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Abstract

Concurrent append-only skip lists are widely used in data store applications, so as to maintain multiple

versions of the same data with different timestamps, rather than delete outdated information. One such

skip list implementation is JellyFish, which greatly mitigates the drop in performance witnessed in other

skip lists induced by the append-only design. JellyFish accomplishes this feat by storing in each node a

consistent timeline of values as a linked list, instead of inserting new nodes in the skip list.

In this work, we present a lock-based variant of JellyFish, using a lazy synchronization strategy,

and formally verify its functional correctness. We further show that this data structure satisfies the

specification of a concurrent map. To reason about concurrent updates on values, we define a novel

resource algebra over timestamped domains. Using the argmax operator for this algebra, we prove that

concurrent updates to the map always maintain the most recent values. We also show that updates to a

node maintain its history of values consistent. Our proofs are mechanized in Coq using the concurrent

separation logic of Iris.
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Resumo

As skip lists concorrentes mais utilizadas em aplicações de armazenamento de dados permitem apenas

inserções, de modo a manter múltiplas versões dos dados com diferentes timestamps, ao invés de

remover informação desatualizada. Uma implementação para este género de skip lists é a JellyFish,

que consegue mitigar a perda de desempenho que se observa em outras implementações devido à

não-remoção de nós. A JellyFish obtém esta melhoria ao guardar em cada nó uma lista representando

a linha cronológica dos valores associados à chave, em vez de inserir novos nós na lista.

Neste trabalho, apresentamos uma variante da JellyFish baseada em trincos, usando uma estratégia

de sincronização lazy, e verificamos formalmente a sua correção funcional. Mostramos ainda que a es-

trutura de dados satisfaz a especificação de um mapa concorrente. Para raciocinar sobre atualizações

concorrentes a valores do mapa, definimos uma nova álgebra de recursos sobre domı́nios com times-

tamps. Usando o operador argmax para esta álgebra, conseguimos provar que escritas concorrentes no

mapa mantêm cada chave associada ao seu valor mais recente. Mostramos também que estas escritas

preservam a consistência da história de valores do nó atualizado. As provas estão mecanizados em

Coq através da lógica de separação concorrente do Iris.

Palavras Chave

Lógica de Separação; Especificação; Verificação Formal; Estruturas de Dados Concorrentes; Iris; Coq.
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A map is an abstraction for a data structure which associates an identifying key to each value it stores.

This abstraction has been vastly studied in computer science holding many real-world use cases. For

instance, data store applications make use of concurrent maps to index data in a thread-safe environ-

ment. In fact, most of these applications maintain a history of values for each key in the map, so as to

record different versions of the same data, instead of deleting outdated information. This append-only

design, however, tends to hamper the performance of these concurrent maps, depending on how the

old values are stored.

As an abstraction, maps can be implemented in several ways, with different assurances on their

performance. While self-balancing trees are a classical approach, a more efficient implementation is

the skip list. Structurally, skip lists are very similar to balanced trees but maintain their balance through

a probabilistic strategy, rather than explicit rebalancing procedures. This difference makes the skip list

preferable in concurrent environments, which is why it is the most widely used map implementation in

data store applications. In particular, JellyFish [32] is a state-of-the-art skip list implementation whose

performance surpasses that of other skip lists used in industry. As an append-only skip list, JellyFish

efficiently supports version control by storing a list of values in every node. This list corresponds to the

node’s history of values with each value being assigned to a timestamp. To ensure that chronological

order is maintained, new values are never added to the list if their assigned timestamps are less recent

than any value already in the list.

Concurrent implementations, however, tend to be more error-prone than other sequential solutions.

Due to the non-deterministic scheduling of operations, concurrency makes it harder to reason about

the state of shared data. Poor synchronization between threads can lead to errors in the logic of the

program, such as returning incorrect results to queries or introducing inconsistencies to data when

performing updates. To quell these concerns, formal verification of concurrent data structures has gained

traction in recent years. Through the use of formal methods, correctness and functionality can be proven

for concurrent operations on shared resources. Not only do formally verified data structures provide

assurances to any client program on how the data is handled, but concise specifications can also be

used to prove the correctness of the programs themselves in a modular manner. Defining a general

enough specification to cover all use cases is therefore one of the main challenges regarding the formal

verification of concurrent data structures.

1.1 Contributions

In this work, we verify the functional correctness of an original lock-based variant of JellyFish. This im-

plementation adopts a lazy synchronization strategy, which makes it easier to reason about its correct-

ness. Our work proves that this skip list satisfies the specification of a concurrent map with timestamped

3



values, which we use to verify an illustrative client program. Using the concurrent separation logic of

Iris [16–18,20], we reason about updates to the map by defining a novel resource algebra for the argmax

operator. This operator abstracts the expected behaviour for map updates, since it always retains the

value with the maximum argument, which in this context corresponds to the value with the most recent

timestamp. Our proofs are mechanized in Coq and available at:

https://github.com/sr-lab/iris-jellyfish

To the best of our knowledge, this is the first effort to verify (a variant of) the JellyFish skip list

and to reason about concurrent maps with version control through timestamped domains. The main

contributions of this work can thus be summarized as follows:

• The first verification effort of the JellyFish design for concurrent append-only skip lists;

• A new concurrent map specification, which supports version control through the use of timestamps;

• A mechanized proof that our skip list implementation satisfies the concurrent map specification;

• A novel resource algebra in the concurrent separation logic of Iris for the argmax operation.

1.2 Organization of the Document

This thesis is organized as follows. We begin by presenting in Chapter 2 some general information

about skip lists and Iris. In Chapter 3, we show and explain our lazy JellyFish skip list implementation.

In Chapter 4, we abstract from the concrete implementation and discuss how we can use Iris to reason

about concurrent maps with timestamped values. In Chapter 5, we define a concurrent map specification

and explain how we can prove that our implementation satisfies such a specification. Chapter 6 contains

a proof sketch for an example client using our concurrent map specification. Finally, we discuss in

Chapter 7 the contributions of our work by comparison with related work, leaving some concluding

remarks in Chapter 8.

4
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We begin this chapter with an overview of skip lists, followed by a high-level description of the JellyFish

design for concurrent append-only skip lists. We then introduce Iris, the Coq framework that we use to

reason about our lazy variant of JellyFish.

2.1 Skip Lists

A skip list [25] is a list-based data structure, which can be considered a generalization of a sorted linked

list. This data structure is composed of a maximum number of levels, where level 0 corresponds to the

complete linked list and each level l is a sublist of level l−1. Since each level contains progressively

fewer elements of the original list, maintaining all lists sorted allows searches in higher levels to skip

elements that would otherwise be traversed in a standard linear search.

In Figure 2.1, a 3-level skip list is shown, illustrating how a key search is performed. The colored

arrows in the figure are numbered according to the order by which a thread checks them when searching

for key 17. The green arrows represent the path taken by a thread, while the red arrows represent

excluded paths, since these would skip over the node with key 17. The first green arrow can skip over

the node with key 5, since any key higher than 13 will also be higher than 5.

The search begins at the head of the list in the top level and will continue in the same level as long

as the searching thread keeps finding keys lower than 17. Whenever the next key in the current level is

higher than 17, the thread descends to the next level and continues the search from the node with the

current key. If the key is not found upon reaching the bottom level, then we can conclude that it does not

belong to the skip list. Otherwise, the search can stop in any level, as soon as the key is found.

Each level can be implemented as its own linked list, with each key having a different physical node

per level. A more efficient implementation consists in storing an array of successor pointers for each

node, without duplicating the same key. If the skip list is used to store key-value pairs, then the array-

based implementation also avoids updating the value of multiple nodes, which is particularly useful when

you transition to a concurrent context.

Concurrent skip lists are easier to implement than concurrent self-balancing trees, while offering

better performance for the same functionality. Herlihy et al. [14] state that this advantage is a result of

the skip list’s probabilistic nature, which keeps the data structure balanced through all levels, while trees

require periodic rebalancing operations that can serve as a bottleneck. Skip lists solve the balancing

Figure 2.1: Skip list traversal
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Figure 2.2: The JellyFish skip list

problem by choosing from a probabilistic distribution the height for a new node. Traditionally, the heights

follow a geometric progression over a fixed probability, which is expected to converge to a balanced

structure. However, the correctness of the different skip list algorithms is agnostic to the considered

height distribution, so we do not consider its probabilistic nature in this work.

2.1.1 The JellyFish Skip List

Several concurrent skip lists have been proposed, including append-only structures which are widely

used in data store applications (e.g., RocksDB1 and LevelDB2). Rather than overwrite existing values,

this design choice maintains a record of all values that have been stored during the data structure’s

lifetime. However, this append-only nature can induce a heavy cost in performance depending on the

chosen implementation.

One approach is to insert additional nodes with different timestamps, which greatly degrades per-

formance, since traversals through the skip list have to visit more nodes as updates are made to the

structure. A more efficient approach is to maintain a list of timestamped values per node, referred to

as the node’s vertical list. Updates to a key are then made by prepending a new value to its vertical

list, maintaining the skip list itself with the same nodes. This approach corresponds to the design of the

JellyFish skip list [32].

The skip list in Figure 2.2 illustrates the JellyFish design. Each node contains its own vertical list

reflecting the history of values associated to the node’s key. This history remains consistent by keeping

the values sorted by timestamp, as we see in key 17. The node’s most recent value 5 from timestamp

3 is found at the head of the list, preceded by value 7 which was inserted at timestamp 1. The node

with key 5 also contains a history with two values, both with timestamp 2, since JellyFish allows value

updates on a key as long as the new value is, at least, as recent as the current value. Chronological

order is thus maintained, ensuring that concurrent updates do not introduce inconsistencies in the data.

1https://github.com/facebook/rocksdb
2https://github.com/google/leveldb
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JellyFish is one of many lock-free concurrent skip list algorithms. However, while a non-blocking so-

lution is desirable to reduce contention, this approach makes it harder to reason about the correctness

of these algorithms. For instance, in the ConcurrentSkipListMap from the Java concurrency package3,

“certain interleavings can cause the usual skip-list invariants to be violated” [13]. For this reason, we

consider a lock-based skip list algorithm, which follows the design of JellyFish and employs the lazy

synchronization strategy of the lazy list of Heller et al. [12]. Inspired by the concurrent skip list of Her-

lihy et al. [13], the key idea behind the algorithm is to treat each level as an individual lazy list. The

implementation for this lazy JellyFish skip list is discussed in detail in Chapter 3.

2.2 Iris

To verify the correctness of the lazy JellyFish skip list we have mechanized proofs for its methods in the

Coq proof assistant using the Iris proof mode [19,21]. We now provide an overview on some of the main

features of Iris. For a more detailed description of the logic, the reader may refer to Jung et. al. [17].

Iris is a concurrent separation logic that allows reasoning about deep correctness properties for

fined-grained concurrent programs written in higher-order imperative languages [17]. In other words,

Iris allows reasoning about programs containing parallel composition and synchronization mechanisms

between threads, such as CAS instructions or fine-grained locking. Moreover, Iris allows reasoning about

a wide variety of programming languages that support concurrency, being parameterized by the consid-

ered language. A HeapLang implementation of our skip list algorithm is considered in this work.

HeapLang4 is a programming language provided by the Iris framework as an example on how to rea-

son about the logic. It is an untyped higher-order λ-calculus and it possesses enough of the features that

are present in most imperative programming languages that allow reference manipulation and concur-

rency. HeapLang has the usual allocation, load and store operations for dealing with dynamic memory

allocation and control. The language also provides a fork directive for the creation of threads, as well as

synchronization primitives such as CmpXchg (compare-and-exchange) and FAA (fetch-and-add).

2.2.1 Separation Logic

Iris is built on top of separation logic [24, 26], which allows reasoning about resource management.

Although many abstractions may fit this notion of resource (e.g., time), allocated memory in the heap

provides a natural way to understand the semantics for resources. With this in mind, separation logic

introduces three main constructs: the points-to connective ↪→, the separating conjunction ∗ and the

separating implication −∗ (also referred to as magic wand).

3https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
4https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md
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The points-to assertion l ↪→ x expresses the mapping between a heap cell l and its current contents

x. This assertion also implies ownership of said heap cell, i.e., exclusive read and write privileges for

that particular heap fragment. This notion of ownership is particularly relevant when reasoning about

fine-grained concurrency, since we may want to consider that different threads have exclusive access to

disjoint fragments of the heap.

The way in which we can express this disjunction of resources is through the use of the separating

conjunction ∗. An assertion P ∗ Q describes the resources which can be separated in two disjoint

fragments, with one fragment satisfying P and another satisfying Q. Although the standard conjunction

∧ from propositional logic also requires both P and Q to be satisfied simultaneously, this notion of

resource separation is what distinguishes both conjunction operands from each other. An important

observation we make is that P ⊬ P ∗ P if P is not persistent (we discuss persistence of propositions

further ahead), while P ⊢ P ∧ P . For example, we cannot have l ↪→ x ∗ l ↪→ x, since l is a single heap

cell and cannot be disjoint into two separate fragments.

The separating conjunction allows us to reason about local resources using the following rules:

FRAME
{ P } e {Q }

{ P ∗ F } e {Q ∗ F }

PAR
{ P1 } e1 {Q1 } { P2 } e2 {Q2 }

{ P1 ∗ P2 } e1 || e2 {Q1 ∗ Q2 }

In FRAME, the resource described by F is referred to as a frame. Since it appears in both the pre

and postconditions of the Hoare triple, the rule allows us to remove those resources from the context,

using only P to prove Q. This approach allows us to apply local reasoning on the execution of e by only

considering the resources which are directly affected by the program.

Local reasoning is also expressed in PAR, a rule which extends standard separation logic with con-

current reasoning: we can reason about the concurrent execution of programs e1 and e2 by splitting

disjointly the resources between both threads. On termination, both programs must provide disjoint

resources which satisfy the required postcondition when combined.

