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Abstract—The Tor anonymity network and its Onion Service
(OS) infrastructure allow users to browse and provide services
on the Internet while benefiting from sender and receiver
anonymity. This enables them to circumvent censorship filters
and remain safe from prosecution but also provides a means
to conduct illegal activities. This has made Tor an enticing
target for attackers, including Law Enforcement Agencies
(LEAs) seeking to identify unlawful OSes. These LEAs may
form coalitions, gaining broad access to network traffic in-
formation collected at the level of Autonomous Systems or
Internet Exchange Points. This information is known to allow
deanonymization attacks on Tor’s infrastructure to take place.

In fact, recent attacks have shown that it is possible for
a global passive adversary to fully deanonymize Tor Onion
Sessions with high accuracy. The proposed techniques, however,
depend on the monitoring of a large amount of Tor flow samples
introducing serious bottlenecks to the scalability of these
attacks and to the maximum achievable recall (i.e., the number
of sessions that can effectively be screened by the adversary).
In this work, we propose an alternative attack, DissecTor, that
utilizes a new acceleration-based watermarking scheme and
machine learning techniques to deanonymize a targeted OS
both effective and covertly. By identifying the target OS one
significantly reduces the complexity and resources needed to
fully deanonimize the whole browsing session. We performed an
in depth evaluation of the DissecTor system, exploring several
variants and reflecting on the best use cases for each.

I. INTRODUCTION

This work focuses on the usage of traffic correlation at-
tacks to break the anonymity guarantees of the Tor network,
specially its Onion Service (OS) infrastructure.

Tor is a popular anonymity network whose privacy guar-
antees have made it a fundamental tool for promoting
free speech and protecting the privacy of Internet users.
In fact, Tor has helped a vast range of users – ranging
from journalists and political activists to whistleblowers and
citizens living in repressive regimes – to browse the Internet
privately and enabling such users to circumvent censorship
filters and to remain safe from prosecution [1].

Tor is built on top of the onion routing protocol [2],
whereby a message is encapsulated in successive layers of
encryption and transmitted along several relay nodes before
arriving at its final destination. Each node that receives the
message is able to decipher the top-most layer of encryption
in order to uncover the data’s next destination. Only the last
node can decipher the message’s contents. This means that

each intermediate node in the chain, called a circuit, knows
only the identity of its predecessor and successor, keeping
the sender’s anonymity intact.

In Tor, this principle is not limited to clients. Tor’s Onion
Services (OSes), previously called Hidden Services (HSes),
are websites or services that use the Tor technology to keep
their identities (i.e., IP addresses) secret. Unlike “normal”
websites, where the client knows the service’s IP and the
message is directly sent to it, an OS’s address is kept hidden
from the client. A rendezvous node is used as intermediary
for the message exchange and both the client and OS
communicate with it using onion routing in the form of two
separate Tor circuits.

Due to its strong anonymity properties, Tor has since
become an interesting target for state-level actors. For in-
stance, repressive governments are interested in breaking
Tor to prevent abuse and political dissidence [3], while
law enforcement wish to fight organized online crime [4].
Many attacks targeting Tor have thus been proposed. These
attacks can be classified as passive or active, if the attacker
only observes traffic or has the ability to manipulate it,
respectively, and as single-end or end-to-end, if the attacker
monitors/controls only one of the edge relays of a Tor circuit
or both simultaneously.

One of the most significant threats to Tor is that of
correlation attacks [5], [6], end-to-end attacks where an
adversary monitors both edges of a Tor circuit and seeks
to establish a relation between flows observed at the entry
and exit points. Since the entry relay knows the sender
and the exit relay knows the receiver, sound correlations
can effectively deanonymize the communications pertaining
to that specific Tor circuit and enable the monitoring of a
user’s activity. To make matters worse, the success of passive
correlation attacks can be significantly improved through
the usage of active watermarking techniques [7], [8], [9].
Put briefly, an attacker can carefully manipulate the traffic
patterns of specific Tor circuits (e.g., introduce predictable
delay on packets) to ease correlation efforts.

Recently a new attack called Torpedo [6] was proposed
seeking to enable a global passive adversary to deanonymize
Tor onion service sessions, i.e. deanonymize OSes and
their users and establish correlation of the latter’s browsing
sessions. Despite its precision, this attack is seldomly suc-
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cessful and achieves low coverage, missing the majority of
correlated flows. This is due to it being both very expensive
from a computational point of view and poorly scalable.

The goal of this work is to investigate an alternative attack
that aims specifically to deanonymize a targeted OS (as
opposed to deanonymizing both the client- and the server-
side of OS sessions). Assuming that the attacker can control
the client-side and generate arbitrary traffic directed towards
a predefined OS, we aim to show that it is possible to launch
correlation attacks to deanonymize Tor Onion Services with
higher coverage and scalability than Torpedo’s.

To achieve this goal, the solution we propose leverages
active attacks based on watermarking combined with traffic
correlation techniques. The central technical challenge lies
in finding a watermarking technique that can simultaneously
generate a watermark that (a) can be accurately detected at
the ingress link of the targeted OS, and (b) is stealthy enough
to prevent being detected by the OS provider.

