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Abstract
Concurrent append-only skip lists are widely used in data

store applications, so as to maintain multiple versions of

the same data with different timestamps, rather than delete

outdated information. One such skip list implementation is

JellyFish, which greatly mitigates the drop in performance

witnessed in other skip lists induced by the append-only

design. JellyFish accomplishes this feat by storing in each

node a consistent timeline of values as a linked list, instead

of inserting new nodes in the skip list.

In this work, we present a lock-based variant of Jelly-

Fish, using a lazy synchronization strategy, and formally

verify its functional correctness. We further show that this

data structure satisfies the specification of a concurrent map.

To reason about concurrent updates on values, we define a

novel resource algebra over timestamped domains. Using the

argmax operator for this algebra, we prove that concurrent
updates to the map always maintain the most recent values.

We also show that updates to a node maintain its history of

values consistent. Our proofs are mechanized in Coq using

the concurrent separation logic of Iris.

Keywords: separation logic, specification, formal verifica-

tion, concurrent data structures, Iris, Coq

1 Introduction
A map is an abstraction for a data structure which associates

an identifying key to each value it stores. This abstraction

has been vastly studied in computer science holding many

real-world use cases. For instance, data store applications

make use of concurrent maps to index data in a thread-safe

environment. In fact, most of these applications maintain

a history of values for each key in the map, so as to record

different versions of the same data, instead of deleting out-

dated information. This append-only design, however, tends

to hamper the performance of these concurrent maps, de-

pending on how the old values are stored.

As an abstraction, maps can be implemented in several

ways, with different assurances on their performance. While

self-balancing trees are a classical approach, a more effi-

cient implementation is the skip list. Structurally, skip lists

are very similar to balanced trees but maintain their balance

through a probabilistic strategy, rather than explicit rebalanc-

ing procedures. This difference makes the skip list preferable

in concurrent environments, which is why it is the most

widely used map implementation in data store applications.

In particular, JellyFish [21] is a state-of-the-art skip list imple-

mentation whose performance surpasses that of other skip

lists used in industry. As an append-only skip list, JellyFish

efficiently supports version control by storing a list of values

in every node. This list corresponds to the node’s history of

values with each value being assigned to a timestamp. To

ensure that chronological order is maintained, new values

are never added to the list if their assigned timestamps are

less recent than any value already in the list.

Contributions. This implementation adopts a lazy syn-

chronization strategy, which makes it easier to reason about

its correctness. Ourwork proves that this skip list satisfies the

specification of a concurrent map with timestamped values.

Using the concurrent separation logic of Iris [7–9, 11], we

reason about updates to the map by defining a novel resource

algebra for the argmax operator. This operator abstracts the
expected behaviour for map updates, since it always retains

the value with the maximum argument, which in this context

corresponds to the value with the most recent timestamp.

Our proofs are mechanized in Coq and available at:

https://github.com/sr-lab/iris-jellyfish

To the best of our knowledge, this is the first effort to ver-

ify (a variant of) the JellyFish skip list and to reason about

concurrent maps with version control through timestamped

domains. The main contributions of this work can thus be

summarized as follows: (1) the first verification effort of the

JellyFish design for concurrent append-only skip lists; (2) a
new concurrent map specification, which supports version

control through the use of timestamps; (3) a mechanized

proof that our skip list implementation satisfies the concur-

rent map specification; (4) a novel resource algebra in the

concurrent separation logic of Iris for the argmax operation.

2 Background
We begin this section with an overview of skip lists, followed

by a high-level description of the JellyFish design for con-

current append-only skip lists. We then introduce Iris, the

Coq framework that we use to reason about our lazy variant

of JellyFish.
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2.1 Skip Lists
A skip list [15] is a list-based data structure, which can be

considered a generalization of a sorted linked list. This data

structure is composed of a maximum number of levels, where

level 0 corresponds to the complete linked list and each level

𝑙 is a sublist of level 𝑙−1. Since each level contains progres-

sively fewer elements of the original list, maintaining all lists

sorted allows searches in higher levels to skip elements that

would otherwise be traversed in a standard linear search. We

search in the top level, stop searching when we reach a value

equal to or greater than the key, descend to the next level

starting from the same element and repeat until we reach

the bottom level. The search can end before reaching the

bottom, if the key is found in one of the sublists.

The JellyFish Skip List. Several concurrent skip lists have
been proposed, including append-only structures which are

widely used in data store applications (e.g., RocksDB1
and

LevelDB
2
). Rather than overwrite existing values, this design

choice maintains a record of all values that have been stored

during the data structure’s lifetime. An efficient approach is

to maintain a list of timestamped values per node, referred

to as the node’s vertical list. Updates to a key are then made

by prepending a new value to its vertical list, maintaining

the skip list itself with the same nodes. This approach corre-

sponds to the design of the JellyFish skip list [21].

JellyFish is one of many lock-free concurrent skip list algo-

rithms. However, while a non-blocking solution is desirable

to reduce contention, this approach makes it harder to rea-

son about the correctness of these algorithms. For instance,

in the ConcurrentSkipListMap from the Java concurrency

package
3
, “certain interleavings can cause the usual skip-list

invariants to be violated” [6]. For this reason, we consider
a lock-based skip list algorithm, which follows the design

of JellyFish and employs the lazy synchronization strategy

of the lazy list of Heller et al. [5]. Inspired by the concur-

rent skip list of Herlihy et al. [6], the key idea behind the

algorithm is to treat each level as an individual lazy list. The

implementation for this lazy JellyFish skip list is discussed

in detail in Section 3.

2.2 Iris
To verify the correctness of the lazy JellyFish skip list we have

mechanized proofs for its methods in the Coq proof assistant

using the Iris proof mode [10, 12]. Iris is a concurrent sep-

aration logic that allows reasoning about deep correctness

properties for fined-grained concurrent programs written

in higher-order imperative languages [8]. As a separation

logic, Iris allows reasoning about ownership of disjoint re-
sources (e.g., heap addresses), which is useful for concurrent

1https://github.com/facebook/rocksdb
2https://github.com/google/leveldb
3https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ConcurrentSkipListMap.html

programs where threads handle separate parts of the heap.

