
Cyber Security Attacks to the Network Infrastructure

Duarte Simões Matias
duarte.matias@tecnico.ulisboa.pt

Supervisor: Professor Rui Valadas

Instituto Superior Técnico, Lisboa, Portugal

October 2022

Abstract

Cybersecurity has been evolving at an incredible speed in the last two decades, with the number of
software vulnerabilities reported daily increasing at a fast pace. Creating secure software is so important
that most companies changed from a DevOps model to a DevSecOps model where security experts are
incorporated into the software development teams.

But while securing the software itself is important, securing the underlying layers that run that software
is also crucial. One such layer is the so-called network infrastructure, comprised of devices like routers
and switches. The devices tend to be running protocols that were created decades ago, some of them
having their first specifications as old as the Internet itself, meaning they were created in an era where
security was not a primary concern. While many of these have had updates over the past years to bring
them up to standards, many entities continue utilizing obsolete versions of them.

While some small and simple tools exist as proof-of-concept for these attacks, there is no single tool
out there that combines all kinds of attacks that can be launched against the network infrastructure.

In this MSc dissertation, we built a tool that provides a variety of attacks to test the security of the
network infrastructure. The tool is built utilizing the Python programming language and one of its libraries,
Scapy. It runs in a Docker container and therefore is easy to install and deploy in a variety of environments.

The tool supports attacks against protocols related to the OSI model layer 2 (ARP, Switches, STP,
VLAN, DHCP), IPv4 routing protocols (RIP, OSPF, BGP), and others like DNS and ICMP, while also
maintaining extensibility for extra attacks and protocols to be easily added. This MSc dissertation was
supported by Instituto de Telecomunicações
Keywords: Python, Scapy, Network Infrastructure Attacks

1. Introduction

Nowadays society is progressively more and
more dependent on Internet access to function
properly. Be it in healthcare, finance, or enter-
tainment, every business has a certain degree of
reliance on the Internet to operate smoothly. As
such, the need to secure systems and networks
from unwanted access by external individuals has
also increased, with security researchers having
a crucial role in finding and reporting exploits that
can lead to security breaches.

However, most entities still focus on exploiting
software vulnerabilities present on endpoint ma-
chines, such as desktops and servers, and forget
that there’s another point of failure in the enormous
organism that is the Internet: the network infras-
tructure, devices like routers and switches, which
carry information from endpoint to endpoint, or ser-
vices like DNS and DHCP, that simplify the over-
all experience of utilizing the Internet. Devices like
these are vital for the Internet to function smoothly.

While a lot of different tools exist to find and ex-

ploit software vulnerabilities in endpoints, the same
cannot be said for the network infrastructure. In
fact, the list of tools to test protocol vulnerabilities
for this infrastructure is comparatively shorter, with
each tool performing a much smaller number of
tests than their endpoint counterparts.

Tools like arpspoof and macof, part of the dsniff
suite [10], which only perform one type of attack, or
yersinia [3], which contains related layer 2 attacks
on STP and VLANs, or even ettercap [1], which is
utilized in DHCP attacks and all forms of MitM at-
tacks performed in a local network, are examples
of tools that can test network infrastructure.

However, such tools are few and far between,
and by looking at tools to perform route injection
on various routing protocols one can conclude the
list is even shorter, featuring names like vRIN [4],
a route injection tool that performs the most basic
of route injections, or OSV [7], an automated net-
work testing tool that runs several fixed vulnerabil-
ity checks on an OSPF network.

Moreover, these tools often offer a limited num-

1



ber of attack options, making it hard to launch cus-
tomized attacks, and often run into problems when
an uncommon option is needed to perform the at-
tack.

This MSc dissertation aims to compile a list of
known vulnerabilities for the protocols running on
devices considered part of the network infrastruc-
ture, and then create a tool that allows the infras-
tructure to be tested against all these vulnerabil-
ities while allowing the user to chain different at-
tacks. The created tool must provide an extensible
interface for extra attacks to be added in the future,
and any attack must be coded in a way where a
user can extract the attack code from the program
files and be able to run it with minimal modifica-
tions.

