
Towards Finite Field Primitives in Network Switches

Daniel Gouveia da Costa Seara

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Fernando Manuel Valente Ramos
Prof. Muriel Médard

Examination Committee

Chairperson: Prof. António Paulo Teles de Menezes Correia Leitão
Supervisor: Prof. Fernando Manuel Valente Ramos

Member of the Committee: Prof. João Luı́s Da Costa Campos Gonçalves Sobrinho

November 2022

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

First and foremost, I want to thank my supervisors, Professor Fernando Ramos, and Professor Muriel

Médard. The guidance, support, and availability to accompany me in this work were outstanding and,

above all, an inspiration.

To the leaders of my scouts group, Grupo 23 de Queluz, a special thank you for the many memories,

adventures, and moments we had together. Working with you in order to give so many young people the

tools to be better in this world is a real pleasure and a privilege. Your strength and help were paramount

for this work to reach a happy ending. In particular to Cláudia and Marco, for, alongside myself, closely

accompanying thirty young people and making them grow and, most importantly, dream.

To Catarina and André, my closest high school friends, a thank you for the conversations, the laughs,

and the support you gave me, even when I didn’t ask for it.

I would also like to thank my friends who accompanied me through this journey. Special thanks to

Afonso and Marcelo, my two most loyal partners in the university’s projects since we first met each other

at our courses boot camp way back in 2017. Also, a special appreciation for Margarida, who motivated

and listened to me during this time.

Finally, and most importantly, to my parents, Artur João Seara and Maria Paula Gouveia. Your con-

tinuous dedication and support are my biggest motivation. Also, thank you for the sacrifices you made

in order for me to get the best education and allow me to discover myself, grow and, most importantly,

learn. Without you, this thesis would not happen.

i

Abstract

Finite Field arithmetic is the building block of many networking use cases, from Cryptography to Network

Coding and Forward Error Correction. The flurry of innovation triggered by the ability to reprogram

the network data plane has recently enabled solutions that run simplified versions of these complex

use cases in the data plane. These experiences have shed light on the difficult trade-offs involved in

the design and implementation of these operations under the computational constraints of high-speed

switches. We, thus, find a challenge: can Finite Field operations be implemented and run at line rate in

current high-speed network switches and are generic enough to fulfill the most common requirements,

or do the characteristics of existing architectures fundamentally preclude any useful implementations of

these operations?

As a first step towards a solution for this challenge, the work of this thesis examines common ap-

proaches for the design of Finite Field primitives and discusses in-network implementations of these

operations for current high-speed, production-level, programmable switches, as well as a prototype for

a new switch architecture. Our findings showcase that the current hardware can only perform Finite

Field operations on Field sizes with at most eight bits, and cannot perform enough of these operations

in parallel to counter that fact. The more recent prototype presents better results, achieving operations

over 56-bit Fields for the multiplication operation. These results show that, although the prototype is a

step in the right direction, it either needs to be refined, or a new architecture needs to be created if we

want to be able to implement to real-life use cases.

Keywords

Finite Field Arithmetic; Programmable Switches; Data plane architectures

iii

Resumo

A aritmética de Corpos Finitos é uma das bases de muitos casos de uso em redes de computadores,

desde Criptografia até Network Coding e Forward Error Correction. A grande quantidade de inovação

despoletada pela capacidade de reprogramar o plano de dados fez com que aparecessem soluções

capazes de executar estes casos de uso complexos no plano de dados, embora apenas versões simpli-

ficadas. Estas experiências demonstraram os compromissos envolvidos no desenho e implementação

destas operações sobre os constrangimentos computacionais dos comutadores de rede que operam a

altas velocidades. Devido a isto, encontramos um desafio: será que as operações sobre Corpos Fini-

tos podem ser implementadas e executadas a taxa de linha nos comutadores de redes atuais, e será

que essas operações são genéricas o suficiente para cobrir os requisitos mais comuns, ou será que

as caracterı́sticas das arquiteturas disponı́veis fundamentalmente precedem qualquer implementação

útil? Como primeiro passo para encontrar uma solução, o trabalho desta tese examina as vias mais

comuns para desenhar primitivas de aritmética em Corpos Finitos, e discute implementações destas

operações nos dispositivos de rede atuais, mas também numa nova arquitetura prototipada. As nos-

sas descobertas mostram como o hardware atual apenas consegue operar sobre Corpos Finitos com

tamanho até oito bits, e não consegue realizar operações suficientes em paralelo para contrariar esse

facto. O protótipo, mais recente, apresenta melhores resultados, conseguindo operar sobre 56 bits

para a multiplicação. Estes resultados mostram que, embora o protótipo seja um passo na direção

correta, este precisa de ser remodelado, ou uma arquitetura nova necessita de ser criada se queremos

implementar casos de uso reais.

Palavras Chave

Aritmética de Corpos Finitos; Comutador programável; Arquiteturas de plano de dados

v

Contents

1 Introduction 1

1.1 Main Contribution . 2

1.2 Organization . 3

2 Related Work 5

2.1 Finite Fields . 6

2.1.1 Finite Fields with p = 2 . 8

2.2 Finite Field Use cases . 9

2.2.1 Cryptography . 9

2.2.2 Network Coding . 10

2.2.3 Forward Error Correction . 12

2.3 Programmable Networks . 12

2.3.1 Software Defined Networks . 13

2.3.2 P4 language . 14

2.3.3 Spatial Language . 15

2.4 Programmable Network Devices . 17

2.4.1 PISA architecture . 17

2.4.2 Taurus . 18

2.5 Implementations of Finite Field Operations . 20

2.6 Summary . 21

3 Finite Field Operations 23

3.1 Finite Field Addition and Subtraction . 24

3.2 Finite Field Multiplication . 25

3.2.1 Memory Intensive Approach . 25

3.2.2 Computationally-Intensive Approach . 26

3.3 Finite Field Division . 28

3.3.1 Memory Intensive Approach . 28

3.3.2 Computationally Intensive Approach . 29

vii

A – EBD . 29

B – Inversion . 31

3.4 Analysis of Both Approaches . 33

3.4.1 Takeaways from the Memory Intensive approach 33

3.4.2 Takeaways from the Computationally-Intensive approach 34

3.5 Summary . 35

4 Implementation 37

4.1 Challenges of programming a switch ASIC . 38

4.2 Finite Field Operations in a Programmable Switch . 39

4.2.1 Memory Intensive Approach . 39

4.2.2 Computationally Intensive Approach . 40

4.3 Finite Field Operations in Taurus . 46

4.4 Summary . 51

5 Evaluation 53

5.1 Experimental Setup . 54

5.2 Evaluation with the Tofino Switch . 55

5.3 Evaluation with the Taurus Switch . 60

5.4 Summary . 65

6 Conclusion 67

6.1 Conclusions . 68

6.2 Limitations and Future Work . 69

6.2.1 Algorithms . 69

6.2.2 Optimizations . 69

6.2.3 Other architectures . 70

Bibliography 71

viii

List of Figures

2.1 Example of Network Coding in a wireless setting, taken from [1] 11

2.2 Software Defined Networks overview, from [2] . 13

2.3 P4 Forwarding model . 15

2.4 PISA architecture, from [3] . 18

2.5 Taurus architecture, from [4] . 19

2.6 An example of a CU with 3 stages and 4 lanes, from [4] 20

2.7 Taurus Mesh of CUs and MUs, from [4] . 20

3.1 Multiplicative tables for field GF (28), from [5] . 26

3.2 Inverse values for Field GF (28), from [5] . 29

3.3 Memory cost vs iteration cost for various finite fields . 35

4.1 Header for Finite Field operations . 39

5.1 Header for multiple Finite Field multiplications . 57

5.2 Two simultaneous multiplications using RPA . 59

ix

x

List of Tables

2.1 Addition and Multiplication Tables for Z5 . 7

2.2 Comparison of work in implementing Finite Field operations 22

3.1 XOR table . 25

3.2 Multiplication of 10 by 25 using RPA over the GF (28) Field 28

3.3 Division of 223 by 7 using EBd over the GF (28) Field . 31

3.4 Inversion of 223 over the GF (28) Field . 33

5.1 Tofino resources used by the several approaches and algorithms implemented 56

5.2 Tofino resources used for multiple multiplications in a single packet 60

5.3 Resources consumed in Taurus for GF (28) . 61

5.4 Taurus Resources for multiple multiplications . 64

5.5 Maximum Field size achievable by the architecture, using the computationally-intensive

approach . 65

5.6 Summary of the evaluation results . 65

xi

xii

List of Algorithms

3.1 Russian Peasant Algorithm . 27

3.2 EBd Algorithm . 30

3.3 Inverse Algorithm . 32

xiii

xiv

Listings

2.1 Simple Spatial Example . 16

4.1 P4 apply block for table based operations . 40

4.2 One iteration of RPA in P4 . 41

4.3 action ff mult action . 41

4.4 One iteration of the division algorithm in P4 . 42

4.5 Actions for the division operation . 43

4.6 One iteration of the inverse algorithm in P4 . 44

4.7 Actions of the Inversion algorithm . 45

4.8 Pipe block with one iteration of RPA . 47

4.9 Pipe blocks with one iteration of EBd . 48

4.10 Pipe block with one iteration of the Inversion Algorithm . 50

5.1 P4 tables for Finite Field multiplication . 58

5.2 Instructions for 2 simultaneous multiplications using RPA (apply block) 59

5.3 Instructions for 2 simultaneous multiplications using RPA (action block) 60

5.4 Pipe block with instructions for 2 simultaneous multiplications 63

5.5 Pipe blocks with instructions for 2 multiplications . 63

xv

xvi

Acronyms

AES Advanced Encryption Standard

AES-GCM AES-Galois Counter Mode

AES-ECB AES-Eletronic Codebook

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CGRA Coarse-Grained Reconfigurable Array

CPU Central Processing Unit

CU Compute Unit

DSL Domain Specific Language

DPDK Data Plane Development Kit

FEC Forward Error Correction

FF Finite Field

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FU Functional Unit

GCD Greatest Common Divider

GF Galois Field

IoT Internet of Things

IPsec Internet Protocol Security

MAT Match-Action Table

MIPS Microprocessor without Interlocking Pipeline Stages

xvii

ML Machine Learning

MU Memory Unit

NC Network Coding

P2P Peer-to-Peer

P4 Programming Protocol-independent Packet Processors

P4-SDE P4-Software Development Environment

P4i P4 Insight

PHV Packet Header Vector

PISA Protocol Independent Switch Architecture

PR Pipeline Register

RLNC Random Linear Network Coding

RPA Russian Peasant Algorithm

SDN Software-Defined Networks

SIMD Single Instruction Multiple Data

SRAM Static Random Access Memory

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TLS Transport Layer Security

TTL Time-To-Live

VLIW Very Long Instruction Word

xviii

1
Introduction

Contents

1.1 Main Contribution . 2

1.2 Organization . 3

1

From the vast pool of networking applications present nowadays, a considerable number require

some form of Finite Field (FF) or Galois Field (GF) arithmetic. Cryptography, Network Coding, and

Forward Error Correction are some concrete examples. To further attest to the importance of said

operations, modern Central Processing Units (CPUs) already contain dedicated, built-in instructions to

efficiently perform Finite Field arithmetic operations. However, the growing performance, scalability, and

security requirements of modern distributed applications are pushing many functions to be network-

accelerated, running directly in the data plane of network switches.

Most network-based applications and protocols that include Galois Field computations run in soft-

ware. While for end-host based protocols such as Transport Layer Security (TLS) [6], this is not an issue,

for new cryptographic algorithms (e.g., the EPIC protocols [7] of the SCION network architecture) or for

Network Coding, software based solutions (e.g., Kodo [8]) do not have the required performance. Our

goal in this thesis is to run these operations directly in network switches, in order to improve packet pro-

cessing from a few Gbps as in high-performance software implementations, to Tbps scales, by running

them directly in the switch data plane.

The main challenge is that, in order to process packets at line rate and at Tbps scales, the modern

switch hardware architectures are restricted to a limited number of very simple operations. As a natural

consequence, the current specification of P4, a language to program these devices, does not allow for

the execution of common operations in CPUs, like multiplication and division. Furthermore, memory is

also a scarce resource, meaning that stateful operations are also very limited.

The question we thus ask in this thesis is as follows. Can we implement Finite Field arithmetic

efficiently and at line rate in current network switches? Or do we fundamentally need to redesign the

data plane architecture? We try to answer these questions in this thesis.

1.1 Main Contribution

With these questions in mind, our main contribution is to give a concrete look into the design and

implementation of Finite Field arithmetic in state-of-the-art programmable switches. We explore dif-

ferent avenues to perform these operations, looking at the two main approaches, memory-based or

computational-based. We implement algorithms of each type and discuss their benefits and limitations.

As a last result, we make the case that current switch architectures are insufficient to perform Finite Field

arithmetic even for the most basic use cases.

We also take a step forward by implementing these operations in the prototype of a newly proposed

data plane switch architecture. We show that this architecture improves over the state-of-the-art, and by

a significant amount in one of the operations. We also discuss how these improvements are not enough

and some refinements or entirely new architectures are necessary.

2

1.2 Organization

The remainder of this dissertation is the following.

The next Chapter presents background and related work. It starts with a primer on Finite Fields

and their use cases and implementations. Afterward, it provides some background on Programmable

Networks and Programmable Switches, detailing the data plane architectures we will be exploring for

this work.

In Chapter 3, we explain how to perform the most basic operations over Finite Fields: addition,

subtraction, multiplication, and division. We present different approaches and algorithms for performing

them, as well as a discussion of their benefits and drawbacks.

Chapter 4 showcases the solutions we designed and implemented to perform GF operations in both

current hardware as well as new data plane architectures.

In Chapter 5 we evaluate all of our solutions.

Finally, we conclude the thesis in Chapter 6 and we present a discussion about the different solu-

tions.

3

4

2
Related Work

Contents

2.1 Finite Fields . 6

2.2 Finite Field Use cases . 9

2.3 Programmable Networks . 12

2.4 Programmable Network Devices . 17

2.5 Implementations of Finite Field Operations . 20

2.6 Summary . 21

5

In this chapter, we present the related work of this thesis. We start with a primer on FFs, defining

them and showcasing their properties. We then present some current use cases where Finite Fields are

used, mainly in the field of networking. Next, we discuss the work done in the field of Programmable

Networks, showcasing Software Defined Networks, and the P4 and Spatial languages. Afterward, we

present the current state of Programmable Devices and their architectures. Finally, we show current

implementations of Finite Field operations in several types of hardware, from common CPUs to switch

Application-Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs).

2.1 Finite Fields

In order to get to Finite Fields, we first start with the definition of a Group [9]. A Group G is a set of

elements and a rule called the law of composition. This rule associates each pair of elements x, y ∈ G

to a new element x × y ∈ G in the case of a multiplicative Group (a multiplication) or x + y ∈ G in the

case of a additive Group (an addition). We focus on the latter, however, these properties are the same

for the former, just replacing the + with a ×. In order for a set to be a Group, three properties need to

be upheld.

1. For all x, y, z ∈ G, there exists associativity. In other words, (x+ y) + z = x+ (y + z).

2. There exists an element e ∈ G such that e + x = x + e = x. For additive groups, it is normally

called the 0 element (x+ 0 = 0 + x = x). For multiplication, it is the 1 element.

3. If x ∈ G, then there exists an element y ∈ G such that x + y = y + x = e. For additive groups

x + y = y + x = 0. This is called the inverse element and can be represented as −x for addition

and x−1 for multiplication.

There is one more property that is not mandatory for all Groups to uphold. However, if they do,

they are called abelian Groups. This property is called commutation and states that for all x, y ∈ G,

x+ y = y + x. This is an important property for defining a Field.

A Field F [10] is also a set of elements but with more properties that need to be maintained, and for

both addition and multiplication. These properties are:

1. F is an abelian Group with respect to addition.

2. F ∗ = F \ {0} is a Group with respect to multiplication (Note that it does not need to be abelian).

3. Multiplication is distributive with respect to addition. In other words, we must have that for all

x, y, z ∈ F , x× (y + z) = x× y + x× z and (x+ y)× z = x× z + y × z.

6

As one can see, a Field is a specialization of a Group. Every Field is a Group, but not all Groups are

Fields. Every Field is also a Ring [10], which is a similar construct but missing one important property.

A Ring does not need to be a Group for multiplication. Its multiplication must only be associative. What

does this mean? It means that a Field has an element 1 such that for all x ∈ F , x× 1 = 1× x = x and,

most importantly, for all x ∈ F ∗, there is an inverse element with respect to multiplication x−1 ∈ F such

that x× x−1 = x−1 × x = 1. A Ring does not have this element. As such, one can also define a Field as

a unitary Ring that admits an inverse for all of its non-zero elements [10].

Some of the most common sets of numbers are examples of Fields. The set of rational numbers

Q is a Field, as it respects all its properties. There is associativity (and even commutation) for both

addition and multiplication, there exists a 0 element and a 1 element, there exists an inverse for all non-

zero elements, and the distributive property is assured. The same can be said for the Field of complex

numbers C and the Field of real numbers R [10]. However, as counter-examples, the sets of both natural

numbers N and integer numbers Z are not Fields. The former is because it does not comply with the

third property of a Group with respect to addition. There are no two elements that produce zero as a

result when added – the latter since it does not have an inverse for multiplication [10].