To reason about shared resources, however, Iris contains two

key ingredients at its base: invariants and ghost state.

Invariants allow us to express assertions about a shared

state between threads, which must always hold true, regard-

less of what changes are applied to that state. Access to this

shared state can be obtained by opening the invariant, i.e.,

by claiming temporary ownership of the resources in the

invariant. The invariant can only remain open for the du-

ration of a single step of computation and must still hold

true after this step is executed. The invariant can then be

closed by revoking the thread’s temporary ownership of the

shared resources. By considering a single step, we can avoid

reasoning about other threads interfering with its execution,

assuring that the invariant will be preserved throughout all

steps of the program. In Section 4, we discuss ghost state,

which is what enables us to reason about altering shared

resources, while preserving the invariant assertions.

3 A Lazy Variant of JellyFish
Lazy JellyFish is an append-only skip list implementation

where the data is organized in memory following the Jelly-

Fish design [21], while concurrent updates to it employ a

lock-based lazy synchronization strategy. Its implementation

is shown in Figure 1, including the usual operations on maps:

new, get and put. To match the JellyFish design, a node for

this data structure is represented as a tuple (𝑘, 𝑣, 𝑙, 𝑛) where:
• 𝑘 is an integer for the node’s key;

• 𝑣 is a pointer for the node’s vertical list;

• 𝑙 is an array for the node’s locks in each level;

• 𝑛 is an array for the node’s successors in each level.

In turn, the vertical list of a skip list node contains nodes

represented as tuples (𝑣, 𝑡, 𝑝) where:
• 𝑣 is a value;

• 𝑡 is the assigned timestamp;

• 𝑝 is a pointer to the previous value’s node.

Data Initialization. The skip list’s construtor, new, ini-
tializes the data structure with two nodes, referred to as the

left and right sentinels, with keys MIN and MAX, respec-
tively; these values bound the range of valid keys for the map.

Both arrays of the left sentinel are created withHMAX+1 en-
tries using the AllocN primitive. All entries of the successor

array point to the right sentinel, while initLocks creates a
different lock for each entry of the lock array. Pointer arith-

metic is used to index array entries: we write 𝑎+𝑖 instead
of the standard C-style notation 𝑎[𝑖]. The right sentinel, on
the other hand, has no successors or locks, since keys will

always be lower than MAX, remaining constant throughout

the skip list’s lifetime. Since the sentinels do not correspond

to actual entries of the map, no value is associated to these

nodes, i.e., these nodes have no vertical list. The constructor

returns a pointer to the left sentinel.
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initLocks 𝑙𝑜𝑐𝑘𝑠 𝑙𝑣𝑙 ≜
if 𝑙𝑣𝑙 = HMAX + 1 then ( )
else 𝑙𝑜𝑐𝑘𝑠 + 𝑙𝑣𝑙 ← newlock ( ) ;

initLocks 𝑙𝑜𝑐𝑘𝑠 (𝑙𝑣𝑙 + 1)

new ≜
let 𝑡𝑎𝑖𝑙 = (MAX,NULL,NULL,NULL) in
let 𝑛𝑒𝑥𝑡 = AllocN (HMAX + 1) (ref 𝑡𝑎𝑖𝑙 ) in
let 𝑙𝑜𝑐𝑘𝑠 = AllocN (HMAX + 1) ( ) in
initLocks 𝑙𝑜𝑐𝑘𝑠 0;
ref (MIN,NULL, 𝑙𝑜𝑐𝑘𝑠, 𝑛𝑒𝑥𝑡 )

find 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 ≜
let 𝑠𝑢𝑐𝑐 = !!(𝑝𝑟𝑒𝑑 .next + 𝑙𝑣𝑙 ) in
if 𝑘 ≤ 𝑠𝑢𝑐𝑐 .key then (𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 )
else find 𝑠𝑢𝑐𝑐 𝑘 𝑙𝑣𝑙

findAll 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 ℎ ≜
let (𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 ) = find 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 in
if 𝑙𝑣𝑙 = ℎ then (𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 )
else findAll 𝑝𝑟𝑒𝑑 𝑘 (𝑙𝑣𝑙 − 1) ℎ

get 𝑝 𝑘 ≜
let (_, 𝑠𝑢𝑐𝑐 ) = findAll !𝑝 𝑘 HMAX 0 in
if 𝑘 ≠ 𝑠𝑢𝑐𝑐 .key then None
else let 𝑣 = !(𝑠𝑢𝑐𝑐 .val) in Some (𝑣.val, 𝑣.ts)

link 𝑝𝑟𝑒𝑑 𝑙𝑣𝑙 𝑛 ≜
let 𝑛𝑒𝑤 = !𝑛 in
𝑛𝑒𝑤.next + 𝑙𝑣𝑙 ← !(𝑝𝑟𝑒𝑑 .next + 𝑙𝑣𝑙 ) ;
𝑛𝑒𝑤.locks + 𝑙𝑣𝑙 ← newlock ( ) ;
𝑝𝑟𝑒𝑑 .next + 𝑙𝑣𝑙 ← 𝑛

createAndLink 𝑝𝑟𝑒𝑑 𝑘 𝑣 𝑡 ℎ ≜
let 𝑛𝑒𝑥𝑡 = AllocN (ℎ + 1) ( ) in
let 𝑙𝑜𝑐𝑘𝑠 = AllocN (ℎ + 1) ( ) in
let 𝑣𝑎𝑙 = ref (𝑣, 𝑡,NULL) in
let 𝑛 = ref (𝑘, 𝑣𝑎𝑙, 𝑙𝑜𝑐𝑘𝑠, 𝑛𝑒𝑥𝑡 ) in
link 𝑝𝑟𝑒𝑑 0 𝑛;

