some of the processes used by OSPF.

Our results for this work were undoubtedly positive. We were able to prove the correct and ex-

pected operation of our proposed extension, overcoming the current restrictions faced by the protocol.

Furthermore, we obtained very satisfactory convergence times for this extended implementation, not

significantly differing from its base version. We have seen satisfactory convergence times, from an ex-

tended protocol that not only allows for an arbitrary network topology configuration, but for better overall

destination reachability. We can then conclude there would be an advantage in using this extension, as

it provides a solution to heavy restrictions without significant impact on the network convergence times.

As possible future work, a full revision of the base implementation would be ideal to perhaps re-

structure it, by removing the now unnecessary aspects from it, such as Virtual links or the differentiation

among the backbone and other areas. Also, a revision to the data structures used widely across the

base implementation could prove valuable to a better accommodation of not only this extension, but

others as well. For example, with the current AVLtree/AVLitem structures, it might be troublesome for us

to try to insert an AVLitem inheriting object into two or more separate AVLtree structures, as the objects

might break the links from objects in one tree to form new links with objects of another tree.
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List of files with changed or added functions/classes (with respective starting code line):

• asbrlsa.C

– SpfArea::asbr orig (l.69)

• asexlsa.C

– ASBRrte::ASBRrte (l.61)
– ASBRrte::run calculation (l.594)

• config.C

– OSPF::cfgStart (l.60)

• dbage.C

– DBageTimer::action (l.101)

• lsa.C

– LSA::LSA (l.33)

• lsa.h

– class rtrLSA (l.286)

• lshdr.h

– Opaque types (l.181)
– ABRhdr (l.191)
– Prefixhdr (l.196)
– ASBRhdr (l.202)

• opqlsa.C

– opqLSA::opqLSA (l.30)
– opqLSA::parse (l.48)
– opqLSA::unparse (l.73)
– OSPF::opq orig (l.115)

• opqlsa.h

– class opqLSA (l.33)
– class AbrLSAItem (l.73)
– class overlayAbrLSA (l.84)
– class overlayPrefixLSA (l.101)
– class overlayAsbrLSA (l.114)

• ospf.C

– OSPF::OSPF (l.54)
– OSPF:: OSPF (l.180)

• ospf.h

– class OSPF (l.62)

• rte.C

– INtbl::add (l.305)

• rte.h
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– class INtbl (l.71)
– class RTE (l.109)
– class INrte (l.194)
– INrte::INrte (l.235)
– class ASBRrte (l.343)
– class ABRrte (l.372)

• rtrlsa.C

– rtrLSA::rtrLSA (l.32)
– rtrLSA::rl orig (l.234)
– rtrLSA::parse (l.471)
– rtrLSA::unparse (l.639)

• spfarea.C

– SpfArea::generate summaries (l.298)

• spfcalc.C

– OSPF::rtsched (l.37)
– OSPF::dijkstra (l.165)
– RTE::RTE (l.279)
– RTE::new intra (l.301)
– RTE::declare unreachable (l.461)
– OSPF::update brs (l.578)
– OSPF::rt scan (l.625)
– INrte::sys install (l.727)
– FWDrte::resolve (l.890)
– INrte::incremental summary (l.944)

• spfhello.C

– SpfIfc::build hello (l.169)

• spflog.h

– Log code (l.99)

• spfutil.C

– msgtext (l.290)

• summlsa.C

– OSPF::sl orig (l.63)
– SpfArea::sl cost (l.128)
– INrte::run inter area (l.319)

We also added three new files to the implementation (we don’t specify the functions/classes as all of
them are new):

• overlay.h includes the ABR neighbor structure definition;

• overlaycalc.C includes the functions to perform the overlay routing calculations;

• overlaylsas.C includes the operations over the Overlay LSAs, such as origination or parsing.
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In this appendix, we include the instructions for the installation and configuration of our OSPF routers

within GNS3 VM. Both the base and extended versions were packaged inside the same Docker con-

tainer. The Docker image is available at Docker Hub [13].

To create the container from which we generated the Docker image, we used the Dockerfile shown

in figure B.1. First, we need to create a folder containing the source code for both the implementation

versions and this Dockerfile (available in GitHub [14]). Then, we must access this folder from within a

console terminal, and input the command docker build -t name ., where name is the name we want to

give our Docker container/image.

Figure B.1: Contents of the Dockerfile used to create the Docker containers

To install our Docker image into GNS3, we have to access GNS3, and under Edit :

1. Access Preferences / Docker / Docker containers;

2. Click on New;

3. Select the Run this Docker container on the GNS3 VM option and click on Next;

4. Select New image, type the image name in the field (xaviercgomes99/ospf ext:latest) and click on
Next;

5. Type the desired name for the container and click on Next;

6. Choose the number of adapters (interfaces) the container will have available and click on Next;

7. We can skip the rest of the steps and click on Next and Finish until we exit the window.

The container should now be available under our list of devices, with the name chosen by us. Then,

in a GNS3 project, we can use any number of containers we want to. The first time we do this, and only

the first, the GNS3 VM will pull the image from Docker Hub, which may take some time. To assign IP

addresses to the container’s specific interfaces, we use the GNS3 configuration file, available by right-

clicking the device and choosing the Edit config option, where we assign IP addresses and masks to the

routers’ interfaces.
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This is all that is needed to install our Docker containers. We will now finish by going through the

basic steps to configure and initiate a router using this implementation. This explanation will only cover

the basics of the configuration, i.e., the Router ID, Areas and interfaces. A complete description of the

configuration options for this implementation can be found in section 14.1 of [3].

To configure a router we must first create a configuration file, with a full path name of /etc/ospfd.conf.

This is the file the implementation will access when configuring the router. An example of the contents

for this configuration file is shown in figure B.2, in this case, describing the configuration of an ABR.

• We start by defining the Router ID, using the line routerid rid, where rid is a 32 bit value, expressed

in dotted-decimal notation;

• Then we will describe the areas to which the router attaches, and within those areas, the interfaces

attaching the router to those areas. To describe an area, we use the line area aid, where aid is,

using the same notation as the rid, the 32 bit value for the Area identifier. After writing this line,

subsequent lines of configuration will refer to this area;

• For each area we can have a set of interfaces attaching to it. To configure each interface we use

the parameter interface address cost, where address is the IPv4 address we wish to assign to the

interface and cost is its outgoing cost.

To launch the router, we must access the directory where we have the implementation’s Makefile,

under ospf version/linux, where version is either replaced with base or ext, depending on whether we

want to use the base or extended version, respectively. From there we compile the program with the

make command, and after the compilation finishes we can launch the program with the command ospfd

(or ospfd & if we want to run it in the background).

Furthermore, the implementation supports dynamic reconfiguration. To change a router configuration

without having to restart it, we simply change the contents of the configuration file, and use the command

kill -s USR1 pid, where pid is replaced by the process ID of the running implementation (if we don’t know

this value we can use the command ps — grep ospfd to find it).

Figure B.2: Example of the contents of the configuration file for a router
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