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Abstract—Hyperdimensional computing has recently emerged as a
lightweight classification alternative to traditional Machine Learning
methods, particularly in environments with power and/or resource
restrictions. However, in order to fully exploit this potential, general-
use, portable and efficient data-parallel algorithms, developed from the
ground-up to exploit the inherent parallelism of HDC operations, are
yet to be proposed. In this paper, DPHDC, a SYCL-based open-source
framework to facilitate implementation and accelerate the execution
of HDC-based classification tasks in heterogeneous environments, is
proposed. The DPHDC framework aims at fully exploiting the highly
parallel nature of HDC operations, while the novel design of the presented
library is developed to provide high-performance and portable execution
across devices of different architectures such as CPUs, GPUs and FPGAs.
Efficient storage, movement and communication of high dimensional
vectors, key to any HDC-based application, is also tackled by DPHDC
in order to reduce performance bottlenecks. Versatility, modularity and
ease of use were also taken into account while developing the intuitive
object-oriented design of the framework. When compared to the most
recent multi-device capable HDC frameworks, DPHDC is not only up
to 13x faster on CPU and 10x faster on GPU but is also able to target
more devices and architectures efficiently.

Index Terms—Parallel Computing, Hyperdimensional Computing, Vec-
tor Symbolic Architectures, Machine Learning, Heterogeneous Systems.

I. INTRODUCTION

RECENT research and real-world application of Machine Learn-
ing (ML) algorithms, particularly of those based in Neural

Networks (NN) and Deep Learning (DL), has illustrated the great
potential and benefits of highly accurate classifiers in a plethora of
applications, from natural language processing to image recognition.
However, the success of these methods comes at the cost of typically
high computational demands and power/hardware intensive testing
and especially training even when using highly optimized ML frame-
works [1]. Naturally, such limitation makes it difficult to use these
technologies on devices and applications with power and/or resource
restrictions, such as embedded systems, edge computing and Internet
of Things (IoT) devices [2]. The current impracticality of offline
speech recognition on portable devices is a clear example of this
limitation.

Hyperdimensional Computing (HDC) [3], also known as Vector
Symbolic Architectures (VSA) [4], is a brain-inspired, Turing com-
plete computing framework [4] that has emerged as a promising,
more efficient and one-shot learning alternative to traditional ML
techniques for classification tasks [2]. HDC applications are based
on vectors, usually binary or bipolar, of very high and fixed dimen-
sionality, denominated as hypervectors [3]. This high dimensionality
is generally in the order of thousands of dimensions, with 10000
elements per hypervector frequent in classification applications based
on HDC. Hypervectors can be combined using two element-wise
operations: add and multiply and can also be manipulated using
permutations [3]. For classification purposes, the similarity between
hypervectors is one of the most important figures of merit, which
allows to compare different high dimensional vectors [2], [3]. Com-
pared with traditional ML methods, HDC classification applications

typically present acceptable accuracy with lower execution costs [2].
For this reason, many recent research works apply HDC for classi-
fication in different application domains, including natural language
processing [5], [6], speech recognition [7], DeoxyriboNucleic Acid
(DNA) sequencing [8], gesture recognition [9] and character recog-
nition [10], [11].

With the recent surge in research of HDC as a classification
method [12], the design and development of performant yet approach-
able libraries and tools that facilitate implementing and testing new
HDC models is imperative. For traditional ML, especially in the
NN and DL fields, libraries with similar goals, like Pytorch and
TensorFlow, are developed, highly optimized and widely used by the
community, showing how helpful such libraries can be. However,
for HDC, they are yet to be developed. It is also important to
note that given the unconventional architecture of HDC, such tools
would also need to ensure code performance portability by efficiently
exploring different types of accelerators and architectures, especially
in heterogeneous environments and platforms [1], [13].

Considering the highly parallel nature of HDC algorithms, the
efficient exploitation of parallelism across multiple architecturally
different devices, while avoiding race conditions, is a significant chal-
lenge. Furthermore, since hypervectors contain a very high number of
elements, optimization of data storage, movement and communication
is another major hurdle that needs to be overcome in order to develop
an efficient HDC framework.

Most existing approaches to create an easy-to-use, portable and
high-performance HDC framework are typically based on an already
existing ML framework, which is then adapted for HDC, i.e., are
not built from the ground up for HDC applications. Since the ML
frameworks were not designed and developed with HDC in mind,
these solutions usually only provide ease of use and/or portability,
while entailing performance costs. For example, the state-of-the-
art framework that is general and can target multiple devices is
TorchHD [14], a HDC framework based on Pytorch. Even though
TorchHD can target a considerable amount of devices its portability is
limited by the Pytorch backend (e.g. Field Programmable Gate Arrays
(FPGA) and other low-powered devices are currently not supported).
Furthermore, TorchHD was developed with a design philosophy
focused firstly on ease of use and only then on performance which
typically leads to lower efficiency and performance. Other approaches
tend to be device and/or application specific, focused on the hyper-
optimization of specific HDC operations on a particular narrow class
of devices [15].

With the context mentioned above in mind, there is a need to
develop a performance focused, highly portable and general HDC
framework that is also approachable and easy to use. In order to close
this gap, Data Parallel framework for Hyperdimensional Computing
(DPHDC), a SYCL-based, performant, portable and robust open-
source library designed and developed with the primary objective
of efficiently running binary and bipolar based Hyperdimensional
Computing ML classification applications on heterogeneous devices,
is proposed. The library was developed using the C++ programming
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language and the SYCL standard. In order to make it more approach-
able, the proposed framework can also be compiled for use with the
Python programming language. By being SYCL-based, DPHDC can
currently target a multitude of devices, from Central Processing Units
(CPU) and Graphics Processing Units (GPU) up to FPGAs [16]. It is
expected that DPHDC will benefit the broader scientific community
based on the following aspects:

• A general library built from the ground up to efficiently run
HDC-based applications on multiple devices with vastly differ-
ent architectures;

• Innovative design and development of the proposed framework
that tackles the exploitation of parallelism across multiple archi-
tectures while minimizing memory bottlenecks;

• Intuitive programming interface that allows the easy implemen-
tation of HDC-based classification applications;

• Modular design that facilitates the expansion of the proposed
framework;

• Extendable framework that allows for hyper-optimization of
proposed design and algorithms to any device.