𝑛

update 𝑛𝑜𝑑𝑒 𝑣 𝑡 ≜
let 𝑣𝑎𝑙 = !(𝑛𝑜𝑑𝑒 .val) in
if 𝑡 < 𝑣𝑎𝑙 .ts then ( )
else 𝑛𝑜𝑑𝑒 .val← (𝑣, 𝑡, ref 𝑣𝑎𝑙 )

findLock 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 ≜
let (𝑝𝑟𝑒𝑑, _) = find 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 in
let 𝑙𝑜𝑐𝑘 = !(𝑝𝑟𝑒𝑑 .locks + 𝑙𝑣𝑙 ) in
acquire 𝑙𝑜𝑐𝑘 ;
let 𝑠𝑢𝑐𝑐 = !!(𝑝𝑟𝑒𝑑 .next + 𝑙𝑣𝑙 ) in
if 𝑘 ≤ 𝑠𝑢𝑐𝑐 .key then (𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 )
else release 𝑙𝑜𝑐𝑘 ;

findLock 𝑠𝑢𝑐𝑐 𝑘 𝑙𝑣𝑙

insert 𝑝𝑟𝑒𝑑 𝑙𝑣𝑙 𝑛 ≜
let 𝑘 = !𝑛.key in
let (𝑝𝑟𝑒𝑑, _) = findLock 𝑝𝑟𝑒𝑑 𝑘 𝑙𝑣𝑙 in
let 𝑙𝑜𝑐𝑘 = !(𝑝𝑟𝑒𝑑 .locks + 𝑙𝑣𝑙 ) in
link 𝑝𝑟𝑒𝑑 𝑙𝑣𝑙 𝑛;

release 𝑙𝑜𝑐𝑘

tryInsert 𝑝𝑟𝑒𝑑 𝑘 𝑣 𝑡 ℎ ≜
let (𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 ) = findLock 𝑝𝑟𝑒𝑑 𝑘 0 in
let 𝑙𝑜𝑐𝑘 = !(𝑝𝑟𝑒𝑑 .locks) in
if 𝑘 = 𝑠𝑢𝑐𝑐 .key
then update 𝑠𝑢𝑐𝑐 𝑣 𝑡 ;

release 𝑙𝑜𝑐𝑘 ;
None

else let 𝑛 = createAndLink 𝑝𝑟𝑒𝑑 𝑘 𝑣 𝑡 ℎ in
release 𝑙𝑜𝑐𝑘 ;
Some 𝑛

insertAll 𝑐𝑢𝑟𝑟 𝑘 𝑣 𝑡 ℎ 𝑙𝑣𝑙 ≜
if 𝑙𝑣𝑙 = 0 then tryInsert 𝑐𝑢𝑟𝑟 𝑘 𝑣 𝑡 ℎ

else let (𝑝𝑟𝑒𝑑, _) = find 𝑐𝑢𝑟𝑟 𝑘 (𝑙𝑣𝑙 − 1) in
let 𝑜𝑝𝑡 = insertAll 𝑝𝑟𝑒𝑑 𝑘 𝑣 𝑡 ℎ (𝑙𝑣𝑙 − 1) in
match 𝑜𝑝𝑡 with
| None ⇒ None
| Some 𝑛 ⇒ insert 𝑐𝑢𝑟𝑟 𝑙𝑣𝑙 𝑛;

Some 𝑛

putH 𝑝 𝑘 𝑣 𝑡 ℎ ≜
let (𝑝𝑟𝑒𝑑, _) = findAll !𝑝 𝑘 HMAX ℎ in
insertAll 𝑝𝑟𝑒𝑑 𝑘 𝑣 𝑡 ℎ ℎ

put 𝑝 𝑘 𝑣 𝑡 ≜
let ℎ = randomLevel in
let _ = putH 𝑝 𝑘 𝑣 𝑡 ℎ in ( )

Figure 1. Pseudocode for the lazy JellyFish skip list. Its public methods are highlighted by a solid contour. A dashed contour

highlights the private update procedure, which is responsible for updating a node’s vertical list.

Data Retrieval. The get method performs a search for

a key and returns its current value. Being parameterized

by the left sentinel pointer 𝑝 and the lookup key 𝑘 , it first

invokes findAll to traverse the skip list as it would in a se-

quential setting. The find procedure iterates over a single

level, returning a pair of nodes with the greatest key lower

than 𝑘 and the lowest key equal to or greater than 𝑘 within

the current level. The pair of nodes from the bottom list is

then returned by findAll, containing the last node in the skip

list with key lower than 𝑘 and the first node with key equal

to or greater than 𝑘 , following a case analysis for the latter’s

key. If the key differs from 𝑘 , then 𝑘 is not in the map and so

there is no value associated to 𝑘 . Otherwise, 𝑘 belongs to the

map’s domain and its most recent value is stored in the head

of its vertical list. We then retrieve the value and timestamp

from this vertical list node.

Given that concurrent updates to the map might occur,

the get method is optimistic in the sense that it might return

outdated results. However, a correct result might still be in-

validated by a concurrent write taking place immediately

after the search’s conclusion, regardless of the chosen im-

plementation. It is thus preferable to opt for a non-blocking

approach, since it reduces contention, making the findAll
procedure suitable as a helper function for the put operation.
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Data Updates. Concurrent writes on the map are done

through the put method, which can insert new nodes or

update existing ones. Updating a key𝑘 consists in associating

it to a new value 𝑣 and timestamp 𝑡 . In case the key is not

found, a new node must be created with a given height

ℎ chosen through randomLevel. The random height ℎ is

then passed to putH along with the remaining arguments

to execute the map update. Since the levels above ℎ will not

contain the new node, findAll initially traverses the skip

list until level ℎ. The insertAll procedure is then called to

either insert a new node in all remaining levels or update

an existing node. To preserve the sublist relation between

levels, the traversal continues until the bottom level, so that

insertions may be executed bottom up. If a new node is

inserted in the bottom list, then this node is propagated to

the upper levels for insertion; otherwise, an existing node,

already connected to all intended levels, has its value and

timestamp updated upon reaching the bottom level.