1.1. Contributions
The contributions of this project include the de-

velopment of a tool in Python, leveraging the Scapy
library, for performing extensive testing in the net-
work infrastructure. The tool provides freedom for
the user to decide what tests to perform and in
what order they are executed, giving the user con-
trol over all the details for each test in a user-
friendly interface. The user also has the ability to
write customizable tests for their target topologies
and import their configurations. Our tool provides
an extensive repertoire of tests across different
protocols to test various services in the network.
The attack list includes attacks on protocols like
ARP, STP, VLANs, DTP, DHCP, RIP, OSPF, BGP,
DNS, and ICMP, as well as the layer 2 switches’
CAM tables.

1.2. Implemented Attack List
Our developed tool includes all the attacks

listed below.

• Layer 2

– ARP

* ARP Spoofing

– Switches

* CAM Overflow

– STP

* Root Bridge Hijack

* Conf BPDU DoS

* TCN BPDU DoS

* Eternal Root Election

* Root Bridge Disappearance

– VLANs

* Double Tagging

* DTP Negotiation attack

* PVLAN Proxy

– DHCP

* DHCP Starvation

* DHCP Spoofing

• Routing Protocols

– RIP

* RIP Route Injection

* RIP Request DoS

– OSPF

* Remote False Adjacency

* Disguised LSA

* Single Path Injection

* Max Age LSA attack

* Seq++ attack

* Max Seq# attack

– BGP

* BGP Route Injection or BGP Hijack

• Other Protocols

– ICMP

* ICMP Flooding

* ICMP Redirection

– DNS

* DNS Spoofing

1.3. Testing Environment
To test the implemented attacks we use the

GNS3 network simulator [2] in conjunction with a
set of Cisco routers, namely the C3725 and C7200
routers. To capture and inspect packets circulat-
ing in the test topologies, we utilize the Wireshark
packet capture tool.

1.4. Structure
This article explores the theory behind three of

the implemented attacks, namely VLAN Double
Tagging (Section 2), OSPF Remote False Adja-
cency (Section 3), and ICMP Redirection (Section
4). These attacks cover the most important
concepts utilized in our tool, such as the concept
of chaining, importing attack configurations from
configuration files, and modifying operative system
settings to permit some attack to function properly.
In the end we present our conclusions and further
work.

2. Attacks to layer 2 - VLAN Double Tagging
2.1. Attack Description
One key concept of the developed tool is attack
chaining. A chain is a sequence of attacks. These
attacks can either be launched in succession or be
used to modify the behavior of each other. The lat-
ter represents our concept of “Middleware”, a func-
tion that modifies how the next attack behaves. The

2



VLAN Double Tagging is categorized as “Middle-
ware” as it inserts certain headers into a packet
which modifies the way the packet will be routed
in the network. The VLAN Double Tagging attack
allows an attacker to perform VLAN hopping, that
is, sending packets from its VLAN to another one
without requiring the frame to be sent to a multi-
layer switch. A VLAN, or Virtual LAN, is a form of
network isolation utilized in local networks to sepa-
rate traffic from different machines as if further seg-
regating traffic within a subnetwork. Machines on
one VLAN can’t communicate with another VLAN
without utilizing a router. VLAN Double Tagging
permits an attacker to circumvent the need for a
router for sending packets to another VLAN. In or-
der to perform the attack, frames must be sent with
two distinct 802.1Q headers (responsible for car-
rying VLAN information), one with the VLAN ID of
the attacker (the ‘outer tag’) and another one with
the VLAN ID of the destination machine (the ‘inner
tag’). When the frame arrives at the first switch,
the switch strips the outer tag (as VLAN informa-
tion coming from the user should be ignored) and
then forwards the frame to the next switch while
keeping the inner tag. When the frame arrives on
the last switch before being delivered to the target,
the switch will read the inner tag and forward the
frame to the target’s VLAN, leading to the frame
being delivered to the victim. The major downside
of this attack rests on the fact that it’s a unidirec-
tional process: while the attacker can deliver pack-
ets to the target, the inverse is impossible as the
target has no way of double tagging the response.
In any case, it can still be used to perform DoS
attacks that only require unidirectional communi-
cation. VLAN Double Tagging can be used as a
way to launch a DoS attack onto a host that would
otherwise be unreachable, such as launching an
ICMP flooding attack against a server residing on
an isolated VLAN or performing a DHCP starvation
attack against hosts on a different VLAN.