To ensure the compatibility of the proposed library across different
compilers and devices, unit tests were developed and are supplied
with the framework to guarantee that developed functionalities work
as intended. The proposed framework is extensively tested across
several devices using notable HDC-based supervised classifiers,
recreated employing DPHDC and provided with the library. The
experimental results show that DPHDC is up to 13x faster when
running on CPU and 10x faster when running on GPU than the state-
of-the-art approach, while also being accessible given its intuitive
design and accompanying examples.

The remainder of this paper is organized as follows. Section II
presents the HDC background. This includes data representation,
vector generation, operation definition and similarity measurement.
A brief exposure of previous work related to HDC-based classi-
fication applications and general use HDC frameworks is done in
Section III. In Section IV, the DPHDC library is highlighted. The
library’s high-level design, features and implementation details are
introduced, accompanied by code samples and a complete example.
The presentation and analysis of results is done in Section V, followed
by comparisons with related work. Finally, Section VI concludes the
paper and gives directions for future work.

II. HYPERDIMENSIONAL COMPUTING BACKGROUND

Hyperdimensional Computing models are based on the algebraic
and geometric properties of high-dimensional spaces [3]. As previ-
ously referred, points in these hyperspaces are represented by hyper-
vectors, i.e., vectors with a large and fixed number of dimensions [3].
Depending on the HDC model, such vectors can be composed of
several data types, from binary or bipolar to integer or complex
numbers [17]. Despite this diversity in hyperspaces, the fundamental
concepts of all HDC models are based on the same principles [13],
[17]. Considering that binary and bipolar representations are generally
more hardware friendly and, consequently, more performant, they
have been the preferred type of model used in recent HDC-based
classifiers [2]. As such, binary and bipolar hypervectors will be
assumed for the remainder of this Section, unless otherwise stated.

It is worth noting that hypervectors are holographic, meaning that
information is independently and identically distributed across all
elements that compose a vector [3]. Such property explains the high
robustness and resistance to noise of HDC models since each element
of a hypervector encodes the same amount of information as all other
elements [3].

As shown in Figure 1, the HDC classification methodology usually
starts by generating base hypervectors. Base hypervectors, also called
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Fig. 1. Overview of supervised classification using HDC.

basis-hypervectors [18], usually represent the simple data types that
compose the more complex data types of the datasets to be analysed.
For example, a base hypervector can be generated for each letter of
the alphabet if the objective is to encode sentences [5]. An encoder
is then responsible for mapping each entry of the dataset to hy-
perdimensional space, using the aforementioned basis-hypervectors.
If training the model, the mapped hypervectors are then bundled
according to their respective label/class, generating a hypervector
per class present in the training dataset (see “Class vectors” in
“Trained Model” of Figure 1). For testing/querying of the model to be
possible, each test/unknown data entry needs to also be mapped to
hyperspace (utilizing the same encoder used to create the model),
generating a hypervector that can then be compared with all the
class vectors previously generated. The label/class of the most similar
class vector is the estimated class of the data being queried [3]. As
can be inferred, the standard HDC classification methodology relies
heavily on the encoder. Such a module, in order to take advantage
of the mathematical properties of a hyperdimensional space [19], is
composed of a combination of the three defined arithmetic operations
of HDC: addition, multiplication and permutation [2], [3].

Addition (+ and [.]), also known as bundling, is defined as an
element-wise majority sum between two or more vectors, i.e., all
elements at a certain position across all vectors are summed, and the
result is then thresholded back to a bipolar or binary range through the
use of a majority rule [3], [13]. For the bipolar case, the operation
is defined by (1), where R and XN are bipolar hyperdimensional
vectors and R(i) and XN (i) are, respectively, the element at position
i of hypervectors R and XN . After all elements from position i are
summed, the resulting value (X1(i)+X2(i)+ ...+XN (i)) belongs to
range [−N,N ], where N is the number of vectors being added. To
apply a majority rule to threshold the values back to bipolar range,
a comparison needs to be done. As illustrated by (1), if the summed
value is in range [−N, 0[ (< 0), then R(i) will be −1. Otherwise,
if the summed value is in range ]0, N ] (> 0), then R(i) will be 1.
When N is even, it is possible that the summed value is equal to
0, i.e., a draw happens. In this case several approaches can be used,
from adding an extra randomly generated hypervector to the addition
operation to ensure a draw never happens to favoring −1 or 1 in case
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of a draw [2].

R = [X1 +X2 + ... +XN ] ⇒

⇒

{
R(i) = 1, if X1(i) +X2(i) + ... +XN (i) > 0

R(i) = −1, if X1(i) +X2(i) + ... +XN (i) < 0

(1)

The binary case also follows a majority rule after all elements of
a certain position are summed, except the final element value is not
compared with 0 but with half the number of vectors being added
together (N

2
), since the range of values from a binary sum is [0, N ]

and not [−N,N ] like in the bipolar case [2], [3].
Multiplication (∗), also known as binding, is the element-wise

exclusive OR (XOR) logical operation between two or more vec-
tors [3], [6]. An example of this operation using binary hypervectors
is presented in (2). As illustrated, if the number of elements with
value 1 in an arbitrary position i of all vectors being multiplied
is odd, then the resulting vector of the multiplication will contain
an element with value 1 in position i. Otherwise, if the number of
elements with value 1 is even, then the resulting vector will contain
an element with value 0 (or −1 in the case of bipolar vectors) in
position i [3], [13].

X1 = 11110000

X2 = 11001100

X3 = 10101010

X1 ∗X2 ∗X3 = 10010110

(2)

Finally, a permutation (ρ) is a unary operator that randomly
reorders the elements of a hypervector, generating a vector that is
approximately orthogonal to the original one [3].