There is a crucial difference between these Fields we mentioned and the ones relevant to our work.

They all have an infinite number of elements. The Fields we are interested in have a finite number of

elements. These kinds of Fields are commonly known as Finite Fields or Galois Fields [9]. The most

common GFs come from the set of integer numbers Z, but only considering the elements up to, but not

containing, a certain value p (recall the full set Z is not a Field). In this case, the operations are done

modulo p. As a concrete example, we can look at the GF Z5 = {0, 1, 2, 3, 4} [10]. All the operations are

done modulo 5, so, for example, 2 + 3 ≡ 5 mod 5 ≡ 0 mod 5. Table 2.1a shows the addition table and

Table 2.1b show the multiplication table. By looking at all the possible combinations of elements, it is

easy to see that all the properties of a Field are upheld. There is a 0 element and a 1 element, and we

can quickly see that there is distribution. As a quick example, 4× (2+3) ≡ 4× 0 mod 5 ≡ 0 mod 5 and

4× 2 + 4× 3 ≡ 3 + 2 mod 5 ≡ 0 mod 5.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

(a) Addition Table

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(b) Multiplication Table

Table 2.1: Addition and Multiplication Tables for Z5

Not all integer values can be used as p, however. As an example, Z4 = {0, 1, 2, 3} is not a Field.

7

That is because the set Z∗
4 is not a Group concerning multiplication. 2 × 2 ≡ 0 mod 4 and 0 /∈ Z∗

4 and

2 × 1 ≡ 2 × 3 mod 4 meaning that if the element 2 had an inverse, we would have 1 = 3, which is, of

course, wrong [10]. In general, in order for a set Zp to be a Galois Field, the value of p must be a prime

number greater or equal to 2. The proof for this can be seen in [11].

Fortunately, we are not bound only to use positive integers modulo p to create Galois Fields. We

can, for example, work in the polynomial space, where each element of the Group, Ring, or Field is a

polynomial. As [10] proves, Galois Fields in the polynomial space will always be defined by a prime

power pm, where m is an integer greater or equal to 1. We represent these fields by GF (pm), and

they are composed of all the polynomials with degree less than m (xm−1) and coefficients that belong

to Zp (we can also represent Zp as GF (p)). These fields will have pm elements. We call this the size

or cardinality of a Field. As a concrete example, the field GF (32) will be composed of polynomials with

degree up to 1 and coefficients in {0, 1, 2} : {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

Remember that with Fields Zp, the construction would be all of the values modulo p. The construction

is the same with the Galois Fields GF (pm), but it must be made modulo a polynomial. This polynomial

must be irreducible over the Field, meaning it can’t be the product of two other elements of the Field.

The polynomial must also be monic, meaning all of its coefficients must belong to the GF (p) Field, and

it must have degree m, with the coefficient of xm equal to 1. If we have such a polynomial (both monic

and irreducible), we have found a prime polynomial, and we can use it to construct the Field by using

the rules of the quotient rings [10].

But there exists even another way to construct these Fields. If we have a prime polynomial P , there

might be a case where one of its roots is a primitive of the Field. A primitive α of a field is an element

that does not belong to GF (p) but does belong to GF (pm), and all values of the GF (pm) Field can be

expressed as a power of α with exponents ranging from 1 to pm − 1. Additionally, αpm−1 must be 1 [10].

The prime polynomial that contains such a root is called the primitive polynomial. Another name given

to the primitive element α in the literature is the generator. We will use both terms interchangeably. One

important thing to note is the existence property. No matter the GF, there will always be at least one

primitive polynomial [10]. As a quick example, one primitive polynomial of GF (24) is x4 + x + 1 with

primitive element x+ 1.

2.1.1 Finite Fields with p = 2

In computer science, the class of Fields which are more relevant to the use cases we will explore later is

GF (2m). These fields are composed of polynomials with degree up to m, but crucially the coefficients of

the polynomial are in GF (2), meaning they can only be 0 or 1. What this means is that each coefficient

will fit in exactly one bit. We can then represent each polynomial c0 + c1x+ c2x
2 + ...+ cm−1x

m−1 as a

vector [c0, c1, c2, ..., cm−1], or a number with at most m bits.

8

This is the fundamental intuition behind these Fields since now we can think of any Finite Field

GF (2m) as the set of all numbers that fit in at most m bits. As an example, the field GF (24) will contain

all of the values that fit in exactly four bits, from 0 = 0000b = 0 + 0x + 0x2 + 0x3 to 15 = 1111b =

1 + 1x + 1x2 + 1x3. Throughout the rest of this thesis, we will focus exclusively on this class of Finite

Fields.

To conclude this section, we remark that one of the most important properties of Finite Fields is

closure. Remember that all the operations performed over a Finite Field need to result in an element

that is also part of said Field. As such, if we work with a Finite Field GF (2m), we use all the values that

fit in exactly m bits. Because of this, all operations we do will result in a value with at most m bits as

well, contrasting with standard computational arithmetic where multiplication, for example, can result in

a value with double the number of bits as its operands.

2.2 Finite Field Use cases

In this section, we motivate the usage of Finite Fields. Since the focus of this thesis is to run opera-

tions over Finite Fields in network devices, the presented use cases are all related to networking. We

chose three – In-network Cryptography, Network Coding, and Forward Error Correction – for three main

reasons. First, they represent techniques that are widely used in a variety of contexts. Second, the pos-

sibility of performing these computations entirely in the data plane of high-speed programmable switches

and routers can open the door to an array of new applications for various types of networks, including

data centers, service provider networks, and even the global Internet. Third, they often require very

large Galois Fields (e.g., GF (2128) and above), making them very challenging to implement in modern

high-speed network switches.

2.2.1 Cryptography

Implementing security solutions in the switch data plane is an appealing idea that can drastically change

the network security landscape. For instance, it would enable implementing security checks on all pack-

ets as they traverse the switch, instead of on only a small subset of the traffic – or ignore security

altogether, as is common. One can anticipate performing per-packet authentication [7] or checks to

proof-carrying network codes [12] directly in the network switch. Other benefits of in-network security

include eliminating the need for offloading security tasks to a centralized controller [13–16] or for mir-

roring traffic to powerful middlebox hardware [17]. This can not only avoid bottlenecks but also result in

significant reductions of bandwidth and compute overheads, with a positive effect on network latency as

well. Furthermore, it can provide an increased level of security and privacy within the network (e.g., by

obviating attacks against single points of failure).

9

Significant efforts have been devoted to developing cryptographic in-network security solutions. For

example, in the context of the SCION Internet architecture [18], Legner et al. [7] proposed a family of

data-plane algorithms, EPIC, with increasing security properties in an effort towards building a secure

path-aware network architecture. This solution requires Advanced Encryption Standard (AES) [19] to be

performed directly in the network devices (EPIC [7] was implemented on a server with Intel Data Plane

Development Kit (DPDK)).

Recently, major network operators, such as Amazon and Microsoft, have started adopting crypto-

graphic protocols like MACsec (which, at its core, also uses AES) to encrypt their traffic not only at the

application layer but also at the link layer [20–22]. Notably, the level of security provided by many cryp-

tographic algorithms is directly connected to the size of the Galois Field over which their operations are

performed. For instance, while AES-Eletronic Codebook (AES-ECB) mode uses a relatively small Field

(GF (28)), this mode is considered to be insecure and should never be used in practice [23]. Secure

AES modes widely used in practice, such as AES-Galois Counter Mode (AES-GCM) (e.g., as used in

TLS and Internet Protocol Security (IPsec) [6]), requires GF operations on a Field with (at least) 128 bits

(GF (2128)) [24].

2.2.2 Network Coding

IP networks commonly use a store-and-forward mechanism for packet forwarding. Network Coding

(NC) [1] proposes an alternative: store-code-forward. Instead of just forwarding packets, network de-

vices are now responsible for encoding multiple packets together into a linear combination that is then

output to the next hop. This mechanism has been shown to bring advantages in terms of throughput,

robustness to packet loss, and increased security [1].

The most simple and common example of Network Coding is presented in Figure 2.1. Consider the

two nodes A and B that want to exchange packets in a wireless network, using access point S. A sends

a, and B sends b. With a conventional access point, S would be forced to broadcast a and then b. With

Network Coding, S can combine a and b using the XOR operation and broadcasts this instead. Due to

the properties of XOR, A and B can trivially recover the wanted packet, and the number of transmissions

is reduced from four to three.

The NC technique has been widely used in practice and in many contexts. One of the first known

applications was Avalanche [25], an NC-based Peer-to-Peer (P2P) content distribution system used for

Microsoft Secure Content Distribution. Companies like Veniam [26] are also using NC techniques to

improve throughput in WiFi in the Internet of Things (IoT) space. Recently, Network Coding has also

been proposed to improve the throughput of inter-datacenter bulk transfers [27].

Network coding uses GF arithmetic at its core. The encoding operation is defined by X =
∑n

i=0 giMi,

where each Mi is an original packet, and each gi a coefficient that can be either defined deterministically

10

Figure 2.1: Example of Network Coding in a wireless setting, taken from [1]

(e.g., by some centralized entity) or, more commonly, can be randomly selected (as in Random Linear

Network Coding (RLNC) [28]). Each packet is multiplied by a coefficient, and the results are summed

together to form a new packet X. Both multiplication and summation operations are performed using

Finite Field arithmetic to ensure the resulting packet is the same size as the original packets.

The devices in the path can also recode the combinations they receive into new combinations (to

improve the chances of decoding success, as new independent linear combinations are being created).

This recoding process is at all equal to the original encoding, but instead of working with the original

packets M , the node operates on several encoded packets Xi to create a new one, X ′. There is,

however, one extra step that needs to be taken. The coefficients used by the node that recodes the

packets and creates X ′ need to be multiplied by the coefficients that were used to create the Xi packets

so that they relate to the original data M and can be used to retrieve the information.

The egress is, finally, responsible for decoding the coded packets to retrieve the original information.

For decoding to succeed, it is necessary to have enough linearly independent combinations. At least

equal to the number of original packets. When this happens, we have a linear system of equations,

which means we can leverage Gaussian Elimination to solve the system and recover the original infor-

mation. All the operations performed while executing Gaussian Elimination follow the rules of Finite Field

arithmetic.

In theory, Network Coding does not require very large Fields, with some solutions using simple bit-

wise XOR (GF (21)), like the presented example, or per-byte (GF (28)) operations. However, larger Fields

have the advantage of increasing the probability of coding success in the most common randomized

settings [29]: there is a higher probability of linear independence between combinations on a larger Field.

There is also a practical challenge in coding packet payloads using small Fields, which we illustrate with

an example. It is not trivial to code, for instance, a 1000-byte payload using a GF (28) field, as it requires

chopping the payload into one thousand “cells” [30], and perform one thousand multiplications in parallel.

Switch primitives for Finite Field operations over large Fields can thus help enable new NC use cases.

11

2.2.3 Forward Error Correction

Finally, Forward Error Correction (FEC) codes [31] are an important mechanism for reliable network

communication. The message’s sender will send the packets with the data through the network, but to

account for losses of information, it also appends some redundant information to the packets. This way,

the receiver of the message can reconstruct packets that have been lost. The main difference between

this approach and a protocol like Transmission Control Protocol (TCP) is that FEC codes can restore

a certain number of the lost packets of the communication, regardless of the exact packets that were

not received. TCP, in contrast, resends exactly the packets that are thought to be lost when a specific

timeout expires. The most used type of FEC codes is Reed-Solomon codes [32].

The main advantages of this approach are twofold. First, the time to restore missing information is

reduced, compared to feedback approaches (like TCP). Second, in multicast settings, the sender is

not required to resend packets that were not received by, for example, only a small subset of the total

receivers of the message, improving the overall achievable throughput [31].

The encoding of data to create the FEC codes and the decoding process are similar to that of

Network Coding, which was previously discussed. The packets are seen as values over a Finite Field

GF (2m), and the sender multiplies each one of them by some coefficient before summing it all together

in a new packet. The decoder also uses Gaussian Elimination to recover the lost packets. The main

difference compared to NC is that, in this case, original packets are circulating through the network, not

only encoded ones. As such, the receiver, upon obtaining a new original packet, can directly plug said

packet into the linear system of equations and expedite the process of retrieving encoded information.

FEC codes have seen a lot of usage in networking systems like low latency 5G networks [33], media

streaming over wireless networks [34], and multiple description source coding [35]. Recent systems [36]

have proposed improving network reliability by performing in-network FEC. However, the proposed so-

lution does not run entirely in a programmable switch, as the computations required for FEC (Finite

Field arithmetic) exceed the devices’ capabilities. It offloads the computations to an external FPGA or a

standard CPU, significantly lowering the achievable throughput.

2.3 Programmable Networks

If we want to perform Finite Field operations in the devices, we cannot rely on traditional IP networks.

Due to their complexity and heterogeneity, these networks are generally difficult to manage and main-

tain. There are many different devices, like switches, routers, and firewalls, among others, from different

vendors and various models. Every one of them needs to be configured by the network administrator,

often manually and using different low-level interfaces per manufacturer. Traditionally, each device con-

tains both the mechanism that decides how to handle the traffic (known as the control plane) and the

12

mechanism that forwards the traffic flows based on the rules defined (known as the data plane). If a new

protocol is to be deployed, the process is slow and complex due to this coupling between planes.

2.3.1 Software Defined Networks

Software-Defined Networks (SDN) [2,37] has emerged as a new network paradigm that aims to remove

the barriers and problems described above. The main idea behind it is to decouple the control plane

from the data plane, which gives greater flexibility to the network operator and an easier way to test

and deploy new protocols. This separation means that the devices are now only forwarding elements of

the network, and the decision process is logically centralized in the SDN controller. The programmed

applications are executed in the controller, which abstracts the interaction with the network devices.

The architecture of an SDN is depicted in Figure 2.2. The topmost layer is the Network Applications.

The applications define the network behavior. As examples, there are applications for SDN in rout-

ing [38], network visualization [39], and even as the entire backbone of Google’s network [40]. The SDN

controller then implements this behavior in the network devices which execute it. The Controller Platform

layer is where the SDN controller resides. This controller abstracts the lower-level layer and considers

the network applications and other policies defined in its interaction with the Network Infrastructure layer.

The latter is where the networking devices actually reside and forward the traffic according to the rules

from the controller. Since we can have multiple devices from multiple different vendors, each one with

its own implementation details, the abstraction provided by the controller is crucial.

Figure 2.2: Software Defined Networks overview, from [2]

An SDN controller is interpreted as a single entity, however, it does not need to be physically central-

13

ized in a single device. This would be a significant problem for larger-scale implementations of SDNs.

Instead, the controller can be logically centralized and physically distributed, abstracting to the user a

centralized view of the network. The most commonly used controller implementation is ONOS [41],

an open-source project that contains high-level abstractions and run-time extensible modules that the

network applications can leverage.

The communication between the applications and the controller is enabled by the Northbound API.

This Application Programming Interface (API) is not standardized but is usually REST-based. As for the

communication between the controller and devices, the Southbound API is the communication channel

that enables the forwarding rules to be sent from the former to the latter. OpenFlow [42] is the standard

protocol for this interface.

2.3.2 P4 language

The OpenFlow protocol has many advantages, like being open source and having a vendor-agnostic

interface. However, it also presents some issues. The main problem is its inflexibility and difficulty in

evolving. As operators want switches to expose more capabilities to the SDN controller in the form of

new data plane protocols, more header fields and table types need to be supported. As an example,

OpenFlow v1.0 could match packets on 12 header fields, while OpenFlow v1.4 already supports 41. As

there was no sign that this increase would stop [43], a new future-proof design was needed.

Programming Protocol-independent Packet Processors (P4) [43] was developed as a high-level pro-

gramming language that could program any compliant device in a unified manner, serving as an ”Open-

Flow 2.0”. P4 was designed to achieve three main goals. Firstly, target independence. P4 is unaware

of the specific platform it is configuring. Only the compilers are made specifically for the target device,

translating the P4 code to the machine code the target can understand. Secondly, protocol indepen-

dence, since P4 is generic enough to specify a great variety of network behaviors without being subject

to the characteristics of a certain protocol. Thirdly, reconfigurability, because the logic for processing

the packets can be redefined by the programmer, even after it is deployed to the target devices. Note

that P4 is used for the functionality of the data plane, not the control plane’s logic. That is still left to the

controller. The typical Southbound API is now the P4Runtime [44].

A P4 program has several key components.

(i) Headers specify some fields’ constraints, like their width and possible values.

(ii) Parsers specify how the headers are identified and the valid header sequences within a packet.

(iii) Tables, which contain match-action rules that match on a specific field and indicate which action

to perform.

(iv) Actions, describing manipulations that can be performed to the packet fields.

14

Figure 2.3: P4 Forwarding model

(v) Control Programs specify which, and by what order, are Match-Action Tables (MATs) applied to

the packets.