To ensure that insertions and updates are done correctly,

both insert and tryInsert first call findLock. Lazily, findLock
tries to acquire the only lock it needs to perform the intended

insertion or update. It first executes find to obtain the node

with the greatest key lower than 𝑘 in the current level and

then acquires its lock. Since we only obtain exclusive own-

ership of the lock after acquiring it, we check if the node’s

successor still has a key equal to or greater than 𝑘 . If not, the

node no longer holds the greatest key lower than 𝑘 ; find is

then continued from the successor to obtain a new node, re-

peating the process. Otherwise, we have acquired exclusive

ownership of the lock and the successor’s key is guaranteed

to be equal to or greater than 𝑘 .

If the keys are different, tryInsert will create a node for
the new key-value pair. While the list insertion is performed

through the link procedure at all levels, the new node is only

created at the bottom level. Furthermore, we only validate

the successor’s key at the bottom level. Due to the sublist

relation, if 𝑘 is not in the bottom list, then it is not in any

of its sublists. It is thus safe to invoke insert in the upper

levels without validating the keys, as long as there is only

one thread performing the insertions. This is guaranteed by

having all threads reaching the bottom level first to claim the

right for creating and inserting the new node. The threads

which acquire the lock after the node has been inserted will

see that the successor of the locked node has key 𝑘 , so they

will attempt to update its value.

The sequence of values in a node’s vertical list should

reflect a monotonic increase of the associated timestamps.

Therefore, update fails when the node’s timestamp is more

recent than 𝑡 , since it would yield an inconsistent timeline.

On the other hand, a successful update occurs when 𝑡 is

more recent, as well as when the timestamps are equal. A

new node containing 𝑣 and 𝑡 is then prepended to the head

of the vertical list, extending the current history of values of

the node.

4 Reasoning about Timestamped Domains
We now focus on reasoning about the correctness of the

lazy JellyFish skip list. A key feature of Iris that allows us to

reason about mutable shared state is its capability of defining,

through resource algebras, an abstract or auxiliary state of

the program, to which we call ghost state. In this section, we

describe ghost state and present a novel resource algebra for

reasoning about values with timestamps.

4.1 Ghost State in Iris
Ghost state provides a way of matching the physical state of

shared data with an abstract state where certain properties

must hold. For instance, if we choose to model this abstract

state as a partial commutative monoid (PCM), we can ensure

that operations on the shared state are commutative and

associative. These two properties are useful when reasoning

about concurrency, because they imply that, for any set of

operations, the order of execution is irrelevant, eliminating

the need for a combinatorial analysis.

Resource Algebras. Ghost state in Iris is defined as a

resource algebra (RA), a broader algebraic definition than

PCMs. The differences between both constructs are present

in two other properties that define a PCM: partiality and the

unit element. Partiality is a useful notion, since it allows us to

express that a given operation might be undefined between

certain elements; in RAs, operations are total, but some com-

binations of elements are deemed invalid, capturing a similar

effect. Regarding the unit element, PCMs require a single

unit for all elements, while RAs generalize this notion by

requiring a unit (if any) for each element, defined by a core

function. If the core is the same for all elements, then we

obtain a unital RA, which only differs from a PCM in terms

of partiality. The RA operator can thus be used to compose

ghost state through the following rule:

𝑎
𝛾

∗ 𝑏
𝛾

⊣⊢ 𝑎 · 𝑏
𝛾

The dashed lines denote that we are dealing with a ghost

variable (an auxiliary variable, rather than an in-memory

program variable) associated to the ghost name 𝛾 , while the

separating conjunction (∗) is used to express the ownership

of disjoint ghost resources, which can be owned separately

by different threads. Through this rule, separate resources

which correspond to the same ghost variable can be com-

bined into a single resource using the operation of the under-

lying RA (·). We can thus reason about changes to resources

locally and the RA handles how those local changes can be

combined to reflect the global state.

4.2 The argmax Resource Algebra
Our goal is to verify an implementation for a concurrent map.

Since ghost state must represent an accurate abstraction of

the data we are reasoning about, we require a suitable RA

over maps. To define such a RA, we need to first understand

4
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how composition between maps should be applied. For maps

with no keys in common, we can simply merge both maps

into a single map with all key-value pairs, similarly to the

set union. However, when both maps have some key in com-

mon, the associated value in each map might differ from one

another. In this scenario, what value should the key possess?

One way of handling this issue would be to invalidate such

combinations. Another approach would be to combine both

values, following the composition rule for singleton maps:

{ 𝑘 : 𝑥 } ∪ { 𝑘 : 𝑦 } = { 𝑘 : 𝑥 · 𝑦 }

For this rule to be applicable, we need to make value com-

position possible, which means that the carrier of our map

RA must map keys of a given type to values that belong

to another RA. This leaves us with a new question: what

value RA makes sense in the context of our problem? If two

threads put different values for the same key, thenwhat value

should the key be mapped to? The answer to this question

will depend on the timestamps of each insertion: the map

should always store the value with the most recent times-

tamp. If both timestamps are equal, then both values will be

prepended to the key’s history, but their relative order will

depend on the scheduler. Otherwise, the value with the most

recent timestamp will become the new head of the key’s

vertical list, while the least recent insertion will only suc-

ceed if it gets scheduled first. In other words, combinations

between values yield the value (or one of the values) with

the maximum timestamp, which means that we will need to

define a RA for the argmax operation.
To the best of our knowledge, our work is the first to

formalize the argmax RA and use it in the verification of

concurrent maps. We define the carrier for our RA as pairs

between sets of arguments and values. We can then define

the RA operator such that combining two pairs yields the

pair with the maximum value. If the values are equal, then

a new pair is returned, containing the same value and the

union between both arguments. Finally, all combinations are

defined as valid and a botZ element is added to the carrier

to serve as unit. The argmax operator is thus defined such

that for all sets of arguments (𝑎 and 𝑏) and values (𝑖 and 𝑗 ):
(𝑎, 𝑖) · (𝑏, 𝑗) = (𝑏, 𝑗) if 𝑖 < 𝑗

(𝑎, 𝑖) · (𝑏, 𝑖) = (𝑎 ∪ 𝑏, 𝑖)
(𝑎, 𝑖) · botZ = (𝑎, 𝑖)

In the context of maps with timestamped values, this novel

RA will ensure that each key is associated to the timestamp

at which its most recent update occurred, as well as to a set

of values, which were all inserted with the key’s associated

timestamp. We require this set, rather than the actual value

stored in memory, to keep track of every value that might be

at the head of the key’s vertical list. Since updates with the

same timestamp will result in a non-deterministic ordering

of operations, any of those updates can be the last one to be

prepended to the list.

