
Fast Photorealistic Rendering of Protein Representations

Nelson Ferreira
 Departamento de Engenharia

Informática

 Instituto Superior Técnico

 Lisbon

 nelson.95.oliveira@gmail.com

Abstract

Proteins are biomolecules essential for life and responsible

for many of the biological processes and reactions present

in every living organism. The existence of computational

supportive tools for viewing and presenting results,

reasoning and formulating hypotheses related to their

molecular structure is crucial for the development of

scientific areas like chemistry, biology etc. However, this

kind of visualization tools are very computational heavy

and demanding since there are structures with hundreds of
thousands of atoms. For this scenario, we have standalone

tools that already present acceptable performance and a

wide range of visualization features, but they are not very

approachable for students or a more casual audience aiming

for quick and simple investigations. On the other hand,

there are web browser applications that are trying to

achieve the same features as the standalone ones and at the

same time be more accessible for everyone. Still, they are

conditioned by the web programming languages’

performance and their inability to deal with heavy amounts

of data. Considering this scenario, the main objective of

this work is to deal with these limitations on the web
browser, loading the highest possible number of atoms

using the least memory possible and implementing the

same visualization features which are only available in

standalone applications.

Keywords

JavaScript/WebGL, Web Application, Protein Data Bank,

Image-Based Rendering, Impostors/Billboards, Ray

Tracing, Global Illumination

1. Introduction

The chemical compounds that we humans ingest are mainly

known by macronutrients, which provide us with most of

our energy, being protein one of the three primary ones (the

others being carbohydrate and fat). Every cell in the human

body contains protein, which is an important nutrient, not

just for athletes and bodybuilders but for everyone.

Humans can’t survive without all nine essential amino

acids, and protein is essential to strengthen bones and body

tissues (such as muscles), but it does much more than that,

it participates in practically every process of a cell, playing

a part in providing a source of energy, assisting in cellular

repairing, metabolic reactions, form blood cells, acting as

immune response, and more. Massive biomolecular

structures are being used and experimented daily setting up

techniques such as electron microscopy (high resolution

images of biological specimens) and crystallography

(discerning the arrangement and bonding of atoms). Also,

emerging integrative or hybrid methods (I/HM) are

building structural models of vast macromolecular

machines, at times containing more than hundreds of

millions of atoms. Moreover, a file format was specifically

in order to store all needed data from atoms and molecules

about certain proteins, called Protein Data Bank (PDB)

which is referenced with more detail in the sections below.

Having this situation, the interactive visualization of

massive macromolecular complexes on the web is turning

into a challenging issue as some techniques, such as those

ones, advance at an unprecedented rate and deliver

structures of increasing size, and they are a widely used

tool in biological research. Of course, displaying these

molecular structures on the web and making them

accessible to all educators, scientists, and students (not just

experts with access to dedicated networking, hardware and

software), is essential. Despite the significant advances in

molecular dynamics (MD) and biology research, there’s

still a lack of specialized bioinformatic tools. The difficulty

lies in the efficient management of the data, in sending and

processing 3D information for its visualization. In order to

visualize such scenes at interactive rates, it is necessary to

limit the number of geometric primitives rendered in each

frame.

Molecular viewers are a vital tool for our understanding of

protein structures and functions, because different 3D shape

visual representations of proteins can give us visual clues

about the protein structure and its functions. There are

Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT Nelson Ferreira

various types of protein representations and studying these

adversities helps the biologists to better understand the

protein behavior and to design proteins with modified

properties. One of the most common approaches to these

studies is to compare the protein structure with other

molecules and reveal similarities and differences in their

polypeptide chains (chain of amino acids). One of the many

challenges, in observing multiple protein representations at

the same time and comparing each one of them, is that in

some cases it is just not possible to scale the atoms enough

in order to get the desired detailed information about them,

because we are talking about hundreds of thousands of

particles. The general objective of all visualization modules

is to reduce or avoid geometry data whenever possible, and

recently, image-based rendering (IBR) techniques have

emerged as an alternative to geometry-based systems for

interactive scene display. With IBR methods, the 3D scene

is replaced by a set of images, and traversing the scene is

therefore independent of object space complexity. Polygon

meshes are a large field of computer graphics and a

geometric modelling that simplifies rendering. Polygons is

a collection of faces, vertices and edges defining a shape of

an object and the respective faces usually consist of

triangles or other simple convex polygons. With this, it is

possible to apply a variety of operations like smoothing and

Boolean logic or algorithms like ray tracing. In these

approaches, 3D models are replaced by a small set of

textured polygons that resemble the original geometry.