In this work we present a new system called DissecTor
able to deanonymize specific Tor Onion Services. DissecTor
uses an active approach, relying on flow watermarking and
machine learning, in order to reveal the target OS’s IP
address. We present the following contributions:

• The design and implementation of DissecTor, which
can launch active attacks to targeted OSes in two differ-
ent stages: (1) send watermarked traffic to a target OS,
and (2) identify the watermarked connection between
the OS and its guard node from a pool of candidates
using machine learning techniques.

• The development of a novel watermarking technique
named acceleration-based watermarking which allows
for deanonymizing OSes by identifying predefined vari-
ations in the receiver’s traffic based on perturbations
introduced by probes sent by the attacker.

• An extensive evaluation of our system which covers
two different watermark detection techniques and and
that discusses how their parameterization might balance
the attack’s accuracy and stealthiness.

II. RELATED WORK

A. Traffic Correlation Attacks

Traffic correlation attacks, occur when an adversary at-
tempts to link two network flows solely based on the
observable features of the traffic and not its contents.

Correlation attacks performed against Tor rely on flows
captured at both ends of a circuit and do not need to know
its full path. Since each edge relay knows the identity of
one of the communicating parties, a successful correlation
attack effectively results in the deanonymization of both the
user’s IP and the IP it is accessing. Correlation attacks can be
classified according on the different techniques they employ:

• Timing-based: If they use statistical analysis of flow
features such as inter-packet arrival times, packet vol-
ume and bursting patterns [10];

• Bandwidth-based: If they focus on perturbation in the
available bandwidth towards the target [11];

• Application-based: If they are based on the interaction
between the target and an attacker-controlled applica-
tion that induces known traffic features [12];

• Watermark-based: If the attacker manipulates traffic
near its source seeking to induce an identifiable sig-
nature towards the target [7], [9].

State-of-the-art traffic correlation attacks leverage deep
learning techniques whether they assume a passive [5], [6]
or active [9] approach. This allows them to better cope with
the Tor network’s characteristics, boosting their success.

B. Watermarking Techniques
Network flow watermarking is a type of traffic analysis

where a “small piece of information that can be used to
uniquely identify a connection” [13], the watermark, is
embedded into flows near their source, allowing for their
identification at another point of the network [14].

The technique of traffic analysis with flow watermarking
may be divided in two phases: converting information into
a watermark, and embedding it into the flow – carried out
by the watermarker – and observing a flow, identifying it
as watermarked and decoding and retrieving the information
from the watermark – carried out by a watermark detector.
According to Iacovazzi et al. [14], watermarking systems
may be classified in respect to: i) Diversity scheme; ii) Car-
rier; iii) Blindness, in what concerns the detection system.

Diversity schemes describe how a signal spreads in spe-
cific domains. There are three classes of diversity schemes:
time, frequency, and space. Time diversity is based on repli-
cating a pattern over time in a recognizable way [7], [15].
This can be done, for instance, by inducing controlled delays
in a flow’s packets. Frequency diversity uses manipulation
of a flow’s rate to transmit the watermark [16]. Space
diversity uses multiple flows similarly watermarked in order
to transmit a single signal. This is done so that a lightweight,
difficult to detect, signal is amplified for detection [17].

The Carrier is the traffic feature where the watermark
will be embedded. Carriers can be content, timing, size
and rate-based [14]. Content-based watermarking consists
in embedding the watermark directly in the contents of the
messages [13]. Timing-based approaches carry the signal in
the sequence of arrival and/or departure times of packets
measured at a given point in the network [7], [15]. Size-
based techniques usually resort to altering flow packet
lengths [18]. Finally, rate-based watermarking carriers con-
sist of fluctuations imposed on the real traffic rate by the
injection of dummy traffic. [16].

Watermark detection depends on the encoding chosen for
the watermark as well as its diversity scheme and carrier. The
watermark detector extracts relevant features from sniffed
flows using them to determine the presence or content of
the watermarks. Watermark decoding algorithms may be
non-blind [7], [15] or blind [19] regarding, respectively,
their dependence or not on carrier data provided by the
watermarker.

Table II-B shows how different watermarking systems
proposed in the literature are classified and how DissecTor,

2



Table I
HOW DISSECTOR COMPARES TO SOME OF THE PROPOSED

WATERMARKING SYSTEMS.

System Diversity Scheme Carrier Blindness
Wang et al. [19] Time Time-based Blind

Rainbow [7] Time Time-based Non-blind
Swirl [15] Time Time-based Non-blind
Inflow [8] Time Time-based Non-blind

Duster [20] Frequency Rate-based Blind
Finn [9] Time Time-based Blind

DissecTor Frequency/Space Rate-based Non-blind
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Figure 1. DissecTor’s architecture and main component interactions

the system we conceived, fits into the classification system
covered until now.

III. DISSECTOR

A. Overview and Pipeline
DissecTor, illustrated in Figure 1, is a distributed system

conceived to allow digital crime investigators to target spe-
cific Onion Services (OSes) and reveal their location in the
form of IP addresses. For DissecTor to work, it is necessary
to have access to a large number of network vantage points
where traffic data can be collected. DissecTor assumes these
vantage points are located at the Autonomous System (AS)
level. This access is materialized in the form of modules,
named collectors, that are to be installed throughout the
network and whose job is to collect traffic data between
the OS and its guard node in the Tor circuit being used.