5 Specification for the Lazy JellyFish Skip
List

Ghost state allows us to reason about concurrent maps in

the abstract world of RAs. We now show how these abstrac-

tions can help us in reasoning about the physical state of a

concurrent map and define a specification for its operations.

We begin by describing the high-level specification and then

present in detail its underlying definition.

5.1 Rules and Hoare Triples
We require a representation predicate to describe the known

state of the map: due to the chosen implementation for this

map, we refer to the representation predicate as IsSkipList.
The first parameter of IsSkipList is a pointer to the head of

the skip list. The second parameter is a map with partial

knowledge of the map. Full knowledge of the map can be

obtained by combining IsSkipList assertions through the

SkipSep rule shown in Figure 2. The third parameter indicates

whether we are in possession of the full view: it corresponds

to a fraction ranging between 0 (exclusive) and 1 (inclusive).

Full knowledge of the map’s state corresponds to a fraction

of 1, while splitting a view results in views with smaller

fractions. The full view can only be obtained without sharing

ownership, since excluding fractions of 0 ensures that it can

only be split into fragments with a fraction lower than 1. The

fourth parameter provides the required ghost names.

Our concurrent append-only map contains three public

methods: new, get and put. In Figure 2, we show the Hoare

triples for each operation using the IsSkipList predicate. The
specification for new (SkipNew) is rather straightforward:

no resources are needed as a precondition and creating the

skip list returns the full fraction of an empty map. The other

operations, however, possess more complex semantics.

Searches in our concurrent skip list are optimistic, mean-

ing that, if some thread is searching for a key that another

thread is inserting or updating, the searching thread might

return an outdated result. For this reason, the specification

for get (SkipGet) is only defined for the scenario where we

have full ownership of the data structure. Since we know that

no other thread is in possession of some map fragment, we

can be certain that no concurrent write will interfere with

the search. We can then prove that searching in the data

structure for any key within the valid key range is equiva-

lent to performing a lookup for the same key in the abstract

map. Using the argmax RA for value composition, we can

show that the key’s set of values stored in the abstract map

necessarily contains the value returned by the search.

The put method attempts to update a key with a given

value and timestamp such that the key is within the valid

key range. If the key has not yet been inserted into the map,

then a new node with the given key, value and timestamp

will be created and linked to all levels within its height range,

updating the physical state of themap. To express this change

5



Pedro Carrott

SkipSep

IsSkipList(𝑝,𝑀1, 𝑞1, 𝛾 ) ∗ IsSkipList(𝑝,𝑀2, 𝑞2, 𝛾 ) ⊣⊢ IsSkipList(𝑝,𝑀1 ∪𝑀2, 𝑞1 + 𝑞2, 𝛾 )

SkipNew

{ True } new { 𝑝. ∃ 𝛾 . IsSkipList(𝑝,∅, 1, 𝛾 ) }

SkipPut

MIN < 𝑘 < MAX

{ IsSkipList(𝑝,𝑀,𝑞,𝛾 ) } put 𝑝 𝑘 𝑣 𝑡 { IsSkipList(𝑝,𝑀 ∪ {𝑘 : ({𝑣}, 𝑡 ) }, 𝑞,𝛾 ) }

SkipGet

MIN < 𝑘 < MAX

{ IsSkipList(𝑝,𝑀, 1, 𝛾 ) } get 𝑝 𝑘

{
𝑣.

IsSkipList(𝑝,𝑀, 1, 𝛾 ) ∗ ( (𝑣 = None ∗ 𝑀 [𝑘 ] = None) ∨
(∃ 𝑡, 𝑧, 𝑆 . 𝑣 = Some(𝑧, 𝑡 ) ∗ 𝑀 [𝑘 ] = Some(𝑆, 𝑡 ) ∗ 𝑧 ∈ 𝑆 ) )

}
Figure 2. Specification for the lazy JellyFish skip list.

in the abstract state, the postcondition of SkipPut simply

combines the view we have of the map with a singleton map

that associates the key to a singleton set containing only the

given value (i.e., the only value that we know is associated to

the key) and to the given timestamp. Since we know that the

key is not in the map, adding a new key to our partial view is

equivalent to adding it to the full view. While it is simpler to

understand why this singleton composition works when we

insert a new key, this update to the abstract map also works

when we attempt to update an existing key.

Under the assumption that the key already exists in the

map, we can infer that the abstract map results from a com-

position with some singleton map for that same key. Fur-

thermore, while the key may not exist in our partial view,

we know that updates to partial views are equivalent to up-

dates to the full view. Thus, that singleton map, which we

extract from the full view, will be combined with the single-

ton map from the update to our partial view. We can then

apply the composition rule for singleton maps and obtain a

new singleton map for the same key, with its value being the

combination between the existing value and the new one. Us-

ing the argmax RA, this combination retains the values with

the most recent timestamp, which is the intended behaviour

for updates to a node’s vertical list. Combining values in this

manner ensures that the abstract map will always associate

a key to every value that might be at the head of its vertical

list, regardless of the update order.

5.2 Representation Predicate
To define the IsSkipList predicate, we first need to consider

that operations on the skip list can be decomposed into local

operations on the linked list of each level. This property

allows us to reason about the correctness of the whole data

structure by reasoning about each level independently. Thus,

we can define a new predicate to describe the invariant re-

sources for a given skip list level, while IsSkipList simply

asserts ownership of the resources for all levels.