The forwarding model is illustrated in Figure 2.3. It requires a programmable parser and multiple

match-action rules. The control portion has two responsibilities, configuring and populating. The first

defines the match-action rules, while the second fills the tables according to the defined rules.

The sequence of execution is as follows. Once a packet arrives, it first goes to the parser. This

parser will extract header fields from the packet according to the specifications in the Headers and

Parsers components. Note that there are no assumptions about the protocol the packet is using. The

fields are then passed on to the MATs, which perform the defined operations (Actions) on the packet, like

setting the egress port, setting the destination port, and replicating the packet if needed, for multicasting

operations.

2.3.3 Spatial Language

The main goal of P4 was to program Packet Processors, but other types of reconfigurable hardware exist,

like FPGAs and Coarse-Grained Reconfigurable Arrays (CGRAs). One of the most recently proposed

ways to program these devices is the Spatial Domain Specific Language (DSL) [45], based on the well-

known Scala programming language.

Spatial’s main purpose is to simplify the programming of this type of hardware, enabling easy devel-

opment, testing and optimization of the programs. Spatial provides a set of control structures that can

be used to express the wanted algorithm in a concise manner, but let the compiler identify and act upon

parallelization opportunities. Among these structures, the most common are:

• Finite State Machine, similar to a while loop.

• ForEach, which is parallelizable for loop.

15

• Reduce, a scalar reduction loop, which is parallelized as a tree.

The compiler will try to schedule the operations inside these control structures in order to optimize

their performance, but the user is free to modify this behaviour using specific directives. Some of them

are:

• Sequential, that forces the loop instructions to run sequentially (no parallelization)

• Pipe that sets the loop instructions to be pipelined

• Parallel, allowing the instructions to run in parallel

One of the other key aspects of the language is the memory templates it provides. These templates

let the user control the allocation data to the accelerator’s memory, but in a more abstract way. The

compiler is able to optimize each type of memory in order to extract the maximum performance in terms

of memory access latency and resource utilization. Of course, the compiler only allocates resources

which are present in the accelerator. Depending on the access patterns identified, memory can be

duplicated, banked or buffered by the compiler, all while maintaining the behaviour programmed by

the user. Among the supported memory types we draw special attention to Static Random Access

Memory (SRAM), Registers and First-In First-Out (FIFO) queues.

Listing 2.1: Simple Spatial Example

1 val s = SRAM[Int](16,32)

2 val r = Reg[Int]

3

4 ForEach(16 by 1, 32 by 1){(i, j) =>

5 s(i, j) = i + j

6 }

7

8 r := s(x,x)

We showcase a simple Spatial program in Listing 2.1. The program iterates from 0 to 16 with the first

variable i, and 0 to 32 with second one, j. It then stores the result of i + j in the correct location of the

SRAM. Finally, in line 8, we load to a register the value stored in the SRAM location x, x where x is a

supplied input argument. As is obvious, the operations inside the ForEach can easily be parallelized,

since there are no dependencies. Fortunately, that task is left to the compiler and the programmer does

not have to add anything else.

16

2.4 Programmable Network Devices

The reason behind the creation of P4 was the appearance of a new switch chip architecture. Traditionally,

switch chips could only match in a fixed set of packet header fields and had a fixed number of tables,

each with a fixed size. If a programmer wanted to add a new table, change the size of a table, or match

to different header fields, that was not possible unless new hardware was acquired.

2.4.1 PISA architecture

A reconfigurable match tables switch architecture was initially proposed by [46]. This architecture al-

lowed the forwarding plane of the switch chip, the Match-Action Tables, to be changed without replacing

the underlying hardware. This type of architecture is now called Protocol Independent Switch Architec-

ture (PISA) [3].

PISA is a pipelined architecture, meaning the tables are arranged in a pipeline fashion. When a table

has finished processing a packet, that packet goes to the following table in the pipeline, and the first one

starts already processing a new packet. As such, the tables always process packets, and the throughput

is maximized. This pipeline is divided in stages, and the processing of a stage can be made to depend

on the processing of a previous stage, if some part of the packet is modified by the tables that occupy

that stage, for example, decrementing the Time-To-Live (TTL) field before deciding if the packet is to be

processed further or not.

Switches based on PISA architectures are composed of 3 main parts:

1. A programmable parser

2. The Match-Action Tables

3. A programmable deparser and scheduler

The parser is responsible for receiving a packet and extracting the header values according to the

protocols it supports. For example, a parser that supports an IP header must be able to extract the

header values it needs, like the source address, the destination address, the TTL, and the flags, for

example. The parser’s output is the Packet Header Vector (PHV), a set of the extracted fields, as

well as some metadata, for example, the port through which the packet entered the switch. Since it is

programmable, the parser’s hardware will not be optimized for specific protocols but, instead, be flexible

for any protocol the programmer wants to implement. In practice, the parser is implemented by using

Ternary Content-Addressable Memory (TCAM) tables that match the bits of the packet and follow the

rules defined by a state machine the programmer creates [46].

The MATs are then responsible for matching the values of the PHV in their tables and appropriately

selecting an action. Each stage comprises an Arithmetic Logic Unit (ALU) for standard boolean and

17

Figure 2.4: PISA architecture, from [3]

arithmetic operations or header modifications, among others. Each logical stage in the switch will match

the PHV values to a certain number of tables and then execute the appropriate actions using Very Long

Instruction Words (VLIWs) [46]. These logical stages are mapped to the physical stages in a way that

best maximizes the available resources. One important thing to note is that the matches do not need

to be exact. This architecture supports ternary matching so that one can use longest-prefix matching,

for example. As a concrete example of a Match-Action table, we can define a table that matches the

destination IP address of a packet. If there is a hit, the output port is defined so that the packet exits by

the appropriate interface.

Finally, the deparser and scheduler are responsible for re-serializing the information of the packet for

over-the-wire communication and scheduling its egress. Figure 2.4 illustrates this architecture.

There is already commercially available hardware that implements this architecture. Intel’s Tofino [47]

is an example of this. The work on this thesis was developed in this platform (more details in Chapter 5).

2.4.2 Taurus

Although PISA is the main data plane architecture used in switches nowadays, a few others have been

proposed recently. One of them is Taurus [4], an architecture for performing per-packet Machine Learn-

ing (ML). Taurus takes a standard PISA switch as its basis, but it adds custom hardware based on a

MapReduce abstraction to the switch pipeline. The efficiency it achieves for ML inference arises from its

use of pipelined Single Instruction Multiple Data (SIMD) parallelism, in contrast to the purely VLIW-based

architectures of the current network switches we have described previously [46]. Most importantly, this

architecture can perform these operations while maintaining the line rate. At a 1GHz clock, this archi-

tecture ensures nano-second level latencies [4].

Therefore, the main contribution of Taurus is the MapReduce block that sits between some pre-

processing and some post-processing MATs. The diagram of Figure 2.5 illustrates the architecture.

As one can see, a parser, deparser, and scheduler still need to exist, which are responsible for the

same functionality as in the PISA architecture. The same can be said for the pre-processing and post-

processing MATs, which are used for some simple operations (add some information to the metadata of

18

Figure 2.5: Taurus architecture, from [4]

the packet, interpret the ML decisions, forward packets, etc.) before and after the packet goes through

the MapReduce block. This block is, thus, the one responsible for SIMD parallelism as it can perform

operations in each element of a vector (Map) and also reduce the elements to a single scalar (Reduce).

The lower part of the diagram is a bypass added to the architecture so that packets that do not need to

go through the MapReduce block, for example, control packets, can more quickly go through the device.

Looking more deeply into this block, we see it is composed of two units. Compute Units (CUs) and

Memory Units (MUs). CUs are the ones that perform the arithmetic operations. They are composed of

Functional Units (FUs), which perform one Map, one Reduce or one MapReduce operation, and Pipeline

Registers (PRs), which enable the pipeline architecture, as the value from a FU is written to a PR, and

then the next FU reads from that PR. Inside the CU, we can have multiple stages and multiple lanes.

Each lane contains values from the vector (multiple data), which we want to execute operations on, and

the FUs in each stage execute the same operation (single instruction). Each CU can perform several

operations with its multiple stages but always following the SIMD approach. The number of lanes and

stages is configurable, paying a cost in the area occupied by each CU and the power consumed [4].

Figure 2.6 showcases a CU with three stages and four lanes, with its FUs and PRs.

MUs act like coarse-grain pipeline registers and are interspersed with the CUs, realizing the pipelin-

ing architecture needed for line rate operations. At a 1GHz clock, it is these MUs that enable the

nano-second level latencies mentioned previously. Interestingly, these MUs also have some logic incor-

porated that lets them perform some straightforward computations, like an XOR or a SHIFT. A full Taurus

implementation will have several of these CUs and MUs in a mesh (like in Figure 2.7).

There is currently no actual hardware implementation of this architecture. In order to prove the

advantages of Taurus, software simulations based on realistic hardware were conducted. A testbed was

also designed to evaluate the end-to-end performance of the architecture. In this case, the MapReduce

19

Figure 2.6: An example of a CU with 3 stages and 4 lanes, from [4]

Figure 2.7: Taurus Mesh of CUs and MUs, from [4]

block was implemented on an FPGA [4].

2.5 Implementations of Finite Field Operations

Finite Field operations have been implemented directly in the hardware of various computing architec-

tures, from the common CPUs we see in personal devices to FPGAs and networking switches ASICs.

There is, unsurprisingly, a plethora of software implementations of said operations. Chapter 3 will dis-

cuss in more detail how to actually perform the operations and the algorithms that are commonly used,

but the primary goal of this section is to expose where they have been implemented before.

Software implementations of Finite Field arithmetic are plentiful, using common programming lan-

guages. Kodo [8] is a library that performs the aforementioned Network Coding operations, written in

C++, and performs the required Finite Field arithmetic using tables of values (more details in Chapter 3).

Other languages with libraries for Finite Field operations include: Rust [48], Perl [49] and Python [50].

As for hardware implementations, which aligns more with the focus of this thesis, several modern

processors already ship with built-in instructions to perform Finite Field arithmetic. For example, the

x86 64 architecture of common CPUs supports the PCLMULQDQ instruction that performs carryless mul-

tiplication over a Finite Field [51]. This instruction takes two 64-bit values and computes the 128-bit

20

carryless product. Other instructions are then performed in order to reduce the result to the appropriate

defined Finite Field. Other work has proposed extensions to the Microprocessor without Interlocking

Pipeline Stages (MIPS) architecture to perform operations over Finite Fields efficiently [52]. For the con-

straints present in IoT environments, a processor architecture capable of performing such operations

has already been proposed as well [53].

Operations over Finite Fields have also been successfully implemented in FPGAs. FPGAs are

integrated circuit platforms that can be rearranged by a programmer, using languages like Spatial

(Section 2.3.3), in order to perform some desired specific task. Due to the hardware being explic-

itly rearranged for the task at hand, these boards perform at much higher speeds than the common

CPUs. [54–57] are examples of the implementation of Finite Field operations in FPGAs. All the exam-

ples focus solely on multiplication since it is the most prominent for the considered use cases. However,

they do not regard Finite Field division, which is an operation we consider in this work.

A greater challenge is performing Finite Field arithmetic on a programmable switch ASIC. Recent

work has investigated the feasibility of implementing cryptographic algorithms like AES on these devices

for in-network cryptography-related use cases. Due to the constraints of the switches’ programming

language (which we will present in Section 4.1) and of the target devices, several researchers have

implemented cryptographic algorithms as extern functions running in software switches (e.g., [58, 59]).

As a result, these solutions cannot perform the required operations at Tbps switch line rates. Chen

presented a new technique that leverages the table matching capability (which we discuss in Section

2.4) available on programmable switches to implement AES [60]. However, as we will show in Chapter 3,

this table-based method does not scale for Finite Fields with a larger number of elements. In addition,

it requires all packets to be recirculated multiple times in the switch (one recirculation per AES round),

which affects latency and, most importantly, severely reduces the maximum achievable throughput. As

for Network Coding, we note the work created by Gonçalves et al. [61] that has recently proposed an

NC solution for network devices. However, their solution targeted a software switch and was prototyped

only for Finite Fields of small size. They also only considered the coding and recoding operations, and

not decoding. Table 2.2 compares all the work we have mentioned against our own.

2.6 Summary

In this chapter, we gave a primer on Finite Fields, defining their properties and focusing on the GF (2m)

fields. We also presented some use cases of this construct in the areas of In-network Cryptography,

Network Coding, and Forward Error Correction.

Afterward, we presented the concept of Programmable Networks, showcasing Software Defined

Networks and the P4 language for programming network data plane devices. We also discussed the

21

Hardware
Implementation In Network All GF operations 10/100s

Gbps Tbps

Software
implementations

[8,48–50]
X X ✓ X X

CPU
implementations

[51–53]
✓ X ✓ X X

FPGA
implementations

[54–57]
✓ X X ✓ X

AES in Switch
[60] ✓ ✓ X ✓ X

NC-Switch
[61] X ✓ X ✓ X

This work ✓ ✓ ✓ ✓ ✓

Table 2.2: Comparison of work in implementing Finite Field operations

current programmable network devices and their hardware architecture, mentioning not only the current

state of the art, the PISA architecture, but also a new alternative proposed, Taurus.

Finally, we discussed current implementations of operations over Finite Fields in several types of

hardware, like common CPUs, FPGAs, and switch ASICs.

22

3
Finite Field Operations

Contents

3.1 Finite Field Addition and Subtraction . 24

3.2 Finite Field Multiplication . 25

3.3 Finite Field Division . 28

3.4 Analysis of Both Approaches . 33

3.5 Summary . 35

23

This thesis goal is to implement operations over Finite Fields in programmable network devices and

evaluate their feasibility and usefulness. In this chapter, we look into the four most common operations

executed over Finite Fields, addition, subtraction, multiplication, and division. We first start with addi-

tion and subtraction, which are trivial to perform. Afterward, we explore the multiplication operation and

present the two main approaches used in practice. We then move to the division operation, also show-

casing the two main approaches, which are similar to the ones for multiplication, and introducing a new

operation, Finite Field inversion. Finally, we analyze both methods, and discuss their merits and their

drawbacks.

3.1 Finite Field Addition and Subtraction

For the Finite Fields defined as Zp with p being a prime value (explored in Section 2.1), addition and

subtraction are similar to the basic arithmetic one is accustomed to. First, the rules defined for Fields

only mention the addition operation and never explicitly mention subtraction. However, since every Field

F is a Group and every Group element must have an inverse element with respect to addition that is

also in the Field, we can define a− b for any a, b ∈ F as a+ (−b) where −b is the inverse [11].

The only added complexity to common addition and subtraction operations is that, to get the actual

result, one needs to apply the modulo operand with value p. This ensures that the resulting value is

a member of the Finite Field and, most importantly, complies with the rules that define a Field. As an

example, in the Field Z7 = {0, 1, 2, 3, 4, 5, 6}, 2− 5 ≡ −3 mod 7 ≡ 4 mod 7 and 6 + 5 ≡ 11 mod 7 ≡ 4

mod 7.

When we exit the Fields with natural elements and focus on Finite Fields defined by polynomials

(GF (pm)), addition and subtraction are the common operations over polynomials, meaning that we add,

or subtract, the coefficients of the polynomials that share the same degree. Recall, however, that the

coefficients still need to remain in GF (p), so the modulo operand must be applied. As a quick example

over the Field GF (75), (5x4 + 2x3 + x+ 5)+ (3x4 + 2x2 + 5) = 8x4 + 2x3 + 2x2 + x+ 10. Since 8 and 10

do not belong to GF (7), we must apply the modulo 7. 8 mod 7 ≡ 1 mod 7 and 10 mod 7 ≡ 3 mod 7,

so the final result would be x4 + 2x3 + 2x2 + x+ 3.

For the Finite Fields that are important for our work, GF (2m), the coefficients can only be 0 or 1. If

we look at all possible combinations of adding and subtracting 0 and 1, modulo 2, the results are the

same as an XOR operation. Table 3.1 showcases this operation. As such, adding or subtracting values

in GF (2m) is straightforward. It is a simple bit-wise XOR [5] over the operands. As a quick example, in

GF (25), (x4 + x+ 1) + (x3 + x2 + 1) = x4 + x3 + x2 + x.

The real challenge regarding operations over Finite Fields is thus the other operations, multiplication

and division. In the following sections, we explore the two main approaches used in the literature to

24

⊕ 0 1
0 0 1
1 1 0

Table 3.1: XOR table

perform them.

3.2 Finite Field Multiplication

In order to perform Finite Field multiplication, one can choose to go in one of two ways, depending on

the size of the Finite Field and the computational capabilities of the device where it will be implemented,

among others. We first start with an approach that is more memory-intensive in Section 3.2.1, and then

move on to the computationally-intensive approach in Section 3.2.2.

3.2.1 Memory Intensive Approach

´

The multiplication of two values a and b can be a complex operation to perform, even without consid-

ering Finite Fields, if, for example, one needs to multiply two extremely large values. However, there is

a way to convert a multiplication operation into an addition if we recall the properties of the logarithms.