Other than the already mentioned collectors, the system is
made out of three more types of components: a coordinator;
probes and processor(s). Figure 1 shows how these compo-
nents interact with each other and with the Tor network to
perform an attack. In particular, the figure shows how the
coordinator is responsible for issuing commands. It does
so to both the collectors and the probes even though the
arrows connecting the coordinator to the collectors were
omitted from the figure as to not hinder its clarity. This
component has no direct interaction with the Tor network or
the target. We can also see that a varying number of probes
is involved in the attack. This number is determined by the
user and will directly influence the watermark signature. The
probes interact with the network as if they were regular
clients. The only difference between a probe and a regular
client is related to the timing and number of requests sent
towards the OS, as will become clear further in this section.
Furthermore, it is also shown how the probes (each one
separately) relay traffic information to the processor, as do
the collectors. The processor, similarly to the coordinator,

does not interact with the Tor network or the target and
simply receives traffic information from the probes and the
collectors. The remainder of its functionality is performed
offline. The processor is responsible for watermark detection
and for returning the attack’s result. It is also possible to
distribute the processing workload over several instances of
the processor component although we do not represent said
scenario in the figure.

Investigators are able to launch an attack on a specific
target OS via the system’s user interface. To best understand
DissecTor’s pipeline let us examine the example of a law
enforcement agent that seeks to uncover the IP address of
an OS that serves as an online narcotics marketplace. To
begin the attack, the agent must input the desired runtime
parameters. These consist of: the onion address of the target
x; the number y of probes to use during the attack which may
or may not be based of prior knowledge about the popularity
of the OS; a set of probing times T which must have one or
more timestamps of when the probing sessions are to take
place and, finally, a confidence threshold z. In the example
of an attack on the narcotics marketplace, the agent might
input verycheapdrugs.onion as variable x, 10 as y, 3 different
times the next day as T and 80% as z.

Once the runtime parameters are collected, the coordi-
nator, which is responsible for the synchronization of all
other system components and the overall orchestration of
the attack, launches and then configures 10 probe instances.
A predetermined amount of time before the first probing
session, at 11am, the coordinator signals all collectors to
start recording traffic data.

At 11am, when the first probing session is to take place,
all 10 probes concurrently send requests to verycheap-
drugs.onion such that a traffic pattern, hereby referred to
as a watermark, is directly embedded in the ingress and
indirectly embedded in the egress traffic connecting it to its
guard node. During the session all probes are responsible for
collecting metadata, namely timestamps and volume of all
network layer packets, which will later be used to guide the
watermark detection. Once the 11am session in concluded,
the system stays idle until the next probing time, 1pm,
arrives and the process is repeated.

Once all probing sessions take place the coordinator
signals the collectors to stop recording traffic data. The
data, both from the collectors and the probes, is sent to the
processor which is responsible for watermark detection. If
the confidence in the obtained results exceeds 80% these are
then presented to the investigator.

B. Acceleration-Based Watermark
DissecTor employs a new watermarking technique –

named acceleration-based watermark – based on induced
traffic patterns detectable on the connection between the
target OS and its guard node. These patterns are manifested
in the form of throughput spikes in both the ingress and
egress flows of said connection. For this reason, we classify
our watermark as taking advantage of a rate-based carrier –
its diversity scheme can be seen as combination of frequency

3



and space schemes. Finally, the watermark detection is non-
blind, relying on data provided by the watermarker (which
in our system consists of the set of probes).

To embed the watermark, each probe, acting as a regular
client, fetches the target’s landing page while strictly regis-
tering the departure and arrival times of both the request’s
and response’s network packets. This request, which is not
different from any other the OS might receive, is directly
reflected on traffic flowing between the guard and the OS
in the form of an increase in the data-rate followed by its
decrease to previously existing levels. These spikes can be
located within the time window delimited by the departure
time of the request and the arrival time of the response
recorded by the probe. If we separate traffic according to its
direction we find there are two distinct spikes, respectively
in the ingress and egress flows, the former being induced
by the request and the latter by the response. These spikes
differ from one another and can both be used in conjunction
when performing watermark detection.

To perform the detection, the processor begins by dividing
the data provided by the collectors according to the number
of possible marks. A mark, identified by its IP address, is
a possible match for the target OS. The number of streams
(defined next) associated to each mark is dependant on the
watermark detection method used further down the pipeline
and ranges from 1 to 3. Each stream is a collection of
packet sizes and timestamps which the processor then groups
into time intervals of granularity G, in seconds, for easier
processing. DissecTor may use 3 possible streams: the one
containing packets sent to the mark, named fetch stream;
the one containing packets sent by the mark, named reply
stream and one that contains all packets, named joint stream.