There are also imposters (Christiansen, 2005) (known as

billboards) methods that are mainly used to reduce the time

required to render a 3D scene, by caching images of 3D

objects and using their images in place of the real objects in

a scene that is only rendered as 2D objects when they are

far enough from the camera. Presentation is tested in

regards to the distance the camera has from the imposter

and from what angle we look at the imposters from. In a

few words, they are 2D elements incrusted into a 3D world.

This technique decreases the amount of work performed

each frame results in less time spent rendering. Basically,

the web applications, to these days, have very basic visual

features, they don’t use ray tracing on the contrary of the

standalone ones. Since, the atoms alongside with the

polygons have a lot of information that occupy a lot of

memory in the CPU (atom information loading) and in the

GPU (when the spheres have a lot of vertexes, triangles and

polygons etc.), in this work, it will be attempted to load the

most possible quantity of atoms with the less possibly

memory and optimize that process, that is crucial. For that,

a parser and loader will be created to convert PDB files into

the formats that the libraries eventually use, smoothing the

all loading procedure. Also, a hybrid implementation will

be done, that will consist in having impostors/billboards

when the objects are too far away and ray tracing when the

objects are close to the camera. This approach needs to be

heavily considered, because ray tracing is a slow process

and it’s not bearable to have it working for all situations in

a 3D scene with a lot of information going on

simultaneously. This process will have as consideration the

study and investigation performed in web ray tracing done

in 2021 (Vitsas N. , 2021), alongside with the Rayground

framework (Vitsas N. , 2020) that provides an easy way to

test the algorithms and visualize their outputs right away.

2. Related Work

In this section the main aspects of the standalone and web

tools for protein visualization will be addressed. A more

detailed explanation and overview will be done to the web

applications, since those ones will be the main reference for

what will be implemented in the solution of the problem. In

section 2.3 are referenced the most known and useful web

tools and a brief summary will be presented for each one of

them, mentioning their main aspects, advantages, principal

results, limitations, weak points, how they evaluate, use,

manage and test the data from the protein structures. Also,

in section 2.1 a quick summary will be given about PDB

file format which is the format that all these applications

use to get the atoms data, alongside with a brief description

regarding the various representation of proteins.

2.1 Protein Data Format and Representation

Protein Data Bank (PDB) format is a standard for files

containing atomic coordinates, it is used for structures and

is read and written by many programs. It is a text file

consisting in lines of information having each line called a

record. A PDB file generally contains several different

types of records, arranged in a specific order to describe a

structure. As for describing molecular structures, PDB is

the most commonly used way to store and share atomic

coordinates, still its use is increasing every year, with over

600 million total downloads from the RCSB PDB (Berman,

2003). Although the data is kept in flat ASCII files, the

PDB format is ubiquitous.

Fast Photorealistic Rendering of Protein Representations Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT

Figure 1: Example of PDB File format.

There are four types of protein representation: the space

filling diagram that shows all atoms that are making up the

protein, the ribbon/cartoon diagram shows the organization

of the protein backbone and highlights the alpha helices,

the surface representation shows the areas that are

accessible to water molecules and finally the ball-and-stick

model that displays both 3D positions of the atoms and the

bonds between them.

One of many challenges in visualizing multiple protein

representations and compare each one of them, is that such

representations are very limited to its scalability and due to

the occlusion problems, for example, the spatial

representation is only possible for comparison in a few

structures (Kocincová, 2017).

Figure 2: Protein Representations.

The representation model that is going to be focused is the

space-filling one. In this model, its envisioned the surface

of the molecule as being determined by the Van Der Waals

radius (radius of an imaginary hard sphere representing the

distance of closest approach for another atom) of each atom

of the molecule and crafted atoms as hardwood spheres of

diameter proportional to each atom’s Van Der Waals

radius. This representation reflects the electronic surfaces

that molecules present, that dictate and show how they

interact, one with another. The main difference between the

space filling model and ball stick is that, in the ball and

stick model, the molecular structures are depicted by

spheres and rods, whereas, in the space filling model, the

molecular structures are depicted by full-sized spheres

without rods.

It will be important to know exactly which different

elements may be present in the 3D environment, including

all their specific characteristics in order to make things

smoother and simpler. So, there are about 20 amino acids

within a protein, and the most prevalent 5 atoms are:

Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N) and

Sulfur(S) as shown in the figure 3 below. Each one of them

have their size, Van der Waals radius of the sphere and

color as represented in the table 1 below. The rendered 3D

scene will only have 5 types of different elements, with

their specific radius. Yet, there will be hundreds of

thousands spheres in the proteins themselves.