Finally, we have the separating implication −∗, which is analogous to the standard implication ⇒ from

propositional logic. For resources R1 that satisfy P −∗ Q, if we have resources R2 disjoint from R1 that

satisfy P , then combining R1 with R2 we obtain resources that satisfy Q. In other words, we have that

P ∗ (P −∗ Q) ⊢ Q, which is analogous to modus ponens from propositional logic [8].

2.2.2 Modalities

Dietrich defines modalities as “expressions that qualify assertions about the truth of statements” [8]. We

will now discuss about three modalities that the logic of Iris provides: the persistence modality □, the

later modality ▷ and the update modality |⇛.
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Although separation logic allows us to reason about exclusive ownership of resources, not all propo-

sitions express this notion and may therefore hold true for all threads, regardless of how resources are

distributed between them. Such propositions are considered persistent and we express the persistence

of a proposition P as □P . Since these propositions hold for any resource distribution, we can duplicate

these propositions as we see fit.

The assertion x = 2 is persistent, as it establishes an equivalence between the variable x and

the value 2, rather than describing a resource which can be owned. On the other hand, l ↪→ x is

not persistent, since it expresses ownership of the resource named l, which cannot be duplicated to a

disjoint set of resources (i.e., l ↪→ x ∗ l ↪→ x is not possible).

Step-indexing is introduced in Iris through the use of the later modality ▷: the proposition ▷P ex-

presses that P holds true only at the next step-index, i.e., only after a reduction step is taken. This idea

is expressed in the following rule:

HT-REC
{ P } e [(rec f(x) = e)/f, v/x] {Φ }E

{ ▷P } (rec f(x) = e) v {Φ }E

The rule states that we first take a reduction step on the function application before introducing P as

a precondition. The later modality is a key feature of the logic for reasoning about invariants, as we will

discuss further ahead.

We also need to reason about resource updates that may invalidate current assertions. In Iris, the

update modality |⇛ allows us to define a proposition |⇛ P , meaning that the current resources can be

updated to a new state that satisfies P , as long as the update is frame-preserving. An update is said to

be frame-preserving when it does not invalidate assertions about other resources (i.e., a frame) disjoint

from the updated resources.

2.2.3 Weakest Precondition

Separation logic extends from Hoare logic, meaning that proof rules are defined in the form of Hoare

triples. In Iris, a Hoare triple is a proposition of the form {P} e {v. Q}E or, alternatively, {P} e {Φ}E ,

where Φ : V al → Prop. For each triple, propositions P and Q represent the pre and postconditions,

respectively, for executing program e and, since triples are defined as propositions themselves, Iris

allows the definition of nested triples. However, triples in Iris contain an additional parameter E called

a mask, which serves as a namespace for the invariants that can be opened. As we will see soon,

invariants are given names and each invariant must only be used once before closing it, so keeping this

mask is crucial for assuring soundness.

The base definition for Hoare triples in Iris, however, is that of a weakest precondition. The weakest

precondition assertion wpE e {Φ} removes the precondition from the context, since “it is often easier and
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more direct to use the weakest precondition assertion instead of (derived) Hoare triples” [2]. Weakest

preconditions can be used to define Iris Hoare triples as follows:

{P} e {Φ}E ≜ □(P −∗ wpE e {Φ})

The persistence modality is required to make the Hoare triple duplicable and, since P is defined as

the required precondition for e to terminate with a return value that satisfies Φ, then combining these

persistent resources with resources that satisfy P will guarantee the weakest precondition for e to meet

its specification.

2.2.4 Invariants

We now discuss how we can reason about shared resources in Iris. Having already introduced persistent

propositions and how these can be duplicated for any resource, we turn our attention to invariants. In

Iris, an invariant is a proposition of the form I
N

, where I is an Iris proposition and N is the namespace

associated to this invariant. Invariants describe the state of shared resources among all threads, so

all invariants must be persistent. However, to use these shared resources, a thread must momentarily

claim exclusive ownership of them and perform any operation over those resources locally. This process

corresponds to opening the invariant and its semantics are formalized in the following rule:

INV
{ ▷I ∗ P } e { v. ▷ I ∗ Q(v) }E\N atomic(e) N ⊆ E

I
N

⊢ { P } e { v. Q(v) }E

When we open the invariant to perform an operation over the corresponding resources, we must

assure that the invariant still holds afterwards. Hence, the rule requires the proposition used as an

invariant to hold locally both in the pre and postconditions.

However, we note that the rule requires ▷I to hold and not I, which is due to the impredicativity

of the logic. By impredicativity we mean the possibility of defining nested invariants (since invariants

themselves are propositions) and without the later modality this impredicativity would yield the logic of

Iris unsound [17].

Additionally, the rule only allows an invariant to be open once, as we observe from the mask in both

triples. When we open the invariant to reason about the operation locally, we remove the namespace

N from the mask, so as to assure that the invariant is not reopened, since further inconsistencies may

arise otherwise [17].

Another restriction is that the operation on these shared resources must be atomic, since “the rule

allows us to temporarily use and even break the invariant, but after a single atomic step (i.e., before any

other thread could take a turn), we have to establish it again” [17]. In other words, by considering a

single step, we can avoid reasoning about other threads interfering with its execution, assuring that the

invariant will be preserved throughout all steps of the program, no matter how many times it is opened.
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Although the rule assures us that invariants are preserved throughout a program’s lifetime, we need

to consider that concurrent operations might still affect the results of each thread depending on the order

of execution. We thus need to reason about how these operations can be composed in a consistent

manner, which is possible in Iris through ghost state. We provide a detailed description of Iris’ ghost

state in Chapter 4 when discussing how to reason about the lazy JellyFish skip list as a concurrent map

implementation.
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Lazy JellyFish is an append-only skip list implementation where the data is organized in memory follow-

ing the JellyFish design [32], while concurrent updates to it employ a lock-based lazy synchronization

strategy. Its implementation is shown in Figure 3.1, highlighting with a solid contour the usual operations

on maps: new, get and put. A dashed contour highlights the private update procedure, which is respon-

sible for updating a node’s vertical list. To match the JellyFish design, a node for this data structure is

represented as a tuple (k, v, l, n) where:

• k is an integer for the node’s key;

• v is a pointer for the node’s vertical list;

• l is an array for the node’s locks in each level;

• n is an array for the node’s successors in each level.

In turn, the vertical list of a skip list node contains nodes represented as tuples (v, t, p) where:

• v is a value;

• t is the assigned timestamp;

• p is a pointer to the previous value’s node.

3.1 Data Initialization

The skip list’s construtor, new, initializes the data structure with two nodes, referred to as the left and

right sentinels, with keys MIN and MAX, respectively; these values bound the range of valid keys for the

map. Both arrays of the left sentinel are created with HMAX+1 entries using the AllocN primitive. All

entries of the successor array point to the right sentinel, while initLocks creates a different lock for

each entry of the lock array. Pointer arithmetic is used to index array entries: we write a+i instead of

the standard C-style notation a[i]. The right sentinel, on the other hand, has no successors or locks,

since keys will always be lower than MAX, remaining constant throughout the skip list’s lifetime. Since

the sentinels do not correspond to actual entries of the map, no value is associated to these nodes, i.e.,

these nodes have no vertical list. The constructor returns a pointer to the left sentinel. The following

diagram illustrates the initial state of the skip list, where the dashed arrow may refer to any level of height

h between 0 and HMAX:
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initLocks locks lvl ≜
if lvl = HMAX+ 1 then ()
else locks+ lvl← newlock ();

initLocks locks (lvl+ 1)

new ≜
let tail = (MAX, NULL, NULL, NULL) in
let next = AllocN (HMAX+ 1) (ref tail) in
let locks = AllocN (HMAX+ 1) () in
initLocks locks 0;
ref (MIN, NULL, locks, next)

find pred k lvl ≜
let succ = !!(pred.next+ lvl) in
if k ≤ succ.key then (pred, succ)
else find succ k lvl

findAll pred k lvl h ≜
let (pred, succ) = find pred k lvl in
if lvl = h then (pred, succ)
else findAll pred k (lvl− 1) h

get p k ≜
let ( , succ) = findAll !p k HMAX 0 in
if k ̸= succ.key then None
else let v = !(succ.val) in Some (v.val, v.ts)

link pred lvl n ≜
let new = !n in

new.next+ lvl← !(pred.next+ lvl);
new.locks+ lvl← newlock ();
pred.next+ lvl← n

createAndLink pred k v t h ≜
let next = AllocN (h+ 1) () in
let locks = AllocN (h+ 1) () in
let val = ref (v, t, NULL) in
let n = ref (k, val, locks, next) in
link pred 0 n;
n

update node v t ≜
let val = !(node.val) in
if t < val.ts then ()
else node.val← (v, t, ref val)

findLock pred k lvl ≜
let (pred, ) = find pred k lvl in
let lock = !(pred.locks+ lvl) in
acquire lock;
let succ = !!(pred.next+ lvl) in
if k ≤ succ.key then (pred, succ)
else release lock;

findLock succ k lvl

insert pred lvl n ≜
let k = !n.key in
let (pred, ) = findLock pred k lvl in
let lock = !(pred.locks+ lvl) in
link pred lvl n;
release lock

tryInsert pred k v t h ≜
let (pred, succ) = findLock pred k 0 in
let lock = !(pred.locks) in
if k = succ.key
then update succ v t;

release lock;
None

else let n = createAndLink pred k v t h in

release lock;
Some n

insertAll curr k v t h lvl ≜
if lvl = 0 then tryInsert curr k v t h
else let (pred, ) = find curr k (lvl− 1) in

let opt = insertAll pred k v t h (lvl− 1) in
match opt with
| None ⇒ None

| Some n ⇒ insert curr lvl n;
Some n

putH p k v t h ≜
let (pred, ) = findAll !p k HMAX h in

insertAll pred k v t h h

put p k v t ≜
let h = randomLevel in

let = putH p k v t h in ()

Figure 3.1: Pseudocode for the lazy JellyFish skip list

3.2 Data Retrieval

The get method performs a search for a key and returns its current value. Being parameterized by the

left sentinel pointer p and the lookup key k, it first invokes findAll to traverse the skip list as it would in

a sequential setting. The find procedure iterates over a single level, returning a pair of nodes with the

greatest key lower than k and the lowest key equal to or greater than k within the current level. Starting

from the top level, findAll calls find to obtain the current level’s pair and continues the search in the

next level starting from the first node of the returned pair. The traversal terminates once the nodes from

the bottom list are obtained.
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The pair of nodes from the bottom list is then returned by findAll, containing the last node in the

skip list with key lower than k and the first node with key equal to or greater than k, following a case

analysis for the latter’s key. If the key differs from k, then k is not in the map and so there is no value

associated to k. Otherwise, k belongs to the map’s domain and its most recent value is stored in the

head of its vertical list. We then retrieve the value and timestamp from this vertical list node.

Given that concurrent updates to the map might occur, the get method is optimistic in the sense

that it might return outdated results. However, a correct result might still be invalidated by a concurrent

write taking place immediately after the search’s conclusion, regardless of the chosen implementation.

Consider the following operations on a skip list stored in p:

let opt = get p 10 in
match opt with
| None ⇒ ()
| Some(v, t) ⇒ put p 10 (v+1) (t+ 1)

put p 10 5 1

The left thread attempts to increment the value of key 10 (if it exists), while the right thread simply

updates the same key with some arbitrary value 5. If the get operation terminates before the right

thread’s update takes place, then opt will return the current value v stored in the skip list. However, the

right thread might immediately invalidate v by overwriting it with 5. As such, the left thread’s increment

will be based on an old value, rather than the new value 5, leading to potentially inconsistent results.

As this issue will affect any implementation, it is preferable to opt for a non-blocking approach, since it

reduces contention, making the findAll procedure suitable as a helper function for the put operation.

3.3 Data Updates

Concurrent writes on the map are done through the put method, which can insert new nodes or update

existing ones. Updating a key k consists in associating it to a new value v and timestamp t. In case

the key is not found, a new node must be created with a given height h chosen from a probabilistic

distribution through randomLevel. The random height h is then passed to putH along with the remaining

arguments to execute the map update. If an insertion occurs, then the new node’s memory address is

returned by putH. Although this return value is ignored by put, it is not immediately ignored by putH in

order to reason about properties of the procedure, as we will see in Chapter 5.

Since the levels above h will not contain the new node, findAll initially traverses the skip list until

level h. The insertAll procedure is then called to either insert a new node in all remaining levels or

update an existing node. To preserve the sublist relation between levels, the traversal continues until

the bottom level, so that insertions may be executed bottom up. If a new node is inserted in the bottom

list, then this node is propagated to the upper levels for insertion; otherwise, an existing node, already

connected to all intended levels, has its value and timestamp updated upon reaching the bottom level.
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To ensure that insertions and updates are done correctly, both insert and tryInsert first call

findLock. Lazily, findLock tries to acquire the only lock it needs to perform the intended insertion

or update. It first executes find to obtain the node with the greatest key lower than k in the current level

and then acquires its lock. Since we only obtain exclusive ownership of the lock after acquiring it, we

check if the node’s successor still has a key equal to or greater than k. If not, the node no longer holds

the greatest key lower than k; find is then continued from the successor to obtain a new node, repeating

the process. Otherwise, we have acquired exclusive ownership of the lock and the successor’s key is

guaranteed to be equal to or greater than k.

If the keys are different, tryInsert will create a node for the new key-value pair. While the list

insertion is performed through the link procedure at all levels, the new node is only created at the

bottom level. Furthermore, we only validate the successor’s key at the bottom level. Due to the sublist

relation, if k is not in the bottom list, then it is not in any of its sublists. It is thus safe to invoke insert in

the upper levels without validating the keys, as long as there is only one thread performing the insertions.

This is guaranteed by having all threads reaching the bottom level first to claim the right for creating and

inserting the new node. The threads which acquire the lock after the node has been inserted will see

that the successor of the locked node has key k, so they will attempt to update its value.