Comparing each mark’s streams is the next logical step
in the process. Our goal is to detect DissecTor’s induced
spikes (the watermark) on the set of candidate streams. This
requires comparing each stream’s fluctuations of throughput,
given in B/s, leading us to choose the acceleration, given
in B/s2, as the natural metric to use in our analysis. Using
the acceleration is also adequate when comparing sets of
different candidate flows whose baseline/average throughput
vary widely since the induced variation is independent of
those and only relates to the OS’s response size, time and the
number of requests sent by the probes. Each stream’s packet
size and timing data is used to calculate the throughput (see
Equation 1) in intervals ∆t of size G, where ∆s is the total
amount of bytes transmitted during said interval.

throughput =
∆s

∆t
(1)

acceleration =
∆throughput

∆t
(2)

These throughput values can then be used to calculate the
acceleration (see Equation 2) between consecutive samples.

After calculating a vector of accelerations (see Figure 2),
where each value corresponds to an interval of size G for
a given flow, these are grouped into buckets. The size of
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Figure 2. Difference in calculating the same stream’s acceleration with
G=1s (left) and G=3s (right). A probing session took place in the period
of time between the orange vertical lines.

each bucket depends on the duration of the probing sessions
and is calculated according to the metadata collected by the
probes. Every acceleration value corresponding to packets
observed during a probing session is grouped into the same
bucket. For example, in the case of Figure 2, all values
between the orange lines will belong to the same bucket.
The remaining acceleration values in the vector do not
correspond to the watermark and are grouped into buckets
either by duration B (as many B seconds sized buckets as
possible) or by divisor D (grouped into D equally sized
buckets). Although there are several ways of forming the
buckets, once a method is chosen it must be applied to
all marks’ acceleration vectors. This ensures that the nth

bucket of every stream starts and ends exactly at the same
timestamp and can, therefore, be compared. Finally, each
bucket is then labeled as “watermark candidate” or “normal
traffic” according to when it occurred and a set of summary
statistics is calculated over each one. The resultant datasets
will be the basis to perform the watermark detection. It is
important to note that the used statistics do not depend on
the amount of acceleration samples per bucket ensuring that
the “watermark candidate” buckets do not stand out from
the others solely due to their duration.

C. Watermark Amplification

Because at any given time there might a large number of
concurrent clients browsing the target OS, and since every
request is responsible for its own variation in transmission
rate the necessity arises to make DissecTor’s variation, to
which we’ve been referring as a spike, more identifiable.
This should be done without raising suspicion from the OS.

The chosen approach was to make the probe module act
as if it were a normal client sending a fetch request to
the OS’s landing page but have several different probes do
so simultaneously in order to amplify the strength of our
watermark. This is the reason our watermarking scheme may
be referred to as space-based.

This approach presents its own set of challenges since an
insufficient number of probes would mean the watermark
remained undetectable, being lost amidst the OS’s expected
baseline traffic rate but an excessively large set of probes
could make the attack too obvious.
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A different challenge is posed by the fact that each probe,
being independent, is expected to establish its own Tor
circuit to the target OS. This results in different Round-
trip Times (RTT) for each probe and a significant practical
difficulty in ensuring that different probes’ requests will
arrive at the OS simultaneously. Two possible ways of
dealing with this problem are i) to increase the number of
successive requests each probe sends in a probing session
and ii) to decrease the granularity used by the processor
when calculating the accelerations (see Figure 2). The for-
mer increases the likelihood of the requests overlapping and
the latter allows the impact of several non-simultaneous but
closely timed requests to be grouped in the same calculation.
Nonetheless, both approaches have their disadvantages as the
first implies longer, less precise and less covert attacks and
the second less data points and consequent contamination of
watermark data with baseline traffic.

D. Watermark Classifiers – Training and Detection
The first of the two machine learning techniques used

to perform watermark detection in DissecTor uses super-
vised learning classifiers. These models are trained with the
datasets mentioned at the end of Section III-B with both
watermarked and unwatermarked samples and a set of fea-
tures derived from a set of summary statistics. This statistical
approach to feature selection is similar the one employed in
the encrypted traffic fingerprinting literature [21].

Once the models are adequately trained we use them
to classify the buckets marked as “watermark candidates”.
Since several classification models exist it is essential to
choose the best one for the task at hand. We evaluated several
of them and present the results in Section IV.

The biggest drawback of this approach resides in the
necessity for training the classifier. Although this can be
done by setting up mock scenarios where realistic conditions
are simulated to collect data, this is specially difficult since
privileged information regarding the target is required. Given
said difficulties, this approach poses obvious obstacles to
investigators looking to employ it. A different technique, that
does not rely on privileged information, is therefore much
more suited to this application.

E. Anomaly Detection
We conducted a set of experiments that rely on anomaly

detection techniques instead of supervised classifiers to
identify the watermarked buckets by their statistical dif-
ferences from unwatermarked ones. The methodology we
employed is similar to Zhang et al.’s [22] and relies on
One Class Support Vector Machines (OCSVMs) [23] as an
adaptation of Support Vector Machines (SVMs) to one class
classification problems (as is the case of determining the
presence or absence of our watermark).

Contrary to the previously covered classifiers, where
a model is trained with samples from all classes, using
OCSVMs only requires data points belonging to one of
them. As Zhang et al. [22] explained, this data is then
mapped into a multidimensional space based on its features

after which a decision function is derived. This function is
afterwards used to determine if new data points belong to
the class used in the training stage or if they are anomalies,
therefore belonging to the other class.

