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Abstract
Serverless computing allows developers to not worry about
server management by abstracting away the provisioning of
computing resources. However, developing applications to
run on Serverless platforms is challenging because these plat-
forms only guarantee at-least-once semantics. Developers
are left with the task of implementing idempotent code, i.e.,
code that can be restarted without unintended side-effects.
Logging and periodic checkpointing have been proposed to
alleviate this problem, but these impose noticeable perfor-
mance overheads. Furthermore, these problems tend to be
heightened as cloud providers optimize the use of their infras-
tructure, e.g., by leveraging harvested resources – cheaper
compute nodes that can be evicted if the cloud provider
needs them for higher-priority customers. We advocate for
a different approach to handling function interruptions in
Serverless, through a reactive checkpoint-based mechanism.
Our core insight is that evictions are controlled events and
should be handled by migrating executions in a structured
and reactive way when such faults occur. We discuss the ben-
efits and limitations of our idea, review design alternatives
and present the design and implementation of R-Check, a
system that follows this approach. Our solution was evalu-
ated on an Apache’s OpenWhisk deployment under different
benchmarks and conditions, showing that R-Check can be
an effective and affordable approach to host Serverless ap-
plications on harvested resources.

Keywords: Serverless Computing, Fault Tolerance, Check-
point/Restore, Reactive

1 Introduction
Serverless computing has emerged as an increasingly com-
pelling cloud programming paradigm, especially in the form
of Function-as-a-Service (FaaS). Services of this kind are now
provided by all the major cloud providers (Amazon’s AWS
Lambda [1] or Microsoft’s Azure Functions[16]) as well as
open-source platforms (Apache OpenWhisk[17]).
FaaS offers an intuitive, event-based interface for devel-

oping cloud applications. These services aim to completely
hide the management of machines, runtimes, and resources
(i.e., everything except the application logic) from the pro-
grammer side. For that purpose, it provides an abstraction
where developers upload one or more simple functions to

the cloud provider. Each such function can then be invoked
on demand. These functions boot much faster than a tradi-
tional VM, allowing tenants to quickly launch many com-
pute nodes without provisioning a long-running cluster. The
cloud provider is then responsible for handling all the un-
derlying infrastructure burden. Serverless was designed to
execute short-running and stateless functions. Even today,
providers strongly guide developers to write idempotent
code. This is so that, in case of a fault (e.g., termination of the
underlying container) or for load balancing purposes (e.g.,
the resources are needed elsewhere), the function can be
re-deployed in a different node without unintended conse-
quences to the execution. Consequently, cloud providers can
adopt a replay-based approach to Serverless fault tolerance,
where the function is re-executed all over again.

A recent trend in cloud computing is for cloud providers to
optimize the use of their infrastructure by leveraging spare
available resources. In fact, a recent study [20] proposes
running Serverless applications on top of harvested VMs
i.e., VMs obtained at massive discounts that may be termi-
nated (evicted) at any moment, as part of the cloud provider’s
resource management. To take advantage of harvested re-
sources, it becomes even more glaring that all functions need
to be idempotent, so that they can be restarted upon an evic-
tion. However, this requirement is at odds with the vision
of Serverless being the future of cloud computing. It is un-
reasonable for programmers to adapt their entire cloud code
base to become idempotent. In particular, non-deterministic
or stateful functions may diverge when replayed (for ex-
ample, a credit card payment, if a failure happens, may be
executed twice). Another trend that reinforces these prob-
lems is long-running computations: execution times tend
to increase given that Serverless platforms are being used
for an increasing variety and complexity of workloads. In
these scenarios, not only the chances that a function is ter-
minated (and replayed) increase but also the cost of running
a function all over again becomes increasingly expensive.
Recent work proposes solutions that may address this

problem, namely by recording the computation through log-
ging or periodic checkpointing. Logging approaches, namely
Beldi [18] and Boki [12], save application state when there
are any external read/write operations. On the other hand,
Kappa [19] uses periodic checkpointing by inserting custom
checkpoint code inside functions. These solutions enable the
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function to restart from a point close to where it stopped,
without duplicating the external outputs. However, both
approaches introduce overheads that are present in every
execution.
Observing this research opportunity, we aim to deploy