The sequence of values in a node’s vertical list should reflect a monotonic increase of the associated

timestamps. Therefore, update fails when the node’s timestamp is more recent than t, since it would

yield an inconsistent timeline. On the other hand, a successful update occurs when t is more recent, as

well as when the timestamps are equal. A new node containing v and t is then prepended to the head

of the vertical list, extending the current history of values of the node.
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We now focus on reasoning about the correctness of the lazy JellyFish skip list. A key feature of Iris that

allows us to reason about mutable shared state is its capability of defining, through resource algebras,

an abstract or auxiliary state of the program, to which we call ghost state. In this chapter, we describe

ghost state and present a novel resource algebra for reasoning about values with timestamps.

4.1 Ghost State in Iris

Concurrent operations on shared data can lead to different states, depending on the order of execu-

tion and the interleavings between atomic steps of each operation. However, analysing all possible

combinations does not scale when we are dealing with several threads and operations per thread. A

better approach is to reason about operations locally, without taking into account the whole picture, i.e.,

independently of what other threads might be doing.

Ghost state provides a way of doing this by matching the physical state of shared data with an

abstract state where certain properties must hold. For instance, if we choose to model this abstract

state as a Partial Commutative Monoid (PCM), we can ensure that operations on the shared state are

commutative and associative. These two properties are useful when reasoning about concurrency,

because they imply that, for any set of operations, the order of execution is irrelevant, eliminating the

need for a combinatorial analysis.

4.1.1 Resource Algebras

Ghost state in Iris is defined as a Resource Algebra (RA), a broader algebraic definition than PCMs.

Akin to PCMs, RAs possess a carrier (or domain) M and a composition operator (·). The differences

between both constructs are present in two other properties that define a PCM: partiality and the unit

element. Partiality is a useful notion, since it allows us to express that a given operation might be

undefined between certain elements; in RAs, operations are total, but some combinations of elements

are deemed invalid through a predicate V, capturing a similar effect. Regarding the unit element, PCMs

require a single unit for all elements, while RAs generalize this notion by requiring a unit (if any) for each

element, defined by a core function. If the core is the same for all elements, then we obtain a unital RA,

which only differs from a PCM in terms of partiality. Absence of a core is denoted by the element ⊥.

To consolidate these ideas, we give the set union RA as an example. We first define the carrier

for this RA as all sets over a given type. We then define the set union as the operation for this RA,

which is possible since it is a commutative and associative operation. The core function can be defined

as the empty set for all elements, meaning that this RA is actually a unital RA. Finally, we define all

combinations as valid for this operation, since the standard set union does not impose restrictions on its

operands.
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To truly understand the role of validity in RAs, we can consider the disjoint set union RA. Unlike

with the standard set union, the disjoint set union is only allowed between sets where their intersection

equals the empty set. Thus, if both sets contain some element in common, then the RA must deem

these pairings as invalid. On all other aspects, both RAs are essentially the same.

The RA operator can be used to compose ghost state through the following rule:

a
γ

∗ b
γ

⊣⊢ a · b
γ

The dashed lines denote that we are dealing with a ghost variable (an auxiliary variable, rather than

an in-memory program variable) associated to the ghost name γ, while the separating conjunction is

used to express the ownership of disjoint ghost resources, which can be owned separately by different

threads. Through this rule, separate resources which correspond to the same ghost variable can be

combined into a single resource using the operation of the underlying RA. We can thus reason about

changes to resources locally and the RA handles how those local changes can be combined to reflect

the global state.

4.1.2 Frame-preserving Updates

If we consider the set union RA, then we have that a · x = a ∪ x and we can see that performing an

update on a, using the RA operator, entails an update on the full set, i.e., for any a′, we have that

(a ∪ a′) ∪ x = (a ∪ x) ∪ a′. We can do this update, because the thread that owns x is not affected by

the changes, since all elements in x will still be present in the full set. In other words, the update on a

is frame-preserving, as it does not disturb the frame containing x. Formally, a frame-preserving update

can be defined as:

a⇝ b ≜ ∀ x ∈ M⊎ {⊥}. V(a · x) ⇒ V(b · x)

In other words, a can be updated to b, as long as no frame x is affected by the update. Naturally, we

have that {a, b} ⊆ M. The ⊥ element is included1 in the set of possible values for x to allow updates on

elements with no frame. We can further expand this definition to that of a local update such that:

(a1, b1)⇝L (a2, b2) ≜ ∀ x ∈ M⊎ {⊥}. V(a1) ∧ a1 = b1 · x ⇒ V(a2) ∧ a2 = b2 · x

A local update requires a stronger constraint on the frame x, since it enforces x to yield ai by compo-

sition with bi when attempting to update both a1 and b1. The relevance of local updates becomes clear

in the context of authoritative ghost state.

1⊎ stands for the disjoint set union
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4.1.3 Authoritative Ghost State

An authoritative RA is built on top of some other RA, being constituted by an authoritative resource

(preceded by •) and a fragment resource (preceded by ◦). Through the underlying RA, a fragment

resource can be decomposed into multiple fragments by applying the fragment composition rule:

◦ (f1 · f2) = ◦ f1 · ◦ f2

The rule also allows fragments to be combined such that the combination of all fragments yields the

indivisible authoritative fragment. The relation between the authoritative and the fragment resources can

thus be expressed through the rule:

• a · ◦ f
γ

⊢ ∃ x ∈ M⊎ {⊥}. a = f · x

In other words, a fragment f must be included in the authoritative element a. This is a useful property

to reason about concurrency, since it enables us to reason about a shared authoritative resource while

each thread possesses its own private fragment. Updates to a private fragment should thus reflect

updates to the authoritative resource, which is where local updates play their role.

Frame-preserving updates for an authoritative RA require that updating a fragment has no effect on

other fragments. On one hand, those fragments should constitute a frame to our update. On the other

hand, the authoritative resource should be updated such that it remains equal to the combination of all

fragments. Therefore, if the frame fragments complete the initial fragment to obtain the authoritative

resource, then the same frame should complete the updated fragment to obtain the new authoritative

resource. This notion coincides with the local update definition, meaning that a frame-preserving update

is defined as:

(a1, f1)⇝L (a2, f2)

• a1 · ◦ f1 ⇝ • a2 · ◦ f2

4.2 The argmax Resource Algebra

Our goal is to verify an implementation for a concurrent map. Since ghost state must represent an

accurate abstraction of the data we are reasoning about, we require a suitable RA over maps. To define

such a RA, we need to first understand how composition between maps should be applied.

4.2.1 Map Composition

For maps with no keys in common, we can simply merge both maps into a single map with all key-value

pairs, similarly to the set union. However, when both maps have some key in common, the associated

value in each map might differ from one another. In this scenario, what value should the key possess?
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One way of handling this issue would be to invalidate such combinations, just like we did with the disjoint

set union RA. Another approach would be to combine both values, following the composition rule for

singleton maps, where { k : v } expresses a mapping of key k to a value v:

{ k : x } ∪ { k : y } = { k : x · y }

For this rule to be applicable, we need to make value composition possible, which means that the

carrier of our map RA must map keys of a given type to values that belong to another RA. This leaves

us with a new question: what value RA makes sense in the context of our problem? If two threads put

different values for the same key, then what value should the key be mapped to? The answer to this

question will depend on the timestamps of each insertion.

4.2.2 Value Composition

The map should always store the value with the most recent timestamp. If both timestamps are equal,

then both values will be prepended to the key’s history, but their relative order will depend on the sched-

uler. Otherwise, the value with the most recent timestamp will become the new head of the key’s vertical

list, while the least recent insertion will only succeed if it gets scheduled first. In other words, combina-

tions between values yield the value (or one of the values) with the maximum timestamp, which means

that we will need to define a RA for the argmax operation.

To the best of our knowledge, our work is the first to formalize the argmax RA and use it in the

verification of concurrent maps. The main complication with this operation consists in how one should

handle when multiple arguments have the maximum value. We address this concern by defining the

carrier for our RA as pairs between sets of arguments and values. We can then define the RA operator

such that combining two pairs yields the pair with the maximum value. If the values are equal, then

a new pair is returned, containing the same value and the union between both arguments. Finally, all

combinations are defined as valid and a botZ element is added to the carrier to serve as unit. The

argmax operator is thus defined such that for all sets of arguments (a and b) and values (i and j): (a, i) · (b, j) = (b, j) if i < j
(a, i) · (b, i) = (a ∪ b, i)
(a, i) · botZ = (a, i)

In the context of maps with timestamped values, this novel RA will ensure that each key is associated

to the timestamp at which its most recent update occurred, as well as to a set of values, which were all

inserted with the key’s associated timestamp. We require this set, rather than the actual value stored in

memory, to keep track of every value that might be at the head of the key’s vertical list. Since updates

with the same timestamp will result in a non-deterministic ordering of operations, any of those updates

can be the last one to be prepended to the list.
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4.2.3 Map Insertion

Updates to a map can also be made through explicit insertion of new values rather than map composi-

tion. The map ⟨k : v⟩m is a result of replacing the value of key k in m with value v. Both operations on

maps are related through the following rules:

m[k] = None

m ∪ { k : v } = ⟨k : v⟩m
m[k] = Some(vi)

m ∪ { k : v } = ⟨k : vi · v⟩m

If the m does not contain key k, then insertion and composition are equivalent. Otherwise, the

inserted value must be the composition between the existing value vi and the new value v. In simpler

terms, we can perform the insertion by letting value composition determine what value should be stored.

This equality can be proven as follows:

m ∪ { k : v } = ⟨k : vi⟩(m \ {k}) ∪ { k : v } = (m \ {k}) ∪ { k : vi } ∪ { k : v } =

= (m \ {k}) ∪ { k : vi · v } = ⟨k : vi · v⟩(m \ {k}) =

= ⟨k : vi · v⟩m

We first begin by replacing m with ⟨k : vi⟩(m\{k}), as removing k from m and then inserting its initial

value vi yields the original map. Since k is not in m \ {k}, we can replace insertion with composition,

combine both singleton maps and replace composition with insertion. Finally, insertion will overwrite any

existing value for k, so we can just replace m \ {k} with m.

4.2.4 Local Updates on Maps

The introduction of a botZ element to the carrier of the argmax RA stems from the local update rules on

maps. Since we need to reason about concurrent updates on maps, the authoritative RA enables us to

reason about the contributions of each thread separately, through the application of local updates. How-

ever, the requirements for performing local updates on maps will vary depending on the key’s presence

(or absence) in the considered maps.

If the key is not in the authoritative map, then it cannot be in any existing fragment. As such, a thread

can insert a key k into the authoritative map mA and its own fragment mF , as long as the associated

value x is valid with respect to the value RA. This idea is expressed by the rule:

mA[k] = None V(x)
(mA,mF )⇝L (⟨k : x⟩mA, ⟨k : x⟩mF )

Conversely, if the authoritative map contains the key, then some existing fragment must also contain

that map entry. However, a thread performing an update on that key might not be in possession of that

27



fragment. It is therefore necessary to consider the scenario where the local fragment possesses an

entry for the key, as well as when it does not.

If the updating thread is in possession of some fragment which contains an entry for the key, then

we only need to assure that the new values for the key (a and f ) in the authoritative and fragment maps

can be obtained by performing a local update on the initial values in those maps (ai and fi). Both maps

can thus be (locally) updated such that:

mA[k] = Some(ai) mF [k] = Some(fi) (ai, fi)⇝L (a, f)

(mA,mF )⇝L (⟨k : a⟩mA, ⟨k : f⟩mF )

Alternatively, if the thread’s local fragment has no entry for the key, then we do not have an fi element

for the pair required by local updates. For this reason, the local update rule for this scenario assumes

the existence of a unit element ε for the pair, since a unit is compatible with any frame by definition. Such

an update can take place by applying:

mA[k] = Some(ai) mF [k] = None (ai, ε)⇝L (a, f)

(mA,mF )⇝L (⟨k : a⟩mA, ⟨k : f⟩mF )

It is due to this rule that we include botZ in our carrier. Without a unit element, we would not be

able to prove local updates for this scenario. However, we still need to define a local update rule for the

argmax RA. A general rule for local updates, which suffices for the purposes of this work, states that you

can simply add the same frame z to both values in the authoritative and fragment resources:

(x, y)⇝L (x · z, y · z)
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Ghost state allows us to reason about concurrent maps in the abstract world of RAs. We now show how

these abstractions can help us in reasoning about the physical state of a concurrent map and define a

specification for its operations. We begin by describing the high-level specification and then present in

detail its underlying definition.

5.1 Rules and Hoare Triples

We require a representation predicate to describe the known state of the map: due to the chosen

implementation for this map, we refer to the representation predicate as IsSkipList. On one hand, this

predicate refers to the physical state of the map, so it should be parameterized by the pointer for the left

sentinel of the skip list which implements the map; on the other hand, it must reflect the abstract state of

the map, so it should also be parameterized by the abstract map that matches the physical layout of the

structure.

In a concurrent setting, however, threads won’t always have full knowledge of the map’s state. For

instance, when two threads insert concurrently in different positions of the map, they are not aware of

what the other thread is doing, because they are handling separate data. Thus, we need to reason

about the map with only partial knowledge at our disposal, meaning that the IsSkipList predicate

should describe a partial view (or fragment) of the map, rather than the full view. We can then use the

map RA operator to perform local updates on partial views and combine these partial views to obtain

a more complete view of the map. The SKIPSEP rule shown in Figure 5.1 is what allows us to combine

fragments in this manner, as well as to share ownership of the map between threads by splitting views

into fragments.

IsSkipList is defined as follows. The first parameter is a pointer to the head of the skip list and

the second parameter is a map with partial knowledge of the full map. The third parameter indicates

whether we are in possession of the full view: it corresponds to a fraction ranging between 0 (exclusive)

and 1 (inclusive). Full knowledge of the map’s state corresponds to a fraction of 1, while splitting a view

results in views with smaller fractions. The full view can only be obtained without sharing ownership,

since excluding fractions of 0 ensures that it can only be split into fragments with a fraction lower than 1.