For any base of a logarithm g, the sum of the logarithms of two values is the same as the logarithm

of the product of those values. In other words, logg a + logg b = logg ab. If we then exponentiate g to

this value, we get a × b. For Finite Fields, we can also follow this idea, but the basis g of the logarithm

cannot be any value, but rather the generator of said Finite Field (see Section 2.1). To summarize,

we can get the product of any two elements of a Finite Field F with generator g by following the rule

a× b = glogg a+logg b [5].

At first glance, this seems to add complexity to the operation and does not help to simplify it. We need

to compute the logarithm of a, the logarithm of b, and the value of g to the power of the result of the sum.

However, since we are working on a Finite Field, and therefore we have a finite number of elements, all

the possible values of the logarithm, and also of the exponentiation, which we call anti-logarithm, can

be pre-computed beforehand and stored in the memory. This is the main advantage of this approach,

as we are effectively trading one multiplication, for one addition and some accesses to a table stored in

memory.

As a quick example, Figure 3.1 shows all the possible values of the logarithm (Figure 3.1a) and

anti-logarithm (Figure 3.1b) pre-computed for the field GF (28) using the generator x+1. For calculating

10 × 25, we first look at the logarithm table (note that in the table, the values are in hexadecimal) and

25

(a) Logarithm values (b) Antilogarithm values

Figure 3.1: Multiplicative tables for field GF (28), from [5]

extract the values, 0x1b and 0x71, respectively. We add them together, resulting in 0x8c, and finally, we

get the result from the anti-logarithm table, 0xfa, which is 250. As an important remark, the addition of

the logarithm values is not a Finite Field addition (XOR), but rather a common arithmetic addition, modulo

the last value of the Field. In this case, 255. This works because the powers of a generator of a Finite

Field repeat after 2n − 1 iterations [5].

This is, therefore, a “memory-intensive” approach, as we can reuse the values stored in these tables

for different computations. By decomposing the multiplication operation this way, we can perform it with

a small number of table accesses (usually three). This solution can be easily implemented in all sorts of

devices, including programmable switches using the P4 language (see Chapter 4 for more details), and

its high performance is guaranteed: looking up values in tables is quick, especially for these types of

devices, and can be done in parallel. To no surprise, some state-of-the-art solutions follow this approach,

either in software for common CPUs [8] or in hardware [61,62].

3.2.2 Computationally-Intensive Approach

There is another solution for multiplying two values in a Finite Field that does not involve using tables to

store helpful values. Instead, it relies upon using number decomposition and manipulating the operands

and is, therefore, a computationally-intensive approach. The most common solution that follows the

number decomposition approach is the Russian Peasant Algorithm (RPA) algorithm [63].

RPA uses a halving and doubling method to multiply whole numbers, in our case, a and b. Doing this

transforms the problem of multiplying two whole numbers into a much simpler one based on multiplica-

tion and division by 2. To illustrate how it works, assume we have two columns – one for the doubled

numbers and the other for the halved numbers – and multiple rows – one for each iteration of the algo-

rithm (where the first row denotes the multiplication problem we aim to solve). In the halving column, one

needs to put the quotient of the division operation, disregarding the remainder (if any). In each iteration,

26

a is multiplied by 2, and b is divided by 2; this process is then repeated multiple times until b is equal to 1.

As a final step, one must cross out all rows with an even number in the halving column. The result of the

multiplication can be found by adding the remaining numbers in the column where the doubled numbers

are kept.

Algorithm 3.1 showcases the pseudo-code of the RPA algorithm for any Finite Field GF (2n). For all

the algorithms throughout this thesis, ax represents the xth bit of the operand a, with 0 being the least

significant bit. Since we are working with Finite Fields, there are two essential things to note. First, we

know that at most after n iterations, the value of b will be 1, and so we can execute the algorithm using

a for loop instead of checking for a condition at the beginning of a new iteration. This will significantly

help the algorithm’s implementation in pipelined architectures, as we will discuss in Chapter 4. Second,

since we are multiplying the value of a by 2 at each iteration, and we will sum these values to get the

result, there can be a case where a×2 is a number that does not belong to the Finite Field. As such, we

need to perform one more operation on a that ensures the result will belong to said Field. This operation

is an XOR with the irreducible polynomial P since, in this particular case, it is equivalent to executing the

modulo operation [63].

Analyzing the algorithm, we start with a variable product which will store the result. In line 3, we

check if the value of b is odd (the last bit is 1). If it is, we know the current value of a needs to be added

to the final value, and we do it in line 4. Recall we are working with Finite Fields, so the addition is

performed using an XOR. In line 5, we check if the most significant bit of a is 1. If it is, we know that

once a is multiplied by 2, its value will no longer be part of the Field, and we need to use the irreducible

polynomial (line 6). If it isn’t, nothing more (except multiplying by 2) needs to be done (line 8). Note that

multiplication by 2 is a simple SHIFT left operation by one bit. Finally, in line 9 we divide b by 2, a simple

SHIFT right of one bit, and the iteration is complete. We go back to line 3 and repeat the process. After

completing all the iterations, the variable product will have the result.

Algorithm 3.1: Russian Peasant Algorithm
Data: a, b ∈ GF (2n), P as the irreducible polynomial
Result: product = a× b

1 product← 0

2 for i← 0 to n− 1 do
3 if b0 = 1 then
4 product← product⊕ a

5 if an−1 = 1 then
6 a← (a << 1)⊕ P
7 else
8 a← a << 1

9 b← b >> 1

27

a b product
Iteration 1 00001010 00011001 00000000
Iteration 2 00010100 00001100 00001010
Iteration 3 00101000 00000110 00001010
Iteration 4 01010000 00000011 00001010
Iteration 5 10100000 00000001 01011010
Iteration 6 01011011 00000000 11111010
Iteration 7 10110110 00000000 11111010
Iteration 8 01110111 00000000 11111010

Final 11101110 00000000 11111010

Table 3.2: Multiplication of 10 by 25 using RPA over the GF (28) Field

To more clearly illustrate this algorithm, Table 3.2 showcases the multiplication of 10 by 25 in the

GF (28) Field. The columns represent the values of the variables before the iteration begins. As such,

in the first row, we have the original values of a (10 = 0b1010) and b (25 = 0b11001) and the value of the

accumulator still at 0. The last row contains the values after the conclusion of the algorithm. In this case

the result is 250 = 0b11111010. We also point out the change in variable a from Iteration 5 to Iteration

6, a result of the fact that we have XOR a with the irreducible polynomial.

3.3 Finite Field Division

Similarly to the multiplication operation, there are several ways to perform Finite Field division, depending

on the device’s capabilities where the operation is to be implemented. We will start with the approach

that relies on leveraging the device’s memory in Section 3.3.1 before moving to the more computationally

heavy approach in Section 3.3.2. In the latter, we present two options: a direct algorithm for computing

the division and an algorithm for calculating the inverse of a value so that the multiplication algorithm

can be applied afterward.

3.3.1 Memory Intensive Approach

In order to calculate the division of any two values, one can take advantage of the mathematical property

of the inverse. If a value b has an inverse, than
a

b
= a × b−1 where b−1 represents said inverse. With

Finite Fields, recall from Section 2.1, that all elements of a Finite Field F , except the 0 element (the F ∗

Field), must have an inverse, which is also an element of the Field.

With this property, we can quickly compute a division
a

b
by leveraging the multiplication tables pre-

sented before. We need to look up the value for a and the value for b−1. Fortunately, we can also

pre-compute all the inverse values for all Field elements and store them in a new table. Figure 3.2 show-

28

cases the values of the inverses of all elements of the Field GF (28), the same Field for which we have

shown the multiplication tables in Figure 3.1.

As such, computing a division operation takes only one more table access than multiplication. For

example, if one wants to calculate
a

b
, they lookup the inverse of b in the table and then lookup the

logarithms of a and b−1. Finally, they add them together and look up the result in the anti-logarithm table.

This approach is also easily implemented in all types of devices, including programmable switches.

Figure 3.2: Inverse values for Field GF (28), from [5]

3.3.2 Computationally Intensive Approach

The division operation using more computationally intensive methods can be executed in two different

ways. One can leverage an algorithm that directly computes the result of the division of the two operands,

or we can use an algorithm that first computes the inverse of the second operand so that we can apply

RPA afterward.

A – EBD For the first option, we rely on the EBd algorithm [64], which is a derivate of Stein’s algorithm

to find the Greatest Common Divider (GCD) between two numbers (i.e., a and b). [65]. The Stein

algorithm finds the GCD of a and b by iteratively performing some SHIFTs, in order to multiply and divide

by 2, and XORs, in order to perform addition and subtraction, according to the following rules: (1) if a

and b are even, then gcd(a, b) = 2 × gcd(a/2, b/2); (2) if one of the operands is odd, then gcd(a, b) is

equal to gcd(a/2, b) if b is the odd one, or gcd(a, b/2) otherwise; and finally (3) if both are odd, then

gcd(a, b) = gcd(|a − b|/2,min(a, b)). This algorithm can then easily be extended to perform Finite Field

division.

The EBd algorithm for Finite Field division contains two additional helper variables v and s. The

former is responsible for storing the result of the division and will also manipulate the a operand. In

29

contrast, the latter is used to store the value of the irreducible polynomial P and will be used in the

iterations of the algorithm to modify the b operand accordingly. There is also a variable δ, tracking the

difference between the degrees of the two polynomials we are dividing. This is an important value to

keep track of during the algorithm’s execution. This algorithm finds a result after at most 2n−1 iterations,

where n is the number of bits of the Finite Field.

In each iteration, the EBd algorithm checks if b is odd and, if so, computes b = b + s and a = a + v.

When the degree of polynomial a is higher than that of b, the value of the variable δ will be less than 0.

When that is the case, the algorithm also sets s = b and v = a. This operation will always result in the

difference of the degrees of the polynomials being symmetrical, so δ needs to switch signs.

At the end of each iteration, the b operand will always be divided by two (SHIFT right of one bit), as

well as the a operand. However, the latter has an important detail we will see shortly. This instruction

will also cause the degree of b to reduce by one and the one of a to stay the same, so the δ variable

needs to be decremented.

Algorithm 3.2: EBd Algorithm
Data: a, b ∈ GF (2n)

Result: v =
a

b

1 s← P /* P is the irreducible polynomial */

2 v ← 0
3 δ ← −1

4 for i← 0 to 2n− 2 do
5 if b0 = 1 then

6 if δ < 0 then
7 (b, s)← (b⊕ s, b)
8 (a, v)← (a⊕ v, a)
9 δ ← −δ

10 else
11 b← b⊕ s
12 a← a⊕ v

13 b← b >> 1
14 δ ← δ − 1

15 a← (
a

2
)P

Algorithm 3.2 presents the pseudo-code of the EBd algorithm we have just described. We draw

special attention to lines 7 and 8 where the two assignments in each line must be performed “at the

same time” to ensure the algorithm’s correctness. In other words, in line 7, for example, b gets the value

of b ⊕ s, where the value of s comes from the previous iteration, but s must also get the value of b from

before the assignment. One way to perform this in a common programming language is by using a

30

a b delta s v
Iteration 1 11011111 00000111 -1 100011011 00000000
Iteration 2 11101110 10001110 0 00000111 11011111
Iteration 3 01111011 01000111 -1 00000111 11011111

... — — — — —
Iteration 15 01110111 00000001 -1 00000001 10110100

Final 11100000 00000000 0 00000001 01110111

Table 3.3: Division of 223 by 7 using EBd over the GF (28) Field

temporary variable that stores the first value, assigns the second value to the first variable, and then

assigns the temporary value to the second variable.

We also point out the operation of (a/2)P in line 15, which is the division of a by 2, but taken modulo

P , which does not seem trivial at first but can be performed using simple SHIFTs and XORs following

these rules [64]:

• an−1 ← a0.

• ak ← ak+1 ⊕ (a0 · Pk+1) for 0 ≤ k ≤ n− 2.

In other words, this operation performs a RotR, but then a bit in position k needs to be XORed with

the least significant bit of a (a0) if the irreducible polynomial P has the bit in the position k + 1 set to 1.

For example, in GF (28) using the irreducible polynomial x8 + x4 + x3 + x+ 1, if we want to execute this

operation, we need to perform this XOR for bits a0, a2 and a3.

We illustrate the algorithm via an example in Table 3.3, dividing 223 by 7 over the GF (28) Field. We

present the first three iterations of the algorithm, the last one and the final result. The result of the division

is stored in the v variable, in this case 119 = 0b1110111. Recall that the rows present the values of the

variables before the iteration begins. For a concrete example of the instruction of line 15 mentioned

previsously ((a/2)P), one can look at the change of the a variable from Iteration 2 to Iteration 3.

B – Inversion The second option for Finite Field division relies on an algorithm that finds the inverse

of the b operand [66], represented by the x variable, which is heavily inspired by the extended Euclid’s

algorithm. Remember, however, that if we want to perform Finite Field division, we still need to execute

the RPA after this algorithm. The original Euclidian algorithm computes gcd(x, y), leveraging the fact

that the GCD between two values does not change if the larger value is replaced by the remainder of

the division between itself and the smaller value. By applying this concept until gcd(z, z) is obtained, we

have z = gcd(x, y).

The extended Euclid’s algorithm is also capable of outputting the values u and v that satisfy gcd(x, y) =

u×x+ v× y, as in each iteration i, it finds the quotient qi and the remainder ri of the division between x

and y , and performs the following operations ui = ui−2 − qi−1ui−1 and vi = vi−2 − qi−1vi−1. In order to

apply this to calculating the inverse of an element in a Finite Field, we note that the GCD between any

31

polynomial x and the irreducible polynomial P of the Field is one. As such, if we replace y with P , we

obtain 1 = u× x+ v × P ⇐⇒ 1 ≡ u× x mod P ⇐⇒ x−1 ≡ u mod P .

The algorithm of [66] also relies on multiple iterations over the operands, using only simple SHIFTs

and XORs. This algorithm finds the inverse of a value after, at most, 2n iterations, with n being the number

of bits of the Finite Field. Besides the extra values u and v mentioned previously, this algorithm also uses

an additional helper variable s, that stores the irreducible polynomial P and manipulates the operand x,

as well as a variable δ that tracks the degree of the polynomial u.

Algorithm 3.3: Inverse Algorithm
Data: x ∈ GF (2n)
Result: u = x−1

1 s← P /* P is the irreducible polynomial */

2 v ← 0
3 u← 1
4 δ ← 0

5 for i← 0 to 2n− 1 do
6 if xn = 0 then
7 x← x << 1
8 u← u << 1
9 δ ← δ + 1

10 else

11 if sn = 1 then
12 s← s⊕ x
13 v ← v ⊕ u

14 s← s << 1

15 if δ = 0 then
16 (x, s)← (s, x)
17 (u, v)← (v << 1, u)
18 δ ← 1

19 else
20 u← u >> 1
21 δ ← δ − 1

Algorithm 3.3 presents the pseudo-code. Just like with Algorithm 3.2, in lines 16 and 17, the two

assignments of each line need to be performed “at the same time” to assure the correctness of the

algorithm. Note also the if condition in line 6, that assures that the value of x is only multiplied by 2 until

its value remains within the bonds of the Field. When that does not happen, and xn = 1, we see if sn is

also 1. If it is, we XOR the two (line 12), before multiplying s by 2 and manipulating the variables according

to the delta variable in the next lines.

To conclude this section, we showcase in Table 3.4 the inversion of 223 over the GF (28) Field. Like

32

x s v delta u
Iteration 1 011011111 100011011 00000000 0 00000001
Iteration 2 110111110 100011011 00000000 1 00000010
Iteration 3 110111110 101001010 00000010 0 00000001

... — — — — —
Iteration 15 100000000 110000000 110100110 1 11010110

Final 100000000 100000000 101110000 0 01101011

Table 3.4: Inversion of 223 over the GF (28) Field

for the EBd algorithm, we present the first three and the last iterations, as well as the final result of all the

variables. The result of the inversion is stored in the u variable, which, in this case, is 107 = 0b1101011.

3.4 Analysis of Both Approaches

In this section, we briefly analyze the approaches we have described so far. Then, we explore the

characteristics, trade-offs, and where should each one of them be employed. This analysis will also help

to understand some of the challenges we faced when implementing them in a programmable switch,

which will be described in Chapter 4.

3.4.1 Takeaways from the Memory Intensive approach

The simplicity of this approach is its main advantage. All the calculations can be done beforehand in

order to populate the logarithm, anti-logarithm, and inverse tables. As such, when an operation is to be

performed, it is just a case of looking up values in these tables. This sort of table lookup based approach

is where a programmable switch typically excels. This approach can be parallelized with many packets

looking up the values in the tables per stage. However, dependencies have to be maintained. If one

multiplication is to be performed, for instance, you can only look up the anti-log value after completing

the addition of the values taken from the logarithm table. So, in a switch these operations have to occur

in multiple stages. For a division, you have to look up the inverse in the respective table beforehand.