Serverless functions that may be terminated before the end
of their execution and ensure that operations are executed
exactly-once, while avoiding any runtime overheads in the
vast majority of the executions. To embody this vision, we
present R-Check, an efficient and reactive checkpoint-based
framework for fault tolerance in Serverless computing. R-
Check can leverage not only the eviction grace period granted
before harvested resources are fully terminated but also the
bounded time limit in Serverless platforms to efficiently snap-
shot the application state when the system is about to fail
and resume from it afterwards.
The main contributions of this thesis are as follows: (1)

we proposed a new fault tolerance model for Serverless com-
putations that uses a reactive checkpointing approach to lift
the restrictions that planned evictions and function timeouts
today pose to cloud functions, while requiring no changes
to existing cloud function code; (2) we designed and imple-
mented a prototype based on these principles, and deployed
in Apache OpenWhisk [17], a popular open-source Server-
less platform; (3) we evaluated its effectiveness with several
different cloud functions, and compared it with state-of-the-
art fault tolerance solutions for FaaS. Using R-Check, we
were able to successfully checkpoint and restore numerous
Serverless applications and do so transparently, reducing
the number of executions paying that extra cost. When com-
pared to Beldi and Kappa, R-Check achieves lower overall
runtime overhead while being applicable to a much higher
variety of workloads.

The rest of the document is organized as follows. Section 2
introduces some background concepts and motivates this
work with a review of selected work related to fault toler-
ance in Serverless. In Section 3, we present the architecture
of R-Check and explain, in detail, its design choices and how
it was implemented. Section 4 is an experimental evaluation,
details the scenarios tested, and analyzes a set of experi-
mental results. Finally, Section 5 presents a brief conclusion
summarizing the contributions of this thesis and highlight
possible directions for future work.

2 Background and Related Work
Unlike traditional VMs (IaaS), Serverless users are relieved
from dealing with the infrastructure required to run their
computation. This responsibility is instead handed over to
the cloud provider. As a result, customers benefit from auto-
matic scalability and great elasticity as services scale up and
down automatically as requests arrive. Furthermore, Server-
less platforms charge only for the resources that are used

Planned
Faults1

Crash
Faults1

No Runtime
Overhead

No User
Involvement

FaaS ✗ ✗ ✓ ✓

R-Check ✓ ✗ ✓ ✓

IaaS ✓ ✗ ✓ ✓

Kappa [19] ✓ ✓2 ✗ ✗

Beldi [18] ✓ ✓ ✗ ✗

1 In the case of non-idempotent functions.
2 Since Kappa takes periodic checkpoints, some computation might be
lost when recovering from crash faults.

Table 1. How evictions and crash faults are handled in dif-
ferent systems and platforms.

during function execution, further moving cloud platforms
towards a true pay-as-you-go billing model.
The existing service offer of Serverless is based on the

Function-as-a-Service (FaaS) programming model. In FaaS,
users register functions in the cloud function provider. Then,
when a user requests or a pre-defined event occurs, the plat-
form assigns the function to one of its computation nodes.
The node, which is a short-lived, stateless execution envi-
ronment, executes the function and sends the result back to
the client. It is also relevant to note that popular Serverless
offerings limit the function execution time to a fixed time
limit (for example, up to 15 min in 1 s increments on AWS).
Serverless computing is becoming an increasingly com-

pelling option for deploying applications in the cloud. Re-
cent papers have exploited using Serverless for tasks beyond
event handling, namely for video processing [10], data ana-
lytics [14] and machine learning [11]. With the progression
of Serverless to include more general-purpose applications,
functions tend to become more long-running and it becomes
more difficult to ensure their idempotency.
A model where invocations can be evicted if resources

become necessary to host an higher-priority tenant/service
has been recently explored in the context of novel Serverless
platforms based on harvested resources [20]. Harvested re-
sources such as Harvest VMs [3] or Spot instances [5] are of-
fered bymajor cloud providers. This type of VirtualMachines
leverages temporarily unused resources that one can take
advantage of at a significantly discounted (and variable) rate.
The core difference between harvested resources and regular
virtual machines is that regular VMs enjoy uninterrupted
availability. In contrast, harvested resources can get evicted
at any time. Even so, customers are given a short eviction
notice (generally, a 30-second up to 1-minute grace period)
to handle any sensitive ongoing computation. In an ideal
world, functions would always be idempotent; therefore, we
could simply restart them upon an eviction event (this is the
default behaviour in public Serverless platforms). However,
this is not always the case, and writing idempotent code can
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Figure 1. Overview of a generic FaaS platform with R-Check’s specific components highlighted in orange.