Figure 3: Proteins Elements.

Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT Nelson Ferreira

Table 1. Elements that build a protein.

2.2 Standalone Tools

A standalone application runs entirely on the device and

does not require any additional software to work, because

the application contains all the logic, it does not require an

internet connection or the installation of any other services,

all the files will be included in the setup file itself. They use

our PC resources, so generally these tools are more

powerful allowing a more sophisticated studies and

analysis taking place, which is handful for scientists,

biologists, biochemistries, basically a shorter and more

specific audience of users. As we can see in table 2, there’s

an example of a few of the main standalone applications for

protein analysis alongside their type of image rendering

(Imposters or Polygons). Applications like Chimera

(Pettersen, 2004), Chimera X (Goddard, 2018), VMD

(Humphrey, 1996), Pymol (DeLano, 2002) or Yasara

(Krieger, 2014) can make the use of new technologies

power like RTX and OptiX providing all the visualization

features needed for protein representation as ray tracing,

shaders, lighting, reflections and many more, allowing a

more detailed information about them. Being their strong

advantages factor against the web applications that will be

referred to in section 2.3. However, all this progression

comes from a long way that can be marked with the arrival

of QuteMol (Tarini, 2006), revealing one of the first of

ambient occlusion implementations.

2.2 Standalone Tools

On the other hand, web tools are targeted for a more casual

audience, they have more care about how the UI is

presented and make sure if it’s easy to use and understand

its output and results, they have more focus on portability

and guarantee that the main and essential algorithms and

analysis are working. The general steps for displaying a

macromolecular structure on the web are: download file,

decompress and parse, populate a data model, create

geometry and render it. A web application executes in the

server side where it is hosted and mostly uses web

technologies like HTML5, CSS, JavaScript, WebGL and

other browser extensions. Logic and data storage are not on

the client machine (there may be limited exceptions due to

this factor), rather one or more servers take those

architectural roles. The UI capabilities on the client

machine are limited to what the web browser (including

plugins) supports and the programmer generally has no

ability to implement arbitrary functionality on the client,

but rather must work within the capabilities supported by

the client. WebGL was developed to allow JavaScript

applications running in the web browser to take advantage

of OpenGL ES 2.0 (first portable mobile graphics API to

expose programmable shaders in the latest generation of

graphics hardware) compatible GPUs which had been

specifically designed for mobile devices. While WebGL

has been available for several years in Chrome and Firefox,

WebGL support was only recently added to Microsoft’s

Internet Explorer and Apple’s Safari, including iOS.

These web applications have way fewer visual features than

the standalone applications and at most they provide some

shaders and some management regarding the lights source

positioning.

3. Methodology

A web browser application was created based on billboards

and global illumination, programmed in WebGL2 and

several techniques were used to reduce the memory usage,

load big data structures, increase performance and provide

a fairly decent friendly graphics.

3.1 Techniques, Mechanisms and Data Structures

There was a need for special care during the code

implementation like trying to reuse objects such as

geometries, materials and textures to avoid the creation of

unnecessary objects, for instance, in a render loop. A data

structure called BufferGeometry was mainly used, which is

a representation of a mesh, line or a point of geometry from

the three.jslibrary that is an API used to create and display

animated 3D computer graphics in a web browser using

WebGL. JavaScript TypedArrays were also used since it is

a good option because they are objects that provide a

mechanism for reading and writing raw binary data in

memory buffers, they grow and shrink dynamically and can

have any value, so they are fast. If each property of the data

model is a TypedArray, it can allow the parsed data to be

reused or copied in blocks, which can lead to a reduction of

the peak memory consumption. A parser and a loader of

PDB files was created in order to obtain the information of

Fast Photorealistic Rendering of Protein Representations Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT

the atoms that will be represented as objects in the 3D

scenes, allowing as well memory reuse and avoiding

duplicating data. Utilization of common text-based 3D data

formats was avoided, such as Wavefront OBJ or

COLLADA, for asset delivery.

3.2 Rayground

During the development of the web application the

framework Rayground (Vitsas N. , 2020) was explored and

used for quick prototyping of algorithms based on ray

tracing algorithms, it works in any platform with WebGL2.