This methodology eliminates the need to construct mock
scenarios in order to collect samples of both watermarked
and unwatermarked buckets. Using OCSVMs for anomaly
detection requires only unwatermarked traffic as training
for the model. Since this traffic collection process can be
done immediately before and/or after a probing session takes
place, we can ensure the OCSVM is trained with the most
realistic data by simply adjusting when to start and stop the
collectors at the time of the attack.

After training the OCSVM with data from a specific
candidate, we present it with the buckets collected from that
specific candidate at the time of the probing sessions. Only
the target’s stream should have its buckets classified as an
anomaly, effectively deanonymizing it.

IV. EVALUATION

DissecTor’s main goal is to perform the deanonymization
of a specific Tor Onion Service. This means that our system
should be able to accurately identify said OS’s IP address
from a pool of candidate OSes. In addition, DissecTor should
be able to carry out this task in a covert fashion.

Having the system’s two goals in mind, DissecTor’s
evaluation is focused on a) assessing the system’s ability to
reliably identify a target’s stream(s) as being watermarked;
b) assessing whether the system has the ability to reliably
identify non-target stream(s) as not being watermarked and;
c) studying several possible configurations of the system
to identify the ones that allow for the best results, and; d)
discussing if the configurations that would allow the system
to keep a “low-profile” can realistically achieve satisfactory
OS deanonymization results.

A. Experimental Testbed

We setup an OS serving a web page approximately 1MB
in size to serve as target for DissecTor. This OS was to be
as realistic as possible and thus a baseline traffic signature
was established over which our system’s watermark could
be applied. To do so, we arranged for a set of 4 clients that
would fetch said page, wait for it to load, sleep a random
amount and repeat the process until signalled to stop.

After the baseline was established, we conducted probing
experiments where groups of probes would fetch the target’s
landing page 5 times in a row without intervals (see Sec-
tion III-C). Once all 5 fetching requests were answered for
all participating probes, these would then sleep until the next
session. A total of 50 probing sessions was carried out for
each set of probes.

All involved parties (probes, clients, OS and coordinator)
were deployed on Google Cloud Compute Engine. The
clients and the coordinator used machines with 1vCPU and
4GB of RAM and the OS and each probe used machines
with 2vCPU and 8GB of RAM.
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While the probing experiments took place, traffic data was
collected both on the side of the OS and that of the probes
simulating the action of the collector components.

In our experiments we used 1, 2, 4, 8 and 12 probes
which allowed us to collect data concerning Probe-to-Client
Ratios (PCR) of, respectively, 1

4 , 1
2 , 1, 2 and 3. In the

processing stage we used G = 1s and the buckets that did
not correspond to probing sessions were created using the
“divisor” strategy for D = 1 (see Section III-B). The process
was applied to the 3 different possible streams – Reply, Fetch
and Joint. In total, and counting each stream separately,
we ended up with 1500 buckets, 750 corresponding to
probing sessions and 750 to baseline traffic. The 750 buckets
corresponding to probing sessions were equally split by the
5 PCRs, at 150 buckets each.

B. Watermark Detection

The evaluation process of DissecTor consisted in a set
of experiments where several system configurations were
compared. In our experiments, we made use of several
detection metrics: i) True Positive (TP) and False Positive
(FP) rates, where “positive” samples correspond to buckets
that contain the watermark and “negative” samples do not;
ii) F1-score [24] and iii) P4 [25].

The F1-score metric is based on both Precision and
Recall, which are indicative of a classifier’s performance re-
garding “positive” samples and classifications. Being solely
based on precision and recall means the F1-score can, to
some extent, neglect “negative”-related performance. Given
that DissecTor must not only be capable of identifying
the watermark but also of not flagging innocent marks
as the target, we decided to complemented our analysis
with the P4 metric, which was recently proposed with the
objective of tackling F1-score’s shortcomings. P4 is based on
both Precision and Recall and their “negative” counterparts:
Negative Predictive Value (NPV) and Specificity.

C. Watermark Detection via Supervised Learning

As a benchmark for the classifier-based version of the sys-
tem we used Weka-v3.8.6’s [26] implementation of the C4.5
decision tree algorithm [27]. Like all other classifiers we
studied, this classifier was run with default parameters, cross
validation with 10 folds and was trained with 250 samples
(buckets) of baseline traffic and 50 of watermarked traffic.
We did so for every stream and PCR (see Section IV-A)
totalling 15 executions.

In the results, we observed that the TP rate ranged from
a minimum of 76% in the Fetch stream when using 1

4 PCR
to a maximum of 98% for a PCR of 3 independently of
the stream. In turn, the FP rate ranged from 4% for the
Fetch stream with 1

2 PCR to 0.4% in all streams using 3 as
PCR. Our results also revealed different trends: i) the TP rate
increased with greater PCR values ii) the FP rate decreased
with greater PCR values and iii) Reply streams offered the
highest TP rates and lowest FP rates of the 3, being the most
consistent with respect to the previous tendencies.