Encoders are application specific and depend directly on the type of
data being mapped [20]. As a result, most of the recent HDC research
has been focused on creating new encoders and improving feature
extraction from data during this step [2]. The architecture and design
of some specific encoders are briefly overviewed in Section III. For
classification tasks, the goal of the encoder is to map similar data into
similar hypervectors, or conversely dissimilar data into significantly
distinct hypervectors [2], [3]. As also represented in Figure 1, this
property is crucial for classification tasks because it is possible to
encode known data types as class hypervectors (equivalent to training
the model), which can then be compared with hypervectors encoded
from an unknown data class, making it possible to infer the type
of the unknown data (equivalent to testing the model) [2], [3]. The
similarity between two hypervectors, when using bipolar values, is
usually evaluated through the inner product by computing the cosine
of the angle between them, as represented in (3),

cos(A,B) =
A ·B
|A||B| =

∑d
i=1 A(i)B(i)√∑d

j=1 A(j)2
∑d

k=1 B(k)2
(3)

where A and B are two hyperdimensional bipolar vectors with d
elements, that exist in a space with d dimensions (typically, d =
10000) [6]. Furthermore, the presented cosine definition generates a
value between −1 and 1, i.e., cos(A,B) ∈ [−1, 1]; where a value
of 1 indicates that both vectors are the same (all their elements are
identical), while a result of −1 shows that both vectors are entirely
dissimilar (all their elements are different). A comparable similarity
metric, applicable in binary HDC models, is the normalized Hamming
distance, defined as:

dHam(A,B) =
1

d
·

d∑
i=1

(1 if A(i) ̸= B(i)), (4)

where A and B are binary hypervectors, and d is the number of
dimensions of both vectors [2]. A distance of 1 means that the vectors
are entirely dissimilar, while a distance of 0 means that the vectors
are identical. Finally, it is important to note that, when working with
binary and bipolar models, the similarity between two vectors is
evaluated by, essentially, counting the number of different elements
between them.

Given the importance of similarity and dissimilarity between hy-
pervectors for classification tasks, it is crucial to discuss the concept
of orthogonality between vectors. Orthogonal vectors have a cosine
value of 0 (equivalent to a Hamming distance of 0.5); i.e., the angle
between these vectors is ±90°. In more practical terms for HDC-
based classification, half of the elements from these vectors are
different.

For classification purposes, it is ideal that base hypervectors, used
to map all simple elements that compose the entries of a dataset, are
orthogonal between themselves [3]. Thanks to hyperdimensionality,
two independently and randomly generated vectors in hyperspace will
be approximately orthogonal to one another, i.e., the cosine of the
angle between them will be close to 0 and the Hamming distance
close to 0.5 [3]. This means that a new, randomly generated vector,
will be, with a high degree of certainty, nearly orthogonal to the others
that have been previously generated [3]. As a result, the generation
of base hypervectors is usually randomly based [2].

As previously mentioned, Hyperdimensional Computing-based
classifiers are usually powerful alternatives to traditional ML-based
alternatives given their acceptable accuracy and more economical ex-
ecution in comparison. However, given the high number of elements
needed to represent each hypervector and the inherent parallelism
associated with HDC operations, the efficient implementation of HDC
models, without the use of previously established frameworks/li-
braries, is a considerable challenge that researchers face.

III. RELATED WORK

HDC and VSA models have evolved gradually since their initial
ideas were proposed [19]. Nevertheless, these models have recently
gained significant traction and attention from the ML learning scien-
tific community [13], leading to a considerable expansion of proposed
classifiers based on HDC. In order to understand the challenges
and intricacies related with the implementation of these applications,
several recent notable examples of HDC-based supervised classifiers
are discussed herein. In addition, a set of state-of-the-art HDC
frameworks, including their advantages and limitations, are also
overviewed in this Section.

A. HDC-based supervised classifiers

As previously mentioned, most supervised classification applica-
tions based on HDC start by generating hypervectors to represent
the building blocks of a particular data type, for example, generating
a hypervector for each letter of the alphabet [2]. These vectors are
usually randomly generated to guarantee quasi-orthogonality between
themselves (although it is also common for some relation to exist
between the vectors in this stage). The next step usually consists of
encoding each data entry using the application-specific encoder, for
example, encoding an hypervector for each sentence in a dataset [2].
In the case of supervised classification, the hypervectors associated
with all known entries of a particular type are usually bundled
(added/majority summed) together. This procedure is performed in
order to be able to compare these generated class hypervectors with
hypervectors encoded from unclassified data during the testing/query-
ing steps [2]. As mentioned in Section II, the encoding step is
application and data specific and represents the crucial point where
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pattern learning occurs [2], [20]. As a result, most of the variability
between classification applications based on HDC comes from the
encoder design [20].

In VoiceHD [7], a speech recognition application focused on the
ISOLET dataset is proposed. The first step is to convert to the
frequency domain of the analogue audio signal using Mel-frequency
cepstral coefficients (MFCCs). Each frequency signal comprises 617
frequency buckets, each with a real intensity value from -1 to +1.
To represent each frequency bucket, 617 random hypervectors are
generated. The representation of frequency intensity is performed by
quantifying the frequency range into 20 sub-ranges (-1 to -0.9, -0.9 to
-0.8, etc.) and associating a hypervector to each one. The generation
of these sub-range hypervectors is not entirely random, except for the
first one that is, indeed, randomly generated. All the other vectors are
generated by shifting d/n bits from the previous vector, being n the
total number of sub-ranges, i.e., vectors generated. As such, the initial
hypervector (the randomly generated one representing the first sub-
range of intensities) is diametrically opposed (entirely dissimilar) to
the hypervector that represents the last sub-range. Vectors generated
in this fashion are usually called level hypervectors [7], [18]. To
encode a signal, the hypervector of the sub-range intensity is bound
to the corresponding hypervector representing the frequency bucket,
generating 617 vectors. These vectors are then bundled to generate
the hypervector that represents the audio signal being encoded.

VoiceHD was inspired by the approach taken in [9], where a
gesture recognition application based on EMG signals is proposed.
The significant difference is that it is not an entire signal that is
encoded, but the timestamps with an associated gesture of four
EMG signals. Similar to VoiceHD, sub-range intensity hypervectors
are generated along with four random hypervectors, one represent-
ing each signal. When encoding a timestamp/gesture, each signal
hypervector is bound with the corresponding intensity hypervector,
generating four vectors which are then bundled together to create the
timestamp/gesture hypervector.