easily become an entry barrier for developers of Serverless
code. In this work, we propose that functions should not
be restarted but migrated. Our proposal is grounded on the
following insight: evictions are controlled faults. In contrast
to unexpected crash faults, planned faults such as evictions
can be handled by migrating the function before they take
place. As a result, the requirement of idempotency can be
lifted.
Table 1 presents how different cloud platforms and sys-

tems handle two different types of faults: planned and and
crash faults. FaaS platforms have no out-of-the-box sup-
port for planned or crash faults. R-Check and IaaS support
planned faults, while systems that employ periodic check-
pointing (Kappa [19]) or logging (Beldi [18] and Boki [12])
can cope with both planned and crash faults. However, these
systems handle the latter at the expense of high runtime over-
heads and some user involvement. Thus, a key observation
we make is that, when attempting to lift the restrictions that
planned faults in Serverless pose to cloud functions, previous
work has gone further than the existing offer of IaaS cloud
services (in terms of the classes of faults that are tolerated).
Unfortunately, that also comes with the cost of imposing a
runtime overhead in every single run to guard against events
that only happen in a small subset of the invocations.
In summary, R-Check strikes a balance between FaaS

(which does not support planned faults for general code)
and systems that support both planned and crash faults (the
latter of which are not handled by the system in today’s
cloud offer), by proposing a fault model that, similarly to
IaaS, supports planned faults but not crash faults.

3 R-Check
3.1 Architecture
R-Check1 extends an existing FaaS platform with the abil-
ity to handle the migration of a function from one node
to another without incurring any overheads in the typical
case where functions run on the same machine until com-
pletion. Depicted in Figure 1 is the high-level architecture
we propose.

Any generic FaaS platform comprises a controller unit
that handles communication with the customer and function
creation. Besides, a launcher unit is responsible for launching
isolated execution environments where functions will run,
deploying functions on them and monitoring their execution.
With R-Check, the customer is only required to provide the
application code as they would in any other platform to
create functions and trigger requests to execute the said
function. We extend the existing controller unit with a new
pre-processor component responsible for repackaging the
function with a master script and transforming the user code.
The master script acts as a function runner, monitors the
execution and provides an endpoint to where termination
and restore requests can be sent. Regarding the user code,
the pre-processor inserts a plug-and-play trigger to run the
function through the master script. In the launcher unit, we
introduce a separate module called EvictionWatcher to track
the eviction notices of the underlying resources that power
the function execution environments of the platform, that
are now running on top of harvested VMs. It periodically
queries for evictions and spins up new VMs to maintain a
minimum pool of available resources if they fall below a
pre-configured threshold.

1Short for Reactive Checkpointing.
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Algorithm 1: R-Check master script
// Checkpointing segment of the master script
Input : fn, params
Output: r_check_result

begin
𝑒𝑥𝑒𝑐_𝑖𝑑 ←− 𝑟𝑢𝑛_𝑓 𝑛(𝑓 𝑛, 𝑝𝑎𝑟𝑎𝑚𝑠)
𝑓 𝑎𝑢𝑙𝑡 ←− 𝐹𝐴𝐿𝑆𝐸
𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑔𝑒𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 (𝑒𝑥𝑒𝑐_𝑖𝑑)
while not 𝑓 𝑎𝑢𝑙𝑡 and 𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑛𝑢𝑙𝑙 do

𝑓 𝑎𝑢𝑙𝑡 = 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑛𝑜𝑡𝑖𝑐𝑒 ()
𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 ←−
𝑔𝑒𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 (𝑒𝑥𝑒𝑐_𝑖𝑑)

if 𝑓 𝑎𝑢𝑙𝑡 then
𝑐ℎ𝑘𝑝𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝑓 𝑛(𝑒𝑥𝑒𝑐_𝑖𝑑)
𝑟_𝑐ℎ𝑒𝑐𝑘_𝑟𝑒𝑠𝑢𝑙𝑡 ←−
𝑐ℎ𝑘𝑝𝑡_𝑟𝑒𝑠𝑢𝑙𝑡,𝐶𝐻𝐾𝑃𝑇_𝑂𝐾

else
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡) then

𝑟_𝑐ℎ𝑒𝑐𝑘_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡, 𝑆𝑈𝐶𝐶𝐸𝑆𝑆
else

𝑟_𝑐ℎ𝑒𝑐𝑘_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡, 𝐸𝑅𝑅𝑂𝑅

—————————————————————————————-
// Restoring segment of the master script
Input : exec_id
Output: r_check_result

begin
𝑟𝑒𝑠𝑡𝑜𝑟𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑒𝑥𝑒𝑐_𝑖𝑑)
... // checkpointing may be triggered
... // until the function returns

𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑔𝑒𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 (𝑒𝑥𝑒𝑐_𝑖𝑑)
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡) then

𝑟_𝑐ℎ𝑒𝑐𝑘_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡, 𝑆𝑈𝐶𝐶𝐸𝑆𝑆
else

𝑟_𝑐ℎ𝑒𝑐𝑘_𝑟𝑒𝑠𝑢𝑙𝑡 ←− 𝑓 𝑛_𝑟𝑒𝑠𝑢𝑙𝑡, 𝐸𝑅𝑅𝑂𝑅

A typical function execution in R-Check works as follows.
The master script, whose logic is described in Algorithm 1,
runs the user functions with the user’s desired parameters
and waits until its completion. If a termination notice is
detected by the eviction watcher, the launcher relays a termi-
nation request to the corresponding execution environments
(all of the execution environments in a VM if an eviction
is occurring or to a specific function environment if a func-
tion timeout is approaching). This request is captured by
the function’s master script. The master script triggers the
checkpointing mechanism and checkpoints the function in-
vocation immediately. The checkpoint object associated with
that execution ID is then stored in checkpoint storage. The

function is re-launched when the launcher receives confir-
mation that all the checkpoints have been taken. Then. the
master script is requested to retrieve the checkpoint object
with the previous ID from storage and re-establishes the
context and state of the function execution. If the execu-
tion finishes successfully, the result of the user function is
retrieved by the master script that sends it back to the plat-
form, which, in turn, sends it to the user.

3.2 Checkpoint and Restore in Userspace (CRIU)
Many of the popular system-level approaches for check-
pointing are not entirely suitable for Serverless computa-
tions because they either require modifications to the ker-
nel (BLCR [9]), which the cloud provider would have to
implement or introduce additional overheads on system
calls (DMTCP [4]). On the other hand, CRIU [8] can check-
point/restore a broader range of applications and features
while not imposing extra overheads on wrapped calls, so it
stands out as the best tool available for our use case. We now
describe a typical CRIU checkpont/restore process.
When checkpointing a process with a PID p, the en-

tire tree of processes associated with PID p as the root pro-
cess must also be checkpointed. CRIU starts by recursively
freezing all of these processes and their respective threads.
While doing so, CRIU attaches to these processes through the
Ptrace system call. Once CRIU has frozen and controls all
relevant processes, it begins reading those processes’ state.
Much of this information can be read from the filesystem
directly, particularly from the /proc/{PID} directory. The
rest of the information needed is read from the process it-
self. For that purpose, CRIU injects parasite code into each
process, saving memory contents and UNIX credentials. All
this information is saved in a dump file, the parasite code is
removed, and the processes can resume or be killed.

Upon restoring, CRIU first looks for the path /proc/sys/
kernel/ns_last_pid, where the last assigned PID is stored.
To restore the desired PID P from the root process of the
application, CRIU locks ns_last_pid, writes P-1 and calls
𝑐𝑙𝑜𝑛𝑒 (). It then proceeds to open files, creates maps and sock-
ets and restores other basic process state. CRIU eventually
transforms itself into the target process and, in order to do
that, some code must exist that will unmap CRIU’s mem-
ory, replacing it with the target processes’ memory. For this
purpose, a "restorer blob" is created. All memory mappings,
timers, credentials and threads are finally restored by the
"restorer blob", before restarting the process.

3.3 Employing CRIU in R-Check
CRIU was originally built to snapshot processes in serverful
computing. As such, it is not equipped with out-of-the-box
support for our use case. We now expand on some improve-
ments made to CRIU so that it fits more closely our require-
ments.
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Figure 2. Modified CRIU data flow.