Furthermore, when analysing the values of both the F1-
score and the P4 we saw that the Reply stream also outper-
formed the others in both metrics for all values of PCR with
exception of PCR = 1 (where it performed the worst) and
PCR = 3 (where all streams performed the same).

We consider the overall results of C4.5 satisfactory given
the fact that even the lower PCRs obtained TP rates up to
90% and FP rates no greater than 4%. In Section IV-E, we
present the extended results of a set of experiments per-
formed with different classifiers towards improving Dissec-
Tor’s ability to detect watermarks using supervised learning
techniques. When doing so, we will make use of these F1-
score and P4 results to compare the different variants as well
as the different available streams and PCR values.

D. Watermark Detection via Anomaly Detection

In the experiments conducted on the anomaly detection
version of the system we used the OCSVM implementation
provided by Scikit-learn [28] v1.1.1.

Unlike the case of supervised learning, this technique
requires that a model be trained exclusively with one class
of data. In the particular case of DissecTor, all models
were made to recognize unwatermarked data and treat wa-
termarked samples as anomalies. To this extent we only
trained with unwatermarked buckets. This meant training the
algorithms once for each parameter configuration and stream
instead of 5 times (as the PCR had no impact in the training
set). A direct consequence are FP rates that are independent
from the amount of probes used.

When running the experiments we had to define a set
of parameters that influenced the behaviour of, and the
results obtained by, the model. One of such parameters was
the “kernel function” which, after preliminary experiments,
was set to use Radial Basis Function, or RBF, throughout.
Other parameters, however, justified a more thorough study,
constituting the basis for the variants evaluated later on:
Gamma (default: “scale”): Defines the weight each training
point has on the resulting decision boundary. If the value of
“Gamma” is too large the model can incur in overfitting,
reporting more anomalies than it should, and if it is too
small it may become too permissive, not reporting as many
anomalies as expected. The Scikit-learn library [28] provides
two methods for defining “Gamma”: “auto” and “scale”.
Nu (default: 0.5): Allows us to control both the acceptable
amount training errors and the number of support vectors
derived from the training set. Higher “Nu” values mean that
more training data points may be miss-classified in exchange
for a larger number of them being used as support vectors.
Smaller values of “Nu” mean less classification errors may
occur with the training data but the minimum number of
support vectors to use will also be lower.
Tolerance (default: 1e−3): Controls the algorithm’s stopping
criterion by defining the minimum gain each iteration must
achieve to deem the algorithm worth continue running. The
smaller the value of “Tolerance” the longer the algorithm
will tend to run and approximate the optimal solution.
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Standard Scaling (default: No): We will present a variation
where a pre-processing scaling step was applied to the fea-
tures fed into the anomaly detection technique, a procedure
which has been found to improve OCSVMs’ performance in
the literature [29]. When this step was applied it standardized
each features’ samples x by calculating their standard score
z. The formula by which z is derived consists of: z = x−u

s
where x is a sample of a given feature, u is the mean of
that feature’s samples and s is their standard deviation.

As a benchmark for this version of the system we chose to
run the model with all default parameters. As was the case
for every variant reliant on OCSVM, we opted for training
and testing the model 10 times per configuration and taking
the mean of TP and FP rates as the final result. Each time
the process was as follows: i) of the 250 unwatermarked
samples available per stream, 90% was taken at random and
used for training the model; ii) the model was tested with
the remaining 10% in order to determine the FP rate and
iii) the model was tested with each of the 5 PCRs’ 50 data
points to determine the TP rate.

In the results for this benchmark we saw TP rates ranging
from 74% to 92% and FP rates ranging from 47.2% to 53.1%
(a considerable increase compared to the supervised learning
benchmark of Section IV-C).

Besides the large FP rates we found that some of the
tendencies previously observed did not seem to be present
in this case: i) as was expected, the FP rates did not depend
on the PCRs and ii) the TP rates, although showing similar
values, did not seem to follow the trend of becoming greater
as the PCR increased. This hints at the possibility of this ap-
proach allowing the system to be successful in configurations
requiring less probes (granting more covertness).

When analysing the F1-score and P4 metrics, we found
these indicated the Reply and Fetch streams as the best
performing. The former achieved the highest scores in 2/5
of PCR values while the latter did so for the remaining 3/5.

E. Variants
After introducing a default parametrization of DissecTor’s

two watermark detection techniques, we will now present the
results of experiments conducted with the aim of determin-
ing if the aforementioned results can be improved upon.

In the case of the supervised learning based version, we
will present the results of experiments conducted with two
alternatives to the C4.5 algorithm used in the benchmark:
i) Naive Bayes [30] and ii) Random Forest [31]. As for
the OCSVM-based version, we varied “Gamma”, “Nu”,
“Tolerance” and “Standard Scaling” to study the impact of
each parameter on the performance of the system.

In all cases, we ran experiments for all three streams (see
Section III-B) and every PCR value (see Section IV-A.)

F. Supervised Learning Variants
Both alternative classifiers were used with the default

parameters and with cross validation set to 10 folds. The
datasets used in the variant experiments were exactly the
same as in the benchmark which we have already covered.
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Figure 3. Best F1-score and P4 values of all three classifiers per PCR.