The fourth parameter provides the required ghost names, as views can only be combined if they refer to

the same ghost state.

Our concurrent append-only map contains three public methods: new, get and put. In Figure 5.1,

we show the Hoare triples for each operation using the IsSkipList predicate. The specification for new

(SKIPNEW) is rather straightforward: no resources are needed as a precondition and creating the skip

list returns the full fraction of an empty map. The other operations, however, possess more complex

semantics.
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SKIPSEP
IsSkipList(p,M1, q1, γ) ∗ IsSkipList(p,M2, q2, γ) ⊣⊢ IsSkipList(p,M1 ∪M2, q1 + q2, γ)

SKIPNEW

{ True } new { p. ∃ γ. IsSkipList(p,∅, 1, γ) }

SKIPGET
MIN < k < MAX

{ IsSkipList(p,M, 1, γ) } get p k

{
v?.

IsSkipList(p,M, 1, γ) ∗ ((v? = None ∗M [k] = None)∨
(∃ v, S, t. v? = Some(v, t) ∗M [k] = Some(S, t) ∗ v ∈ S))

}
SKIPPUT

MIN < k < MAX

{ IsSkipList(p,M, q, γ) } put p k v t { IsSkipList(p,M ∪ {k : ({v}, t)}, q, γ) }

Figure 5.1: Specification for the lazy JellyFish skip list

Searches in our concurrent skip list are optimistic, meaning that, if some thread is searching for a

key that another thread is inserting or updating, the searching thread might return an outdated result.

For this reason, the specification for get (SKIPGET) is only defined for the scenario where we have full

ownership of the data structure. Since we know that no other thread is in possession of some map

fragment, we can be certain that no concurrent write will interfere with the search. We can then prove

that searching in the data structure for any key within the valid key range is equivalent to performing a

lookup for the same key in the abstract map. Using the argmax RA for value composition, we can show

that the key’s set of values stored in the abstract map necessarily contains the value returned by the

search. In other words, the sets of values in the abstract map encompass all possible results for the

search method. We will now see how the put specification (SKIPPUT) ensures that none of these sets

contain more than their possible results.

The put method attempts to update a key with a given value and timestamp such that the key is

within the valid key range. If the key has not yet been inserted into the map, then a new node with the

given key, value and timestamp will be created and linked to all levels within its height range, updating

the physical state of the map. To express this change in the abstract state, the postcondition of SKIPPUT

simply combines the view we have of the map with a singleton map that associates the key to a singleton

set containing only the given value (i.e., the only value that we know is associated to the key) and to the

given timestamp. Since we know that the key is not in the map, adding a new key to our partial view is

equivalent to adding it to the full view. While it is simpler to understand why this singleton composition

works when we insert a new key, this update to the abstract map also works when we attempt to update

an existing key.

Under the assumption that the key already exists in the map, we can infer that the abstract map

results from a composition with some singleton map for that same key. Furthermore, while the key may

not exist in our partial view, we know that updates to partial views are equivalent to updates to the full

view. Thus, that singleton map, which we extract from the full view, will be combined with the singleton
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map from the update to our partial view. We can then apply the composition rule for singleton maps and

obtain a new singleton map for the same key, with its value being the combination between the existing

value and the new one. Using the argmax RA, this combination retains the values with the most recent

timestamp, which is the intended behaviour for updates to a node’s vertical list.

When both timestamps are equal, a set with both values is kept in the abstract map, even though

update will prepend the new value to the vertical list. To understand why this is correct we need to

consider that we are dealing with concurrent updates. Although we know that the thread that comes last

will be the one to define the key’s new value, we do not know the order by which these updates occur.

Combining values in this manner ensures that the abstract map will always associate a key to every

value that might be at the head of its vertical list, regardless of the update order.

We note that SKIPPUT is a very simple specification when compared to SKIPGET. This is due to the

abstraction provided by Iris’ ghost state. The map RA perfectly abstracts the put operation, while the

specification for get is defined based on this abstraction. In other words, get does not possess its own

abstraction, leading to a more convoluted and less readable specification, as opposed to put.

5.2 Representation Predicate

To define the IsSkipList predicate, we first need to consider that operations on the skip list can be

decomposed into local operations on the linked list of each level. This property allows us to reason about

the correctness of the whole data structure by reasoning about each level independently. Thus, we can

define a new predicate to describe the invariant resources for a given skip list level, while IsSkipList

simply asserts ownership of the resources for all levels.

However, while all levels possess the same physical structure, the bottom level is the only one which

contains all key-value pairs of the map. Since both put and get perform a traversal until the bottom, all

reasoning about insertions, updates and lookups on the map can be done at this level; the other levels

serve only to guide traversals through the optimal path. Additionally, the bottom level is the only level

that is not a sublist of some other level. Therefore, we define the IsSkipList predicate using two distinct

invariant definitions: one for the bottom list and another for its sublists.

The IsSkipList predicate is thus defined using a unique invariant for each level, as shown in Fig-

ure 5.2. The invariants are represented by a solid border: the BotListInv predicate holds the shared

resources for the bottom list, while the SublistInv predicate describes the upper levels. The parame-

ter p should point to the left sentinel and the corresponding points-to assertion is made persistent (□),

since it will always point to the same node. The parameter γ is a list containing the names for the ghost

variables of each level. The parameters M and q are used in the assertion within the dashed border to

express the partial view of the map, as we will now see by describing the bottom list invariant.
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Representation Predicate

IsSkipList(p,M, q, γ) ≜ ∃ head. p ↪→□ head ∗ head.key = MIN ∗

◦q M
γ0
F
∗ BotListInv(head, γ0)

levelN(0)

∗
HMAX∗
i=1

SublistInv(i, head, γi, γi−1)
levelN(i)

Invariants
BotListInv(head, γ) ≜ ∃M,S,L.

•M
γF

∗ • S
γA

∗ KeyRange \ S.keys
γT

∗

M.keys = S.keys ∗ S ≡P L ∗ Sorted(Lcat) ∗

|L|∗
i=0

(
IsNext(0, Lcat[i], Lcat[i+ 1]) ∗
HasLock(0, Lcat[i], InBotLock)

)
∗

∗
n∈S

(
∃ v, vs. n.val ↪→1/2 v ∗ v.val ∈ vs ∗

M [n.key] = Some(vs, v.ts)

)

SublistInv(lvl, head,Γ, γ) ≜ ∃ S,L.

• S
ΓA

∗ KeyRange \ S.keys
ΓT

∗

S ≡P L ∗ Sorted(Lcat) ∗

|L|∗
i=0

(
IsNext(lvl, Lcat[i], Lcat[i+ 1]) ∗
HasLock(lvl, Lcat[i], InSubLock)

)
∗

∗
n∈S

(
◦ {n}

γA

∗ {n.key}
γT

)

Lock Resources
InBotLock(n, 0) ≜ ∃ s, succ. n.next[0] ↪→1/2 s ∗

s ↪→□ succ ∗ (succ = tail ∨ ∃ v. succ.val ↪→1/2 v)
InSubLock(n, lvl) ≜ ∃ s. n.next[lvl] ↪→1/2 s

where levelN(i) maps level i to its invariant namespace
KeyRange ≜ {k : Z | MIN < k < MAX}
tail ≜ (MAX, NULL, NULL, NULL)

Lcat ≜ [head] ++ L++ [tail]

IsNext(lvl, pred, succ) ≜ ∃ s. pred.next[lvl] ↪→1/2 s ∗ s ↪→□ succ

HasLock(lvl, node,R) ≜ ∃ γ, l. node.lock[lvl] ↪→□ l ∗ IsLock(γ, l, R(node, lvl))
IsLock is the predicate for the lock invariant

Figure 5.2: Definition of the representation predicate and invariants

5.3 Invariant for the Bottom List

Since the bottom list represents the full view of the abstract map, its shared state should reflect an

equivalence between all entries of the abstract map and the existing physical nodes in memory. However,

the IsSkipList predicate only expresses a partial view of the map, so we need relate private partial

views to the shared full view. This can be accomplished with the authoritative RA presented in Chapter 4.

5.3.1 Partial Views

The idea is to maintain inside the invariant an authoritative resource as the full view of the map, with

each thread holding their own fragment resource as a partial view. By opening the invariant, a thread

obtains temporary ownership of the authoritative map and can perform a frame-preserving update to it

and to the fragment it possesses, reflecting the intended changes to the map. In other words, a given

thread’s fragment resource can be seen as the combination of all its contributions to the map, meaning

that combining all existing fragments should yield a resource containing the whole map. For this reason,

the IsSkipList predicate asserts ownership of a fragment resource to reflect the partial view.
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Figure 5.3: Authoritative ghost state for a linked list

Figure 5.3 provides a graphical example of how this authoritative ghost state can match the physical

state of the list. The authoritative resource is represented as a black round box containing all keys of

the linked list. The white round boxes represent fragment resources containing only a subset of those

same keys. The underlying map RA allows for composition of maps with the same keys, which is why

both fragments intersect in key 1. Furthermore, the red-bordered fragment containing keys 1 and 4

demonstrates that the keys in a fragment are not required to be directly linked in the list, i.e., fragments

do not represent a contiguous portion of the linked list.

However, the rule for fragment composition can lead to problems as the one shown in Figure 5.4. If

we were to consider an incorrect implementation of the put operation, where a random element is also

successfully inserted, then we could separate that additional element from the partial view. The proof

could then be completed by discarding the fragment with the random element, even though we know

the operation is incorrectly implemented. This issue can be solved by adding fractions to the fragments,

updating the fragment composition rule to:

◦q1+q2 (f1 · f2) = ◦q1 f1 · ◦q2 f2

This change to the rule ensures that fragments can only be split by reducing their corresponding

fractions. By enforcing the postcondition of SKIPPUT to preserve the owned fraction, the random element

can no longer be discarded, since that would yield a smaller fraction than required. For instance, in the

figure example we cannot discard the fragment with key 4, since the partial view would not maintain its

fraction of 1 due to the restriction on any fraction q being greater than 0. We can thus prove that the put

operation only performs the intended update, with the thread’s fragment resource reflecting its result.

Figure 5.4: Example of an incorrect implementation of put
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5.3.2 Set Membership

Although fractions are necessary to express partial views accurately, the authoritative RA by itself is

more adequate for dealing with set membership assertions. Ownership of a fragment containing a

singleton set entails that the singleton’s element belongs to the authoritative set, without requiring any

knowledge about the rest of the set or what fraction of the set we currently hold. This property of the

authoritative RA is useful for verifying concurrent traversals when we do not have full ownership of the

data structure.

Traversals are a recursive procedure where we loop over some (or all) nodes of the set until the

desired node is found. For all node visits, the invariant is that the current node is one that belongs to the

set. Thus, a set membership assertion for the visited node is necessary as a precondition to prove the

correctness of a traversal that passes through that node. In other words, the ghost state for the bottom

list should also contain an authoritative set of nodes, matching the physical nodes of the skip list.

5.3.3 Invariant Definition

The BotListInv predicate in Figure 5.2 shows the invariant for the bottom list. Since the shared re-

sources can be updated, the invariant is existentially quantified by a map M , so as to not retain a

constant inside the invariant. Combining all partial views will give us the full map, so no information is

lost; we only require that such a map exists as an authoritative resource in the invariant. All updates to

a fragment resource must necessarily be applied to the authoritative resource, so we can assert that the

full view obtained by combining all map fragments is equivalent to the authoritative resource M .

The invariant also contains an authoritative resource S for the set of nodes, enforcing that the set

must contain the same keys as the abstract map M . However, due to the unordered nature of sets, we

are unable to express that the physical list (including the sentinels) must always remain sorted. For this

reason, the invariant is also existentially quantified by a list L containing the same nodes as S. The

chain of successor pointers created by the nodes should thus reflect the order of this list.

For each contiguous pair of nodes in Lcat (L concatenated with both sentinels), the IsNext predicate

asserts that the first node of the pair should point to the second one. We require two distinct points-

to assertions to relate a node with its successor: one for the node’s array entry and another for the

successor pointer it stores. Since each key can be present in more than one level, each node holds an

array of successors, whose entries can be overwritten as new nodes are inserted into the data structure.

Furthermore, it is possible for different nodes to have the same successor in different levels, meaning

that each array entry should store a pointer instead of the node itself. To ensure that the successor

pointer remains unchanged, we resort to the persistent points-to assertion, granting read-only access to

its contents.
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The value of each node should also reflect the key-value pairs from the abstract map M . However,

M contains a set of possible values for each key, while a physical node can only store one actual value

in memory. So, for each node we assert that a lookup for the node’s key in M should return the node’s

timestamp, as well as a set of values containing the node’s real value.

5.3.4 Lock Resources

Finally, we need to consider that both the value and the successor of every node are allowed to be

updated. However, while every thread possesses unrestrained read access to these fields, write access

is only granted once a thread acquires the associated lock. It is thus necessary to split the ownership

of these fields between what is inside the bottom list invariant for read access and what is protected

inside the lock invariant for write access. We solve this issue again by introducing fractions to points-to

assertions, where write access is granted only when we hold the full fraction.

The InBotLock predicate, which describes the resources protected by a node’s lock, contains a frac-

tion of the points-to assertion for the node’s array entry, as well as a fraction of the points-to assertion

for its successor’s value; the remaining fractions are kept in the bottom list invariant. The persistent as-

sertion for the successor pointer is also stored inside the lock invariant so as to connect both assertions.

The locks themselves are also stored in an array, but since they remain the same during the node’s

lifetime, the points-to assertion for each lock may also be made persistent.