2.2. Attack Code
The VLAN Double Tagging attack is defined in the
”vlan.py” file, under the ”layer2” directory, by the
”vlan double tagging” function. The function code
is show in Figure 1.

The code is written in Python and utilizes the
Scapy library to create and manipulate the differ-
ent layers that constitute the packets. In this case,
we see the creation of a Dot3 header, two Dot1Q
headers for VLAN information, and an IP header.

Figure 1: Function code for the VLAN Double Tagging attack

As a middleware, the function’s objective is to
insert the necessary headers in the packet which
will then be further modified. As such, the function
modifies the ”pkt” key in the ”args” variable, setting
up the necessary headers with the information to
carry the attack, and returning the ”args” variable
with the updated packet. The ”pkt” key can then be
accessed by another attack function executed af-
ter, and will contain the layers created in during the
execution of this function.

2.3. Testing and Validation
Figure 2 shows the topology utilized to test the at-
tack. Both R1 and R2 are c3725 routers fitted with
an NM-16ESW module. This module enables the
router to behave like a switch, and with IP rout-
ing deactivated they only behave like switches (no
inter-VLAN routing). R4 behaves like a host, hav-
ing its ‘f0/0’ interface configured with the IP ad-
dress 11.11.11.4/24. No IP configuration was per-
formed on the attacker machine. The objective of
for this test is to verify if our attacker machine can
communicate with R4 who resides on a different
VLAN.

Figure 2: VLAN Double Tagging attack test topology

When launching the tool, we are greeted with
the menu shown in figure 3. This menu gives us,
the user, the possibility of choosing what attacks
to perform, from what interface, and import extra
configurations for any attack if needed.

Figure 3: Main menu

To perform the attack, we first select the inter-
face ”eth0” in the ”Select Interface” sub-menu, and
then chain two functions: first, by selecting “Mid-
dleware”, “L2” and “Wrapper” we can filter for the
“Double Tagging” function; and second, selecting
“Attack”, “L4” and “Ping Test” we can filter for the
“Ping Test” function, which sends a single ICMP
Echo Request to the target. We can then launch
the attack by selecting the “Run Chain” option,
where we are prompted for the missing parame-
ters, i.e., the VLAN tags for outer and inner head-

3



ers (for the Double Tagging attack) and the destina-
tion IP (for the Ping test), and after which we start
sending attack packets. In this case, we set the
outer VLAN to the value “2”, the inner VLAN to the
value “3”, and the destination IP is the IP address
of R4, “11.11.11.4”.

The only way we have of detecting whether the
attack was successful or not is by attaching a Wire-
shark probe to the interface on R4. When the
attack runs, the packet shown in figure 4 is cap-
tured by Wireshark. This packet corresponds to
the ICMP request sent by the attacker, stripped of
the VLAN-related headers.

Figure 4: VLAN Double Tagging captured packet at R4’s inter-
face

3. Attacks on OSPF - Remote False Adjacency
3.1. Protocol Description

OSPF, defined in RFC 2328 [8], is an intra-
domain link-state routing protocol. OSPF router
exchange topology information in the form of LSAs
and build a topology from all the collected LSAs,
which are utilized to calculate the routing tables.

OSPF routers establish an adjacency relation
between themselves, which allows them to ex-
change their database information and detect link
failures, modifying the link’s state to reflect topol-
ogy changes. This adjacency is established uti-
lizing the Hello protocol. Routers will periodically
send Hello messages from their interfaces which
contain basic OSPF information, such as the list of
connected OSPF routers in the local subnet.

When two non-adjacent routers receive Hello
packets from each other, they establish an adja-
cency relation between themselves and exchange
the details of their databases in a process called
LSDB synchronization. During this stage, also
called DBD exchange, routers exchange the head-
ers of LSAs present in their databases utilizing
DBD packets.

When the DBD exchange phase is finished,
routers update existing LSAs to reflect the new
topology. When an adjacency is established on a
transit link, one of the OSPF routers is nominated
the DR, which is the router responsible for gener-
ating the Network LSA for the newly created transit
link.