Checkpoints directly in remote storage. The primary
issue in this approach is that CRIU hits local disk, both on
checkpointing and then on restore, which is a significant per-
formance bottleneck. In addition, Serverless environments
are generally memory-limited, which implies that check-
point images, depending on the function’s footprint, may
exhaust the resources allocated to said function environment.
To address these concerns, we use amodified version of CRIU
(depicted in Figure 2) that streams their content directly to
a UNIX pipe instead of buffering checkpoint files in local
storage. This pipe is then plugged into the compression stage,
and its output is, in turn, uploaded into the storage unit.
From the restore side, the process is relatively similar to

its checkpointing counterpart, except we reverse the data
flow that we just presented. This restore process, however,
presents a problem: CRIU reads the checkpoint files out-of-
order. As a solution, we buffer the entire CRIU checkpoint
image in memory so that CRIU can access the files in what-
ever order it desires. Consequently, this may create a "2×
memory" problemwhere we can possibly have the full check-
point image in memory and, simultaneously, the application
restored next to it with similar contents to one another. To
deal with this potential issue, during restore, as CRIU reads
data, that memory is deallocated immediately after.

Local files of a function. To execute a successful migra-
tion of the computation from one container to another, it is
necessary to make sure that the files accessed by the appli-
cations are available on both ends of the checkpoint/restore
process. However, CRIU does not provide any support for
cloning relevant files from one side to the other. We mitigate
this limitation by taking advantage of the fact that Server-
less environments generally provide a small writable folder
which developers can use (usually /tmp). With R-Check, we
bundle all the contents inside this writable folder and plug
the archive into the same compression process we use for
CRIU’s contents. The final checkpoint file uploaded to stor-
age can then be used alone to re-deploy the function on any
Serverless environment.

4 Experimental Evaluation
In this section, we evaluate R-Check’s overall performance.
We measure the overhead introduced by checkpointing and
restoring using a microbenchmark and several real applica-
tion benchmarks to demonstrate the generality of R-Check.

After that, we compare it with an application-specificmethod
of checkpointing and with other state-of-the-art periodic ap-
proaches in this space. Finally, we conduct an experiment
to determine the scalability of R-Check as the number of
functions co-located on the same machine increases.

For these experiments, we ran our implementation based
on a modified Apache OpenWhisk deployment. This deploy-
ment consists of a Kubernetes cluster and function instances
are deployed in lightweight Docker containers with a custom
OpenWhisk runtime containing the bare minimum required
dependencies (CRIU binaries) to run each function. We use
one controller and one invoker instance. We configure func-
tions to use the maximum 2048 MB of memory for Open-
Whisk containers. Unless otherwise noted, the cluster runs
inside an EC2 t3a.large machine in the us-east-1 availability
zone. The EC2machine has 2 virtual CPUs, 4 GiB of RAM and
a bandwidth limit of 5 Gbit/s, running Amazon Linux 2 ker-
nel 5.10. Regarding the network, our EC2 machine connects
to S3 through an internal VPC gateway endpoint.

Each experiment performed comprises an original execu-
tion of a Serverless function, followed by a simulation of a
Serverless container eviction in a pre-defined instant, which
will trigger the checkpoint operation and, subsequently, re-
store the function execution in a new container. Every func-
tion’s input, output, and checkpoint objects were stored in
their own S3 bucket. For compression, we use LZ4 [15], a
popular compression algorithm that achieves a ≈ 3× com-
pression factor for a typical Python application. Unless oth-
erwise stated, each one of the individual experiments we
describe next was executed 50 times.

4.1 R-Check Overheads
In order to assess how R-Check performs, we need to look at
the limiting factors for our checkpointing tool. CRIU saves
memory pages directly from the processes, so the most preva-
lent limiting factor is the number of memory pages allocated
to a given process. Thus, we study the impact of memory
consumed during a function execution on the overhead in-
troduced by R-Check. For this experiment, we wrote a mi-
crobenchmark in Python using bytearray(size_of_array)
that simply allocates the amount of memory indicated by
size_of_array and sleeps for a fixed 30 seconds. At 15
seconds, the function is interrupted, and the checkpoint-
ing/restore process is triggered.
Figure 3a presents the median checkpoint and restore

times for allocated byte array sizes ranging from 1 MB to a
maximum 2000 MB. Checkpointing overhead accounts for
less than 2 seconds for up to 100 MB and grows linearly
as the amount of allocated memory reaches 2000 MB. Even
when exhausting all container memory, checkpoint times
are kept within safe boundaries (≈ 20.4 seconds), namely
within the time allowed by the grace periods granted in
the current cloud offer (typically 30 seconds). We can also
depict that restore operations take less time to complete
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Figure 3. Evaluation of checkpointing performance for a microbenchmark that allocates various memory sizes.

than checkpoint operations for all values measured. This
behaviour is explained by the fact that, from the various steps
of our checkpoint/restore process, the network is, by far, the
stage with the lowest throughput, dominating all executions.
Moreover, we observed that download rates were higher
than the upload rates, contributing to the higher overhead
of checkpointing compared to the restore procedure.
Regarding checkpoint sizes, Figure 3b shows not only a

near-linear growth of checkpoint sizes with the increase in
memory allocated, but also similar memory sizes from the
application and the checkpoint object. The extra size of the
checkpoint images comes from extra space on the heap, stack,
the application code itself and other imported libraries.