In the experiments conducted with the Naive Bayes classi-
fier, the results showed the TP rate ranging from 80% to 98%
and the FP rate ranging from 1.2% to 2.4%. We observed
some of the tendencies that could be seen in the benchmark
(see Section IV-C), namely: i) with two exceptions for
PCR = 1, the TP rate increased with the PCR and; ii)
the FP rate decreased with the PCR. We found the Reply
and Joint streams performed similarly well for this classifier
although analysis of both F1-score and P4 values led us to
conclude the Joint stream is the best of the two, marginally
outperforming the Reply stream in 4/5 of PCRs.

In the experiments conducted with the Random Forest
classifier, the results showed the TP rates ranging from 78%
to 98% and the FP rates from 0% to 1.6%. As was the case
with the other supervised learning algorithms, the TP rates
tended to increase with the PCR and the FP rates tended to
decrease with it.

In this particular case, the Reply stream achieved the
best performance regarding both TP and FP rates, although
it is noteworthy that a 0% FP rate was achieved for one
of the other PCR-Stream combinations – Joint stream for
PCR = 3. When looking at the F1-score and P4 values we
confirmed the Reply stream was indeed the best suited for
this particular system variant, as it outperformed the other
streams in 4/5 of PCR values.

When comparing the performance of the different clas-
sifiers we based our analysis on the F1-score and the P4
metrics. To do so, we determined the best values achieved
by each classifier for every PCR. The best value for each
PCR was chosen out of the three streams. Figure 3 presents
our findings and allowed us to derive some conclusions: i)
there is a clear degradation in performance for PCR = 1,
most likely due to the fact that using a number of probes
equal to the amount of baseline clients results in a watermark
signature too similar to the regular traffic; ii) the Random
Forest classifier (in green) outperforms the others in 3/5 of
the PCR values while C4.5 (in blue) and Naive Bayes (in
orange) performed the best in 1/5 of PCRs each; iii) although
the figure does not explicitly specify it, when compiling the
results it presents, we confirmed that the Reply stream was
the best of the three for this analysis, followed by the Joint
stream. The last conclusion is supported by the fact that the
Reply stream achieved the best results in 60% of the cases,
the Joint stream did so for 47% and the Fetch stream only
for 13% (the total surpasses 100% due to some ties).
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Figure 4. Impact of the “Nu” parameter on the true and false positive
rates of DissecTor running with OCSVM in the otherwise benchmark
configuration when analysing the Joint Stream.

G. Anomaly Detection variants
The results achieved for each anomaly detection variant

of DissecTor were obtained in experiments where each pa-
rameter (see Section IV-D) was changed separately (keeping
the others as their default values) in order to convey their
impact on overall performance. In addition, we conducted
experiments with every combination of parameters and will
conclude this section by analyzing the “best” overall con-
figurations, selected according to both F1-score and P4.

1) Standard Scaling: The results obtained when applying
Standard Scaling showed TP rates ranging from 34.8% to
63.6% and FP rates ranging from 54.7% to 57%. This shows
that, although FP rates were similar to those of the bench-
mark (see Section IV-D), FP rates suffered considerably. Our
results suggest that, for this particular system, performing
Standard Scaling is not beneficial.

2) Gamma: The default way of calculating the value of
parameter “Gamma” (“scale”) defined it as the inverse of the
product of the number of features and their variance. In this
variant we studied the impact of calculating “Gamma” with
the alternative method “auto”, that defines it as the inverse
of the number of features.

The results of this experiment showed both TP and FP
rates of 100%, independently of the PCR and the Stream
being analysed. This indicates the value of “Gamma” was
excessively large. In such cases, the importance given to
each training set point is exaggerated and the model incurs
in overfitting, classifying every data point outside the the
training set as anomalies. We concluded this method of
calculating “Gamma” was not suitable.

3) Nu: We studied the impact of this parameter by
making it range from 0 to 0.95 in 0.05 increments. The
remaining parameters were set to their dafaults.

Figure 4 shows the TP and FP rates achieved by the
system for each PCR in the Joint Stream while varying “Nu”.
While the other streams are not depicted due to spacing
restrictions, they behaved similarly and the conclusions we
derived in regards to this parameter are shared by all. The
top plot shows the TP rates obtained by every PCR as a
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Figure 5. Impact of the “Tolerance” parameter on the true and false positive
rates of DissecTor running with OCSVM in the otherwise benchmark
configuration when analysing the Joint Stream.

function of “Nu” and the bottom plot depicts the FP rate
also as a function of “Nu”.

From the figure, we can conclude that an increase in “Nu”
results in both higher TP and FP rates although in different
proportions. Since the TP rates seem to not be affected as
significantly by this parameter as the FP rates, we conclude
the marginal gain in TP rate does not justify the relevant
increase in FP rate and that DissecTor might benefit from
smaller values of this parameter.

4) Tolerance: In our experiments, we ran the benchmark
configuration, i.e., the one containing all default parameters
and no standard scaling, but varied the value of “Tolerance”
logarithmically between 1e−1 and 1e−5.