OSPF LSAs are transmitted inside packets
called Link State Updates, or LSUs, that allow
more LSAs to be transmitted at once. The LSUs
need to be acknowledged by the destination router,
which will send an LSAck packet containing the
headers of the received LSAs.

OSPF implements a natural fightback mecha-

nism when wrong information is present in an LSA.
When a wrong LSA reaches the router which gen-
erated it, the router will correct the information in
the LSA and flood it so all the domain routers can
update its information. This mechanism makes it
extremely hard for an attacker to inject false infor-
mation into an OSPF network, as LSAs are only
accepted if they are either created or flooded by an
adjacent router.

3.2. Attack Description

The Remote False Adjacency, first described by
G. Nakibly et. al. [6], is an OSPF route injection at-
tack that injects LSAs utilizing a phantom router.

In order for an LSA to be accepted, it must be
sent by an active OSPF neighbor. This means in-
jection attacks are more complicated than in RIP.

The concept of a phantom router was first ex-
plained by E. Jones et. al [5], and describes an
OSPF neighbor that isn’t attached to a physical
router. In other words, it’s a form of spoofing an ad-
jacency relation with the Designated Router (DR)
so that LSAs can be sent to the DR with a source IP
address of a machine that doesn’t exist in the net-
work. Configuring a phantom isn’t easy because,
if an attacker isn’t in the local subnet, there is no
access to the packets sent by the DR destined for
the phantom.

The Remote False Adjacency attack utilizes a
phantom router to inject LSAs into the network.
The point of the attack is to have an attacker con-
figure a phantom router remotely, i.e., from a dif-
ferent subnetwork, and then send all LSAs in uni-
cast to the DR. The difficult part of the attack is the
lack of bi-directional communication between the
DR and the attacker: packets sent by the attacker
have their source IP address spoofed so that, from
the DR’s point of view, the packets received come
from the local subnetwork. Consequently, the at-
tacker has no access to the packets sent by the DR
to the phantom, as those will be destined to an IP
address in the DR’s subnet, and not the attacker.

However, there’s a workaround for this. Since
most of the adjacency setup process is determin-
istic, it can be finished without the attacker ever re-
ceiving a response from the DR. Every message
sent by the attacker must be sent in unicast, and
the interface on the DR that receives the packets
must be connected to the local subnet where the
phantom is created.

The attack begins by having the attacker send
a hello packet destined for the DR, containing the
DR’s router ID in the neighbor list, with the source
IP of the phantom. The authors note that the router
ID for the phantom needs to be higher than that of
the DR for the attack to be successful (explained
below). These hello messages need to be re-sent

4



periodically to keep the adjacency from being torn
down.

The next step is to send the DBD messages.
Usually, the DR is the master in the database ex-
change phase. However, since the phantom’s ID
is higher than the DR’s, the phantom can perform
the whole exchange process as the master. This
allows the attacker to set a custom value for the
sequence number utilized in the DBD messages,
which would be impossible to guess if the DR was
the master as the attacker doesn’t have access to
the DBD messages sent by the DR. The authors
note that the number of DBD messages can be
as high as the attacker wants, but it needs to at
least cover the number of headers sent by the DR,
meaning the attacker can send more DBD mes-
sages than needed for the exchange phase, but
never less. The authors also note this number can
be easily estimated if the attacker can see OSPF
messages in the local network. Certain flags need
to be set on the DBD messages: every message
must have the master (MS) flag set, the first mes-
sage needs to have both the I and M bits set, and
every message after except for the last one must
have the M bit set. Once the last DBD message
arrives at the DR the adjacency is considered es-
tablished, and routers can now exchange LSAs.

The last step of the attack is to send fake LSAs
with the source IP address and router ID of the
phantom, also in unicast, to the DR. Once deliv-
ered, the DR immediately proceeds to flood the
LSAs to every connected OSPF router.

There is one extra step that can only be taken
if the attacker can read OSPF LSU packets from
the directly connected link, and that is acknowledg-
ing the newly generated network LSA. The DR will
generate a new Network LSA for the local subnet
to add the phantom to the list of attached routers.
This LSA needs to be acknowledged by all routers,
including the phantom, or the DR will tear down the
adjacency relation created. Thus, if the attacker
can sniff LSUs from the connected network, it must
obtain the new Network LSA and send an LSAck
on behalf of the phantom.