The IsSkipList predicate is thus defined using a unique

invariant for each level, as shown in Figure 3. The invariants

are represented by a solid border: the BotListInv predicate
holds the shared resources for the bottom list, while the

SublistInv predicate describes the upper levels. The parame-

ter 𝑝 should point to the left sentinel and the corresponding

points-to assertion is made persistent (□), since it will always
point to the same node. The parameter 𝛾 is a list containing

the names for the ghost variables of each level. The param-

eters 𝑀 and 𝑞 are used in the assertion within the dashed

border to express the partial view of the map, as we will now

see by describing the bottom list invariant.

5.3 Invariant for the Bottom List
Since the bottom list represents the full view of the abstract

map, its shared state should reflect an equivalence between

all entries of the abstract map and the existing physical nodes

in memory. However, the IsSkipList predicate only expresses
a partial view of the map, so we need relate private partial
views to the shared full view. This can be accomplished with

an authoritative RA, where the full view is an authoritative
resource, while a partial view is a fragment resource.

Authoritative Ghost State. The relation between author-
itative and fragment resources (preceded by • and ◦, respec-
tively) is expressed through the following rule:

• 𝑎
𝛾

∗ ◦ 𝑓
𝛾

⊢ 𝑓 ≼ 𝑎

If we consider 𝑎 and 𝑓 to be maps, then we can assert that

𝑓 is a submap of 𝑎 by owning 𝑎 as the authoritative resource

and 𝑓 as one of its fragment resources. Thus, we canmaintain

inside the invariant an authoritative resource as the full view

of the map, with each thread holding their own fragment

resource as a partial view. To update a fragment resource, the

same update must be applied to the authoritative resource,

which can be accomplished by opening the invariant and

obtaining that resource. In other words, a given thread’s

fragment resource can be seen as the combination of all

its contributions to the map, meaning that combining all

existing fragments should yield a resource containing the

whole map. For this reason, the IsSkipList predicate asserts
ownership of a fragment resource to reflect the partial view.

To indicate whether we hold the full view, this partial view

is associated to a fraction such that views can be combined

using the rule:

◦𝑞1 𝑓1 · ◦𝑞2 𝑓2 = ◦𝑞1+𝑞2 (𝑓1 · 𝑓2)
6
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Representation Predicate

IsSkipList(𝑝,𝑀,𝑞,𝛾 ) ≜ ∃ ℎ𝑒𝑎𝑑. 𝑝 ↩→□ ℎ𝑒𝑎𝑑 ∗ ℎ𝑒𝑎𝑑 .key = MIN ∗

◦𝑞 𝑀
𝛾0

𝐹 ∗ BotListInv(ℎ𝑒𝑎𝑑,𝛾0 )
levelN(0)

∗
HMAX∗
𝑖=1

SublistInv(𝑖, ℎ𝑒𝑎𝑑,𝛾𝑖 , 𝛾𝑖−1 )
levelN(𝑖 )

Invariants
BotListInv(ℎ𝑒𝑎𝑑,𝛾 ) ≜ ∃𝑀,𝑆, 𝐿.

•𝑀
𝛾𝐹
∗ • 𝑆

𝛾𝐴
∗ KeyRange \ 𝑆 .keys

𝛾𝑇
∗

𝑀 .keys = 𝑆 .keys ∗ 𝑆 ≡𝑃 𝐿 ∗ Sorted(𝐿cat ) ∗

|𝐿 |∗
𝑖=0

(
IsNext(0, 𝐿cat [𝑖 ], 𝐿cat [𝑖 + 1] ) ∗
HasLock(0, 𝐿cat [𝑖 ], InBotLock)

)
∗

∗
𝑛∈𝑆

(
∃ 𝑣, 𝑣𝑠. 𝑛.val ↩→1/2 𝑣 ∗ 𝑣.val ∈ 𝑣𝑠 ∗

𝑀 [𝑛.key] = Some(𝑣𝑠, 𝑣.ts)

)

SublistInv(𝑙𝑣𝑙, ℎ𝑒𝑎𝑑, Γ, 𝛾 ) ≜ ∃ 𝑆, 𝐿.

• 𝑆
Γ𝐴
∗ KeyRange \ 𝑆 .keys

Γ𝑇
∗

𝑆 ≡𝑃 𝐿 ∗ Sorted(𝐿cat ) ∗

|𝐿 |∗
𝑖=0

(
IsNext(𝑙𝑣𝑙, 𝐿cat [𝑖 ], 𝐿cat [𝑖 + 1] ) ∗
HasLock(𝑙𝑣𝑙, 𝐿cat [𝑖 ], InSubLock)

)
∗

∗
𝑛∈𝑆

(
◦ {𝑛}

𝛾𝐴
∗ {𝑛.key}

𝛾𝑇
)

Lock Resources
InBotLock(𝑛, 0) ≜ ∃ 𝑠, 𝑠𝑢𝑐𝑐. 𝑛.next[0] ↩→1/2 𝑠 ∗
𝑠 ↩→□ 𝑠𝑢𝑐𝑐 ∗ (𝑠𝑢𝑐𝑐 = tail ∨ ∃ 𝑣. 𝑠𝑢𝑐𝑐 .val ↩→1/2 𝑣)

InSubLock(𝑛, 𝑙𝑣𝑙 ) ≜ ∃ 𝑠. 𝑛.next[𝑙𝑣𝑙 ] ↩→1/2 𝑠

where levelN(𝑖 ) maps level 𝑖 to its invariant namespace

KeyRange ≜ {𝑘 : Z | MIN < 𝑘 < MAX}
tail ≜ (MAX,NULL,NULL,NULL)
𝐿cat ≜ [ℎ𝑒𝑎𝑑 ] ++ 𝐿 ++ [tail]
IsNext(𝑙𝑣𝑙, 𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐 ) ≜ ∃ 𝑠. 𝑝𝑟𝑒𝑑 .next[𝑙𝑣𝑙 ] ↩→1/2 𝑠 ∗ 𝑠 ↩→□ 𝑠𝑢𝑐𝑐
HasLock(𝑙𝑣𝑙, 𝑛𝑜𝑑𝑒, 𝑅) ≜ ∃ 𝛾, 𝑙 . 𝑛𝑜𝑑𝑒 .lock[𝑙𝑣𝑙 ] ↩→□ 𝑙 ∗ IsLock(𝛾, 𝑙, 𝑅 (𝑛𝑜𝑑𝑒, 𝑙𝑣𝑙 ) )
IsLock is the predicate for the lock invariant

Figure 3. Definition of the representation predicate and invariants.