However, this technique has a significant drawback in terms of scalability. The size of the tables that

store all the possible values grows exponentially with the size of the Field. As an example, if we perform

computations in the Field GF (28), we have 28 possible values, and each value has one byte; so, this

solution requires only 256B of stateful memory per table, a residual amount considering the memory

capacity of modern devices. However, operations are performed on a per-byte basis. If, for example,

operations are performed on the larger GF (216) Finite Field, we now have 216 = 65536 possible values

and two bytes per value; so, the table size increases to 128KB, which is still feasible. With this Field size,

we can perform two-byte operations at a time. If we want to perform computations with 128-bit words, or

16 bytes, it would require an astronomical 1039 bytes of memory. And operations over such Finite Fields

33

are required, as we have described in Section 2.2.

To address this scalability issue, the standard solution is to operate on smaller fields (GF (28) or

GF (216)), trading off the required number of table lookups. This, however, is rarely enough. As a

concrete example, coding a 1500-byte payload for Network Coding using GF (28) requires 1500 ∗ 3 =

4500 table lookups, which is a great number but still feasible for a typical CPU. Unfortunately, it is not

feasible for a programmable switch, as we will see in Chapter 5. Worse still, in cryptography, operating

in smaller Fields is impossible without considerably reducing or even breaking the security properties of

the underlying cryptographic algorithms [67,68]. In summary, this approach is only feasible if we operate

on very small packets/payloads using small Finite Field sizes.

3.4.2 Takeaways from the Computationally-Intensive approach

The algorithms presented for performing multiplication, division, and inversion all follow the same pat-

tern. A certain number of iterations is performed, and each iteration manipulates the operands using

simple instructions, like SHIFTs and XORs, which any device can perform. Recall that a network switch

using P4 cannot multiply by any number larger than 2, for example. The amount of iterations to execute

is a function of the number of bits of the Finite Field. For any field GF (2n):

1. RPA needs n iterations;

2. EBd needs 2n− 1 iterations;

3. The inverse algorithm needs 2n iterations.

The main advantages of this algorithm are the simplicity of the instructions performed in each iteration

and the scalability. In order to work with larger Field sizes, one only needs to do more iterations. Better

yet, the increase in the number of iterations to be performed is linear to the number of bits. For a

standard CPU, this is perfect, as it can perform cycles efficiently, and since the instructions are simple,

each iteration is quick to execute.

However, as the pipeline architecture of network switches includes a limited number of stages and

packet recirculation affects throughput, performing iterations is not so trivial for these devices. P4,

for instance, does not have any loop primitives, recognizing that practical challenge. The only option

is to physically unroll the iterations in order to be able to implement all of these algorithms in a P4-

programmable data plane (we explore this further in Chapter 4). Another drawback is that this approach

does not require the use of tables, so it does not take advantage of the efficiency of the device’s MATs.

Parallelization of these algorithms is also a drawback. The manipulations performed in each iteration

mean that there are data dependencies, making parallelizing the iterations practically impossible. The

only solution typically comes from selectively performing some instructions for the next iteration while

34

Figure 3.3: Memory cost vs iteration cost for various finite fields

the previous iteration is still concluding. As an example, in Algorithm 3.2, one can execute the ifs in lines

5 and 6, as well as the instructions in line 7 of iteration i + 1 while the operation of line 15 is still being

performed for iteration i, and if the instructions of lines 13 and 14 are already completed.

3.5 Summary

In summary, table-based approaches leverage the properties of the logarithms and the fact that all the

values can be pre-computed beforehand. This property, of course, means that this approach has a

memory cost that can quickly become insurmountable once the size of the Finite Field starts to grow.

However, this approach is still the most used in state-of-the-art use cases that do not need operations

in large Finite Fields and that can work with small packets or payloads.

Computational-heavy approaches leverage number decomposition and perform several iterations to

get the final result. Each iteration executes some simple instructions that manipulate the operands. The

cost of this approach is the number of required computational elements, cycles, and iterations. But the

scalability is better. The cost grows linearly with the size of the field, whereas the memory multiplication

tables scale exponentially.

We close this chapter by illustrating this point in Figure 3.3. In the x-axis, we plot the number of

required iterations for executing RPA on various Finite Field sizes (Note: linear scale). The y-axis rep-

resents the memory needed in bytes for those same Fields (Note: logarithmic scale). As one can see,

the scalability is much poorer for the memory-based approach. For the largest field, GF (2128), only 128

iterations are needed in RPA, but 1039 bytes per table are required to store all possible values.

35

36

4
Implementation

Contents

4.1 Challenges of programming a switch ASIC . 38

4.2 Finite Field Operations in a Programmable Switch . 39

4.3 Finite Field Operations in Taurus . 46

4.4 Summary . 51

37

In this chapter, we present the challenges of working with a switch ASIC. Afterward, we discuss

and present the implementation of the various Finite Field operations algorithms we introduced in the

previous chapter. We do not implement addition and subtraction because it is a simple XOR operation

that is natively present in most switches. We start by implementing both approaches for multiplication

and division in a programmable switch, Intel Tofino, using the P4 language. Next, we implement the

number decomposition-based algorithms in Taurus, using an FPGA programming language, Spatial.

Finally, we discuss the challenges we had to overcome during this process, supported by the actual

code we developed.

4.1 Challenges of programming a switch ASIC

PISA architectures have high speed requirements for processing packets (nowadays around the scale

of several Tbps), which translates in several limitations present in their programming language:

1. There is a fixed number of physical stages, and each stage has a fixed set of resources.

2. The PHV has a size limit, generally around 512 bytes. Headers, including metadata, cannot exceed

this size, and you cannot work on the actual payload of the packet.

3. The number and complexity of the actions that can be executed on a single stage are severely

limited. Usually, each stage can only perform one simple operation, like a SHIFT, an addition, or

an XOR. Multiplication or floating point operations are not possible, for example.

4. Since this is a pipelined architecture, no standard loops are allowed, and the iterations must be

unrolled so that each stage performs one or more of them. If one wants a lot of iterations or to

repeat certain operations, the packets can be recirculated inside the switch, but the throughput

suffers and decreases.

5. These ASICs are equipped with limited amounts of high-speed memory. Specifically, TCAM, suit-

able for longest-prefix matching in routing tables, and SRAM, used for exact matching and to

persist state across packets (e.g., using stateful register arrays).

6. In addition to the limited memory available, its access is also very restricted. Registers in one

stage cannot be accessed at different stages, and memory accesses are usually limited to a single

read, write, or read-write operation per stage.

38

4.2 Finite Field Operations in a Programmable Switch

We start by implementing the aforementioned approaches in a P4 programmable switch, Intel Tofino [47].

This switch ASIC is, nowadays, common in modern high scale data centers, and its architecture is similar

to other commercial network switches. As such, these implementations will showcase the capabilities of

these devices for performing Finite Field operations in-network.

We defined a new header as illustrated in Figure 4.1. The first Field, op, serves as an identifier for the

operation we want to perform (multiplication, division or inversion) and the approach we want to execute

(memory intensive or computationally intensive). This Field could occupy less than eight bits; however,

P4 demands that the total size of the header must be a multiple of eight bits. This has the advantage of

enabling more operations to be added in the future. The following two fields store the operands a and b

and, finally, the result Field will store the result of the operation. As a note, for the inverse algorithm we

do not need both operands, so we ignore one of them. In this particular case, we ignored the a operand.

Figure 4.1: Header for Finite Field operations

4.2.1 Memory Intensive Approach

For the algorithms we described in Sections 3.2.1 and 3.3.1 we pre-compute all the necessary values

(logarithm, anti-logarithm, and inverse) and load them in the MATs of the switch. One challenge we

faced was that each logic MAT can only match with one operand. So, if we want to perform a × b, for

example, we need one MAT to find the logarithm of a, another for the logarithm of b and the final one for

the anti-logarithm of the sum, each one with all the possible values of the Field. Of course, if the division

is the required operation, another table is needed for finding the inverse of the b operand. For simplicity,

we will describe the implementation of this approach for the Finite Field GF (28), so all the values will

have eight bits.

Listing 4.1 showcases the apply block in the Ingress pipeline, where the logic for calculating the

desired result is applied. We start by matching the a operand and extracting its logarithm value using

the table log a table. We then use the op header to decide whether we need to look up the value of the

inverse of b (table inverse table) for a division operation or not, before looking up its logarithm value, in

the table log b table. After having both values, we sum them together in the sum vals action, and we

39

check if this value is greater or equal to 255. If it is, we subtract 255 using the sub max action, before

looking up the final value in the table antilog table. The action of this table automatically loads the value

to the result field.

Listing 4.1: P4 apply block for table based operations

1 #define MAX SIZE 255

2 #define BIT MASK 256

3

4 table log a.apply();

5 log a = meta.tmp log value;

6 if (hdr.ff calc.op & 1 != 0) {

7 table inverse.apply();

8 } else {

9 meta.b = (bit<32>) hdr.ff calc.b;

10 }

11 table log b.apply();

12 log b = meta.tmp log value;

13 sum vals(log a, log b);

14

15 if (meta.tmp sum value == MAX SIZE | |

16 meta.tmp sum value & BIT MASK != 0) {

17 sub max(meta.tmp sum value);

18 }

19 table antilog.apply();

This code can easily be modified to work for any Finite Field size whose tables fit inside the switch’s

memory. For GF (216), for example, one just needs to change the size of the header fields a, b, and

result to have 16 bits and repopulate the tables with all the 65536 possible values. One also needs to

change the values of the MAX SIZE and BIT MASK variables to 65535 and 65536, respectively.

4.2.2 Computationally Intensive Approach

Implementing the computationally intensive algorithms in a P4 programmable switch proved, as ex-

pected, more challenging than the memory-intensive approach we showcased previously. This chal-

lenge is mainly due to these devices’ pipelined architecture. For instance, there are no available prim-

itives in the language to implement loops, as this may lead to recirculations that hurt the achievable

throughput. As such, we are required to unroll the iterations and explicitly write the source code for all

40

of them.

For all the algorithms we first started with trying to implement operations over the Finite Field GF (28),

so as to have a direct comparison with the memory intensive approach. When, due to the switch’s

constraints, that was not possible, we reduced the size until we had a program that could run in the

device. We will further explore this in Chapter 5.

Starting with the multiplication algorithm, RPA, since the Field has values with eight bits in our ex-

ample, we know we need to unroll the cycle of the RPA algorithm (Algorithm 3.1) and repeat it eight

times.

Listing 4.2: One iteration of RPA in P4

1 low bit f = meta.b & 0x1;

2 if (low bit f != 0)

3 action ff mult(true);

4 else {

5 action ff mult(false);

6 }

7 if (meta.high bit f != 0) {

8 meta.a = meta.a ˆ IRRED POLY;

9 }

Listing 4.3: action ff mult action

1 #define HIGH BIT MASK 128

2

3 action action ff mult(bool low bit) {

4 if (low bit) {

5 meta.result = meta.result ˆ meta.a;

6 }

7 meta.high bit f = meta.a & HIGH BIT MASK;

8 meta.a = meta.a << 1;

9 meta.b = meta.b >> 1;

10

11 }

Listings 4.2 and 4.3 showcase one iteration of RPA in the apply block of the P4 program and the

action, or function, that we use to execute some of the instructions, respectively. The low bit f flag is

41

set to 1 when the b operand is odd, in line 1. This value is then used in the action ff mult action to

decide whether or not to XOR a with the accumulator. This action is then also responsible for setting

a flag, high bit f , in line 7, in case a needs to be XORed with the irreducible polynomial (line 5 of the

algorithm), defined by the IRRED POLY variable. This is done by looking at the most significant bit of

a, which for this Finite Field, is the eighth bit. If the bit is 1, we know that once we multiply a by 2, it will

be a value outside the Finite Field. This XOR (line 6 of the algorithm) happens in the final instruction of

the loop, in lines 7 and 8. Afterwards, the action multiplies a by 2 and divides b by 2. These are simple

SHIFT operations by one bit.

Just like with the previous algorithm, Listings 4.4 and 4.5 showcase the P4 code executed in a single

iteration of the division algorithm presented in Algorithm 3.2. The former is the code in the apply block,

and the latter the actions performed. For GF (23), the maximum size we were able to work with, we had

to repeat the code in the first listing five times. This code is straightforward up until line 19. We use the

b pair flag to check if b is odd or not. Using the value from the meta.delta variable, we decide which

operations to execute. Either lines 4 to 9 (corresponding to lines 7 to 9 of the algorithm) or lines 11 and

12 (same lines in the algorithm). Finally, we execute lines 16 and 17, that decrement the delta variable

and divide b by 2.

We draw particular attention to the action divide val a action that sets the a variable to the result of

a ⊕ v and the v variable to the value of a and action divide val b action that sets the b variable to the

result of b ⊕ s and the s variable to the value of b (lines 7 and 8 of Algorithm 3.2). As we discussed in

Section 3.3.2, they need to use an auxiliary variable in order to operate on the correct values.

From line 19 until the end of the iteration, we execute the final instruction of the algorithm, (a/2)P .

We described how to perform it in Section 3.3.2 and compared it to the Rotate Right (ROR) instruction.

Since P4 does not have a ROR primitive, because the SHIFT primitive consumes all the computational

resources of a single stage, there is no direct way to perform it. As such, we need to execute the rotate

operation and change the bits accordingly and explicitly. In line 19, we save the a0 bit, which is then

placed in the most significant bit (a2) in line 29. In line 20, we save the bits a1a0 to help us compute what

the new value of a0 should be. Recall from 3.3.2 that a0 ← a1 ⊕ (a0 · P1). The irreducible polynomial

P for GF (23) is x3 + x + 1 and so the bit P1 is 1. As such, in the if section, we see if a0 and a1 have

different values. If they do, the new bit will be 1, else it will be 0. Finally, we save the value of the a2 bit

in line 21, since that will be the new value of a1 (the bit P2 = 0, so the XOR is irrelevant here).

Listing 4.4: One iteration of the division algorithm in P4

1 b pair flag = meta.second operand.b & 0x1;

2 if(b pair flag != 0) {

3 if (meta.delta < 0) {

42

4 aux a = meta.first operand.a;

5 aux b = meta.second operand.b;

6

7 action divide val a(meta.first operand.a, meta.first operand.v);

8 action divide val b(meta.second operand.b, meta.second operand.P);

9 meta.delta = -meta.delta;

10 } else {

11 action divide xor a(meta.first operand.a, meta.first operand.v);

12 action divide xor b(meta.second operand.b, meta.second operand.P);

13 }

14 }

15

16 meta.delta = meta.delta - 1;

17 meta.second operand.b = meta.second operand.b >> 1;

18

19 a low = meta.first operand.a[0:0];

20 a aux = meta.first operand.a[1:0];

21 a high = meta.first operand.a[2:2];

22

23 if(a aux == 2 | | a aux == 1) {

24 a help = 1;

25 } else {

26 a help = 0;

27 }

28

29 meta.first operand.a[2:2] = a low;

30 meta.first operand.a[0:0] = a help;

31 meta.first operand.a[1:1] = a high;

Listing 4.5: Actions for the division operation

1 action action divide val a(inout bit<8> a, inout bit<8> v) {

2 a = a ˆ v;

3 v = aux a;

4 }

5

6 action action divide val b(inout bit<8> b, inout bit<8> P) {

7 b = b ˆ P;

43

8 P = aux b;

9 }

10

11 action action divide xor a(inout bit<8> a, bit<8> v) {

12 a = a ˆ v;

13 }

14

15 action action divide xor b(inout bit<8> b, bit<8> P) {

16 b = b ˆ P;

17 }

Finally, we implemented the inverse algorithm (Algorithm 3.3) for the Finite Field GF (24), as it was

the maximum size Tofino could operate on. Although inversion alone can be used for some use cases,

this operation is mostly used as a step toward computing the division. For this, after the inversion is

calculated, an algorithm like RPA must be used.

Listings 4.6 and 4.7 present, just like the previous algorithms, the P4 code of a single iteration, more

specifically, the apply block code and the actions, respectively. For the Field GF (24), this code had to

be repeated eight times.

The main challenge of this algorithm was working with the amount of auxiliary variables needed,

as well as the number of manipulations per iteration. As one can see, we have four auxiliary variables

(meta.second.operand.s,meta.second.operand.v,meta.second.operand.u and meta.delta), which all had

to be stored, and ten different possible manipulations of these values. This translated in a high number of

actions and instructions. Once again, we note actions action swap a s and actions action swap shift u

that need auxiliary variables in order to assign the correct values to s and v respectively.