It was developed based on the studies done about ray

tracing in the web, called WebRays (Vitsas N. , 2021). Its

main purpose is to help develop and test modules that

showcase a particular method or technique. The graphical

UI is designed to have two discrete parts, the preview

window and the shader editor. Its visual feedback is

interactively provided in the WebGL rendering context of

the preview canvas, while the user performs live source

code modifications. So, this framework, wasreally helpful

for the ray tracing implementation, which brings,

automatically, characteristics like shadows, ambient

occlusion and many others.

3.3 Implementation

The approach of a hybrid implementation was the main

goal, consisting in placing impostors/billboards while the

objects, in the scene 3D, are distant and applying the simple

GI algorithm (similar ray tracing in terms of visualization)

when the objects are near to the camera. This approach was

heavily considered, because ray tracing is a slow process

and it’s not bearable to have it working for all situations in

a 3D scene with a lot of information going on

simultaneously. The objects in the 3D scene were only

composed by spheres, so it was just needed the coordinates

(x,y,z) of the sphere’s center, type of element, radius and

color. In the end, it was predicted that 7 bytes should be

enough for each atom, since 1 byte will be for the element

type and 3 x 2 bytes (3 x 16 bits) for the coordinates. A

special attention and care were done to the memory

allocation, making sure that no memory is wasted and

ultimately load the highest possible number of atoms with

the least possible memory.

3.3.1 Ambient Occlusion and Simple GI

Before explaining the simple GI algorithm, it is needed to

give a little overview of what Ambient Occlusion is, there

is a similar demonstration of it in the figure 18 below. So, it

gathers the light from everywhere around, but in a very

simplified mode, and thus all the geometry in the scene is

blocking the light arriving from everywhere to that point. In

the case of ambient occlusion, the concept of shadow

doesn’t exactly exist, because its more occlusion than

anything. If a point is completely surrounded by dense

geometry, then the point is going to be occluded and no

light arrives to it so it will be dark. If a point has no

geometry above it, it will be white because all the light

arrives on it. Since Ambient Occlusion is the result of

simplifying the rendering equation that describes the light

interaction, the idea was to approximate (or fake) global

illumination to a very small 3D scene. Mesh vertices

become the sampling points of the GI, they are light

emitters and receivers. The irradiance emission of a vertex

is simulated by its color. First, all vertices are black. To

simulate the first bounce of light, each sampling point

(vertex) is calculated by how much light arrives from the

emitters. This light

gathering process is traditionally done by ray casting the

hemisphere around the normal to the surface in each point.

However, for this to be fast, the scene is rendered with a

camera in the vertex position and oriented in the direction

of the normal. It’s used a field of view as close to 180

degrees as possible and the color of the pixels is

accumulated in the resulting frame buffer to estimate the

incoming radiance [a rendering size of 16*16 simulates a

total of 256 rays]. This accumulated color will be the

irradiance of this vertex for the next pass, repeating the

process for each vertex completes the simulation of the first

bounce of light. Repeating the process allows to simulate

more bounces of light. This method can take as many lights

as desired. This method is applied to every sphere in the

scene, individually. To remember, all of this is only applied

when the camera is close to the protein.

3.3.2 Impostors/Billboards

If certain spheres from the protein are far enough from the

camera, the sphere is automatically replaced by a billboard,

a 2D figure that represents a screenshot from the specific

atom with its respective color. This in order to improve or

maintain performance and have less vertex possible to

calculate in real time. This process is done dynamically and

is responsive, the exchange is always done whenever the

user zooms in, zooms out or rotates the 3D scene.

4. Results and Discussion

Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT Nelson Ferreira

The main objective of this implementation is to have an

interactive 3D scene while an algorithm that simulates

similar visual effects to raytracing is being executed in real

time, and some protein customization along with it. While

in Rayground, that was mentioned in the section earlier, its

raytracing is implemented in the browser, however it does

not let the user to interact in the view and is just a static

image, at least until the final image is not rendered. The

data sample that was examined, consisted in proteins with

different numbers of atoms in order to compare each one of

them, more essentially with different magnitude order.

Most proteins can have between 1 to 100 thousand atoms.

The application was tested in Chrome, Mozilla Firefox and

Microsoft Edge, there was not much big of a difference

between the 3, in terms of FPS. The main metrics that were

taken into consideration in order to compare the

implementation with the Rayground framework, some

algorithm parameters and variances were:

• Percentage of CPU usage,

• Percentage of GPU usage,

• Percentage of memory usage,

• Amount of FPS,

• Response time in Milliseconds (MS),

• Total MBytes (MB) of allocated memory.