Although fractions are necessary to express partial views

accurately, the authoritative RA by itself is more adequate

for dealing with set membership assertions. Ownership of

a fragment containing a singleton set entails that the sin-

gleton’s element belongs to the authoritative set, without

requiring any knowledge about the rest of the set or what

fraction of the set we currently hold. This property of the

authoritative RA is useful for verifying concurrent traversals

when we do not have full ownership of the data structure.

Traversals are a recursive procedure where we loop over

some (or all) nodes of the set until the desired node is found.

For all node visits, the invariant is that the current node is

one that belongs to the set. Thus, a set membership assertion

for the visited node is necessary as a precondition to prove

the correctness of a traversal that passes through that node.

In other words, the ghost state for the bottom list should also

contain an authoritative set of nodes, matching the physical

nodes of the skip list.

Invariant Definition. The BotListInv predicate in Fig-

ure 3 shows the invariant for the bottom list. Since the shared

resources can be updated, the invariant is existentially quan-

tified by a map 𝑀 , so as to not retain a constant inside the

invariant. Combining all partial views will give us the full

map, so no information is lost; we only require that such a

map exists as an authoritative resource in the invariant.

The invariant also contains an authoritative resource 𝑆

for the set of nodes, enforcing that the set must contain the

same keys as the abstract map𝑀 . These keys are also used

to assert ownership of a set of ghost tokens, discussed in

Section 5.4. However, due to the unordered nature of sets,

we are unable to express that the physical list (including the

sentinels) must always remain sorted. For this reason, the

invariant is also existentially quantified by a list 𝐿 containing

the same nodes as 𝑆 . The chain of successor pointers created

by the nodes should thus reflect the order of this list.

For each contiguous pair of nodes in 𝐿cat (𝐿 concatenated

with both sentinels), the IsNext predicate asserts that the
first node of the pair should point to the second one. We

require two distinct points-to assertions to relate a node with

its successor: one for the node’s array entry and another

for the successor pointer it stores. Since each key can be

present in more than one level, each node holds an array of

successors, whose entries can be overwritten as new nodes

are inserted into the data structure. Furthermore, it is possible

for different nodes to have the same successor in different

levels, meaning that each array entry should store a pointer
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instead of the node itself. To ensure that the successor pointer

remains unchanged, we resort to the persistent points-to

assertion, granting read-only access to its contents.

The value of each node should also reflect the key-value

pairs from the abstract map 𝑀 . However, 𝑀 contains a set

of possible values for each key, while a physical node can

only store one actual value in memory. So, for each node we

assert that a lookup for the node’s key in 𝑀 should return

the node’s timestamp, as well as a set of values containing

the node’s real value.

Lock Resources. Finally, we need to consider that both

the value and the successor of every node are allowed to

be updated. The InBotLock predicate, which describes the

resources protected by a node’s lock, contains a fraction of

the points-to assertion for the node’s array entry, as well

as a fraction of the points-to assertion for its successor’s

value; the remaining fractions are kept in the bottom list

invariant. The persistent assertion for the successor pointer

is also stored inside the lock invariant so as to connect both

assertions. The locks themselves are also stored in an array,

but since they remain the same during the node’s lifetime, the

points-to assertion for each lock may also be made persistent.

Vertical List. While BotListInv ties every key to its cur-

rent value, the previous values are never accounted for in the

invariant. As such, the invariant alone does not guarantee

the correctness of the version control mechanism employed

by value updates on the data structure. We ensure that the

history of values for an updated node is preserved by proving

the Hoare triple shown in Figure 4. The head of the verti-

cal list stored in 𝑛𝑜𝑑𝑒 .val may differ from its initial value

depending on the timestamps of the new and current values.

If the new timestamp is less recent than the current times-

tamp (then branch), no update should occur and the vertical

list should remain unchanged. Otherwise (else branch), the

new value and timestamp should be prepended to the vertical

list’s head. Being at the head of the vertical list, the new value

should now point to the previous value, ensuring that the

history of values is not forgotten. By making this points-to

assertion persistent, we guarantee that the predecessor for a


◦𝑞 𝑀

𝛾𝐹
∗ BotListInv(ℎ𝑒𝑎𝑑,𝛾 )

levelN(0)
∗

◦ {𝑛𝑜𝑑𝑒 }
𝛾𝐴
∗ 𝑛𝑜𝑑𝑒 .val ↩→1/2 𝑣𝑎𝑙


update 𝑛𝑜𝑑𝑒 𝑣 𝑡


◦𝑞 𝑀 ∪ {𝑛𝑜𝑑𝑒 .key : ({𝑣}, 𝑡 ) }

𝛾𝐹
∗

if 𝑡 < 𝑣𝑎𝑙 .ts then 𝑛𝑜𝑑𝑒 .val ↩→1/2 𝑣𝑎𝑙
else ∃ 𝑝. 𝑛𝑜𝑑𝑒 .val ↩→1/2 (𝑣, 𝑡, 𝑝 ) ∗ 𝑝 ↩→□ 𝑣𝑎𝑙


Figure 4. Specification for the update procedure.

prepended value is immutable, yielding an immutable chain

(or history) of values by construction. In other words, an

update either returns the same immutable history of values

or an immutable extension of it. Discriminating both cases

using timestamps further ensures that timestamps within

a given history grow monotonically, avoiding inconsistent

timelines.