Listing 4.6: One iteration of the inverse algorithm in P4

1 #define MSB 8

2

3 b msb flag = meta.second operand.b & MSB;

4 s msb flag = meta.second operand.s & MSB;

5 if(b msb flag == 0) {

6 action shift b u(meta.second operand.b,

7 meta.second operand.u);

8 } else {

9 if(s msb flag != 0) {

10 action xor s v(

44

11 meta.second operand.s,

12 meta.second operand.v,

13 meta.second operand.b,

14 meta.second operand.u);

15 }

16 meta.second operand.s =

17 meta.second operand.s << 1;

18 if (meta.delta == 0) {

19 aux b = meta.second operand.b;

20 aux u = meta.second operand.u;

21 action swap b s(

22 meta.second operand.b,

23 meta.second operand.s);

24 action swap shift u(

25 meta.second operand.u,

26 meta.second operand.v);

27 meta.delta = 1;

28 } else {

29 meta.second operand.u =

30 meta.second operand.u >> 1;

31 meta.delta = meta.delta - 1;

32 }

33 }

Listing 4.7: Actions of the Inversion algorithm

1 action action shift a u(inout bit<8> a, inout bit<8> u) {

2 a = a << 1;

3 u = u << 1;

4 meta.delta = meta.delta + 1;

5 }

6

7 action action xor s v(inout bit<8> s, inout bit<8> v, bit<8> a, bit<8> u) {

8 s = s ˆ a;

9 v = v ˆ u;

10 }

11

12 action action swap a s(inout bit<8> a, inout bit<8> s) {

45

13 a = s;

14 s = aux a;

15 }

16

17 action action swap shift u(inout bit<8> u, inout bit<8> v) {

18 u = v << 1;

19 v = aux u;

20 }

4.3 Finite Field Operations in Taurus

In the next chapter we will demonstrate how the programatic restrictions of a switch ASIC significantly

limit the Finite Field sizes that can run at line rate. This led us to explore a more recent switch data plane

architecture, Taurus [4], with a more expressive programming model but also able to process packets

at Tbps speeds, already described in Section 2.4.2. Since the memory constraints of both switches are

similar, and because we know of the scalablity limitations of this approach, that precludes its use for

larger Field sizes (Section 3.4.1), we opted to focus only on the number decomposition algorithms.

The MapReduce block of Taurus is responsible for performing the actual computations and is simu-

lated with an FPGA. To program this FPGA, we leverage the Spatial language described in Section 2.3.3.

Although Spatial provides the control structures we previously mentioned in that Section, we cannot use

most of them, as they would preclude line rate processing at Taurus’ clock speeds (1GHz). We leverage,

however, a slightly modified version of the language used by the authors of the architecture [4].

Keeping the order from Section 4.2.2, we start with the code for RPA (Algorithm 3.1). Listing 4.8

showcases the implementation of one iteration of the algorithm.

The operands and variables are stored inside FIFO queues such that when an iteration begins, the

program dequeues the values from the respective FIFOs, operates on them, and finally stores the new

results in a new FIFO. The reason we do not use the same FIFO for all iterations is that Spatial, as of

now, does not support multiple write operations to the same queue. As such, each iteration needs to

write to a new FIFO. It is by using these FIFOs, as well, that we assure the correctness of the algorithm

since the iterations cannot be executed in parallel, and we leverage the pipelining of the architecture.

The code follows the algorithm precisely. Lines 8 to 10 dequeue the results from the previous itera-

tion, and in line 12, we use a mutex, which acts like an if-else. In this concrete case, if the least-significant

bit of b is 1, then we enqueue the XOR between a and result; else, we only need to enqueue the current

value of result. These operations correspond to lines 3 and 4 of Algorithm 3.1. Lines 15 and 16 check

whether or not the most significant bit of a is 0 or 1 since when it is 1, we need to XOR a with the irreducible

46

polynomial after multiplying it by 2 (lines 5 to 8 of the algorithm). This is also accomplished using the

mux construct. Finally, line 17 enqueues the new value of b, which is a simple division by 2.

Considering again a Finite Field GF (28), this code block has to be copied eight times, and we need

another eight sets of FIFOs for a, b, and result. We could easily work with larger Field sizes by copying

the block as many times as necessary and allocating more FIFOs. With Taurus, the computational

constraints are not as tight as with P4 switches, so we can easily work with larger Finite Fields. We will

explore this further in Chapter 5.

Listing 4.8: Pipe block with one iteration of RPA

1 val result stage0 = FIFO[T](4)

2 val a stage0 = FIFO[T](4)

3 val b stage0 = FIFO[T](4)

4

5 val mask a = 0x1.to[T] << 7

6

7 Pipe {

8 val a = a stage0.deq()

9 val b = b stage0.deq()

10 val result = result stage0.deq()

11

12 result stage1.enq(mux(b.bit(0) == 1, result ˆ a, result))

13

14 val flag = (a & mask a) == mask a

15 a stage1.enq(mux(flag, (a << 1) ˆ irred, a << 1))

16 b stage1.enq(b >> 1)

17 }

Next, for Finite Field division, we implemented Algorithm 3.2, EBd. As previously, Listing 4.9 presents

the Pipe blocks for one iteration. Like with the P4 version, the main challenge we faced was the (a/2)P

operation.

All the code of the first Pipe block is a straightforward implementation of the Algorithm, where each

new value of the variables is computed using the mux construct. Since the algorithm has nested if

sections (lines 5 and 6 in Algorithm 3.2), we had to place mutexes inside mutexes to compute the new

values correctly. In line 16, the last line of the Pipe block, we load to the FIFO a flag representing if the

least significant bit of a is 1. That is important for the (a/2)P operation (line 15 of the algorithm).

We note that this code is for operating with the Finite Field GF (28), which means that we work with

47

the irreducible polynomial P = x8 + x4 + x3 + x+ 1. In the second Pipe block, in line 27, we execute a

Rotate Right (ROR) operation by one bit. Spatial does not have a native Rotate operation, so we execute it

by shifting the value to the right by one bit and then placing the least significant bit in the most significant

position using a SHIFT to the left by seven bits and an OR. We know we must only manipulate bits a0,

a2, and a3 and keep the others unchanged. As such, we need three Pipe blocks to operate on each of

the bits and correctly manipulate the value of a. The Pipe block that performs the ROR operation also

manipulates the a0 bit in lines 29 to 31. The final two Pipe blocks manipulate a2 and a3, respectively.

However, these operations must only apply if the least significant bit of a is 1. Therefore, we use the

previously mentioned flag in the mutex of the final instruction of these blocks.

In order to actually perform the operation, we XOR the bit with 1 and store it in a variable. We then

use a mask that is composed of only 0s, except the bit at the required position, which is set to 1. By

NOTing this mask and doing an AND with the operand, we get the same value but with the bit at the correct

position set to 0. Finally, the OR instruction guarantees that the bit will get the value stored in the variable.

Listing 4.9: Pipe blocks with one iteration of EBd

1 Pipe {

2 val a: U8 = a reg 0 3.deq()

3 val b: U9 = b reg 0.deq()

4 val s: U9 = s reg 0.deq()

5 val delta: Int = delta reg 0.deq()

6 val result: U8 = result 0.deq()

7

8 a reg 1 0.enq(mux(b.bit(0) != 1, a, a ˆ result))

9 b reg 1.enq(mux(b.bit(0) != 1, b >> 1, (b ˆ s) >> 1))

10 s reg 1.enq(mux(b.bit(0) != 1, s,

11 mux(delta < 0, b, s)))

12 delta reg 1.enq(mux(b.bit(0) != 1, delta - 1,

13 mux(delta < 0, - delta - 1, delta - 1)))

14 result 1.enq(mux(b.bit(0) != 1, result,

15 mux(delta < 0, a, result)))

16 if swap reg 1 0.enq(a.bit(0) == 1)

17 }

18

19 // For GF(2ˆ8), we need to do the extra XOR for bits 0, 2 and 3

20 Pipe {

21 val a: U8 = a reg 1 0.deq()

48

22

23 val if swap = if swap reg 1 0.deq()

24 if swap reg 1 1.enq(if swap)

25

26 // Rotate right

27 val new a 0 = ((a >> 1) | (a << FFSize - 1)).as[U8]

28

29 val bit0 = new a 0.bit(0).as[U8] ˆ 1

30 val mask0 = 0x1.to[U8]

31 val new a 1 = ((new a 0 & ~mask0) | (bit0)).as[U8]

32

33 a reg 1 1.enq(mux(if swap, new a 1, new a 0))

34 }

35

36 Pipe {

37 val a: U8 = a reg 1 1.deq()

38

39 val if swap = if swap reg 1 1.deq()

40 if swap reg 1 2.enq(if swap)

41

42 val bit2 = (a & mask a 2) ˆ 1.to[U8] << 2

43 val mask2 = 0x1.to[U8] << 2

44 val new a 2 = ((a & ~mask2.as[U8]) | bit2.as[U8]).as[U8]

45

46 a reg 1 2.enq(mux(if swap, new a 2, a))

47 }

48

49 Pipe {

50 val a: U8 = a reg 1 2.deq()

51

52 val if swap = if swap reg 1 2.deq()

53

54 val bit3 = (a & mask a 3) ˆ 1.to[U8] << 3

55 val mask3 = 0x1.to[U8] << 3

56 val new a 3 = ((a & ~mask3.as[U8]) | bit3.as[U8]).as[U8]

57

58 a reg 1 3.enq(mux(if swap, new a 3, a))

59 }

49

The remaining algorithm is Finite Field inversion (Algorithm 3.3). Listing 4.10 presents one iteration

of the said algorithm. Our implementation computes the inversion for the elements of the Finite Field

GF (28). Since for a Field of type GF (2n) a solution is found after 2n iterations, in this case (n = 8) the

code of the listing needs to be copied 16 times. The code is a direct implementation of the algorithm,

just like with the P4 version. We note, once again, the usage of mutexes inside mutexes to reflect the

several nested decisions that the algorithm requires (lines 6, 10, 11, 15 and 19 of Algorithm 3.3) and

ensure the correctness of our implementation.

Listing 4.10: Pipe block with one iteration of the Inversion Algorithm

1 Pipe {

2 val a: U9 = a reg 0.deq()

3 val s: U9 = s reg 0.deq()

4 val v: U9 = v reg 0.deq()

5 val delta: Int = delta reg 0.deq()

6 val result: U9 = result 0.deq()

7

8 // When true, the most significant bit of a is NOT 1

9 val flag a = (a & mask msb) != mask msb

10 // When true, the most significant bit of s is 1

11 val flag s = (s & mask msb) == mask msb

12

13 a reg 1.enq(mux(flag a, a << 1,

14 mux(delta == 0, s << 1, a)))

15 s reg 1.enq(mux(flag a, s,

16 mux(flag s,

17 mux(delta == 0, a, (s ˆ a) << 1),

18 mux(delta == 0, a, s << 1))))

19 v reg 1.enq(mux(flag a, v,

20 mux(delta == 0, result,

21 mux(flag s, result ˆ v, v))))

22 delta reg 1.enq(mux(flag a, delta + 1,

23 mux(delta == 0, 1, delta - 1)))

24 result 1.enq(mux(flag a, result,

25 mux(delta == 0,

26 mux(flag s, (result ˆ v) << 1, v << 1), result >> 1)))

27 }

50

4.4 Summary

In this chapter, we presented our various solutions to run Finite Field operations in programmable

switches. The challenge was to be able to design and implement equivalent versions of the original

algorithms in the restricted computational model of these data planes. First, we started with solutions for

modern programmable switches that leverage Intel’s Tofino architecture and the P4 language, showcas-

ing both the memory intensive and the computationally-intensive approaches. Afterward, we presented

solutions for the computationally intensive approach algorithms in Taurus, a new data plane architecture,

using the Spatial language.

51

52

5
Evaluation

Contents

5.1 Experimental Setup . 54

5.2 Evaluation with the Tofino Switch . 55

5.3 Evaluation with the Taurus Switch . 60

5.4 Summary . 65

53

In this chapter, we evaluate the implementations we have showcased previously. To guide the evalu-

ation process, we try to answer these six questions:

1. Are the algorithms correctly implemented in both versions, P4 and Spatial?

2. Can we execute the operations at line rate?

3. Can we execute the operations with a satisfiable Finite Field size for both architectures?

4. How many resources are used with each approach and algorithm?

5. Can the switch perform other actions while also executing Finite Field operations?

6. How many multiplication operations can we execute inside a single packet?

5.1 Experimental Setup

Since we are working with two different architectures, an Intel Tofino switch that is a representation of

a modern switch, and Taurus, a recently proposed data plane architecture, we have two different but

similar environments we used to extract our results and simulate our solutions. For the evaluation of

the Tofino switch, we used an Ubuntu 20.04 machine with 8GB of memory and a 2-core x86 64 Intel

CPU. We use P4-Software Development Environment (P4-SDE) version 9.7 as our simulation software

and P4 Insight (P4i) version 9.7 to extract the resources and other metrics regarding our programs.

For Taurus, the same machine runs Ubuntu 16.04. As for simulating the switch, we use the simulation

software provided by [4]. Because Taurus is based on the Plasticine CGRA [69] architecture, we used

a Plasticine simulator, already extended to operate with Taurus applications, to extract the necessary

metrics. The simulator can be found in this GitHub repository [70]. The configuration of the MapReduce

block is similar to the one in the original Taurus paper [4]. We set the maximum combined number of

CUs and MUs to 120, just like Taurus does, but we do not enforce a 3:1 ratio of CUs to MUs. We allow

the simulator to select the ratio that will bring the best results in terms of the number of MUs and CUs.

This is because our use case is not dependent on this ratio. We do, however, maintain the configuration

of each CU, 16 lanes and 4 stages, and each MU, 16 banks with 1024 entries each. This way, each

CU consumes 0.044mm2 in area and each MU 0.029mm2. We also do not allow the combined area

to exceed the value of the original architecture, 4.83mm2 (90 CUs ×0.044 + 30 MUs ×0.029). This is

because this value is considered a negligible overhead with regards to a reference switch with 500mm2,

when compared to the improvements it brings [4].

54

5.2 Evaluation with the Tofino Switch

First and foremost, we try to understand if our implementations, both memory and computationally

intensive, correctly compute multiplications, divisions, and inversions with elements of a Finite Field. For

the memory intensive approach, with the GF (28) Field, we copied the tables from [5] (Figures 3.1 and

3.2) and loaded them into the switch MATs. We loaded the program in the simulator and sent packets

via the Scapy tool [71], using the header showcased in Figure 4.1.

As for the computationally intensive approaches, we empirically tested their correctness. We also

installed each program in the switch and sent packets via the same tool using the header presented in

Figure 4.1.

Since all the Field sizes we were able to run with the Tofino were relatively small – GF (28) was

the largest one – we tested our programs for all possible combinations of elements of the Fields. We

compared the results with several online resources like [72] and got 100% of our computations correct

for both approaches.

Turning our attention over to the second and third questions from this chapter’s introduction, we

know that for the operations to be executed at line rate, we cannot have any kind of recirculation of

packets. For the computationally intensive approaches that are based on iterations, it is easy to argue

that we could work with any Finite Field size if we let each packet go through the switch as many times

as needed. For example, a multiplication using RPA for the Finite Field GF (2128) (128 iterations) using

our P4 program that can perform eight iterations of the algorithm would require at least 16 passes, which

completely shatters the capability to process packets at line rate. As such, the operation needs to be

completed in a single pipeline pass of the packet through the switch.

As an important note, we only focused on Finite Fields whose elements are represented as multiples

of one Byte (or a fraction of one Byte, when that size was not possible) – GF (24), GF (28), GF (216),

and so on. Finding these limits is straightforward since the P4 compiler is responsible for allocating the

resources. In other words, if the compiler accepts the program, it means it runs at line rate in the switch.

Our results show that the maximum Field size for the various operations and approaches is:

• 16 bits (GF (216)) for multiplication, division, and inversion using the table-based, memory-intensive

approach

• 8 bits (GF (28)) for the Russian Peasant Algorithm for multiplication

• 3 bits (GF (23)) for the EBd algorithm for division

• 4 bits (GF (24)) for the inversion algorithm

• 3 bits (GF (23)) for division using inversion and RPA

55

Stages Header size
(Bytes) VLIW SRAM Logical

Table ID
Table

approach 7 29 2.86% 14.27% 5.73%

RPA 9 22 3.64% 1.35% 15.1%
EBd 11 32 5.73% 1.35% 28.13%

Inverse 12 28 7.29% 1.35% 29.17%

Table 5.1: Tofino resources used by the several approaches and algorithms implemented

With the table-based approach, 16 bits is the maximum possible size, as when we try to advance

to GF (224), we know we would have 16777216 values with three bytes each, totaling 48MB per table.

Unfortunately, the P4 compiler could not allocate that amount of memory. The computationally intensive

algorithms had an even worse performance. This was to be expected, as a Tofino switch is focused on

table matching efficiency in looking up values, and has limited computational power.

Starting with RPA, the data dependencies between iterations meant that many operations had to be

performed in different stages, as they could only occur after the operation on the previous stage was

completed. This means the maximum workable size of the Finite Field is bound by the number of stages

offered by the Tofino switch. For the next Field we experienced with, GF (216), the number of stages is

no longer enough.

EBd in P4 could only work using the Field with three bits. This is mainly due to the last operation

(a/2)P . The fact that a SHIFT operation consumes all the resources of a stage, that there is no native

ROR instruction, and that the manipulation of several bits was not parallelizable by the compiler were

crucial factors. To this, we add all the other operations that are executed inside a single iteration and the

need for 2 ∗ n− 1 iterations as the justification for the reduced size of the workable Finite Field.