As can be interpreted from the BotListInv definition, the sentinel nodes are treated as an exception

among the nodes. Due to the keys being restricted to KeyRange, the left sentinel has no predecessors

and the right sentinel has no successors. These nodes never have their values updated as well, since

they do not represent actual map entries. We can see that the left sentinel’s value is not protected, since

it has no predecessors to invoke the InBotLock predicate. The right sentinel’s value is also ignored by

the disjunction in InBotLock, when invoked by its predecessors. Since the right sentinel never changes

successors, there is no need to invoke HasLock on it.

5.4 Invariant for Sublists

We have seen how to reason about the skip list’s underlying map using the invariant for the bottom list.

We now turn our attention to its sublists, which serve to guide the search through the skip list towards the

intended node in the bottom list. Since values are never consulted during traversals in the upper levels,

no map logic is necessary for the sublist invariant. However, the information kept within the sublist

invariant should pertain to the level directly beneath it, which we did not consider with the bottom list for

obvious reasons. Thus, the relation between consecutive levels in the skip list is our main concern in

defining the sublist invariant.
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5.4.1 Sublist Relation

The key property behind the skip list design is that each level contains a sublist of the list contained in

the level below it. In other words, when we stop the search in one level, we can continue the search in

the next level from the same key without visiting its predecessors. Therefore, concluding a traversal in

one level should provide the necessary context to verify the traversal in the next level.

As we discussed previously, to verify a traversal we require a set membership assertion for the node

we are currently visiting, which can come in the form of a fragment resource from the authoritative set

in the intended level. A node in the upper level should thus contain a fragment from the lower level, so

that the succeeding traversal may be proven correct. Figure 5.5(a) captures this idea, associating the

fragments of each node in level k+1 to the authoritative resource in level k.

The lower fragment can be obtained by updating the authoritative resource when inserting the node

in the corresponding level. Since insertions are performed bottom-up, we obtain the fragment from the

lower level before inserting in the upper level. The node can thus be inserted in the upper level, storing

the fragment inside the level’s invariant and returning a new fragment from the level’s authoritative set.

5.4.2 Ghost Tokens

While the lower level fragments are required to express the sublist relation, verifying the insertion pro-

cedure within a given level requires additional information. When inserting in the bottom list, we check if

the key from the successor node is equal to the key we want to insert; this verification step ensures that

only one thread inserts the key in all intended levels. Since the absence of the key in the bottom level

implies its absence in all levels, the inserting thread can insert in any upper level without checking the

key of the successor in that level. To prove that the insertion is correct, however, we must still show that

the new key and the successor’s key are distinct, even though it is not made explicit in the code. We can

take advantage of the fact that these insertions occur bottom-up to reason about this issue.

(a) Sublist relation (b) Token system

Figure 5.5: Ghost state relating consecutive levels
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The idea is for every node to hold a token associated to its key; similarly to the aforementioned

fragments, this token can only be obtained after inserting the node in the level below. Since we perform

the insertion in the lower level before the upper level, we already have the token from the former when

attempting to insert the node in the latter. Furthermore, we know that each node must hold its own

token, so the successor from the upper level must hold a token from the lower level. By ensuring that

each level contains a single token per key, we can infer that the token we hold and the successor’s token

must refer to different keys. Therefore, the keys are distinct and the node can be inserted in the upper

level, without explicitly checking the keys in the code. The token is then stored in the invariant and a new

token is extracted from the invariant to use in the next insertion.

This token system can be constructed using the disjoint set union RA (described in Chapter 4), with

each level containing KeyRange as the initial set of tokens. A token for a given key is merely a singleton

set containing that key and can be obtained by extracting the key from the set of available tokens. As the

RA requires sets to be disjoint, the remaining keys in the set will not include the extracted key. Thus, the

following tokens to be extracted will necessarily contain different keys from the tokens that have already

been extracted, meaning that ownership of two tokens implies that their respective keys must differ from

one another.

A graphical visualization of the token system can be seen in Figure 5.5(b), showing how it can be

used to establish the desired relation between two consecutive levels. The round boxes represent the

set of available tokens for the corresponding level. The keys for each set match with the set difference

between KeyRange and the keys already in the level, where we consider MIN=0 and MAX=7. The keys

contained in the upper level necessarily hold their own token extracted from the set in the lower level.

All tokens are distinct, meaning that we can prove that key 3 is not in level k+1, since we hold a different

token from the one held by key 4.

These tokens are also useful to prove that the levels at which the key is inserted reflect its intended

height. As the key will not be inserted in level h+1, the putH specification in Figure 5.6 includes in its

postcondition the token obtained from the insertion at level h. However, ownership of this token will

depend on whether we inserted the key, as indicated by the return value n?. If the optional n? comes up

empty, then a node has already been created for the key. As such, some other thread holds the token for

that insertion, so it cannot appear in our postcondition. Otherwise, n? contains some pointer to a node

we have created for key k and so we must hold a token associated to the ghost variable γh
T from level h.

{ IsSkipList(p,M, q, γ) } putH p k v t h

 n?.

IsSkipList(p,M ∪ {k : ({v}, t)}, q, γ) ∗(
n? = None ∨ {k}

γh
T

) 
Figure 5.6: Specification for the putH procedure
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Given that the authoritative RA maintains the sublist relation between levels, ownership of this token

results in the following observations. First, the token’s key is not in the set of available keys from level

h; hence, the key belongs to that level, as well as to all the levels below it. Second, the token is not

associated with any node of level h+1; hence, the key does not belong to that level, as well as to neither

of the levels above it. In other words, we guarantee that the insertion takes place at the intended height,

meaning that any property of the chosen height distribution can be used to reason about the skip list.

5.4.3 Invariant Definition

The sublist invariant SublistInv can be seen in Figure 5.2, differing from BotListInv in some aspects.

Map logic is no longer required for the upper levels, meaning that the authoritative map is removed

and the map lookup assertions for each node are replaced with the associated fragment and token.

Additionally, since values are only updated upon reaching the bottom level, acquiring upper level locks

does not grant the required resources to overwrite a node’s value, meaning that InSubLock only contains

the node’s array entry for the successor pointer.

The bottom list must also provide fragments and tokens to its upper level. While the fragments can

be obtained from the authoritative set in the bottom list invariant, the tokens cannot be obtained from

anything we discussed about this invariant. This is why, even though the tokens are not necessary for

reasoning about the bottom level, the BotListInv predicate includes a hitherto unmentioned set of keys

for the available tokens. In each level, we exclude from its set of tokens all keys that belong to its set of

nodes S, ensuring that all available tokens refer to keys that have yet to be inserted in that level.

5.5 Value Updates

The IsSkipList predicate is defined such that a concurrent map specification can be proven for the lazy

JellyFish skip list. However, while BotListInv ties every key to its current value, the previous values are

never accounted for in the invariant. As such, the invariant alone does not guarantee the correctness

of the version control mechanism employed by value updates on the data structure. We ensure that

the history of values for an updated node is preserved by proving the Hoare triple shown in Figure 5.7.

We first explain how the node’s vertical list maintains a consistent timeline and then show how the local

fragment reflects the changes to the map performed by update.


BotListInv(head, γ)

levelN(0)

∗ ◦q M
γF

∗

◦ {node}
γA

∗ node.val ↪→1/2 val

 update node v t


◦q (M ∪ { node.key : ({v}, t) })

γF

∗

if t < val.ts then node.val ↪→1/2 val
else ∃ p. node.val ↪→1/2 (v, t, p) ∗ p ↪→□ val


Figure 5.7: Specification for the update procedure
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5.5.1 Vertical List

To reason about a node’s history, the specification for update describes how the procedure should affect

the head of the node’s vertical list. As such, the specification includes in the precondition a fraction of

the points-to assertion for node.val asserting val to be its initial value, while the postcondition presents

the two possible outcomes for attempting to write in this location based on the considered timestamps.

We can assert ownership of node.val as a precondition, since we only update a node after acquiring

its predecessor’s lock. By acquiring the lock, we obtain exclusive ownership of the resources protected

by it, which include the given points-to assertion. The remaining fraction of the assertion can be obtained

by opening the BotListInv invariant, gaining write access to the memory location. While other threads

may also open the invariant to read the pointer’s value, none of them can alter its contents, since they

have not attained the resources protected by the lock.

At the end of the procedure, we must retain ownership of the pointer, so as to assure that we are

able to release the lock by returning the necessary resources to its invariant. The value stored in this

memory location may differ from val depending on the timestamps of the new and current values. If the

new timestamp is less recent than the current timestamp (then branch), no update should occur and the

vertical list should remain unchanged. Otherwise (else branch), the new value and timestamp should

be prepended to the vertical list’s head.

Being at the head of the vertical list, the new value should now point to the previous value, ensuring

that the history of values is not forgotten. By making this points-to assertion persistent, we guarantee that

the predecessor for a prepended value is immutable, yielding an immutable chain (or history) of values

by construction. In other words, an update either returns the same immutable history of values or an

immutable extension of it. Discriminating both cases using timestamps further ensures that timestamps

within a given history grow monotonically, avoiding inconsistent timelines.

5.5.2 Local Fragment

As a result of the update procedure, the thread’s partial view should be updated by combining its local

map with the singleton map associating node.key to the timestamped value ({v}, t). This update on the

fragment resource can be accomplished by opening the BotListInv invariant, retrieving the authoritative

map and performing a local update on both resources. Considering A to be the authoritative map and

aliasing node.key as k and ({v}, t) as p, we wish to perform the following frame-preserving update:

•A · ◦q M ⇝ • (A ∪ { k : p }) · ◦q (M ∪ { k : p })

To perform a frame-preserving update on authoritative and fragment resources, we first need to prove

that we can perform the corresponding local update. However, the local update rules on maps only allow

us to perform insertions instead of compositions. We thus need to rewrite the frame-preserving update
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such that the update on both resources corresponds to an insertion. Since the update procedure is

executed only when the key is known to be in the map, we can apply the rule which relates map insertion

with map composition in that scenario. Knowing that the authoritative map already associates k to some

timestamped value pi, the following equality can thus be obtained:

A ∪ { k : p } = ⟨k : pi · p⟩A

The fragment resource, however, only holds partial knowledge of the map, meaning that the fragment

may or may not hold an entry for k. Given that the empty map ∅ constitutes the unit for map composition,

we can avoid performing a case analysis by observing that M = M · ∅ and splitting the fragment, as

follows:
◦q M = ◦q (M ·∅) = ◦q−q′M · ◦q′∅

As a result, we obtain a smaller fragment containing ∅ for some fraction q′ < q. By applying a

local update on ∅, we can then join the updated fragment to the fragment containing M , recovering the

fraction q we held beforehand. As ∅ holds no key, we can be sure that any lookup will return empty,

obtaining the following equality:

{ k : p } = ∅ ∪ { k : p } = ⟨k : p⟩∅

Since ∅ represents the unit, M will be combined with the intended singleton. Therefore, we only

need to prove the following frame-preserving update:

•A · ◦q′ ∅⇝ • ⟨k : pi · p⟩A · ◦q′ ⟨k : p⟩∅

The rule for authoritative frame-preserving updates can be applied directly, taking into account the

fragment with fraction q′:

(A,∅)⇝L (⟨k : pi · p⟩A, ⟨k : p⟩∅)

•A · ◦q′ ∅⇝ • ⟨k : pi · p⟩A · ◦q′ ⟨k : p⟩∅

To prove the required local update, we consider the scenario where the second map does not contain

an entry for the key, applying the following local update rule:

A[k] = Some(pi) ∅[k] = None (pi, botZ)⇝L (pi · p, p)
(A,∅)⇝L (⟨k : pi · p⟩A, ⟨k : p⟩∅)

We know that A associates k to pi and that k is not in ∅, so all that is left is to prove the local update

on (pi, botZ). We simply apply the general rule for local updates by choosing p as our frame. The proof

is concluded as the following equality holds:

(pi · p, botZ · p) = (pi · p, p)

In essence, an update to a local fragment must reflect an update to the authoritative map. Further-

more, we show that the update on the authoritative map corresponds to inserting a new value for k,

determined by the argmax composition between pi and p. The semantics for value updates are thus

captured by the argmax RA, constituting a perfect abstraction for the update procedure.
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5.6 Coq Formalization

The definitions in Figure 5.2 are not an exact transcription from the Coq formalization. Although our

aim thus far has been to highlight the differences between both invariant definitions, in Coq we intend

to reuse as much proof effort as possible. In Figure 5.8 we show a definition for the representation

predicate and its invariants closer to the formalization we have mechanized in Coq. This alternative

definition simplifies how the actual proofs are carried out and allows us to generalize proofs from the

sublists to the bottom list whenever map logic is not required.

Representation Predicate

IsSkipList(p,M, q, γ) ≜ ∃ head. p ↪→□ head ∗ head.key = MIN ∗

◦q M
γHMAX
F
∗ LazyListInv(0, head, γHMAX, None)

levelN(0)

∗
HMAX∗
i=1

LazyListInv(i, head, γHMAX−i, Some(γHMAX−i+1))
levelN(i)

Invariant

LazyListInv(lvl, head,Γ, γ?) ≜ ∃M,S,L.

• S
ΓA

∗ KeyRange \ S.keys
ΓT

∗ S ≡P L ∗ Sorted(Lcat) ∗ HasMap(M,S,Γ, γ?) ∗

|L|∗
i=0

(
IsNext(lvl, Lcat[i], Lcat[i+ 1]) ∗ HasLock(lvl, node, γ?) ∗

(
Lcat[i] = head ∨ InNode(Lcat[i],M, γ?)