HDC-based language recognition is also tackled in [5]. The objec-
tive was to be able to determine the language of sentences written in
one of the 21 European languages. The proposed method starts by
generating 27 random hypervectors (to be able to represent the 26
letters of the English alphabet, plus space). To encode a sentence,
an N-gram encoder is used. Such an encoder divides the data to be
encoded into fragments (groups of letters) of size N. In this particular
case, this process consists of dividing the sentences to be encoded
into the desired N-grams, like trigrams (N=3), tetragrams (N=4), pen-
tagrams (N=5), and so on. Once chosen, this value remains constant
throughout the application’s training and query/testing phases. The
N-gram hypervector (HN ) is encoded, as illustrated in equation (5),

HN =

N∏
i=1

(ρ)L1 ∗
N∏
i=2

(ρ)L2 ∗ ... ∗ ρLN−1 ∗ LN (5)

by binding the corresponding letter hypervectors (Lposition) while
permuting them according to their place in the N-gram. In particular,
the first letter hypervector is permuted N times, the second is
permuted N − 1 times, and the last vector is not permuted. The
permutation used (ρ) is always the same. Finally, all the N-gram
vectors corresponding to a specific sentence are bundled to generate
the hypervector that represents that sentence.

A very similar approach is taken by HDNA [8], where the proposed
encoder I is also an N-gram-based encoder. DNA sequencing is
the main goal of the work, and it is achieved by associating each
gene with a class/species. Compared with the language recognition
example presented, the only exception is that it is not sentences that
are being encoded but genes. After generating 4 random hypervectors
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Fig. 2. Simplified UML diagram of the DPHDC library.

(one for each DNA base), the same N-gram logic utilized previously
to encode a sentence can be used to encode a gene.

The efficient implementation of HDC-based classifiers is usually
more time-consuming and requires more technical knowledge, both
of the target hardware and HDC in general, than their conceptual
description. This reinforces that a general heterogeneous library
for HDC-based classification could prove immensely valuable in
speeding-up HDC research and application development, which is
a specific topic tackled in this work.

B. Existing libraries and frameworks for HDC applications

In the existing state-of-the-art, only rare attempts are made on de-
vising general-use and multi-device HDC frameworks dedicated to fa-
cilitating the implementation and accelerating the execution of HDC-
based applications. The most prominent solution is TorchHD [14], an
open-source python library for HDC applications. It is based on the
machine learning framework PyTorch. Correspondingly, hypervectors
are represented as tensors where each element is a 32-bit floating-
point number. This representation allows the use of HDC models
beyond binary and bipolar, but at the cost of reduced execution
efficiency (performance) of built HDC models, given the significantly
higher memory requirements when compared with boolean/bipolar
values. This drawback stems from TorchHD’s philosophy of priori-
tizing ease of use and feature set over performance, i.e., from being
built on top of PyTorch, which operations are not optimized explicitly
for HDC execution. The device architectures it can target are limited
to the ones supported by PyTorch, which does not include low-power
and resource constraint devices, where HDC-based classifiers show
significant potential as lightweight alternatives to traditional ML-
based methods [2].

To deal with these shortcomings, the proposed library can effi-
ciently target several devices, independently of architecture differ-
ences, while optimizing memory used, data transfers and exploiting
parallelism across different platforms. Thanks to the novel design and
development of the framework such is achieved without sacrificing
ease-of-use.

IV. DATA PARALLEL FRAMEWORK FOR HYPERDIMENSIONAL

COMPUTING

The proposed Data Parallel framework for Hyperdimensional Com-
puting (DPHDC) is developed with the aim of efficiently and robustly
running classification tasks based on HDC across devices of different
architectures while fully exploiting their processing capabilities1. For
this purpose, DPHDC was developed using the C++ programming
language and the cross-platform SYCL abstraction layer. To provide
versatility and ease of use, the proposed framework is also extended
with a Python-based front-end, since the Python programming lan-
guage is commonly used for machine learning research [21].

To maximize hardware utilization across different architectures and
minimize other performance bottlenecks, mainly related with data

1DPHDC is publicly available at https://github.com/PedroSAndre/DPHDC

https://github.com/PedroSAndre/DPHDC
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memory accesses and communication, a unique design and optimized
algorithms for HDC functions and operations are integrated in the
proposed framework (as presented in Section IV-A). Another goal of
DPHDC is to also ensure an intuitive and easy to use interface, both
for beginner and experienced users, despite the vast range of devices
it can support.

It is also worth emphasizing that DPHDC is designed to be
compatible with any SYCL-capable compiler. By being SYCL-based,
DPHDC can currently target any CPU, including RISC (ARM)
processors, most GPUs and FPGA cards. To ensure that DPHDC
works with a particular setup, unit tests were developed and are
provided with the library. These can be executed to ensure that the
behaviour of all implemented functionalities is as expected.

A. Design and Implementation

As previously referred, at the heart of any HDC-based application
are hypervectors. Each one of these large vectors, either binary or
bipolar, occupies a significant amount of memory. As a result, the
representation, storage and communication of hypervectors needs to
be handled in a way that minimizes memory footprint and data move-
ment. The object-oriented design of the DPHDC library, illustrated
in Figure 2, copes with this challenge by encapsulating two main
classes: HDMatrix and HDRepresentation. Both objects of
type HDMatrix and HDRepresentation represent an arbitrary
number of arbitrarily large binary or bipolar hypervectors, with
vectors in the same matrix or representation having all the same size.
With this intuitive hypervector-centric approach, all functionalities
related with HDC classification applications are invoked as methods
of these types of objects. As shown in Figure 2, these methods can be
divided into: i) vector generators, ii) encoders, iii) reducer to labels,
iv) query and v) storing and reading objects of type HDMatrix and
HDRepresentation.

As previously stated, binary and bipolar HDC models are the
ones that show the most promise as a lightweight alternative to
traditional ML techniques [2]. As a result, to optimize the library’s
memory requirements, DPHDC was designed and developed with
a binary/bipolar HDC first approach. It is also relevant to note
that binary and bipolar representations are mathematically equivalent
which makes it possible to use the same environment for both
models [22].

To deal with the aforementioned potential memory bottlenecks,
the HDMatrix and HDRepresentation classes use a SYCL
boolean buffer with two dimensions to represent a collection of
vectors. The first dimension indicates the number of vectors in the
matrix, and the second the hypervector size. By using a boolean
buffer, it is possible to minimize the memory space occupied by
each hypervector. Furthermore, a SYCL buffer variable is one that
holds data that can automatically migrate between devices as needed.
Since the buffer used has no association with any host data, data
movement is minimized by allowing hypervector data to only exist
on the accelerator device. The buffer class, through accessors, also
facilitates the management of data dependencies and helps avoid data
race conditions.