5.4 Invariant for Sublists
We have seen how to reason about the skip list’s underlying

map using the invariant for the bottom list. We now turn

our attention to its sublists, which serve to guide the search

through the skip list towards the intended node in the bottom

list. The relation between consecutive levels in the skip list

is our main concern in defining the sublist invariant.

Sublist Relation. The key property behind the skip list

design is that each level contains a sublist of the list con-

tained in the level below it. In other words, when we stop the

search in one level, we can continue the search in the next

level from the same key without visiting its predecessors.

Therefore, concluding a traversal in one level should provide

the necessary context to verify the traversal in the next level.

As we discussed previously, to verify a traversal we require

a set membership assertion for the node we are currently

visiting, which can come in the form of a fragment resource

from the authoritative set in the intended level. A node in the

upper level should thus contain a fragment from the lower

level, so that the succeeding traversal may be proven correct.

Figure 5 captures this idea, associating the fragments of each

node in level 𝑘+1 to the authoritative resource in level 𝑘 .

The lower fragment can be obtained by updating the au-

thoritative resource when inserting the node in the corre-

sponding level. Since insertions are performed bottom-up,

we obtain the fragment from the lower level before inserting

in the upper level. The node can thus be inserted in the upper

level, storing the fragment inside the level’s invariant and

returning a new fragment from the level’s authoritative set.

Figure 5. Preserving the sublist relation with fragments

(white round boxes) from the authoritative resource (black

round boxes).
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Figure 6. The available tokens in each level (round boxes)

are all valid keys except the ones in the corresponding list.

Having been inserted in level 𝑘 , key 3 can be inserted in level

𝑘+1, since the token for key 4 is a different token.

Ghost Tokens. While the lower level fragments are re-

quired to express the sublist relation, verifying the insertion

procedure within a given level requires additional informa-

tion. When inserting in the bottom list, we check if the key

from the successor node is equal to the key we want to insert;

this verification step ensures that only one thread inserts the

key in all intended levels. Since the absence of the key in the

bottom level implies its absence in all levels, the inserting

thread can insert in any upper level without checking the

key of the successor in that level. To prove that the insertion

is correct, however, we must still show that the new key and

the successor’s key are distinct, even though it is not made

explicit in the code. We can take advantage of the fact that

these insertions occur bottom-up to reason about this issue.

The idea is for every node to hold a token associated to

its key, obtained from the lower level. Using the disjoint set
union RA, each level contains KeyRange as the initial set

of tokens. A token for a given key is merely a singleton set

containing that key and can be obtained by extracting the

key from the set of available tokens. Since we perform the

insertion in the lower level before the upper level, we extract

the token from the former before attempting to insert the

node in the latter. As the RA requires sets to be disjoint, the

token we obtain from inserting in the lower level must refer

to a different key than the lower level token held by the

successor at the upper level. Therefore, the keys are distinct

and the node can be inserted in the upper level, without

explicitly checking the keys in the code. The token is then

stored in the invariant and a new token is extracted from the

invariant to use in the next insertion. A visual representation

of the token system can be seen in Figure 6.

Invariant Definition. The sublist invariant SublistInv
can be seen in Figure 3, differing from BotListInv in some

aspects. Map logic is no longer required for the upper levels,

meaning that the authoritative map is removed and the map

lookup assertions for each node are replaced with the associ-

ated fragment and token. Additionally, since values are only

updated upon reaching the bottom level, acquiring upper

level locks does not grant the required resources to overwrite

a node’s value, meaning that InSubLock only contains the

node’s array entry for the successor pointer.

6 Related Work
Iris has been used to reason about concurrent data structures,

verifying (1) a contextual refinement of other simpler concur-

rent implementations [18, 19], (2) correctness under a weak

memory model [14] and (3) template algorithms for search

structures [13]. (2) and (3) focus on proving logical atomicity

of operations on concurrent data structures. Logical atomic-

ity allows clients to treat non-atomic operations as if they

were atomic, verifying a stronger correctness criterion.

The only work in Iris which we are aware of reason-

ing about concurrent skip lists is that of Tassarotti and

Harper [17]. They extended Iris to support probabilistic rea-

soning, proving correctness and temporal properties of a two-

level concurrent append-only skip list, which is a probabilis-

tic data structure. While their work focused more on proba-

bilistic properties, we avoid reasoning about such aspects,

proving correctness of the data structure independently of

the height distribution. Our mechanization is deeply influ-

enced by theirs, generalizing their arguments to an arbitrary

number of levels and simplifying the required ghost state.

Considering other verification frameworks, we highlight:

(1) the TSL theory for reasoning about skip lists with an

arbitrary number of levels [16], (2) the verification in Agda

of correctness properties of authenticated append-only skip

lists [2] and (3) the skip list entry in the Archive of Formal

Proofs [4]. These works, however, deal with sequential skip

lists, so they tackle inherently different concerns from the

ones we have discussed in this work. For concurrent skip

lists, Abdulla et al. [1] present the only other work we are

aware of providing mechanized proofs, automating their

reasoning in a self-developed tool.

da Rocha Pinto et. al. [3] proposed a map specification

based on each key-value pairing. Partial ownership of con-

crete entries of the map is achieved through fractions, while

protocol tags serve to indicate how operations on shared

resources should be composed. Xiong et. al. [20] expand on

this work by defining an alternative key-value specification

based on a logically atomic specification of the map. Pro-

tocols can be defined on top of this specification through

suitable algebras. Although their work was not mechanized,

we argue that our work could benefit from their approach.

7 Conclusion
We presented a lock-based variant of the JellyFish skip list

and showed that its implementation satisfies a concurrent

map specification. Conflicts on concurrent updates are han-

dled through timestamps, which we reason about using a

novel resource algebra for the argmax operation. We match

9
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the abstract state of the map with the physical state of the

skip list by only applying map logic to the bottom level. Our

proofs are generalized for any number of levels and height

distribution by reasoning about each level independently, ty-

ing consecutive levels by ghost state. This work contributes

to the understanding of complex list-based structures, pro-

viding a new approach for reasoning about concurrent maps.
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