Figure 5 presents the TP and FP rates obtained in these
experiments for the Joint Stream. The behaviour of the
other streams was similar and, as such, for space related
reasons, the other figures were omitted. In the figure, the
top plot shows the TP rates of each PCR as a function of
the “Tolerance” and the bottom plot depicts the FP rates.
Note the use of a logarithmic scale in both plots.

From this figure, we can observe that the impact of this
parameter is largely insignificant and is mainly perceivable
when it reaches values > 1e−3. For “Tolerance” > 1e−3 we
observed a slight increase in both TP and FP rates in almost
every PCR-Stream pair, which might be a consequence of
the model performing a smaller number of iterations to
approximate the optimal solution and, therefore, ending up
classifying a greater number of samples as anomalies.

Given the small impact increasing the “Tolerance” had on
TP rates and the fact that it resulted in increases in already
rather large FP rates, we concluded that smaller values of
this parameter might be beneficial to the system.

5) Best configurations: In this section we discuss the
results of using F1-score and P4 to select the best performing
configurations for the OCSVM version of DissecTor for
each of the PCR-stream pairs. The main purpose of this
analysis is to allow us to confirm or debunk the conclusions
derived when analysing all parameters individually. The
results were taken from experiments conducted using all
possible combinations of the parameters covered so far.
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Figure 6. Best F1-score and P4 values of all three streams per PCR when
using OCSVM.

From the analysis of the results obtained with F1-score we
concluded that our predictions were mostly correct since: i)
no configurations used pre-processing with standard scaling;
ii) all configurations except one used “scale” to calculate
“Gamma”; iii) tolerance values were, with some exceptions
in the Fetch stream, ≤ 1e−2 and iv) again with the exception
of the Fetch stream, most “Nu” values were smaller than the
default (0.5), ranging from 0.05 to 0.45.

In general the TP rates of these configurations were ex-
tremely high (from 79.8% to 100%) even though some of the
FP rates were so as well (particularly in the Fetch stream),
ranging all the way from 8.2% to 100%. The existence of
these discrepancies, and that of large FP rates among the
“best” results, is a consequence of the F1-score metric as
it prioritises large TP values over small FP ones. Thus,
configurations that attained large TP rates were deemed as
the best despite having FP rates we find unacceptable in a
system that is to be deployed in the real world.

The best results according to the P4 metric further
confirmed many of the tendencies pointed out throughout
the evaluation of DissecTor. Although the F1-score results
already did that to some extent, the results obtained this
time around seem to support our observations more clearly:
i) none of the configurations used the pre-processing step; ii)
now, all configurations used “scale” to calculate “Gamma”;
iii) most “Tolerance” values were still ≤ 1e−2 and; iv) the
overall values of “Nu” are not only lower than the default
but lower overall when compared to the F1-score results,
ranging from 0.05 to 0.25.

In general both TP and FP rates decreased when com-
paring to the previous metric. The TP rate now ranges from
66.2% to 89.8% while FP rates go from 5.4% to 27%. These
values not only confirm that P4 results in more balanced
results but also that many configurations of this version of
DissecTor can achieve good performances in regards to TP
and FP simultaneously.

Figure 6 shows the best results achieved with each stream
for every PCR when evaluated for both F1-score (on the left)
and P4 (on the right). Besides confirming the ineptitude of
the Fetch stream (in orange) as a reliable source of data to
perform watermark detection it shows both the Reply and
Joint streams boast similar results. The fact that these were
the best-performing streams across all versions of the system
comes as no surprise as these are the ones containing the
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Figure 7. Comparison between the best F1-score and P4 values of both
versions of DissecTor.

most traffic data. Furthermore, the figure shows how the
insight regarding the performance degradation for PCR = 1
is valid across all versions of the system.

Another conclusion derived from the analysis of the best
configurations (supported by Figure 6) resides in the fact
that low PCR configurations may be successfully used when
applying this technique as they achieved results that, not
being the overall best, were not significantly worse than the
ones where a larger amount of probes was used.

Finally, in Figure 7, we present a comparison of the best
results of each watermark detection technique evaluated in
this chapter for each PCR value. The figure shows that,
although the best configurations of the OCSVM version
of the system (in orange) still lack in comparison to their
supervised learning counterparts (in blue), these are a viable
alternative for scenarios where the latter is impractical.

It is important to note, however, that it is expected that
the vast majority of the attacks performed by DissecTor
resort to the anomaly detection technique, as the fact that
the supervised learning approach relies on mock scenarios
using extremely difficult to attain information should make
them the rare exception and not the rule.

V. CONCLUSIONS

This work presented DissecTor, a distributed system
whose goal is to allow LEAs to identify specific OSes’
IP addresses, towards aiding digital investigation efforts.
DissecTor assumes a model where multiple LEAs around the
world cooperate and form coalitions so as to create a global
network adversary. Taking advantage of this global adversary
model, we proposed DissecTor, an active traffic correlation
attack based on an acceleration-based watermarking tech-
nique. DissecTor makes use of different machine learning
techniques to perform watermark detection and focuses on
both accuracy and covertness. Our extensive evaluation of
the system showed it could successfully be used to perform
the attacks it was conceived for even in configurations that
grant it covertness.
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