Moving on to the inversion algorithm, we were able to work with GF (24), but the issues faced were

similar to EBd, even though the (a/2)P operation is not present here. Again, the amount of SHIFTs and

XORs needed, the required number of iterations, 2∗n, and the data dependencies between each iteration

were the limiting factors. Coupling this with RPA to perform division reduced even further the workable

Finite Field size to GF (23), meaning that there is no gain when compared to EBd.

Looking at these values, it is clear that they are not satisfactory for many of today’s use cases. We

will do a more thorough discussion of the implications in Chapter 6.

Moving on to the fourth and fifth questions, we used P4i to extract the resources needed for each

approach and algorithm, using the maximum Finite Field sizes for each. The results are showcased

in Table 5.1 for the number of stages used, the bytes allocated in the PHV, the number of necessary

VLIWs, the SRAM usage and the percentage of used Logical Table IDs. Some interesting insights are

taken from these results. All of these approaches do not require much header space, with the EBd

approach consuming the most but only 6.25% of the total capacity. The discrepancy in header size from

56

the three computational intensive algorithms comes from the metadata used in order to execute them,

which goes to the PHV. Recall that our defined header for these algorithms was presented in Chapter

4. Although not computationally complex, the table approach still requires seven stages due to the size

of the tables for GF (216) and a significant portion of the total SRAM. In one stage, we also saw that

more than 90% of the SRAM was being used. As expected, all other approaches consume much less

SRAM, but the trade-off appears in the number of logical table IDs, 2.6× to 5.1× more. The number

of stages used is also more significant, even though all these approaches work on smaller Finite Field

sizes. Finally, it is interesting to see that the percentage of VLIW for all the approaches implemented was

under 10%. With these results, although a fraction of resources is being used, we are far from allocating

all the available PHV space (512 Bytes) or the maximum amount of VLIW, SRAM, and Logical Table

IDs. This means a switch running these programs can execute other functions and perform other tasks

necessary by the use case being implemented.

The sixth question comes from the fact that most of the use cases we presented in Chapter 2 will

require the switch to perform more than one Finite Field operation for each packet. And, in the majority

of cases, that operation is multiplication. In Network Coding, for example, if we want to encode the entire

packet using a Field with a smaller size than the packet, we need to execute several multiplications of

some packet bits with the selected coefficient. For AES, a similar situation happens.

As such, we conducted some tests in order to see how many multiplications we could execute within

a single packet using both the memory and computationally intensive approaches. In other words, we

wanted to see how many operands we could perform operations on inside a single packet and obtain

the results once the packet left the switch. For a fair comparison, we set the Field to GF (28). As a first

step, we had to change the header used. We started with the header from Figure 4.1, removed the op

header, and added more operands and more space for the results, as presented in Figure 5.1.

Figure 5.1: Header for multiple Finite Field multiplications

For the memory-intensive approach, recall that each table (logarithm and anti-logarithm) can only

match with one operand in order to extract the necessary value. As such, for each multiplication, we

needed three tables (one table for the logarithm of each operand and another for the anti-logarithm of

the sum) with all the possible values of the Field. Since the tables are all similar, we just had to copy the

code from Listing 4.1 from lines 11 to 19 in the apply block, as many times as the number of operations.

We also had to copy the table’s definition and change to which operand they should match in the key

block. Listing 5.1 showcases the tables for a single multiplication operation that must be copied. Using

57

this approach, we reached a maximum of 15 multiplications inside a single packet before the compiler

failed to allocate all the necessary fields to the PHV.

Listing 5.1: P4 tables for Finite Field multiplication

1 table table log a {

2 key = {

3 hdr.ff calc.a: exact;

4 }

5 actions = {

6 get log a;

7 }

8 size = 256;

9 }

10

11 table table log b {

12 key = {

13 hdr.ff calc.b: exact;

14 }

15 actions = {

16 get log b;

17 }

18 size = 256;

19 }

20

21 table table antilog 0 {

22 key = {

23 meta.tmp sum value 0: exact;

24 }

25 actions = {

26 get antilog 0;

27 }

28 size = 256;

29 }

As for the computationally intensive approach, the RPA algorithm, we know we have to unroll the loop

of the algorithm as we did for the version with only one operation. Since the number of stages available

is low, it made no sense to follow the same idea as with the memory-intensive approach. In other words,

58

Figure 5.2: Two simultaneous multiplications using RPA

our approach could not be performing all the iterations of the first multiplication and only after having that

result starting the iterations for the second multiplication and so on. Our solution was then to, leveraging

the parallelism of the Tofino switch, execute the instructions of each iteration on all the multiplications

simultaneously. For example, when we need to SHIFT the first operand by one bit and XOR it with the

irreducible polynomial P depending on its value (lines 5 to 8 in Algorithm 3.1), we do these instructions

for all of the multiplications we are performing. Figure 5.2 illustrates this approach and the produced

code is shown in Listings 5.2 and 5.3. Our solution reached a maximum of eight multiplications inside a

single packet before the compiler failed to allocate more resources, especially Logical Table IDs.

Listing 5.2: Instructions for 2 simultaneous multiplications using RPA (apply block)

1 low bit f 0 = hdr.ff calc.b & 0x1;

2 low bit f 1 = hdr.ff calc.d & 0x1;

3 if (low bit f 0 != 0)

4 hdr.ff calc.result 0 = hdr.ff calc.result 0 ˆ hdr.ff calc.a;

5 if (low bit f 1 != 0)

6 hdr.ff calc.result 1 = hdr.ff calc.result 1 ˆ hdr.ff calc.c;

7

8 table forward.apply();

9

10 if (high bit f 0 != 0)

11 hdr.ff calc.a = hdr.ff calc.a ˆ IRRED POLY;

12 if (high bit f 1 != 0)

13 hdr.ff calc.c = hdr.ff calc.c ˆ IRRED POLY;

59

Number of
Multiplications Stages VLIW SRAM Logical

Table ID
Table

approach 15 6 11.20% 10.73% 39.58%

RPA 8 12 14.58% 1.87% 70.83%

Table 5.2: Tofino resources used for multiple multiplications in a single packet

Listing 5.3: Instructions for 2 simultaneous multiplications using RPA (action block)

1 high bit f 0 = hdr.ff calc.a & HIGH BIT MASK;

2 hdr.ff calc.a = hdr.ff calc.a << 1;

3 hdr.ff calc.b = hdr.ff calc.b >> 1;

4

5 high bit f 1 = hdr.ff calc.c & HIGH BIT MASK;

6

7 hdr.ff calc.c = hdr.ff calc.c << 1;

8 hdr.ff calc.d = hdr.ff calc.d >> 1;

Finally, we loaded our programs in P4i and extracted the resources in Table 5.2 in order to see what

was being used. It is interesting to see that, for the table-based approach, 15 parallel multiplications

still only consume a fraction of the SRAM memory of the Tofino switch and a relatively small number of

stages. The limitation was in allocating all the data and metadata necessary to the PHV. As expected,

the number of Logical Table IDs increased significantly but was still under 40%. Although, as expected,

the SRAM usage is much lower in RPA, at less than 2%, the amount of stages doubles as does the

number of Logical Table IDs (70%) to execute almost half the number of multiplications. This fact further

supports the computational limitations of the Tofino switch and how the table-based approach is more

suitable, although limited by its intrinsic scalability issues.

5.3 Evaluation with the Taurus Switch

Again, we first assess whether the algorithms we implemented were correct. To that end, we also tried

every possible combination of values from the Finite Field and compared them with the online resources

presented previously. Since we are just analyzing the MapReduce block of Taurus, which is simulated

on top of an FPGA, we were not required to simulate packets and therefore create a new packet header.

We can just load as input the values we wanted to work on and print the result – our results showed that

100% of the computations were correct for all three algorithms.

In order to answer the second question, we used the Plasticine simulator, which allows us to simulate

a chip with a 1GHz clock (1ns cycle time), send the values we want to operate on, and calculate how

long the MapReduce block takes to compute and process them. For each of the algorithms, we sent

60

CUs MUs Area added per pipeline
(mm2)

% of Area added
(vs. [4])

RPA 0 16 0.464 0.37
EBd 40 56 3.384 2.71

Inverse 45 56 3.604 2.88

Table 5.3: Resources consumed in Taurus for GF (28)

1024 packets with random values from GF (28) and got the following results:

• Multiplication completes in 205ns

• Division completes in 763ns

• Inversion completes in 691ns

These results allow us to answer affirmatively to the question of whether or not we can execute these

operations at line rate, as our values remain in the order of the hundreds of nanoseconds. Since data

center level switches have around 1µs of latency [73], the added latency is acceptable.

Since Taurus is just a prototype and there is no physical switch available to work on, in order to

answer the third, fourth, and fifth questions, we have to use the simulator to extract the resources

used for our algorithms that operate on the GF (28) Field, and then extrapolate the results for larger

Finite Fields. Table 5.3 showcases the number of CUs and MUs that each algorithm requires, as well

as the chip area that it would consume per reconfigurable pipeline. We will compare the area occupied

against a reference programmable switch with four reconfigurable pipelines, which takes 500mm2 [4].

For the RPA algorithm, no CUs are being used to compute the results. This result might seem

counter-intuitive, but, as we referred in Section 2.4.2, MUs can perform some simple computations,

and that is exactly what happens. The mutexes we implemented performed simple operations, and the

compiler was able to map those operations to MUs only. The area occupied per pipeline is, therefore,

relatively small. Comparing to the reference switch, if all pipelines performed RPA in the GF (28) Field,

we would only occupy 0.37% more.

The number of MUs, 16, seems to indicate that we are only using two MUs per iteration of the

algorithm, which, at first sight, seems like a good result. However, if we extrapolate this to GF (2128),

we would perform 128 iterations and need 256 MUs, which already exceeds the maximum number of

units of Taurus. It would also consume about 6% of the area of the reference switch. This extrapolation,

however, is optimistic, as we are not accounting for the number of new FIFO queues we would have

to allocate. Although we cannot operate with GF (2128), if we wanted to use all the available resources

of Taurus, we could work with the Field GF (256) or values with seven bytes. This result is a significant

improvement concerning what the Tofino switch can achieve.

As for the EBd algorithm, we observe a great increase in the amount of used resources, consuming

96 units, close to the 120 we set as the maximum. This, of course, translates to a greater consumed

61

area, of around 3.384mm2 per pipeline and 2.71% of the reference switch. This usage is mainly due to

three reasons. First, there are more iterations to be performed versus RPA for the same Finite Field.

This fact, of course, translates into more computations, which need to be executed sequentially. Second,

more iterations and variables mean more FIFO queues to be allocated and more memory necessary.

Third, the instructions inside a single iteration are more complex. As presented in Chapter 4, we have

several nested mutexes and, above all, the (a/2)P operation, which required three different Pipe blocks

and more FIFO queues.

The resources suggest that around 2.67 CUs and 3.73 MUs are needed per iteration. With the

current architecture of Taurus, we cannot compute divisions in Finite Fields greater than GF (28). This

is an improvement with regard to the computational algorithm implemented in Tofino, but still worse than

the memory-based approach.

The Inverse algorithm presents similar results to EBd, almost exhausting all the available CUs and

MUs of Taurus. This is also due to the number of iterations necessary for the algorithm to correctly

compute the results, two times the size of the Finite Field. But it is also due to the instructions that

must be executed and the number of FIFO queues necessary, five per iteration. Although there are no

complex operations like (a/2)P , several variables require three nested mutexes, which consumes a lot

of resources.

With 2.81 CUs and 3.5 MUs needed per iteration, the current settings of Taurus only allow for the

inversion to be calculated for the Field GF (28) as well. Once again, these results are an improvement

compared to the computational algorithm in Tofino, but not the memory-intensive one.

Moving on to the fifth question, there are two very different results. For multiplication, using RPA, we

are only using 16 units, corresponding to 1.33% of all the available units. As such, the remaining ones

could easily be used to perform any other tasks required by the use case being implemented. For larger

Fields, for example GF (232), which Tofino cannot operate on with either of the approaches, we would

use 64 MUs, or around 53.33%, still leaving 56 units to other tasks.

Once we take a look into division and inversion, however, the results are different. With the Field

GF (28), we are using 80% and 84.2% of the available units, respectively. Although it is not 100% of

usage, it only leaves 24 free units with division and 19 with inversion.

Other tasks could be performed, but their complexity cannot be high. We recall, however, that Taurus

still has MATs for pre and post-processing, which we are not interfering with and are free to be used for

tasks like forwarding, changing header values (destination IP addresses, MAC addresses), etc.

Finally, for the final question, we can look at it from two different approaches. The first one is similar

to what we did for the Tofino switch using the RPA algorithm. We know each Pipe block is responsible

for executing one iteration of the algorithm, so we can perform the instructions of that iteration to all of

the multiplications at the same time. We call this version Parallel. Listing 5.4 illustrates this idea. The

62

Pipe block dequeues all the values from the FIFOs and performs the necessary operations on all the

operands in parallel, before queuing them again for the next Pipe block to use.

Listing 5.4: Pipe block with instructions for 2 simultaneous multiplications

1 Pipe {

2 val a = a stage0.deq()

3 val b = b stage0.deq()

4 val c = c stage0.deq()

5 val d = d stage0.deq()

6

7 val result 0 = result 0 stage0.deq()

8 val result 1 = result 1 stage0.deq()

9

10 result 0 stage1.enq(mux(b.bit(0) == 1, result 0 ˆ a, result 0))

11 result 1 stage1.enq(mux(d.bit(0) == 1, result 1 ˆ c, result 1))

12

13 val flag a = (a & mask a) == mask a

14 val flag c = (c & mask a) == mask a

15

16 a stage1.enq(mux(flag a, (a << 1) ˆ irred, a << 1))

17 c stage1.enq(mux(flag c, (c << 1) ˆ irred, c << 1))

18 b stage1.enq(b >> 1)

19 d stage1.enq(d >> 1)

20 }

The second approach is to follow what we did for the Tofino Switch with the memory-based algorithm.

Recalling that for GF (28), we need eight iterations and, therefore, eight Pipe blocks, we could just

copy sets of eight blocks as many times as multiplications we want to perform. We call this approach

Sequential. We use Listing 5.5 to showcase it. The first Pipe block in line 1 is only responsible for the

first multiplication, and, of course, there are eight similar Pipe blocks for that operation. Therefore, the

block in line 15 is responsible for the second multiplication alone, and it only executes after the first one

is completed.

Listing 5.5: Pipe blocks with instructions for 2 multiplications

1 Pipe {

2 val a = a stage0.deq()

63

3 val b = b stage0.deq()

4 val result = result 0 stage0.deq()

5

6 result 0 stage1.enq(mux(b.bit(0) == 1, result ˆ a, result))

7

8 val flag a = (a & mask a) == mask a

9 a stage1.enq(mux(flag a, (a << 1) ˆ irred, a << 1))

10 b stage1.enq(b >> 1)

11 }

12

13 [...]

14

15 Pipe {

16 val c = c stage0.deq()

17 val d = d stage0.deq()

18 val result = result 1 stage0.deq()

19

20 result 1 stage1.enq(mux(d.bit(0) == 1, result ˆ c, result))

21

22 val flag c = (c & mask a) == mask a

23 c stage1.enq(mux(flag c, (c << 1) ˆ irred, c << 1))

24 d stage1.enq(d >> 1)

25 }

Multiplications CUs MUs
Parallel 9 53 63

Sequential 6 56 56

Table 5.4: Taurus Resources for multiple multiplications

We ran both approaches and extracted the resources used in Table 5.4. As can be seen, and as is

expected, the Parallel version is superior. It is capable of doing nine parallel multiplications, consuming

a total of 116 units, four less than the total Taurus has available. On the other hand, the Sequential

version is only able to do six, consuming a similar amount of resources, only four units less than the

other approach. Comparing this to the Tofino results we obtained, it is clear that there is only a marginal

gain with respect to the number of parallel multiplications that can be performed using the RPA algo-

rithm. Both approaches perform significantly poorer than the memory-based approach we tested with

the Tofino switch.

64

Multiplication Division Inversion
Tofino GF (28) GF (23) GF (24)
Taurus GF (256) GF (28) GF (28)

Table 5.5: Maximum Field size achievable by the architecture, using the computationally-intensive approach

Tofino Taurus
Q1: Are the algorithms
correctly implemented? Yes Yes

Q2: Can we execute the
operations at line rate?

Yes, for small
FF sizes

Yes, for larger
FF sizes

Q3: Can we execute the
operations with a satisfiable

FF size?

No,
Table 5.5

No, but improvement
over Tofino.
Table 5.5

Q4: How many resources
are used for each approach? Table 5.1 Table 5.3

Q5: Can the switch perform
other actions while executing

FF operations?
Yes Yes

Q6: How many multiplication
operations can we execute

inside a single packet?

15 table-intensive
8 computationally-intensive 9

Table 5.6: Summary of the evaluation results

5.4 Summary

We summarize our findings in Table 5.6, succinctly answering the six proposed questions for each one

of the architectures.