The most relevant comparison parameters were the FOV

(field of view of the camera), SIZE (size of the auxiliar

rendering camera target, that is crucial for the GI

algorithm) and Detail of each atom.

• SIZE impacted directly the velocity of the Simple GI

algorithm.

• FOV did have an impact in performance, but very

little, since it only determines how close is the

reflection of the color of the vertex that corresponds to

the medium color calculated from what’s is in the

surroundings. However, the more it can be seen, the

more the computer has to do to render in those objects.

• The more atoms are detailed, more vertex it will have

so it increases greatly the algorithm processing time.

Figure 4: Impact Performance Comparison.

Also, different proteins were placed into test that have

different compositions between each other and of

course with a great different in terms of quantity of

atoms that composed them.

Figure 5: Ideal Parameters Result.

Fast Photorealistic Rendering of Protein Representations Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT

Figure 6: Rayground Raytracing example.

To remember, in Rayground the image is static, just

the first frame is rendered, there is no interaction or

GUI that the user can use to manipulate the camera of
the scene. Also, the visual effect is not that great as we

can see in the figure above.

Figure 7: Low atom detail.

Figure 8: Low size.

Figure 9: Low FOV.

Figure 10: High FOV.

5. Conclusion

Considering this is a browser application with certain

characteristics that currently are still not very refined,

there were difficulties and challenges making

performance and efficiency going right. In the middle

of the thesis, it was verified that ray tracing really takes

a massive fraction from the computers resources and

an alternative had to be chosen in order to make a

balance between good graphics/visualization and
performance, so the simple GI algorithm was picked

and made a perfect combination, because now it was

possible to load hundreds and thousands of atoms,

since that was nearly impossible with raytracing even

in close range to the camera. This technique has very

similar lighting visual effects and results to ambient

Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT Nelson Ferreira

occlusion without resorting to full global illumination

techniques. Three.js was really handful and made a big

part of the implementation, this third-party supportive

library and its mechanisms offers support to massive
different scenarios and situations, it was game

changing. The results and tests are a little bit

incomplete since I did not have the time for it, like

using profiling tools to test in multiple browsers etc.

Plus, some optimization tools from WebGL2 were not

implements like: Uniform Buffer Objects, Texture

arrays and samplers. Would be interesting to see those

features working into this project. This method brought

some more realism to the 3D scene and a more detailed

overview of the atoms which could be beneficial for

analysis and studies led by students and scientists. As a
future work this method could be improved by a lot,

for instance, calculate how many milliseconds the

algorithm can spend in the lifetime of a frame, use all

those milliseconds optimally and at the same time

make the frame reach 30 FPS (1000ms/30ms) and for

each group of 32 vertex, check how many times it has

elapsed since the beginning of the frame and continue

to update even more vertex and more sphere until we

get to that gap. Another alternative is to implement

something similar to masking as presented in this

article (Zadvornykh, 2016). It will bring a very

innovative and interesting perspective visually.

ACKNOWLEDGMENTS

Firstly, and specially, I would like to thank my supervisors,

Professor Doctor João Pereira and Professor Doctor

Francisco Fernandes, for all the patience, guidance,

wisdom, knowledge, support and kindness given

throughout this past year, they were the main factor that I

could deliver this. I will never know how to thank my close
friends for being there, by my side, every step of the way,

you are the reason I could go through this journey with all

my energy after all problems and struggles, in particularly

Afonso, all my bachelors’ ex-colleagues from Coimbra, my

house roommates and my Masters colleagues that walked

with me through this journey. Margarida, you helped me to

overcome some critical difficulties back in the time and for

that you deserve my thanks. To my Capgemini colleagues

at work that were comprehensive enough and flexible with

me, allowing me to conciliate work with thesis and at the

same time giving me emotional support along with some

chilling and fun moments. A final and special thanks to my
mom and stepfather for providing me with all the

conditions necessary to be able to study and work.

REFERENCES

[1] Bekker, G. (2016). Molmil: a molecular viewer for the PDB

and beyond. Journal of cheminformatics, 8(1), 1-5.

[2] Berman, H. (2003). Announcing the worldwide protein data

bank. Nature Structural & Molecular Biology, 10(12), 980-980.

[3] Botzki, A. (2021). Pdb file format. Retrieved from VIB:

https://elearning.bits.vib.be/courses/protein-

structureanalysis/lessons/introduction/topic/pdb-file-format/

[4] Carrillo-Tripp, M. (2018). HTMoL: full-stack solution for

remote access, visualization, and analysis of molecular dynamics

trajectory data. Journal of computer-aided molecular design,

32(8), 869-876.