))
Authoritative Map

HasMap(M,S,Γ, γ?) ≜

match γ?
with

| Some ⇒ True

| None ⇒ •M
ΓF
∗M.keys = S.keys

Lock Resources

InLock(node, lvl, γ?) ≜ ∃ s. node.next[lvl] ↪→1/2 s ∗

match γ?
with

| Some ⇒ True

| None ⇒ ∃ succ. s ↪→□ succ ∗
(succ = tail ∨ ∃ v. succ.val ↪→1/2 v)

Node Resources

InNode(node,M, γ?) ≜

match γ?
with

| Some γ ⇒ ◦ {node}
γA
∗ {node.key}

γT

| None ⇒ ∃ v, vs. node.val ↪→1/2 v ∗ v.val ∈ vs ∗
M [node.key] = Some(vs, v.ts)

where levelN(i) maps level i to its invariant namespace
KeyRange ≜ {k : Z | MIN < k < MAX}
tail ≜ (MAX, NULL, NULL, NULL)

Lcat ≜ [head] ++ L++ [tail]

IsNext(lvl, pred, succ) ≜ ∃ s. pred.next[lvl] ↪→1/2 s ∗ s ↪→□ succ

HasLock(lvl, node, γ?) ≜ ∃ γ, l. node.lock[lvl] ↪→□ l ∗ IsLock(γ, l, InLock(node, lvl, γ?))
IsLock is the predicate for the lock invariant

Figure 5.8: Representation predicate and invariant from the Coq formalization
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We first note that the indices for γ have changed in the definition of IsSkipList: the ghost names for

level i are no longer associated to γi, but rather to γHMAX−i. This is a result of building the levels for the

skip list in a bottom-up fashion. Since the list type in Coq is defined as a cons list, the list of ghost names

resembles a stack where the ghost names for the higher levels are the last ones to be prepended to the

head of the list. As the skip list is traversed top-down, applying induction principles on such a list makes

it easier to reason about how recursion unfolds for the lower levels.

The second difference in the IsSkipList predicate is the use of a LazyListInv predicate for both

the bottom list and the sublists. This new representation predicate alludes to the fact that every level

can be seen as an individual lazy list. The γ? parameter refers to an optional which determines whether

level lvl contains a level lvl−1 beneath it with ghost names γ.

The LazyListInv invariant contains the same authoritative set of nodes S, as well as the same set

of tokens as both the BotListInv and the SublistInv invariants. The sorted list L which permutes S

must also reflect through IsNext the chain of pointers created by each node’s successor. In essence,

all resources which refer to the underlying list structure and abstract the list as a set of keys capture the

intersection between both previously defined predicates.

The γ? variable will determine the remaining resources for the invariant. A None is passed to the

bottom list, indicating that HasMap must contain the authoritative map M . As with the other invariant

definitions, an equivalence must be established between the keys of both M and the set of nodes S. On

the other hand, the sublists require no map logic, so HasMap contains no additional resources, ignoring

for now the value γ contained in γ?.

The value γ is also ignored by InLock. In all levels, the resources protected by a node’s lock include

the array entry for its successor in the corresponding level. The bottom list, however, contains additional

resources as it also protects the value of the successor node. If the successor is not the right sen-

tinel, then InLock must assert fractional ownership of its vertical list, along with the persistent points-to

assertion which binds the successor to the node’s array entry.

The value γ contained in γ? is used to assert ownership of the required fragments and tokens in

the sublists. Since γ refers to the ghost names of the lower level, InNode asserts ownership of the

fragments and tokens for every node ∈ S. If no γ is available, then we are dealing with the bottom list

and InNode ensures that every node corresponds to a key-value pair in M , holding fractional ownership

of the corresponding vertical list. The disjunction is needed, as Lcat[0] corresponds to the head of the

list, which does not belong to S.

IsLazyList is always existentially quantified by a map M , even though M is ignored by the sub-

lists. Our formalization requires this peculiarity, since resources exclusive to the bottom list are grouped

together in the same separating conjunction with resources of both list types. Figure 5.9 provides an

alternative definition where these resources are explicitly separated according to the value of γ?.
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Representation Predicate

IsSkipList(p,M, q, γ) ≜ ∃ head. p ↪→□ head ∗ head.key = MIN ∗

◦q M
γHMAX
F
∗ LazyListInv(0, head, γHMAX, None)

levelN(0)

∗
HMAX∗
i=1

LazyListInv(i, head, γHMAX−i, Some(γHMAX−i+1))
levelN(i)

Invariant

LazyListInv(lvl, head,Γ, γ?) ≜ ∃ S,L.

• S
ΓA

∗ KeyRange \ S.keys
ΓT

∗ S ≡P L ∗ Sorted(Lcat) ∗

|L|∗
i=0

(
IsNext(lvl, Lcat[i], Lcat[i+ 1]) ∗ HasLock(lvl, node, γ?)

)
∗

match γ?
with

| Some γ ⇒ ∗
n∈S

(
◦ {n}

γA
∗ {n.key}

γT
)

| None ⇒ ∃M. •M
ΓF
∗M.keys = S.keys ∗∗

n∈S

(
∃ v, vs. n.val ↪→1/2 v ∗ v.val ∈ vs ∗

M [n.key] = Some(vs, v.ts)

)

Lock Resources

InLock(node, lvl, γ?) ≜ ∃ s. node.next[lvl] ↪→1/2 s ∗

match γ?
with

| Some ⇒ True

| None ⇒ ∃ succ. s ↪→□ succ ∗
(succ = tail ∨ ∃ v. succ.val ↪→1/2 v)

where levelN(i) maps level i to its invariant namespace
KeyRange ≜ {k : Z | MIN < k < MAX}
tail ≜ (MAX, NULL, NULL, NULL)

Lcat ≜ [head] ++ L++ [tail]

IsNext(lvl, pred, succ) ≜ ∃ s. pred.next[lvl] ↪→1/2 s ∗ s ↪→□ succ

HasLock(lvl, node, γ?) ≜ ∃ γ, l. node.lock[lvl] ↪→□ l ∗ IsLock(γ, l, InLock(node, lvl, γ?))
IsLock is the predicate for the lock invariant

Figure 5.9: Alternative definition for the representation predicate and invariant

While this alternative definition provides a more natural generalization of the invariant resources,

having a single separating conjunction for all node resources is more useful when mechanizing the

proofs. For the alternative definition, not only is some proof effort duplicated for the each separating

conjunction, it is also necessary to establish a relation between them. For instance, when a new node is

inserted, the separating conjunctions must agree on the new set S and list L, which may not be a trivial

endeavour to prove.
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Data structure specifications provide an abstraction which can be used to verify programs without worry-

ing about how the data is handled internally by the data structure. In this chapter, we use the specification

from the previous chapter to verify a client program, showing how our argmax RA can be used to rea-

son about concurrent updates to the lazy JellyFish skip list. We begin by explaining the code, justifying

its expected return value. We then provide a detailed sketch of the steps required for proving that the

program verifies the intended behaviour. Finally, we discuss the assumptions we make about the client,

which enable us to verify the program using our specification.

6.1 Code Overview

We consider the client program shown in Figure 6.1. The program first invokes new to create a new skip

list and binds the return value to a variable p. Two threads are then spawned to execute concurrent

updates on keys 10 and 20 through successive calls to put, with each thread updating key 10 twice and

key 20 once. For both threads, we consider a local counter for the timestamps, which increments every

time put is invoked. Each counter begins at 0 and its succeeding values are hard-coded into the client

code. When the program returns to a sequential execution, get is invoked for both updated keys to

consult the resulting state of the skip list.

Comparing the updates on key 20, we can see that their respective timestamps differ (1 and 0). Given

that the update from the left thread has the most recent timestamp of the two, it should be the one to

reflect the most recent value for the key. As for the updates on key 10, the last update by each thread is

done at timestamp 2, meaning that we cannot disambiguate which thread defines the most recent value

for the key. All we can say about key 10 is that the first updates, performed at less recent timestamps (0

and 1), will be overwritten.

The program returns a pair based on these updates. For key 20, we can guarantee that the return

value must correspond to the left thread’s update at timestamp 1. For key 10, however, either update

from timestamp 2 may reflect its most recent value, depending on how the operations were scheduled.

As such, we can only ensure that get returns either 3 or 6 for key 10, while it is guaranteed to return 2

for key 20.

let p = new in

put p 10 1 0; put p 20 5 0;

put p 20 2 1; put p 10 2 1;

put p 10 3 2; put p 10 6 2;

(get p 10, get p 20)

Figure 6.1: Client program with concurrent writes

49



6.2 Proof Overview

In Figure 6.2 we annotate the client program with the assertions derived from the rules and Hoare triples

used to prove its correctness. Besides the rules from the map specification, other rules are applied to

simplify the resulting assertions, making the proof easier to read and understand. Each simplification

step is thus denoted by a vertical downward arrow, tagged by the corresponding rule. Violet assertions

are associated to sequential parts of the program, while blue and red contents refer to thread-specific

contributions as a result of a concurrent execution.

{ True }

let p = new in

{ IsSkipList(p,∅, 1, γ) }
↓ SKIPSEP

{ IsSkipList(p,∅, 1/2, γ) ∗ IsSkipList(p,∅, 1/2, γ) }
↓ PAR ↓ PAR

{ IsSkipList(p,∅, 1/2, γ) } { IsSkipList(p,∅, 1/2, γ) }

put p 10 1 0; put p 20 5 0;

{ IsSkipList(p,∅ ∪ {10 : ({1}, 0)}, 1/2, γ) } { IsSkipList(p,∅ ∪ {20 : ({5}, 0)}, 1/2, γ) }
↓ unit ↓ unit

{ IsSkipList(p, {10 : ({1}, 0)}, 1/2, γ) } { IsSkipList(p, {20 : ({5}, 0)}, 1/2, γ) }

put p 20 2 1; put p 10 2 1;{
IsSkipList

(
p,
{10 : ({1}, 0)} ∪
{20 : ({2}, 1)} , 1/2, γ

)} {
IsSkipList

(
p,
{20 : ({5}, 0)} ∪
{10 : ({2}, 1)} , 1/2, γ

)}
put p 10 3 2; put p 10 6 2; IsSkipList

p,
{10 : ({1}, 0)} ∪
{20 : ({2}, 1)} ∪
{10 : ({3}, 2)}

, 1/2, γ


 IsSkipList

p,
{20 : ({5}, 0)} ∪
{10 : ({2}, 1)} ∪
{10 : ({6}, 2)}

, 1/2, γ


↓ PAR ↓ PAR IsSkipList

p,
{10 : ({1}, 0)} ∪
{20 : ({2}, 1)} ∪
{10 : ({3}, 2)}

, 1/2, γ

 ∗ IsSkipList
p,

{20 : ({5}, 0)} ∪
{10 : ({2}, 1)} ∪
{10 : ({6}, 2)}

, 1/2, γ


↓ SKIPSEP IsSkipList

p,

 {10 : ({1}, 0)} ∪
{20 : ({2}, 1)} ∪
{10 : ({3}, 2)}

 ∪
 {20 : ({5}, 0)} ∪
{10 : ({2}, 1)} ∪
{10 : ({6}, 2)}

 , 1, γ


↓ commutativity, associativity{

IsSkipList

(
p,

(
{10 : ({1}, 0)} ∪ {10 : ({3}, 2)} ∪
{10 : ({2}, 1)} ∪ {10 : ({6}, 2)}

)
∪
(
{20 : ({2}, 1)} ∪
{20 : ({5}, 0)}

)
, 1, γ

)}
↓ singleton map composition{

IsSkipList

(
p,

{
10 :

({1}, 0) · ({3}, 2) ·
({2}, 1) · ({6}, 2)

}
∪
{
20 :

({2}, 1) ·
({5}, 0)

}
, 1, γ

)}
↓ argmax composition

{ IsSkipList(p, {10 : ({3, 6}, 2)} ∪ {20 : ({2}, 1)}, 1, γ) }

(get p 10, get p 20){
(v?1, v

?
2).

IsSkipList(p, {10 : ({3, 6}, 2)} ∪ {20 : ({2}, 1)}, 1, γ) ∗
∃ v1, v2. v?1 = Some(v1, 2) ∗ v1 ∈ {3, 6} ∗ v?2 = Some(v2, 1) ∗ v2 ∈ {2}

}

Figure 6.2: Verified client using the map specification
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No initial resources are required at the start of the program, so we can apply SKIPNEW to obtain

ownership of the map after executing new. The resulting IsSkipList assertion is obtained expressing

full knowledge of an empty map stored in p and associated to some γ. The concrete value of γ is not

required, since it only provides a context on which both threads should agree on. This agreement is

necessary to apply SKIPSEP, as both IsSkipList assertions must refer to the same γ.

To perform concurrent operations on the data structure, we need to share knowledge of its current

state between both threads. As the empty map can be decomposed as ∅ = ∅ ∪ ∅ and the full fraction

can be divided into two halves, we apply SKIPSEP to obtain two separate IsSkipList assertions, each

reflecting a partial view of the underlying map. These views can then be split using the concurrency

rule from separation logic, providing a partial view for each thread. Local reasoning can now be applied

on the operations performed by one of the threads, without concerning ourselves with the operations

performed by the other thread.

For each thread to have its updates reflected on its local view, we repeatedly apply SKIPPUT on each

put call. By applying this rule, each thread can update its partial knowledge of the map, regardless

of the updates performed by the other thread. The simplicity of this part of the proof showcases how

the map RA perfectly abstracts the put operation, with the argmax RA perfectly abstracting the value

updates performed by the update procedure.

Only when we return to a sequential execution do we reason about how these concurrent changes

affect each other. Having both threads finished their respective updates, we recover the full view of the

map by once again applying SKIPSEP to combine the views of both threads. At this point, we know all

updates that have been performed on the map, so we can simplify the resulting composition to obtain

our current knowledge of the map’s state.

First, we make use of the commutative and associative properties of RAs to separate the singleton

maps for key 10 from the singletons for key 20. We then compose both groups of singletons using the

singleton map composition rule from Chapter 4. The resulting composition yields two singletons where

the key is associated to the composition of all values from its respective updates. Finally, these values

are composed using the argmax operator, leaving key 10 associated to both values from timestamp 2

and key 20 associated to the value from the left thread’s update at timestamp 1. The remaining updates

are discarded by the argmax operator, as they are associated to less recent timestamps.

The program terminates by executing get on both keys and returning a pair with the obtained results.