An HDMatrix object can also have an associated label to each
hypervector in the matrix by use of the labels vector variable.
This allows for an HDMatrix object to store the data class that each
vector represents, allowing bundling hypervectors according to their
labels (training the model) and query of an already trained model.
As shown in the simplified UML diagram of the proposed framework
(Figure 2), the HDRepresentation class is an extension of the
HDMatrix class, thus it inherits all methods and variables from it.
The HDRepresentation class was designed and implemented in

order to solve the problem of associating data provided by the user
to hypervectors. Providing this functionality is crucial for encoder
methods to work since, as data is being read from the dataset, it is
necessary to know which base hypervector is associated with each
element of the dataset before applying the desired HDC-based arith-
metic operations. As a result, each vector in a HDRepresentation
is associated with an element that can be found on a particular
dataset. For example, each vector can be associated with a letter
(char), a string, an integer number, a floating point number, etc.
A vector can even be associated with an object of a user defined
class or struct, as long as it has a comparison method. Ideally, an
HDRepresentation will contain a hypervector for representing
each different type of data that can be found in the dataset to be
mapped into hyperdimensional space. This representation of base
data using hypervectors allows the encoding of similar information
into similar parts of the hyperspace, using the encoder modules, as
described in Section II and exemplified in Section III-A.

To generate a set of base or general hypervectors belonging to an
HDRepresentation or HDMatrix object, respectively, vector
generator methods must be used. Currently, four different types of
vectors can be generated by DPHDC: constant vectors, random
vectors, level vectors and circular vectors.

Constant vectors contain the same element in all dimensions, i.e.,
all vectors are composed of zeros (negative ones in the bipolar case)
or ones. As the name implies, random vectors have all their elements
randomly generated.

Level vectors were already described in Section III-A. The first
vector is randomly generated, while the remaining vectors are ob-
tained by flipping d/2/N elements from the previous vector gener-
ated (where d is the vector size and N the number of vectors being
generated) such that the first and last vectors are quasi-orthogonal.
DPHDC currently offers two possibilities to generate level vectors:
half-level vectors, where the first and last vectors in the matrix are
quasi-orthogonal, i.e., the traditional definition of level vectors, and
full-level vectors, where the first and last vectors in the matrix are
nearly diametrically opposed.

Circular vectors were proposed in [18] with the intent of mapping
circular data types to the hyperspace, like angles. These are a set
of hypervectors whose distances are proportional to that of a set of
equidistant points on a circle [18], i.e., any vector is closely related
to its neighbours while being distinctly dissimilar to the vector that
opposes it in the circle.

Most of the vector generators currently offered by DPHDC are
implemented on the host device and then copied to the SYCL buffer
so that they can be used on any device. Such a decision stems
from the fact that functions used to generate pseudo-random values
are usually device-specific, thus offloading the vector generators
might negatively impact the portability of the proposed framework.
Furthermore, generating basic hypervectors on the host is usually an
efficient process that would not benefit significantly if performed on
an accelerator. Host functions that generate pseudo-random values
usually assure that the probability of each element of a vector being
false or true is independent. This property is vital in HDC since
for two randomly generated hypervectors to be quasi-orthogonal each
value on the vector that is randomly generated must have an equal
and independent chance of being either 0 (false) or 1 (true).

After generating a base representation, the next step usually in
HDC processing consists of encoding each dataset entry into the
hyperspace. This is achieved by providing the data to be encoded
to the encoder methods. The dataset structure to be provided to the
encoder methods is a standard vector of vectors (equivalent list of
lists in Python). Each sub-vector represents a dataset entry containing
all the base data elements that compose it.
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Fig. 3. Flow chart of the encoding of data using DPHDC permutation-based
encoders.

The encodeWithBundle method iterates through the pro-
vided data, fetching the associated hypervector (stored in the
HDRepresentation object calling the method) for each base data
element read and proceeds to bundling all base hypervectors that
belong to the same entry. If binding is the desired operation instead of
bundling, in the same context, the encodeWithXOR method should
be used. As illustrated by the flow chart presented in Figure 3, these
methods also take a permutation argument, which indicates which
permutation to apply to the representation vectors when advancing
to the next position of an entry of data. Currently, the options are no
permutation or a circular shift permutation. A circular permutation is
generally hardware friendly [2] and, as a result, has been the preferred
permutation used in recent HDC-based applications. Furthermore, all
permutations generally have the same outcome: the generation of a
quasi-orthogonal vector to the one that gave origin to it, making a
circular shift permutation as useful as any other.

As shown on Figure 4, the encodeWithXOR method is also
overloaded to enable the encoding of data using positional vectors,
like the encoder used by VoiceHD [7] and presented in Section III-A.
In this case, a matrix of positional hypervectors, consisting of one
vector per each element of a dataset entry, previously generated by
the user, needs to be provided to the encoder.

All the presented encoder modules return a HDMatrix object
containing one hypervector per dataset entry. As shown in Figure 6,
in the case of training the model, all vectors (from “Encoded
Train Entries” in Figure 6) associated with the same label can
be bundled together to generate the trained hypervectors using the
reduceToLabelsBundle method that only requires the labels
associated with each entry to be provided. The associated labels
should be provided as a vector of strings (a list of strings in the case of
the Python DPHDC front-end). The testing/querying methodology is
also illustrated in Figure 6, where the encoded vectors can be queried
against an already existing trained model to estimate each dataset
entry’s class. This is achieved by using the queryModel method,
requiring a similarity measurement to be specified, i.e., Hamming
distance or cosine similarity. Since model accuracy represents the
success rate of the model, it can be defined as the ratio of correct
estimations against the total number of queries performed.

Given the generic nature of these three encoder modules, combin-
ing them makes it possible to implement a wide range of encoders.
As illustrated by Figure 5, an example of this capability can be
evidenced when implementing an N-gram-based encoder. This is
achieved by first generating an HDRepresentation object that
represents the basic data that composes the desired N-grams. A
vector of vectors containing all the N-grams desired should also
be generated. By providing said vector to the encodeWithXOR
permutation method called using the HDRepresentation object
generated previously, an HDMatrix (that can be converted into an
HDRepresentation) representing all the desired N-gram hyper-
vectors is generated and can be used with all the available encoder
modules.

A hypervector encoded for each dataset entry
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Encoded Entries

ENCODING

HDRepresentation
A vector for each unique type of data

Vector Size

A vector for each position of the dataset entries

HDMatrix 
Position Vectors
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Fig. 4. Flow chart of the encoding of data using DPHDC positional-based
encoder.
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Fig. 5. Flow chart of a N-gram based encoder using DPHDC.