Implementation of this attack was relatively
more complex than the VLAN attack explained be-
fore, as the attack requires more steps to perform,
large quantities of routing information to be im-
ported, and parallel tasks for periodically sending
Hello messages while performing the adjacency
setup. However, this is irrelevant from the end
user’s perspective as the entire process is simpli-
fied by having the different menu options execute
the distinct steps needed to perform the attack.

This attack can inject all types of OSPF LSAs
into the network, meaning the user can manip-
ulate a vulnerable network at will. Our tool in-

cludes support for injecting not only all relevant
LSA types, from type 1 to type 7, but also mul-
tiple LSAs originating from multiple machines at
the same time, i.e., in the same LSU. These LSAs
can be described and imported by the user utiliz-
ing the YAML format, meaning the user can create
custom attacks for their specific topologies. Fig-
ure 5 shows an example of such a file, which con-
tains definitions for two distinct router LSAs and
one network LSA, whose successful injection al-
lows the attacker to create an entire new subnet in
the OSPF domain.

Figure 5: YAML File describing OSPF LSAs

3.3. Testing and Validating
Figure 6 shows the topology utilized to test

the Remote False Adjacency attack. All routers
are Cisco 7200 devices, fitted with C7200-IO-2FE
slots. All routers have OSPF configured to an-
nounce their directly connected subnets. R1 is
made the DR for both subnets it is connected to
utilizing a higher priority value. All router IDs are
based on the router number, i.e., R1’s OSPF ID is
1.1.1.1, R2’s OSPF ID is 2.2.2.2, . . .

The objective of this test is to create a phan-
tom in the 10.10.10.0/24 subnet, connected to
Switch3, with IP address 10.10.10.100 and router
ID 10.10.10.10, which will then inject a fake route
to a subnet 192.168.1.0/24, a transit network with
two OSPF routers: the phantom and another non-
existent router. Figure 5 shows the YAML file im-
ported during the attack.

To launch the attack, we start by selecting inter-
face “eth0” in the ”Select Interface” sub-menu. We
import the routing configurations from the YAML
file by selecting “Import Data”, “OSPF LSU/LSA”,

5



Figure 6: Remote False Adjacency test topology

and “ospf rfa test 1.yml”. Then, we add the attack
function by selecting “Add Function”, “Attack”, “L3-
OSPF”, “Route Poisoning”, and “Remote False Ad-
jacency”. Finally, we launch the attack by selecting
“Run Chain” and, when prompted, introducing the
values 10.10.10.1 for the “victim IP” and 1.1.1.1 for
the “victim id”, corresponding to the DR IP address
and router ID. Having to know this information be-
forehand turns the attack from an outsider’s point of
view harder, however, this information can be ob-
tained by having the attacker attach itself to a tran-
sit link and wait for the Router and Network LSAs
of the DR to be naturally refreshed and flooded.

In order to verify if the attack is correctly imple-
mented we can observe the routing table in any
domain router. In this case we decided to inspect
the table of R1, shown in Figure 7, where we can
see the injected route to subnet 192.168.1.0/24

Figure 7: R1’s Routing table

4. Attacks on other protocols – ICMP Redirection
ICMP is a protocol used by IP devices to trans-

mit operational information between themselves.
Defined in RFC 792 [9], ICMP is the protocol be-
hind the ping and traceroute commands, as well
as informing a host that a certain destination is un-
reachable.

Although considered part of the internet layer
in the TCP/IP model, ICMP messages are always
sent within an IP packet.

ICMP headers have three fixed elements: the
ICMP type, code, and checksum. The remainder
of the header is dependent on the type and code.
Common ICMP messages include Echo Requests

(type 8, code 0) and Echo Replies (type 0, code
0) utilized by ping and traceroute commands, and
Destination Unreachable (type 3, variable code).

ICMP Redirection is a MitM attack that works
with one of the ends residing in the local network.
The other machine must be in a different sub-
network, accessible only with the use of a gateway.
ICMP Redirect packets are traditionally utilized by
routers to notify hosts of existing alternate routes
and update their routing information. They are usu-
ally sent when a more direct route to a destination
exists than the one currently being used.