65

66

6
Conclusion

Contents

6.1 Conclusions . 68

6.2 Limitations and Future Work . 69

67

6.1 Conclusions

In this thesis, we designed, implemented, and evaluated Finite Field operations in programmable switches,

both using state-of-the-art commercially available architectures, and new prototype architectures re-

cently proposed. Importantly, all our solutions guarantee that packets are processed at line rate, thus

guaranteeing Tbps packet processing throughputs and sub-microsecond latencies.

We divided the approaches to performing Finite Field operations into two philosophies. Memory-

intensive approaches, which rely on the memory capabilities of the devices, and computationally inten-

sive methods, which leverage their computational power. We presented algorithms to perform Finite

Field multiplication, division, and inversion for both of the approaches, all of which already established

literature in the area. The key challenge was to adapt these algorithms in order to fit into the strict

constraints of the programmable switches that enable line rate processing.

We designed and implemented switch-compatible adaptations for all algorithms for a Tofino switch,

the reference architecture of modern switch ASIC and evaluated our solutions for correctness, resource

usage, and parallelization of multiplication operations.

From this, we conclude that current hardware can perform Finite Field operations over Fields with at

most eight bits, which can actually cater to the needs of some specific use cases, or just as Proofs-of-

Concept (like [60,61]). However, it is not able to

1. perform Finite Field operations for larger Field sizes, and

2. perform enough of those operations in parallel.

These issues are even more prevalent in the operations of division and inversion. Indeed, they are

not so common, and many use cases rely more on multiplication. But taking NC as an example, although

the majority of the performed operations are multiplication and addition, division still needs to occur in

order to decode the information. The maximum size of the Field we were able to achieve in the Tofino

switch, using the computationally intensive approaches, is very small, and the number of resources

needed was significant. For the memory-intensive approach, although the size was better, the problem

of scalability is always present.

Of course, there are easy solutions like adding more stages to the switch or even allowing recircu-

lation, but, this has important drawbacks: it either increases the switch cost (more chip area), packet

latency, and/or severely reduces throughput. None of which is acceptable.

Faced with this, we also implemented and evaluated several approaches adapted to the new Tau-

rus switch. The results we achieved showcase how Taurus can be a step in the right direction. The

architecture was able to complete the division and inversion algorithms for the GF (28) Field and the

multiplication algorithm for GF (256) one.

68

For the GF (28) Field, a small amount of area was occupied for the multiplication operation and

the latency values were in the order of the hundreds of nanoseconds, as we showcased in Chapter

5. However, the inversion and division algorithms still consumed almost all of the resources Taurus

possesses for that same size of Finite Field, and the latency values were close to 1µs.

These results seem to point out that Taurus is a step forward, but it either needs to be refined for

these specific use cases, or a new architecture is needed. In terms of refinements to Taurus, there

are several avenues we could explore and make part of the Future Work of this thesis. Since number

decomposition algorithms are not memory-intensive, one idea is to reduce the size of the MUs and

their overall number. Keeping the same overall area, we could reduce the number of lanes, potentially

decreasing the number of parallel operations we can perform. Still, we could have more stages per CU

or perhaps even more CUs, which means we could operate on larger Finite Fields (recall that the size of

the Field defines how many iterations the algorithms have to perform). We could also go the other way

and increment the number of lanes in order to work with smaller Finite Fields, potentially being able to

perform more operations in parallel.

We hope this thesis is a spark to start the discussion into the design of more powerful switch archi-

tectures, which are able to operate on larger Finite Fields while maintaining the capability to operate at

line rate.

6.2 Limitations and Future Work

6.2.1 Algorithms

We researched the most commonly used algorithms for performing Finite Field operations that were not

created for a specific use case. For example, there are algorithms that perform some computations on

one of the operands and store those results in the cache. However, that only works when the device

knows one of the operands beforehand. Regardless, there are other algorithms that can be explored

and implemented in both architectures, which might give better results than what we achieved.

6.2.2 Optimizations

Our implementations of the algorithms tried to follow the original, adapting them to the feed-forward

pipeline of a modern network switch, and we did not explore any optimizations. An interesting area of

future work is trying to explore optimizations that are fine-tuned to the target architecture, e.g. by ex-

ploiting parallelization opportunities. As an example, we could explore the usage of meta-programming

mechanisms to decrement the experienced latency in Taurus.

69

6.2.3 Other architectures

Taurus is a recently proposed, hybrid architecture that includes two computational models, one that fits

the needs of conventional match-based packet processing, and a MapReduce model that is tailored to a

different sector of applications, such as those that require Finite Field operations. However, this solution

is still not enough for important use cases that require large Finite Field sizes. For this purpose the

investigation of new data plane architectures is an area we see as with tremendous opportunities.

70

Bibliography

[1] C. Fragouli, J. Y. L. Boudec, and J. Widmer, “Network coding: An instant primer,” vol. 36, 2006.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-

defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, 2015.

[3] L. Peterson, C. Cascone, B. O’Connor, T. Vachuska, and B. Davie, “Software-defined networks: A

systems approach,” 2021. [Online]. Available: https://sdn.systemsapproach.org/index.html

[4] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus: A data plane architecture for

per-packet ml.” Association for Computing Machinery, 2022, pp. 1099–1114. [Online]. Available:

https://doi.org/10.1145/3503222.3507726

[5] N. R. Wagner, The Laws of Cryptography with Java Code. University of Texas San Antonio, 2003.

[6] M. Dworkin, “Recommendation for block cipher modes of operation: Galois/counter mode (gcm)

and gmac,” 2007.

[7] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “Epic: Every packet is checked in the

data plane of a path-aware internet,” 2020.

[8] M. V. Pedersen, J. Heide, and F. H. Fitzek, “Kodo: An open and research oriented network coding

library,” vol. 6827 LNCS, 2011.

[9] S. Lang, Undergraduate Algebra, 3rd ed., S. Axler, F. W. Gehring, and K. A. Ribet, Eds. Springer,

2005.

[10] M. R. Kibler, “Galois fields and galois rings made easy,” pp. 40–40, 2017.

[11] T. A. Whitelaw, Introduction To Abstract Algebra, 2020.

[12] C. Skalka, J. Ring, D. Darais, M. Kwon, S. Gupta, K. Diller, S. Smolka, and N. Foster, “Proof-carrying

network code,” 2019.

71

https://sdn.systemsapproach.org/index.html
https://doi.org/10.1145/3503222.3507726

[13] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox policy

enforcement using sdn,” SIGCOMM, 2013.

[14] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Enforcing network-wide policies

in the presence of dynamic middlebox actions using flowtags,” 2014.

[15] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “Fresco: Modular composable

security services for software-defined networks,” 2013.

[16] R. Hand, M. Ton, and E. Keller, “Active security,” 2013.

[17] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep packet inspection over encrypted

traffic.” ACM, 2015, pp. 213–226.

[18] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, “Scion: A secure internet architecture,”

Scion, 2017.

[19] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard

(Information Security and Cryptography), 1st ed. Springer, 2002.

[20] Aviatrix, “Is amazon inter-region peering encrypted? - aviatrix.” [Online]. Available:

https://aviatrix.com/learn-center/answered-access/is-amazon-inter-region-peering-encrypted/

[21] A. Cabañas, “Managing security at aws,” 2020.

[22] M. Baldwin, “Azure encryption overview — microsoft docs,” 2022. [Online]. Available:

https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. CRC

Press, 2001. [Online]. Available: http://www.cacr.math.uwaterloo.ca/hac/

[24] M. Dworkin, “The use of galois/counter mode (gcm) in ipsec encapsulating security payload (esp),”

2005.

[25] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a live network coding p2p sys-

tem,” 2006.

[26] Veniam, “Veniam - the internet of moving things,” 2012. [Online]. Available: https://veniam.com/

[27] S. H. Tseng, S. Agarwal, R. Agarwal, H. Ballani, and A. Tang, “Codedbulk: Inter-datacenter bulk

transfers using network coding,” 2021.

[28] R. Koetter and M. Médard, “An algebraic approach to network coding,” IEEE/ACM Transactions on

Networking, vol. 11, 2003.

72

https://aviatrix.com/learn-center/answered-access/is-amazon-inter-region-peering-encrypted/
https://docs.microsoft.com/en-us/azure/security/fundamentals/encryption-overview
http://www.cacr.math.uwaterloo.ca/hac/
https://veniam.com/

[29] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, “The benefits of coding over routing in a

randomized setting,” 2003.

[30] N. Zilberman, G. Bracha, and G. Schzukin, “Stardust: Divide and conquer in the data center net-

work,” 2019.

[31] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” Computer Com-

munication Review, vol. 27, 1997.

[32] S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and Their Applications, 2010.

[33] M. Karzand, D. J. Leith, J. Cloud, and M. Medard, “Design of fec for low delay in 5g,” IEEE Journal

on Selected Areas in Communications, vol. 35, 2017.

[34] A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies for media streaming over

wireless networks,” 2008.

[35] R. Puri and K. Ramchandran, “Multiple description source coding using forward error correction

codes,” vol. 1, 1999.

[36] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar, S. Burad, A. DeHon, and

B. T. Loo, “Flightplan: Dataplane disaggregation and placement for p4 programs,” 2021.

[37] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of programmable

networks,” Computer Communication Review, vol. 44, 2014.

[38] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in software defined networks,”

2013.

[39] V. Inc., “Vmware nsx virtualization platform,” 2013. [Online]. Available: https://www.vmware.com/

products/nsx.html

[40] C. Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, B. K. Naidu, C. Bhagat, S. Jain, J. Kaimal,

S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray, M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong,

and A. Vahdat, “B4 and after: Managing hierarchy, partitioning, and asymmetry for availability and

scale in google’s software-defined wan,” 2018.

[41] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Ra-

doslavov, W. Snow, and G. Parulkar, “Onos: Towards an open, distributed sdn os,” 2014.

[42] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM Computer

Communication Review, vol. 38, 2008.

73

https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html

[43] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-independent packet proces-

sors,” Computer Communication Review, vol. 44, 2014.

[44] P. Organization, “P4runtime specification,” 7 2021. [Online]. Available: https://p4.org/p4-spec/

p4runtime/main/P4Runtime-Spec.html

[45] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao, L. Nardi, A. Pe-

dram, C. Kozyrakis, and K. Olukotun, “Spatial: A language and compiler for application accelera-

tors,” ACM SIGPLAN Notices, vol. 53, 2018.

[46] P. Bosshart, G. Gibb, H. S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,

“Forwarding metamorphosis: Fast programmable match-action processing in hardware for sdn,”

vol. 43, 2013.

[47] I. Corporation, “Intel tofino 3,” 2021. [Online]. Available: https://www.intel.com/content/www/us/en/

products/network-io/programmable-ethernet-switch.html

[48] arkworks, “algebra/ff at master · arkworks-rs/algebra · github,” 2020. [Online]. Available:

https://github.com/arkworks-rs/algebra/tree/master/ff

[49] P. Gaudry, L. Sanselme, and E. Thomé, “Mpfq : Fast finite fields.” [Online]. Available:

https://mpfq.gitlabpages.inria.fr/doc/doc.html

[50] M. Hostetter, “Github - mhostetter/galois: A performant numpy extension for galois fields and their

applications,” 2020. [Online]. Available: https://github.com/mhostetter/galois

[51] S. Gueron and M. E. Kounavis, “White paper intel ® carry-less multiplication instruction and its

usage for computing the gcm mode,” 2014.

[52] J. Groschädl and E. Savaş, “Instruction set extensions for fast arithmetic in finite fields gf(p) and

gf(2m),” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), vol. 3156, 2004.

[53] Y. Chen, S. Lu, C. Fu, D. Blaauw, R. Dreslinski, T. Mudge, and H.-S. Kim, “A programmable galois

field processor for the internet of things,” ACM SIGARCH Computer Architecture News, vol. 45,

2017.

[54] J. L. Imana, “Low-delay fpga-based implementation of finite field multipliers,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 68, 2021.

[55] M. A. Garcı́a-Martı́nez, R. Posada-Gómez, G. Morales-Luna, and F. Rodrı́guez-Henrı́quez, “Fpga

implementation of an efficient multiplier over finite fields gf(2 m),” vol. 2005, 2005.

74

https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://github.com/arkworks-rs/algebra/tree/master/ff
https://mpfq.gitlabpages.inria.fr/doc/doc.html
https://github.com/mhostetter/galois

[56] P. H. Namin, R. Muscedere, and M. Ahmadi, “Digit-level serial-in parallel-out multiplier using redun-

dant representation for a class of finite fields,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 25, 2017.

[57] S. T. Fleming and D. B. Thomas, “Hardware acceleration of matrix multiplication over small prime

finite fields,” vol. 7806 LNCS, 2013.

[58] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-ipsec: Site-to-site and host-to-site vpn with

ipsec in p4-based sdn,” IEEE Access, vol. 8, pp. 139 567–139 586, 2020.

[59] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe, T. Wild, A. Herkersdorf, and

G. Carle, “Cryptographic hashing in p4 data planes,” 2019, pp. 1–6.

[60] X. Chen, “Implementing aes encryption on programmable switches via scrambled lookup tables,”

2020.

[61] D. Goncalves, S. Signorello, F. M. Ramos, and M. Medard, “Random linear network coding on

programmable switches,” 2019.

[62] J. D. Ruiter and C. Schutijser, “Next-generation internet at terabit speed: Scion in p4,” 2021.

[63] Y.-H. Chen and C.-H. Huang, “Efficient operations in large finite fields for elliptic curve crypto-

graphic,” International Journal of Engineering Technologies and Management Research, vol. 7,

2020.

[64] C. H. Wu, C. M. Wu, M. D. Shieh, and Y. T. Hwang, “Systolic vlsi realization of a novel iterative

division algorithm over gf(2): A high-speed, low-complexity design,” vol. 4, 2001.

[65] J. H. Guo and C. L. Wang, “Hardware-efficient systolic architecture for inversion and division in

gf(2m),” IEE Proceedings: Computers and Digital Techniques, vol. 145, 1998.

[66] K. Kobayashi, N. Takagi, and K. Takagi, “An algorithm for inversion in gf(2m) suitable for implemen-

tation using a polynomial multiply instruction on gf(2),” 2007.

[67] E. Rescorla, “Rfc 2631 - diffie-hellman key agreement method,” 6 1999. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc2631#section-2.2

[68] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede, “Low-cost elliptic curve

cryptography for wireless sensor networks,” vol. 4357 LNCS, 2006.

[69] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram, C. Kozyrakis,

and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel paterns,” vol. Part F128643,

2017.

75

https://datatracker.ietf.org/doc/html/rfc2631#section-2.2

[70] Y. Zhang, “Github - stanford-ppl/pir,” 2017. [Online]. Available: https://github.com/stanford-ppl/pir

[71] P. Biondi, “Scapy,” 2021. [Online]. Available: https://scapy.net/

[72] D. of Electrical and C. E. U. of New Brunswick, “gf(2m) calculator,” 2013. [Online]. Available:

https://www.ece.unb.ca/cgi-bin/tervo/calc2.pl

[73] D. Technologies, “Data center networking - quick reference guide,” 2020. [On-

line]. Available: https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/

Dell-Networking-Data-Center-Quick-Reference-Guide.pdf

76

https://github.com/stanford-ppl/pir
https://scapy.net/
https://www.ece.unb.ca/cgi-bin/tervo/calc2.pl
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Networking-Data-Center-Quick-Reference-Guide.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Networking-Data-Center-Quick-Reference-Guide.pdf

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Main Contribution
	1.2 Organization

	2 Related Work
	2.1 Finite Fields
	2.1.1 Finite Fields with p = 2

	2.2 Finite Field Use cases
	2.2.1 Cryptography
	2.2.2 Network Coding
	2.2.3 Forward Error Correction

	2.3 Programmable Networks
	2.3.1 Software Defined Networks
	2.3.2 P4 language
	2.3.3 Spatial Language

	2.4 Programmable Network Devices
	2.4.1 PISA architecture
	2.4.2 Taurus

	2.5 Implementations of Finite Field Operations
	2.6 Summary

	3 Finite Field Operations
	3.1 Finite Field Addition and Subtraction
	3.2 Finite Field Multiplication
	3.2.1 Memory Intensive Approach
	3.2.2 Computationally-Intensive Approach

	3.3 Finite Field Division
	3.3.1 Memory Intensive Approach
	3.3.2 Computationally Intensive Approach
	A – EBD
	B – Inversion

	3.4 Analysis of Both Approaches
	3.4.1 Takeaways from the Memory Intensive approach
	3.4.2 Takeaways from the Computationally-Intensive approach

	3.5 Summary

	4 Implementation
	4.1 Challenges of programming a switch ASIC
	4.2 Finite Field Operations in a Programmable Switch
	4.2.1 Memory Intensive Approach
	4.2.2 Computationally Intensive Approach

	4.3 Finite Field Operations in Taurus
	4.4 Summary

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation with the Tofino Switch
	5.3 Evaluation with the Taurus Switch
	5.4 Summary

	6 Conclusion
	6.1 Conclusions
	6.2 Limitations and Future Work
	6.2.1 Algorithms
	6.2.2 Optimizations
	6.2.3 Other architectures

	Bibliography
	Bibliography