It is also important to note that any HDMatrix or
HDRepresentation object can be stored in a binary file.
This not only allows for training and querying operations to happen
on different systems, but it also allows for a model to be trained
once on one device and queried many times and in many situations
on multiple distinct devices.

As mentioned previously, the design of the library, presented
up until now, was developed with the aim of maximizing parallel
execution while remaining easy to use and versatile. By providing
the encoder modules with all the data to encode simultaneously,
it was possible to exploit as much parallelism as possible from
all target architectures by using data-parallel SYCL kernels. As a
result, some vector generator methods, all encoder methods, the
reduceToLabelsBundle method and the query method are im-
plemented using data-parallel SYCL kernels. The storage of vectors
in a continuous memory space also improves parallel execution by
exploiting memory locality.

As an example, the kernel implementation of the
encodeWithXOR positional module is presented in Listing 1.
Lines 02 trough 06 of Listing 1 are responsible for submitting
the kernel to a SYCL queue (associated with an accelerator) and
accessing buffer data through the use of accessors. This is followed
by the beginning of the parallel_for kernel to be executed (line
08) and the declaration of the range of said kernel (line 07). For
each simple data element of each dataset entry provided, the kernel
fetches the associated hypervector and performs the XOR operation
with the associated position vector on every element (line 12). If
the result of the operation is true, then one is accumulated (line
13). Otherwise, one is subtracted from the respective position in the
accumulators variable (line 15). The encoded entries, i.e., the output
of the encodeWithXOR positional module, is obtained when
the accumulators variable is threshold back to true or false
according to majority rule.

Listing 1. Main kernel code of the encodeWithXOR positional module.
1 u s i n g namespace sycl ;
2 t h i s−>associated_queue .submit ( [ & ] (handler &h ) {
3 accessor acc_accumulators (buff_accumulators , h←↩
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Fig. 6. Flow chart of the training and querying/testing classification method-
ologies using DPHDC.

, read_write ) ;
4 accessor acc_data (buff_data , h , read_only ) ;
5 accessor acc_representation ( t h i s−>vectors_buff←↩

, h , read_only ) ;
6 accessor acc_position_vectors (position_vectors←↩

.vectors_buff , h , read_only ) ;
7 range<3> r (n_entries_data , size_entry , ←↩

vector_size )
8 h .parallel_for (r , [ = ] (id<3> local_range ) {
9 size_t i = local_range [ 0 ] ;

10 size_t j = local_range [ 1 ] ;
11 size_t k = local_range [ 2 ] ;
12 i f (acc_representation [acc_data [i ] [j ] ] [ k ] ←↩

ˆ acc_position_vectors [j ] [k ] ) {
13 acc_accumulators [i ] [k ] += 1 ;
14 } e l s e {
15 acc_accumulators [i ] [k ] −= 1 ;
16 }
17 } ) ;
18 } ) ;
19
20 / / T h r e s h o l d i n g o f a c c u m u l a t o r s back t o b i n a r y (←↩

t r u e o r f a l s e )

Another optimization that is generally hidden from the user is that
the HDRepresentation class contains a hash table that maps the
base data to be represented by the base hypervectors to the index of
the vector that represents it. When one of the three encoder modules
starts, the first step consists of translating the data provided into the
respective hypervector indexes such that the encoder operations can
be executed.

As explained so far, all values needed to use and all values returned
by the library are standard C++ variables. This design feature not
only allows for easy interoperability with other C++ frameworks,
but it also allows for the compilation of the framework as a Python
binary module using the pybind11 library [23]. The resulting Python
DPHDC front-end is practically identical to its C++ counterpart,
replacing the standard C++ variables used with the library as inputs
and outputs with Python standard library variables. For example,
encoder modules in the Python front-end receive dataset entries as a
list of lists (equivalent to a vector of vectors in C++). Such a feature
not only increases the approachability of the library but can also allow
the easy creation of hybrid models with the use of traditional Python-
based ML libraries, like the hybrid model proposed in VoiceHD [7].

While designing the library, modularity was also taken into ac-
count. Even though DPHDC currently includes all functionalities
to handle most HDC classification needs, both HDMatrix and
HDRepresentation are intuitive abstractions, making it easy for
users to add new methods, such as new types vector generators, new
encoders and/or new similarity measurements.

Finally, as already mentioned, DPHDC can currently target a wide
array of devices, including CPUs, GPUs and FPGAs. Almost all
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Fig. 7. Flow chart of the implementation of the VoiceHD application using
DPHDC.

currently available CPUs and GPUs are compatible with the SYCL
standard [16]. In the case of FPGAs, generally, when developing an
application specific for this type of accelerator, it is necessary to
describe its design. With a SYCL-compatible code base, DPHDC
complies with the requirements necessary to target FPGAs. This
feature makes it possible to run applications without prior knowledge
of FPGA design and optimization techniques. Given the potential
of HDC running for low-powered architectures [2], like FPGA,
such functionality allows the use of these devices without any prior
experience, allowing researchers and users to focus on improving
encoder design and feature extraction.

B. An application example

To better understand the DPHDC library’s workflow, this Section
presents a short overview of how the VoiceHD [7] application was
implemented and is presented in Listing 2. Listing 2 is written in the
C++ programming language. As mentioned previously, the Python
front-end of the library is almost identical to the C++ variant. As a
result, the same application developed using the Python programming
language would follow the same steps.

As can be observed in Figure 7, the first step involves generating
a level hypervector-based representation for the 20 frequency sub-
ranges (lines 4 trough 7 of Listing 2) and a matrix with 617
random positional hypervectors, one for each frequency bin (line 9
of Listing 2).