Applying SKIPGET on both get calls, we obtain the right-hand side of the disjunction in the postcondition,

since keys 10 and 20 are clearly in the map. Thus, we are able to prove that get can return either value

from timestamp 2 for key 10, while it is guaranteed to return the value from the left thread’s update at

timestamp 1 for key 20. The returned pair is therefore in accordance with what we expected from the

program’s behaviour.
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6.3 Timestamp Assumptions

In the previous example, we assumed that a thread would always increment a local counter after calling

put. Unfortunately, removing that assumption can lead to an over-approximate estimate of our current

knowledge of the map. For instance, if a thread updates a given key twice with the same timestamp,

then we can be sure that the second update will overwrite the first one. The argmax operator, however,

will retain both values, since it combines local updates as it would with updates from different threads.

The set of possible values for a key can therefore contain additional values besides the ones which

we cannot disambiguate. This behaviour is not strictly incorrect, since it maintains all possible values

within the set, but it provides less precise information about the map’s state. On the other hand, if we

can assume that a thread will never update a key with the same timestamp more than once, then we

can guarantee that such precision is not lost with the argmax operator.

Additionally, our client example presents hard-coded timestamps, which is unlikely to happen in

real-world programs. Timestamps are usually dynamically assigned through a shared counter or some

other complex mechanism, which might incur some additional effort for proving the correctness of the

corresponding client. We argue, however, that the argmax RA should be able to capture the required

semantics for such timestamps, as long as the aforementioned constraint is satisfied.
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We now discuss our results by comparison with related work. First, we present work in the context

of formal verification of concurrent data structures in Iris. Namely, we introduce the notion of logical

atomicity and present the work on which we base most of our proof effort. We also present known

work of mechanized efforts to verify skip list algorithms. Finally, we discuss alternative approaches on

specifying concurrent operations on maps.

7.1 Concurrent Data Structures in Iris

Iris has been used to reason about concurrent data structures, verifying (a) a contextual refinement of

other simpler concurrent implementations [29,30], (b) correctness under a weak memory model [23] and

(c) template algorithms for search structures [22]. Although the latter closely relates to the contributions

of our work (as skip lists can be seen as search structures), their template algorithms do not seem be

directly applicable to skip lists. Due to the skip list being a data structure composed of multiple linked

lists, each level is its own search structure, so their work would need to be generalized if it were to

be applied to any skip list implementation. Furthermore, the obtained specifications are not well suited

for verifying generic client programs. Rather, they focus on proving a strong correctness property of

concurrent operations: logical atomicity [6,10,15,18].

7.1.1 Logical Atomicity

A concurrent operation is said to be logically atomic if a single atomic step is responsible for changing

the state of the program so as to satisfy its specification. In other words, the effective changes to the

state occur at a single point of execution, which is referred to as the operation’s linearization point.

Logical atomicity therefore allows us to reason about non-atomic operations as if they were atomic. For

instance, this property allows us to open invariants around logically atomic operations by adapting the

INV rule to:

LA-INV
⟨ ▷ I ∗ P ⟩ e ⟨ v. ▷ I ∗ Q(v) ⟩E\N N ⊆ E

I
N

⊢ ⟨ P ⟩ e ⟨ v. Q(v) ⟩E

Angled brackets denote logically atomic triples and program e is no longer required to be atomic.

Iris already provides ways to reason about logical atomicity in this manner making invariants easier to

handle for more complex programs. However, the specification obtained by Krishna et. al. [22] assumes

full knowledge of the state of the structure, making it unclear how such a specification could be used

to share ownership between threads and to combine the results of concurrent operations. On the other

hand, although our specification does not guarantee logical atomicity, it is expressive enough to allow

the verification of highly concurrent client programs, as we’ve shown in Chapter 6.
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7.1.2 Concurrent Skip Lists

The only work in Iris which we are aware of reasoning about concurrent skip lists is that of Tassarotti and

Harper [28]. They extended Iris to support probabilistic reasoning, proving correctness and temporal

properties of a two-level concurrent append-only skip list, which is a probabilistic data structure. While

their work focused more on probabilistic properties, we avoid reasoning about such aspects, proving

correctness of the data structure independently of the height distribution.

Our mechanization is deeply influenced by theirs, generalizing their arguments to an arbitrary number

of levels. While their proofs constitute the base of our reasoning on traversals and updates at the list

level, we complement their work by using the authoritative RA to reason about the sublist relation for

traversals and by introducing the token system to reason about insertions in consecutive levels.

Additionally, we simplify the ghost state used to reason about operations at the list level. Since their

skip list implements a set rather than a map, their invariant holds an authoritative set of keys for the

partial views and an authoritative set of physical nodes with a slightly different structure. Although these

differences arise naturally from small differences between both implementations, these ghost resources

are enough to verify the skip list similarly to how we did. However, two additional ghost variables are

considered by Tassarotti and Harper.

The disjoint set union RA is used to reason about insertions at the list level. After obtaining the soon-

to-be predecessor and successor nodes, it must be proven that the new key can only exist between these

nodes. We prove this by reasoning about the sorted state of the list, but Tassarotti and Harper proceed

differently: the tokens associated to all keys between the two nodes are included in the resources

protected by the predecessor’s lock. As such, one can only obtain the token for the new key by extracting

it from this interval, yielding two new disjoint intervals: one to be protected by the predecessor and

another by the new node. The token can then be added to a set of tokens in the invariant, reflecting the

keys contained in the list.

The map RA is also used to associate each key to elements of an agreement RA over nodes, whose

value composition enforces nodes to be equal. Although we know that each node has a unique key,

nodes are simply tuples from Coq’s perspective. As such, two tuples with the same key might not be

equal if the remaining fields differ, which is why they resort to a ghost map assuring a one-to-one cor-

respondence between keys and nodes. Their formalization requires this correspondence, because their

partial views are represented as sets of nodes containing the keys which parameterize the represen-

tation predicate. Therefore, the map is necessary to prove that two threads with some key in common

must agree on the node for that key. This issue is avoided by representing partial views as sets of keys

and stating in the invariant an equivalence between authoritative resources as we do.
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7.2 Mechanized Verification of Skip Lists

Considering other verification frameworks, we highlight: (a) the TSL theory for reasoning about skip lists

with an arbitrary number of levels [27], (b) the verification in Agda of correctness properties of authenti-

cated append-only skip lists [3] and (c) the skip list entry in the Archive of Formal Proofs (AFP) [11].

The AFP is a repository of proof libraries mechanized in Isabelle. One of these libraries contains

proofs of probabilistic properties of skip lists, proving that the expected height for an unbounded skip

list scales logarithmically with the size of the structure. This result is then used to prove the same

asymptotic complexity for the expected traversal length. Considering a skip list of n keys and a geometric

progression over p for the height distribution, the harmonic number definition (which is known to be

Θ(log(n))) can be used to obtain the following bounds for the expected height H and the expected

traversal length L:

−harm(n)

log(p)
−1 ≤ H n ≤ −harm(n)

log(p)

1

p
·H n = L n

These works, however, deal with sequential skip lists, so they tackle inherently different concerns

from the ones we have discussed in this work. For concurrent skip lists, Abdulla et al. [1] present the

only other work we are aware of providing mechanized proofs, automating their reasoning in a self-

developed tool. Their verification tool was implemented in OCaml and, as far as we could tell, does not

build on top of any known state-of-the-art theorem prover.

7.3 Specifications for Concurrent Maps

Our proposed specification for concurrent operations on maps holds some limitations. Since SKIPGET is

undefined for partial ownership of the map, certain client applications (e.g., producer-consumer clients)

are unable to use our specification. We will now look at two works, which propose different approaches

from the one described in this work, and discuss how our work could be improved based on their results.

7.3.1 Key-value Specifications

As a thread performs its updates, our specification accumulates all its contributions in its partial view.

However, the previous updates are unnecessary to express the results of the current update, so an

alternative approach would be to define a specification based on each key-value pairing of the map. In

the work by da Rocha Pinto et. al. [5], they define such a specification using two predicates:

• in(p, k, v): the map stored in p associates key k to value v;

• out(p, k): the map stored in p does not contain a mapping for key k.
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The postcondition for put should thus contain resources described by the in predicate, while re-

movals should return resources described by out. To enable sharing, these predicates are also an-

notated with a fraction to indicate if the thread holds exclusive access to the map entry, as well as a

protocol tag to indicate how threads should combine their results. For example, in outins(p, k)1/2 the

fraction 1/2 informs us that we do not hold exclusive ownership of this entry, while the ins tag assures

us that threads are only allowed to perform insertions in this entry. Threads can then combine their

resources to obtain the full fraction, applying the composition rules associated to the given protocol tag.

The main downside to this approach is that the use cases for the obtained specification are restricted

to the considered hard-coded protocols. For instance, the protocols in the original paper do not describe

what should happen when threads update the same key with different values. As such, a program similar

to our client example cannot be verified, requiring a new protocol to be defined and the associated proofs

to be done from scratch. Xiong et. al. [31] provide an alternative key-value specification, which focuses

on proving correctness properties of the map implementation, allowing different protocols to be defined

on top of this specification.

This alternative key-value specification is built from a logically atomic specification considering full

knowledge of the map, assuring a strong correctness property for the data structure, similarly to the

work of Krishna et. al. [22]. Different protocols can then be established on top of the obtained key-value

specification by reasoning about an appropriate PCM. To verify a client program it thus suffices to think

of an appropriate algebra (be it a PCM or a RA) to abstract the required protocol, obtaining for free

correctness properties from the logically atomic specification.

Their formalization is done in the logic of TaDA [6], a predecessor to Iris, which contains ingredients

such as shared regions and guard algebras, akin to Iris’ invariants and RAs, respectively. Their efforts

were not mechanized in any known framework, but their results could further extend the contributions of

our work. Although we have not mechanized such extensions, we now discuss how their approach could

be formalized in Iris. As with JellyFish, we consider maps which associate each key to a timestamped

value. A logically atomic specification for put should thus resemble the following:

⟨ Map(p,M, γ) ⟩ put p k v t ⟨ match M [k] with
| None ⇒ Map(p, ⟨k : (v, t)⟩M,γ)
| Some(vi, ti) ⇒ if t < ti then Map(p,M, γ)

else Map(p, ⟨k : (v, t)⟩M,γ)
⟩

The Map predicate asserts ownership of the full map, referring to M as the full view. Since we aim

to separate the correctness proof from client reasoning, no mention is made to RA composition in the

postcondition. Rather, it is made explicit how the state should change as a result of the operation: the

new value and timestamp will be inserted in the map unless the timestamp of the update is less recent

than the current timestamp. Logical atomicity ensures that this change occurs after a single atomic step

of the non-atomic put operation, meaning that M actually refers to the state of the map as that step
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is taken, instead of the state when put is called. As a result, we can reason about thread composition

using only that point of execution where the operation effectively takes place.

Map can be constructed from IsSkipList, forcing the fraction to equal 1 so as to reflect the full view

of the map. However, an authoritative RA builds on top of another RA, which in this case corresponds

to the map RA. Since we want to avoid reasoning about value composition at this stage, we instead

require a RA that encapsulates any given type to define our view of the map. The agreement RA is one

such RA and can be defined by the following rules:

ag q1
(v) · ag q2

(v) = ag q1+q2
(v) ag 1 (vi)⇝ ag 1 (v)

Composition is valid only when both elements agree on the same value v and fractions are included

to know when we possess exclusive ownership of the value. Knowing that no other thread holds partial

ownership of the value to be agreed on, we are able to change it to any other value of the same type.

We can thus encapsulate the abstract map inside an agreement RA and split it into two fractions: one

inside the invariant, replacing the authoritative map, and the other outside the invariant, replacing the

local fragment. Information about the state of the entire map is kept through the outer fraction, which

can be updated by opening the invariant and combining both fractions to obtain the full fraction.

Proving put to be logically atomic should pose a challenge as to how the resources are managed

throughout the proof. However, the reasoning applied to those resources should remain the same, as

we only update the partial view when we open the invariant to insert/update the key’s node. Since

the invariant can only remain open for an atomic step, the corresponding store operation constitutes

the linearization point for put, making it logically atomic. Once the proof is completed for the full map

specification, we can use it to prove the following key-value specification:

⟨ Key(p, k, v?i , γ) ⟩ put p k v t ⟨ match v?i with

| None ⇒ Key(p, k, Some(v, t), γ)
| Some(vi, ti) ⇒ if t < ti then Key(p, k, v?i , γ)

else Key(p, k, Some(v, t), γ)
⟩

The Key(p, k, v?, γ) assertion expresses the mapping of key k to an optional v?. Allowing v? to be

None means that we can explicitly assert that k does not belong to the map. Updates on v? should

respect the same constraints as in the full map specification. The Key predicate can be constructed from

Map as follows:

Key(p, k, v?, γ) ≜ ag 1/2

(
v?
) γk

∗ ∃M,Γ. Map(p,M,Γ) ∗ ∗
z ∈ KeyRange

ag 1/2 (M [z])
γz

kvN

Since each Key resource will refer to a different key, the non-duplicable Map resource is kept inside

an invariant for some map M associated to some ghost names Γ. We then need to establish an equiv-

alence between each value in the map and the value from its respective Key assertion. Once again,

the agreement RA fits our needs, keeping for each key a 1/2 fraction inside the invariant and another
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outside, which also ensures that Key resources are exclusive per key. As there can only be a single

invariant containing the Map resource, it must contain the halves of all keys, where KeyRange may refer to

any set of valid keys for the map. For JellyFish we considered all integers between MIN and MAX; Xiong

et. al. [31] consider all non-zero integers.

The key-value specification can be proven by opening the invariant around put. As a result, we obtain

the Map resource and can then apply the full map specification as if put were an atomic operation. Both

agreement fractions are combined, so that the corresponding value can be updated according to the

postcondition of the full map specification. After that logically atomic operation, the invariant is closed

and the postcondition of the key-value specification is satisfied.