4.2 Real Applications
In this section, we present an evaluation of using our sys-
tem for multiple real applications. We tested R-Check on
diverse workloads, focusing on functions that are either
long-running or have a non-deterministic/stateful nature.
For these experiments, we used several Python benchmark
applications from SeBS [7] and FunctionBench [13]. The
functions used are described next. (1) Compression (Func-
tionBench), a benchmark that takes a file as input and com-
presses it through GZIP. The primary objective of this appli-
cation is to represent realistic disk I/O-heavy operations; (2)
Machine learningmodel training (FunctionBench), that
uses Python’s scikit-learn package and reads training sets
from Amazon Fine Food Reviews [2], transforming each re-
view into a TF-IDF vector. The outcome of this process is
applied to a Logistic Regression classifier to build a model
that predicts reviews’ sentiment scores; (3) Video Process-
ing (SeBS), an application receives a video file and converts
it into 1-second GIF files with 10 fps using FFmpeg, a soft-
ware for handling video, audio, and other multimedia files;
(4) Network I/O (SeBS), a network I/O-intensive benchmark
that receives an input and output S3 bucket names and an

object key, downloads that object and uploads it right after
to another S3 bucket. The idea behind this benchmark is to
assess the viability of R-Check to checkpoint and restore
applications that contain network connections.
We calculate beforehand the average duration of each

function for each input object size tested. This average du-
ration serves as an upper bound for a randomly selected
instant within the interval [0, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛] for which
the function fails and a checkpoint is taken. Figure 4 shows
the 5th, 50th and 95th percentile checkpoint/restore latency
for each one of those applications and multiple input object
sizes. Median checkpoint times range from 1.2 seconds up
to around 27.9 seconds, when exhausting the memory limits
of the containers, all of them still under a typical 30-second
eviction grace period. On the other hand, median restore
times go from 1 second to 17.2 seconds. We also notice that
some results vary slightly from the ones inferred from the
experiment in Section 4.1: for example, Figure 4a shows that,
in the 95th percentile, the compression benchmark takes
42 seconds to checkpoint. This is likely due to lower com-
pression ratios for such functions and, given that our main
bottleneck is network latency, checkpoints could take more
to upload/download.
Another observation is that, as the input sizes grow, the

disparity between the 5th and 95th percentiles also grows
accordingly. This is because we use random timeouts to
decide when to checkpoint, which leads to some executions
being terminated at an early stage when little memory has
been allocated and others being evicted at later points when
the applications are using much more memory.

4.3 R-Check vs. Application-specific Checkpointing
Next, wewill answerwhether resorting to application-specific
code to produce checkpoints leads to better results than our
proposed transparent, application-agnostic approach.
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(a) Compression (GZIP)
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(b) ML model training (TF-IDF + Logistic Regression)
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(c) Video Processing (GIF extraction)
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Figure 4. Evaluation of R-Check on real applications from SeBS [7] and FunctionBench [13] benchmark suites. Each bar
represents the median (P50), 5th percentile (P5) and 95th percentile (P95) of 50 executions.

To conduct this part of the evaluation, we focused on
benchmarks for which taking checkpoints in an application-
specific manner would be realistic. Functions that spend
most of their compute time inside third-party library calls
or communicating over the network could possibly miss the
checkpointing window. In light of these circumstances, we
chose two Python benchmarks that present the most suit-
able characteristics for application-level benchmarking: (1) a
Breadth-First Search (BFS) algorithm which takes a graph
as input and traverses it and (2) an instance of PageRank,
which performs link analysis in a given graph. We wrote
checkpoint/restore code specific to that function’s logic for
each benchmark. In each case, only relevant variables to
restore the application state are saved and then serialized to
a checkpoint file using pickle2, a widely-used module used
to serialize and de-serialize objects in Python. Those objects
are then compressed with the same lZ4 algorithm as used for
R-Check, and uploaded to an S3 bucket. When restoring, the
checkpoint object is retrieved and loaded into the function
and execution resumes. Once again, we calculate the aver-
age duration of a fault-free execution and then randomly
choose an instant in which the function will be checkpointed.
These hand-developed "checkpoint/restore handlers" do not

2From the modules available for Python, pickle provides the best compro-
mise between performance and data structures that it can serialize.

cover all the application code but only the sections where
checkpointing is feasible. Thus, the application might not be
snapshotted precisely at the selected instant but at the next
checkpoint section after the time has elapsed.