Listing 2. VoiceHD [7] application implemented using DPHDC.
1 # i n c l u d e <dphdc . hpp>
2 u s i n g namespace std ;
3 i n t main{
4 i n t v_size = 10000 ;
5 / / G e n e r a t i n g r e p r e s e n t a t i o n
6 vector ints_represent = {−10 , −9 , . . . , 9 , ←↩

10} ;
7 dphdc : : HDRepresentation<i n t> ←↩

freq_inten_represent (v_size , full_level , ←↩
device , ints_represent ) ;

8 / / G e n e r a t i n g p o s i t i o n v e c t o r s
9 dphdc : : HDMatrix position_vectors (v_size , 617 , ←↩

random , device ) ;
10
11 vector<vector<i n t>> train_data = readTrainData←↩

(dataset_path ) ;
12 dphdc : : HDMatrix encoded_matrix = ←↩

freq_inten_represent .encodeWithXOR (←↩
train_data , position_vectors ) ;

13
14 vector<string> train_labels = readTrainLabels (←↩

dataset_path ) ;
15 dphdc : : HDMatrix trained_model = encoded_matrix←↩

.reduceToLabelsBundle (train_labels ) ;
16
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17 vector<vector<i n t>> test_data = readTestData (←↩
dataset_path ) ;

18 dphdc : : HDMatrix encoded_test_entries = ←↩
freq_inten_represent .encodeWithXOR (←↩
test_data , position_vectors ) ;

19 vector<string> test_labels = readTestLabels (←↩
dataset_path ) ;

20 vector<string> test_estimated_labels = ←↩
trained_model .queryModel (←↩
encoded_test_entries , hamming_distance ) ;

21 f l o a t accuracy = getAccuracy (←↩
test_estimated_labels , test_labels ) ;

22 r e t u r n 0 ;
23 }

With both constructed, the training data can be encoded using
the encodeWithXOR positional method (line 12 of Listing 2). It
is important to note that the functions that read the datasets and
labels and the organization of data into DPHDC recognizable formats
(vector of vectors for data and vector of strings for labels (or lists if
using the Python front-end) need to be developed by the user (line
11 of Listing 2).

As indicated by Figure 7, using the labels provided with the
ISOLET dataset (line 14 of Listing 2), it is possible to derive the
trained model by bundling all vectors with the same label together
(line 15 of Listing 2).

Finally, it is possible to query/test the model (lines 18 trough 20
of Listing 2) with all encoded test entries (encoded in lines 17 and
18 of Listing 2) to get the estimated label for each.

V. EXPERIMENTAL RESULTS

In order to thoroughly test and benchmark the DPHDC library
and all its capabilities, it was necessary to implement state-of-the-
art applications of supervised classification using Hyperdimensional
Computing in the proposed framework. A list of applications de-
ployed and provided with the library are as follows (a majority of
which are also described in Section III-A):

• VoiceHD [7] a speech recognition application;
• European language recognition [5];
• HDNA [8] N-gram based encoder, used for DNA sequencing;
• A binding positional encoder for recognizing the handwritten

digits of the MNIST dataset, inspired by [11];
• Hand gesture recognition using EMG signals [9].
It is important to note that all applications are replicated in DPHDC

as originally proposed, except HDNA [8], which encoder is imple-
mented slightly differently from the one presented in Section III-A
with the aim of improving its performance and accuracy. Instead of
using an N-gram based encoder, all hypervectors corresponding to a
particular gene are bundled in order to generate the gene hypervector,
being shifted according to the position they occupy in the gene, i.e.,
the hypervector corresponding to the first base of the gene is not
permuted before being bundled, the second one is permuted once,
the third one permuted twice, etc. This results in a slight increase
in classification accuracy when applied to the empirical bats dataset,
used to benchmark the application using DPHDC. Furthermore, all
presented results of the European Language recognition example [5]
consider N-grams of size 3 (trigrams).

Two distinct Amazon Web Services (AWS) instances were used
to benchmark the DPHDC library: c5a.16xlarge and g5.xlarge. The
c5a.16xlarge comprises 64 vCPUs, part of an AMD EPYC 7R32
CPU, and 128GiB of RAM. When running the DPHDC library on
this instance type, the target device is the CPU itself. On the other
hand, the g5.xlarge instance is composed of 4 vCPUs, 16 GiB of
RAM and an NVIDIA A10G tensor core GPU, which is the target
device when running DPHDC-based examples on this instance.

All results related to DPHDC presented in the following sub-
sections were obtained using Intel’s DPC++ compiler, a SYCL-
compatible compiler. Training time is defined as the time necessary
to encode all training entries and then reduce them according to the
training labels, creating the model. On the other hand, testing time is
defined as the time necessary to encode all test entries, query them
with the model and check the accuracy.

A. Scalability with vector dimensionality

To explore how the execution times and accuracy of DPHDC-
based applications behave with vector dimensionality, the HDNA [8],
VoiceHD [7], European Language Recognition [5] and MNIST [11]
examples were executed using different vector sizes. Training and
testing times are presented in Figures 8, 9, 10 and 11, while
classification accuracies are shown in Figures 12, 13, 14 and 15,
respectively.

Given the highly parallel nature of HDC operations, of which most
are element-wise, it is to be expected that training and testing favors
the highly data-parallel architecture. Such an observation can be made
in all examples presented since the execution that targeted a GPU
(g5.xlarge) was always faster than the execution that targeted a CPU
(c5a.16xlarge). In the case of HDNA [8] (Figure 8), VoiceHD [7]
(Figure 9) and European language recognition [5] (Figure 10),
both training and testing are faster on the GPU when vector sizes
approach 10000, another indication that HDC algorithms benefit from
massively parallel architectures. Despite being slightly slower, the
execution on the CPU still takes advantage of all its threads and
resources. The importance of this fact cannot be understated since
running HDC applications on IoT devices based on low-powered CPU
architectures shows excellent promise as an alternative to traditional
ML classification algorithms [2]. Although in all examples presented,
testing on the CPU offers a higher cost than on the GPU, thanks to the
ability of the DPHDC library to store hypervectors in binary files, it is
possible to train a model on a state-of-the-art GPU and then query it
on a low-powered device in order to take advantage of the lightweight
nature of HDC classification applications. Furthermore, an almost
linear relation between training/testing time and vector dimensionality
can be inferred (Figures 8, 9, 10 and 11), indicating an absence of
memory bottlenecks when using vectors up to 10000 elements in size
(which is the most commonly used value in HDC-based classification
applications). Preliminary testing also demonstrated that running the
DPHDC library by using the Python front-end entails a minimal
performance decrease (lower than 5% when testing the VoiceHD
application) while providing the same accuracy results.

For all deployed applications and devices, training expectedly takes
more time than testing. However, it is also possible to observe that
the opposite can also be true, i.e., testing times are greater than
training times in the HDNA example (Figure 8). An explanation for
this phenomenon is that the HDNA empirical bats dataset contains a
small number of entries in the training dataset while containing many
data classes. This dataset characteristics forces the query module to
perform many comparisons while querying each test entry, leading
to shorter training times when compared with slightly higher testing
times.