To complete the key-value specification, we still need some predicate to describe the state of the

whole map, making it easier to handle the Key resources. For this purpose, we further define the

Collect predicate:

Collect(p, S, γ) ≜ ∗
k ∈ KeyRange\S

Key(p, k, None, γ)

Collect only contains keys that do not belong to the map. The S parameter keeps track of all keys

that we extract from Collect in order to perform operations on those keys. New Key resources can be

extracted from or returned to Collect by applying the following rule:

Collect(p, S, γ) ⊣⊢ Collect(p, S ⊎ {k}, γ) ∗ Key(p, k, None, γ)

Both specifications could be adapted such that each key is mapped to its vertical list, instead of just

the last value. Any mapping to (vi, ti) should be replaced by [(vi, ti)] ++ H, for some history of values

H, and should be updated to [(v, t)] ++ [(vi, ti)] ++ H if ti ≤ t. In case no such mapping exists, then the

value should be initialized with the singleton list [(v, t)].

7.3.2 Client Reasoning

A logically atomic key-value specification satisfies a strong correctness criterion for concurrent opera-

tions on shared data. Unfortunately, it does not provide a natural way to reason about client programs

and how concurrent operations should be composed. To reason about such matters, one needs only

to think of a RA to express the protocol followed by threads on conflicting operations. We will now

show how the argmax RA can complement the key-value specification to verify the client program from

Chapter 6.

We have seen previously that the pairs from the argmax RA differ from the timestamped values stored

in the map. The argmax RA keeps track of a set rather than the actual value, due to the uncertainty

derived from concurrent updates with the same timestamp. As such, we can assert an equivalence

between some map value v? and some argmax value v?A through the following definition:
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SomeEquiv(v?, v?A) ≜ (v? = None ∗ v?A = None)∨
∃ v, S, t. v? = Some(v, t) ∗ v?A = Some(S, t) ∗ v ∈ S

If we were to consider the entire vertical list, then v? should instead equal Some([(v, t)]++ H) for some

H. Using this definition, we can thus define the following representation predicate for key-value pairings:

FKey(p, k, v?F , q, γ) ≜ ◦q v?F
γk

∗ ∃ v?,Γ. Key(p, k, v?,Γ) ∗ ∃ v?A. • v?A
γk

∗ SomeEquiv(v?, v?A)
keyN(k)

We follow the same approach of using a fractional authoritative RA to express partial views, but this

time for values. An FKey resource asserts ownership of a fragment resource, while the authoritative

value is kept inside an invariant. The Key resource is also kept inside the invariant, so that it can be

shared between all threads which hold some partial view of the value. The invariant can be open around

put to apply the key-value specification using the Key resource, updating the authoritative and fragment

resources accordingly. A predicate with the same interpretation as Collect can also be defined as:

FCollect(p, S, γ) ≜ ∗
k ∈ KeyRange\S

FKey(p, k, None, 1, γ)

With both predicates we can finally present the logically atomic key-value specification for maps with

timestamped values shown in Figure 7.1. KEYSEP enables value sharing and composition, much like

SKIPSEP does for map views, while KEYCOL allows us to obtain FKey resources. KEYNEW is a standard

Hoare triple for a map constructor, which returns the resources describing an empty map. To ensure

correctness of the get operation, KEYGET is defined as logically atomic, even though it does not change

the state of the map. As with SKIPGET, KEYGET considers the full view, since the argmax operator does

not provide a way to reason about concurrent reads. The SomeEquiv predicate is used to establish an

equivalence between the returned result v? and the known argmax value v?F . Finally, KEYPUT updates the

initial value v?F by composition with Some({v}, t). Optional composition contains None as its unit, while

composition of Some elements is given by Some(a) · Some(b) = Some(a · b).

KEYSEP
FKey(p, k, v?1, q1, γ) ∗ FKey(p, k, v?2, q2, γ) ⊣⊢ FKey(p, k, v?1 · v?2, q1 + q2, γ)

KEYCOL
FCollect(p, S, γ) ⊣⊢ FCollect(p, S ⊎ {k}, γ) ∗ FKey(p, k, None, 1, γ)

KEYNEW

{ True } new { p. ∃ γ. FCollect(p,∅, γ) }

KEYGET
k ∈ KeyRange

⟨ FKey(p, k, v?F , 1, γ) ⟩ get p k ⟨ v?. FKey(p, k, v?F , 1, γ) ∗ SomeEquiv(v?, v?F ) ⟩

KEYPUT
k ∈ KeyRange

⟨ FKey(p, k, v?F , q, γ) ⟩ put p k v t ⟨ FKey(p, k, v?F · Some({v}, t), q, γ) ⟩

Figure 7.1: Logically atomic key-value specification for timestamped values
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In Figure 7.2, we show how this specification can be used to verify the client from Chapter 6. After

creating the map and obtaining the FCollect resource from KEYNEW, we apply KEYCOL to extract the

FKey resources for keys 10 and 20, as they are the only keys to be updated. We no longer require the

FCollect resource, so we discard it from the environment and apply KEYSEP to split each FKey resource.

These resources are then split between each thread, such that both threads hold a view of both keys.

{ True }

let p = new in

{ FCollect(p,∅, γ) }
↓ KEYCOL

{ FCollect(p, {10, 20}, γ) ∗ FKey(p, 10, None, 1, γ) ∗ FKey(p, 20, None, 1, γ) }
↓ KEYSEP{(

FKey(p, 10, None, 1/2, γ) ∗
FKey(p, 10, None, 1/2, γ)

)
∗
(

FKey(p, 20, None, 1/2, γ) ∗
FKey(p, 20, None, 1/2, γ)

)}
↓ commutativity, associativity{(

FKey(p, 10, None, 1/2, γ) ∗
FKey(p, 20, None, 1/2, γ)

)
∗
(

FKey(p, 10, None, 1/2, γ) ∗
FKey(p, 20, None, 1/2, γ)

)}
↓ PAR ↓ PAR

⟨ FKey(p, 10, None, 1/2, γ) ∗
FKey(p, 20, None, 1/2, γ) ⟩ ⟨ FKey(p, 10, None, 1/2, γ) ∗

FKey(p, 20, None, 1/2, γ) ⟩
put p 10 1 0; put p 20 5 0;

⟨ FKey(p, 10, None · Some({1}, 0), 1/2, γ) ∗
FKey(p, 20, None, 1/2, γ) ⟩ ⟨ FKey(p, 10, None, 1/2, γ) ∗

FKey(p, 20, None · Some({5}, 0), 1/2, γ) ⟩
put p 20 2 1; put p 10 2 1;

⟨ FKey(p, 10, None · Some({1}, 0), 1/2, γ) ∗
FKey(p, 20, None · Some({2}, 1), 1/2, γ) ⟩ ⟨ FKey(p, 10, None · Some({2}, 1), 1/2, γ) ∗

FKey(p, 20, None · Some({5}, 0), 1/2, γ) ⟩
↓ unit ↓ unit

⟨ FKey(p, 10, Some({1}, 0), 1/2, γ) ∗
FKey(p, 20, Some({2}, 1), 1/2, γ) ⟩ ⟨ FKey(p, 10, Some({2}, 1), 1/2, γ) ∗

FKey(p, 20, Some({5}, 0), 1/2, γ) ⟩
put p 10 3 2; put p 10 6 2;

⟨ FKey(p, 10, Some({1}, 0) · Some({3}, 2), 1/2, γ) ∗
FKey(p, 20, Some({2}, 1), 1/2, γ) ⟩ ⟨ FKey(p, 10, Some({2}, 1) · Some({6}, 2), 1/2, γ) ∗

FKey(p, 20, Some({5}, 0), 1/2, γ) ⟩
↓ PAR ↓ PAR

⟨ FKey(p, 10, Some({1}, 0) · Some({3}, 2), 1/2, γ) ∗ FKey(p, 20, Some({2}, 1), 1/2, γ) ∗
FKey(p, 10, Some({2}, 1) · Some({6}, 2), 1/2, γ) ∗ FKey(p, 20, Some({5}, 0), 1/2, γ) ⟩

↓ commutativity, associativity

⟨
(

FKey(p, 10, Some({1}, 0) · Some({3}, 2), 1/2, γ) ∗
FKey(p, 10, Some({2}, 1) · Some({6}, 2), 1/2, γ)

)
∗
(

FKey(p, 20, Some({2}, 1), 1/2, γ) ∗
FKey(p, 20, Some({5}, 0), 1/2, γ)

)
⟩

↓ KEYSEP

⟨ FKey(p, 10, Some({1}, 0) · Some({3}, 2) ·
Some({2}, 1) · Some({6}, 2) , 1, γ) ∗ FKey(p, 20, Some({2}, 1) ·

Some({5}, 0) , 1, γ) ⟩
↓ Some composition

⟨ FKey(p, 10, Some
(

({1}, 0) · ({3}, 2) ·
({2}, 1) · ({6}, 2)

)
, 1, γ) ∗ FKey(p, 20, Some

(
({2}, 1) ·
({5}, 0)

)
, 1, γ) ⟩

↓ argmax composition

⟨ FKey(p, 10, Some({3, 6}, 2), 1, γ) ∗ FKey(p, 20, Some({2}, 1), 1, γ) ⟩

(get p 10, get p 20)

⟨(v?1, v?2). FKey(p, 10, Some({3, 6}, 2), 1, γ) ∗ FKey(p, 20, Some({2}, 1), 1, γ) ∗
∃ v1, v2. v?1 = Some(v1, 2) ∗ v1 ∈ {3, 6} ∗ v?2 = Some(v2, 1) ∗ v2 ∈ {2} ⟩

Figure 7.2: Verified client using the key-value specification
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For each put call, the corresponding FKey resource is updated accordingly by application of KEYPUT.

The contributions of both threads can then be combined, separating FKey resources for key 10 from FKey

resources for key 20. KEYSEP is once again applied to obtain the full view of each FKey resource. The

Some composition rule is applied, followed by the argmax composition, obtaining the resulting known state

of each key. By application of KEYGET, we obtain the same return value as the proof from Chapter 6.

Alternatively, a specification for partial views of the map can also be built from the full map specifica-

tion. We can do so by defining the following FMap predicate:

FMap(p,MF , q, γ) ≜ ◦q MF

γ

∗

∃M,Γ. Map(p,M,Γ) ∗ ∃MA. •MA

γ

∗ ∗
k ∈ KeyRange

SomeEquiv(M [k],MA[k])

mapN

The Map resource is kept inside the invariant, so that it can be shared between all threads. The full

map and the authoritative map must be equivalent, hence the SomeEquiv relation required for all valid

keys. While the key-value specification allows us to define explicitly how values should be composed,

both specifications can be used to reason about most of the same clients, as long as the value com-

position operator is the same. The main advantage of the key-value specification is that it enables the

verification of clients where some keys may not be shared, whereas a Map resource corresponds to a

fraction of the entire map, making all keys shared by default.

To support reasoning for different client programs, one only needs to change the value RA of either

FKey or FMap for that purpose. No additional proof effort is required to reason about structural changes

to the map, separating the correctness proof from the verification of functional properties. Through RAs,

protocols can be defined for how threads interact with each other, without concerning ourselves with

how the structure handles the data internally.

For instance, to redefine the argmax operator so as to cover the limitations of SkipGet, we would

need to redo all the proofs from scratch, even though the changes would be minimal. On the other hand,

the key-value specification could be adapted by simply modifying the RA used in FKey, preserving the

logically atomic specification which handles Key resources. An alternative definition of KEYGET can thus

be proven by opening the invariant and applying the get specification for Key resources, leaving the new

RA to handle how the result from get should relate to the results of other threads.
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We presented a lock-based variant of the JellyFish skip list and showed that its implementation satisfies

a concurrent map specification. Conflicts on concurrent updates are handled through timestamps, which

we reason about using a novel resource algebra for the argmax operation. We match the abstract state

of the map with the physical state of the skip list by only applying map logic to the bottom level. Our

proofs are generalized for any number of levels and height distribution by reasoning about each level

independently, tying consecutive levels by ghost state. We discuss how the obtained specification could

be further improved by enforcing logical atomicity for the map’s operations and defining a more general

key-value specification. This work contributes to the understanding of complex list-based structures,

providing a new approach for reasoning about concurrent maps.

8.1 Future Work

We leave as future work the adaptation of our proofs to the original JellyFish [32] and other concurrent

skip list implementations [4, 7, 9, 13]. Any changes to the proofs should account for the lock-free nature

of most concurrent skip lists, as well as optimizations, such as stopping the search when the key is found

in the upper levels.

Our proofs could be refactored to provide a logically atomic specification for maps over timestamped

domains. Such a specification could be used to build an alternative specification for reasoning about

individual key-value pairings, leading to significant proof reuse. Different client specifications could be

defined by constructing a suitable RA to reason about the specification for the underlying data structure.

The argmax RA could be extended to account for limitations of the protocol it establishes for thread

interaction. Namely, when a thread updates a key more than once with the same timestamp, we can

be sure that the last update will remain in the map; the argmax operator, however, will retain all values.

Changing the RA could also allow a new get specification, considering partial ownership of the map.

The main issue of SKIPGET and KEYGET is that they represent sequential specifications, in the sense

that they reflect how the state of the structure should remain unchanged by the end of a search. While it

is true that searches should be read-only procedures, representation predicates for concurrent reasoning

reflect knowledge of the state, which should be updated depending on the search results. As such, the

specification for get should reflect an update to the partial view, similar to:

{ IsSkipList(p,M, q, γ) } get p k { v. IsSkipList(p,M ∪ {k : v}, q, γ) }

These get updates should agree with put updates when combining all views. While the map RA

operator is an abstraction of put and argmax an abstraction of update, no such abstraction is defined for

get. Either argmax could be modified to cover that gap or a new operator could be defined establishing

a coupling with argmax, much like get and put are connected by the same data structure. We leave as

a research question whether RAs are a strong enough construct to express such a notion.
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