An ICMP Redirection attack utilizes ICMP Redi-
rect messages to redirect traffic in the local network
from the default gateway to the attacker’s machine.
To launch this attack, the attacker needs to send
an ICMP packet with the following characteristics:

• IP Source is the default gateway IP address

• IP Destination is the victim’s IP address

• ICMP Type 5

• ICMP Code 1

• The gateway address is the IP address of the
attacker

• Inner IP Header with the victim’s source IP ad-
dress

• Inner IP Header with the target’s destination IP
address

Before sending the packet, the attacker needs to
enable IP forwarding on its machine, disable ICMP
redirects, and configure a NAT rule to replace the
source and destination IP addresses on packets
sent to the attacker from the victim.

When our tool runs the attack, it also writes
every packet redirected on a packet capture file,
which can later be visualized using appropriate
software like WireShark.

The ICMP redirection attack is an example of
an attack which needs to perform write operations
in a file and several configuration modifications in
the operative system for it to successfully run.

5. Conclusions
In this report, we describe our tool for testing

attacks on the network infrastructure. This tool in-
cludes a wide range of already implemented at-
tacks for different protocols across many layers of
the TCP/IP model, while also supplying a devel-
oper with an interface to add more attacks and pro-
tocols. We have effectively created a framework for
a penetration testing tool that is easy to expand,
providing a way to chain many different attacks on

6



different protocols to test the most robust and com-
plex network topologies. The program is also eas-
ily deployable in any environment due to its Docker
image, which permits professionals and students
alike to spend less time installing and more time
testing and learning. The tool includes all the at-
tacks listed in the introduction section, as well as
the configuration files utilized to test the attacks in
their corresponding test topologies.

Further work includes the expansion of the at-
tack list. While we tried to include as many at-
tacks on as many protocols as possible, new at-
tacks are always being published and thus can also
be added to the collection. The protocol list can
also be expanded to include other network proto-
cols, such as IS-IS for intra-domain routing, GRE,
IPSEC, and VPNs for tunneling protocols, or even
other protocols such as PPP and IGMP, to name a
few.

This also includes the modification of existing
attacks. Attacks on protocols that implement se-
curity measures like authentication and encryption
can be modified to include support for such mea-
sures. An example of this is the attacks on OSPF,
which can be modified to include an authentication
header in the crafted packets.

Some attacks have limitations related to the way
they are implemented. Attacks like DHCP spoof-
ing, DNS spoofing, and some OSPF route injection
attacks like the Disguised LSA attack can be modi-
fied to provide more customization by adding extra
options to the created in the attack code.

One more interesting option for further work
would be the inclusion of IPv6-compatible attacks.
Some attacks described in this report already work
for IPv6 if modified, and thus exploring these op-
tions would be valuable. This would also include
the addition of IPv6-exclusive protocols like NDP,
for example.

Finally, the inclusion of “Middleware” functions
that provide firewall and IDS evasion would also
be beneficial for network testing, as they allow an
administrator to better understand the flaws of the
current configurations.

References
[1] Ettercap home page. https://www.ettercap-

project.org/. Accessed: 9/1/2022.

[2] Gns3 — the software that empowers network
professionals. www.gns3.com.

[3] tomac/yersinia: A framework for layer 2 at-
tacks. https://github.com/tomac/yersinia. Ac-
cessed: 6/1/2022.

[4] A. Dosztal. vrin - virtual route injector.
https://dosztal.com/static/vrin.

[5] O. L. M. E. Jones. Ospf security vulnerabili-
ties, 2016.

[6] D. G. G. Nakibly, A. Kirshon and D. Boneh.
Persistent ospf attacks, 2012.

[7] P. Kasemsuwan and V. Visoottiviseth. Osv:
Ospf vulnerability checking tool. pages 1–6,
2017.

[8] J. Moy. Ospf version 2.

[9] J. Postel. Internet control message protocol,
1981.

[10] D. Song. dsniff. https://www.monkey.org/ dug-
song/dsniff/. Accessed 5/1/2022.

7