The classification accuracies obtained are within the margin of
error of the respective original works, as expected. Compared with
traditional ML methods, the accuracies presented are acceptable while
offering higher efficiency [2]. When the vector sizes are small, there
are not enough elements to guarantee quasi-orthogonality between
two randomly generated hypervectors, leading to a steep drop in
accuracy. As vector dimensionality increases, so does classification
accuracy until it flattens in a constant value similar to the ones
presented in each work being replicated.
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Fig. 8. Training and testing times
of the HDNA example according to
vector dimensionality.
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Fig. 9. Training and testing times
of the VoiceHD example according to
vector dimensionality.
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Fig. 10. Training and testing times
of the European language recognition
example according to vector dimen-
sionality.
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Fig. 11. Training and testing times
of the MNIST example according to
vector dimensionality.
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Fig. 12. Classification accuracy of the
HDNA example according to vector
dimensionality.
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Fig. 13. Classification accuracy of the
VoiceHD example according to vector
dimensionality.
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Fig. 14. Classification accuracy of the
European language recognition exam-
ple according to vector dimensionality.
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Fig. 15. Classification accuracy of the
MNIST example according to vector
dimensionality.

TABLE I
DPHDC AND TORCHHD RESULTS OF THE LANGUAGE RECOGNITION, MNIST AND VOICEHD APPLICATIONS USING VECTORS WITH 10000 ELEMENTS.

Application Target
Device

AWS
Instance

DPHDC
Classification
Accuracy (%)

DPHDC
Training
Time (s)

DPHDC
Testing

Time (s)

TorchHD
Classification
Accuracy (%)

TorchHD
Training
Time (s)

TorchHD
Testing

Time (s)

DPHDC
Training
Speedup

DPHDC
Testing

Speedup
Language CPU c5a.16xlarge 96.87 17.04 9.87 97.30 224.74 19.49 13.19 1.97
Language GPU g5.xlarge 97.06 9.35 3.85 - 85.57 - 9.15 -
MNIST CPU c5a.16xlarge 80.78 15.55 3.70 82.76 187.74 23.50 12.07 6.35
MNIST GPU g5.xlarge 80.23 6.43 1.08 82.86 45.16 11.22 7.03 10.36

VoiceHD CPU c5a.16xlarge 88.01 1.85 0.66 85.25 15.55 3.75 8.40 5.63
VoiceHD GPU g5.xlarge 86.91 0.61 0.25 85.06 3.77 2.05 6.19 8.10

B. Comparison with other frameworks

Given the existence of the TorchHD library [14] that facilitates
the implementations of HDC-based applications (as presented in
Section V-B), it is essential to compare performances when targeting
devices that are compatible with both libraries. To compare with the
TorchHD library [14], the Language Recognition [5], VoiceHD [7]
and MNIST [11] examples presented in Section III-A (also provided
with the TorchHD library), were executed using the same two AWS
instances.

The results obtained using the latest version of the TorchHD library
(version 3.3.0) are presented in Table I. As expected, the accuracies
obtained on all applications running both on CPU and GPU are
similar across both frameworks. Despite the more general device
focus of the presented solution, DPHDC outperforms TorchHD in
all applications tested by, on average, 11.2x on CPU training, 4.7x
on CPU testing, 7.5x on GPU training and 9.2x on GPU testing.
From Table I it can also be inferred that, in general, as training time
increases, so does the speedups obtained by DPHDC. This can be
explained by the data-parallel optimizations embedded in DPHDC,
that become more prevalent as the amount of data to encode increases.

C. FPGA implementation

Given the potential of HDC classification applications as
lightweight replacements for traditional ML methods on low-powered

TABLE II
EXECUTION TIME AND ACCURACY OF THE HAND GESTURE RECOGNITION
APPLICATION RUNNING ON INTEL ARRIA 10GX USING DPHDC WITH A

VECTOR SIZE OF 2500.

Subject Classification
Accuracy (%)

Training
Time (s)

Testing
Time (s)

Subject 1 92.18 0.0544 0.132
Subject 2 91.07 0.0469 0.132
Subject 3 95.78 0.0491 0.132
Subject 4 87.65 0.0458 0.131
Subject 5 90.68 0.0351 0.129

and dedicated devices like FPGAs, it is crucial to assess the per-
formance of the proposed DPHDC framework when targeting this
class of devices. To achieve this goal, the lightweight hand gesture
recognition [9] spatial encoder was used. The dataset comprises data
from 5 subjects, of which 70% of the entries were used for training
and 30% for testing. A down-sampling of 250 was performed on
all subjects before running the application. It is important to note
that the 70/30 division of the dataset, coupled with its small size
and the extra cost that inference has on HDC models (due to the
necessity of comparing hypervectors) leads to testing times that are
higher than training times when targeting any type of accelerator. The
example was compiled for the Intel Arria 10 GX FPGA, available at
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Intel DevCloud. This compilation process took several hours since a
unique design and bitstream for the specific FPGA card are generated
based on the compiled code.

The obtained experimental results are presented in Table II. Even
though no execution times are presented in the original work [9], the
results show that low-powered real-time classification based on FPGA
using DPHDC is possible without the additional cost of creating an
application-specific low-level design. The generated design manages
to achieve a clock frequency of 230MHz while using 35% of
available ALUTs, 25% of available FFs, 93% of the available RAM,
4% of available MLABs and 26% of available DSPs.

VI. CONCLUSION

In this manuscript, a SYCL-based open-source heterogeneous
library to facilitate implementation and accelerate HDC-based clas-
sification applications was proposed. Through the efficient storage of
information and movement of data coupled with effective exploitation
of parallelism across multiple different architectures, DPHDC is
up to 13x faster on CPU and 10x faster on GPU than currently
available general-purpose and multi-device HDC frameworks. The
proposed DPHDC framework allows for easy deployment and high
performance of applications based on HDC classification with the
potential to allow researchers and the broader scientific community
to focus on encoder and application design without worrying about
implementation details across a wide range of compute devices.

One main direction for future work is expanding the library to in-
clude more HDC model types. This research would require templating
the buffer data type used to represent hypervectors and adjusting the
implemented methods to be compatible with the new model being
added. The development of hyper-optimized device-specific versions
of the library could also be relevant and readily achievable, given the
intuitive object-oriented design of the framework.
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