The results obtained are depicted in Figure 5. We see that,
for small input sizes (1 MB and 5 MB in the BFS function
and 1 MB in the PageRank function), the application-specific
approach performs much better than R-Check does, both
for checkpoint and restore. However, as input sizes increase,
the application-specific algorithms start performing worse
and the metrics grow faster than for R-Check. In fact, for the
PageRank function, R-Check outperforms the application-
specific approach from 10 MB of input size and provides
slightly worse performance from 15 MB of input size in the
BFS function. These results are largely unexpected since we
are saving the entire process address space in R-Check and
only storing essential variables in the application-specific
approach. To understand these numbers, let us consider, for
example, the 15 MB BFS experiment. According to Figure 5c,
using the application-specific approach, this benchmark cor-
responds, at the median, to a checkpoint time of 3.35 seconds
and checkpoint object size of 49.45 MB (16.48 MB in storage,
given LZ4’s 3× compression ratio). At a ≈ 50 MB/s upload
rate to S3, this translates into only ≈ 10% of the total time
uploading the checkpoint object to storage and ≈ 90% of the
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Figure 5. Comparison of R-Check’s checkpoint/restore times and sizes against an application-specific approach that saves
only relevant variables. In Figure 5a and Figure 5b, each bar represents the median (P50), 5th percentile (P5) and 95th percentile
(P95) of 100 executions. In Figure 5c, each line represents the median (P50) of 50 executions.

total time to serialize the variables with pickle, with neg-
ligible LZ4 compression time. This led us to conclude that
serialization costs are considerably higher in this method,
dominating the checkpointing process duration. These val-
ues remain fairly consistent across all experiments and con-
trast with R-Check, where the upload process is the limiting
factor. On the other hand, as shown in Figure 5c, checkpoint
sizes in R-Check grow more rapidly than for the application-
specific method, as expected. We argue that this does not
represent a high cost for the cloud provider because check-
point objects are kept for a short time until the execution is
restored and can be deleted immediately.
Through this analysis, we can conclude that we risk ob-

taining worse performance than anticipated if we employed
an application-specific method. This factor, coupled with the
challenges faced when writing custom checkpointing code,
leads us to argue that employing a system-level approach
through CRIU is a sensible approach.

4.4 Comparison with the State-of-the-Art
We compared R-Check with the state-of-the-art in Serverless
fault tolerance, namely solutions that employ preventive ap-
proaches: Beldi [18] and Kappa [19]. Our key premise is that,
by checkpoint only when strictly necessary, our reactive ap-
proach introduces a much smaller overhead than preventive
approaches, that incur an extra cost for all executions. To
test this premise, for each one of the approaches mentioned
above, we run a set of 1000 function invocations and calcu-
late the relative overhead in the total execution time. Then,
we calculate the relative overhead for R-Check with common
eviction rates in harvested instances (1%, 5%, 10%, 15%, 20%),
for which R-Check checkpoints only when evictions happen.

In Beldi, the fault tolerance mechanism is activated once
an external read/write is performed through Beldi’s API (for
example, an update in a DynamoDB table). As Beldi is written
in Go, we developed a Golang I/O-intensive benchmark that

writes and reads entries from a DynamoDB table on a 50%-
get-50%-put workload. In R-Check, we deployed the bench-
mark unmodified and performed checkpoints on a random
instant during the execution. For Beldi, we used its library
API for external operations to perform the write/read calls.
We measured the total overhead introduced by such calls
and compared it with the overhead observed using R-Check
for multiple eviction rates. Figure 6 shows the overhead in-
troduced by both approaches relative to the whole execution
time. Beldi performs better than R-Check for functions that
contain small number of requests, in this case, 1 request, ,
where R-Check’s overhead is lower only at a 1% eviction
rate. However, However, Beldi’s performance degrades as
the number of requests increases. At 10 requests, R-Check
achieves lower overheads for up to a 15% eviction rate and,
at 50 requests, it achieves lower overheads for all eviction
rates tested. Furthermore, Beldi guarantees idempotency by
preventing duplicate external calls that cause side effects but
it replays all the computation inside a function on restore, a
behaviour we want to avoid. Plus, the fact that it can only
secure applications with external stateful calls makes it a
relatively limited approach compared to R-Check that can
checkpoint and restore a more vast range of functions.
For Kappa, checkpointing occurs by calling Kappa’s li-