[5] Christiansen, K. (2005). The use of Imposters in Interactive

3D Graphics Systems. Department of Mathematicsand Computing

Science Rijksuniversiteit Groningen Blauwborgje, 3.

[6] DeLano, W. (2002). Pymol: An open-source molecular

graphics tool. CCP4 Newsletter on protein crystallography, 40(1),

82-92.

[7] Goddard, T. D. (2018). UCSF ChimeraX: Meeting modern

challenges in visualization and analysis. Protein Science, 27(1),

14-25.

[8] Hanson, R. (2013). JSmol and the next‐generation web‐based

representation of 3D molecular structure as applied to

proteopedia. Israel Journal of Chemistry, 53(3‐4), 207-216.

[9] Herraez, A. (2006). Biomolecules in the computer: Jmol to the

rescue. Biochemistry and Molecular Biology Education, 34(4),

255-261.

[10] Humphrey, W. (1996). VMD: visual molecular dynamics.

Journal of molecular graphics, 14(1), 33-38.

[11] Kocincová, L. (2017). Comparative visualization of protein

secondary structures. BMC bioinformatics, 18(2), 1-12.

[12] Krieger, E. (2014). YASARA View—molecular graphics for

all devices—from smartphones to workstations. Bioinformatics,

30(20), 2981-2982.

[13] Marcella Martos, M. T. (2021). Protein Art... and What

Proteins Really Look Like. Retrieved from ASU - Ask A

Biologist: https://askabiologist.asu.edu/venom/protein-art

[14] Mary, M. (2004). Space-Filling Model. Encyclopedia of

Biological Chemistry. Methionine Essential amino. (2021).

Retrieved from Png Egg: https://www.pngegg.com/en/png-nbuvx

[15] O'donoghue, S. (2015). Aquaria: simplifying discovery and

insight from protein structures. Nature methods, 12(2), 98-99.

[16] Pettersen, E. (2004). UCSF Chimera—a visualization

system for exploratory research and analysis. Journal of

computational chemistry, 25(13), 1605-1612.

[17] Pienaar, J. (2013). JSWhiz: Static analysis for

JavaScript memory leaks. Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pp. 1-11.

[18] Quilez, I. (2005). Per vertex ambient occlusion.

Simple Global Illumination, p. 4.

https://elearning.bits.vib.be/courses/protein-structureanalysis/lessons/introduction/topic/pdb-file-format/
https://elearning.bits.vib.be/courses/protein-structureanalysis/lessons/introduction/topic/pdb-file-format/

Fast Photorealistic Rendering of Protein Representations Instituto Superior Técnico’22, October, 2022, Alameda, Lisbon PT

[19] Reynolds, C. (2018). EzMol: a web server wizard for

the rapid visualization and image production of protein and

nucleic acid structures. Journal of molecular biology,

430(15), 2244-2248.

[20] Rose, A. (2015). NGL Viewer: a web application for

molecular visualization. Nucleic acids research, 43(W1),

W576-W579.

[21]Sehnal, D. (2017). LiteMol suite: interactive web-based

visualization of large-scale macromolecular structure data.

Nature methods, 14(12), 1121-1122.

[22] Sehnal, D. (2021). Mol* Viewer: modern web app for

3D visualization and analysis of large biomolecular

structures. Nucleic Acids Research.

[23] Shi, M. (2017). Web3DMol: interactive protein

structure visualization based on WebGL. Nucleic acids

research, 45(W1), W523-W527.

[24] Tarini, M. (2006). Ambient occlusion and edge cueing

for enhancing real time molecular visualization. IEEE

transactions on visualization and computer graphics, 12(5),

1237-1244.

[25] Vitsas, N. (2020). Rayground: An Online Educational

Tool for Ray Tracing. Eurographics, pp. 1-8.

[26] Vitsas, N. (2021). WebRays: Ray tracing on the web.

Ray Tracing Gems II, pp. 281- 299.

[27] Wang, J. (2020). iCn3D, a web-based 3D viewer for

sharing 1D/2D/3D representations of biomolecular

structures. Bioinformatics, 36(1), 131-135.

[28] Zadvornykh, S. (2016, 11 9). WebGL Masking &

Composition. Retrieved from Medium:

https://medium.com/@Zadvorsky/webgl-masking-

composition75b82dd4cdfd