brary. In this evaluation, we faced some of the same chal-
lenges as we did in Section 4.3, because, in order to success-
fully checkpoint executions, Kappa’s functions need to be
structured in a way that it is possible to signal where check-
points should be taken, otherwise checkpoints cannot be
performed. In light of this restriction, we again test a Python
BFS benchmark with graph input sizes ranging from 1 MB
to 30 MB. To evaluate both approaches in a realistic scenario,
we used a public 24-hour Azure Functions trace [6]. From
the trace, we grouped functions based on their execution
duration to come up with an approximate distribution that
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Figure 6. Comparison of relative R-Check’s overhead against Beldi for different evictions rates on a set of 1000 DynamoDB
put/get function executions. We test functions that include different numbers of requests: 1, 10 and 50.
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Figure 7.Comparison of relative R-Check’s overhead against
Kappa for different evictions rates on a set of 1000 BFS func-
tion executions.

we could use to model our experiment. Then, we ran a set of
1000 of our functions that would match that distribution.

To set up Kappa, we injected checkpoint() calls and con-
figured checkpoints to be stored in S3 and the checkpoint
period to 25 seconds since this is the optimal interval to
produce a checkpoint in the given a 30-second termination
grace period. For R-Check, we measured the checkpointing
time for each input size and calculated how many executions
from that set would need to be checkpointed based on the
eviction rate being tested. Figure 7 shows the percentage of
overhead in the total execution time for the experiment pre-
sented above. R-Check outperforms Kappa for eviction rates
under 15%, representing the great majority of evictable VMs
on the market. When the eviction rate is around 1%, Kappa’s
overhead is ≈ 11.3× higher than R-Check’s and, when at
5%, it is still ≈ 2.3× higher. Hence, we can be confident that,
for most evictable resources, R-Check performs better than
Kappa while not adding extra user programming burden.

4.5 Concurrent checkpoints
With limited Openwhisk invoker nodes in our deployment
(and in an actual Serverless deployment alike), it is safe to as-
sume that multiple functions will be running concurrently in
containers on top of the same harvested VM. In this scenario,
if an eviction occurs, several functions must be checkpointed
at once. Therefore, we evaluate the scalability of checkpoint-
ing by measuring the latency of concurrent functions being
checkpointed simultaneously. To be able to handle more re-
quests concurrently, we scale up our infrastructure to an EC2
c5a.8xlarge VM with 64 GiB of Memory, 32 vCPUs and a 10
Gbit/s network bandwidth. We run a workload composed
of a previously described application in Section 4.2 (Com-
pression with GZIP, input size = 50 MB), simultaneously
checkpoint every execution when 15 seconds have elapsed
from the launching of the first function and measure the
end-to-end duration of that process. Figure 8 shows that the
median checkpoint latency remains slightly over 2 seconds
and median restore latency under 1.3 seconds even for 16
concurrent functions. Although R-Check is network-bound
for a single connection, it can scale horizontally and take ad-
vantage of its larger bandwidth to checkpoint more functions
simultaneously (on multiple S3 connections). Besides, we be-
lieve that, even though larger sets of concurrent functions
were not tested, R-Check would scale well. This is because
we would also need to scale up the underlying infrastructure
to deploy more functions simultaneously, increasing both
CPU power and network bandwidth.

5 Conclusion
Serverless computing is becoming a viable cloud paradigm to
an increasing number of use cases. However, since functions
can fail through the execution, a re-execution might unneces-
sarily duplicate resources or cause an unintended behaviour
due to visible side-effects. This claim is even more glaring
with the recent trend of deploying Serverless environments
on top of harvested resources that may be terminated at
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Figure 8. Evaluation of checkpoint/restore overhead when
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Average" represent the average overhead of a function for
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any given moment. We envision that the future of serverless
computing should include a fault tolerant mechanism to deal
with controlled system failures from underlying harvested
resources and function timeouts. In this thesis, we designed
and implemented R-Check, a framework that simplifies the
development of applications in a Serverless context with a
reactive checkpointing scheme for fault tolerance. We evalu-
ated R-Check on various real applications and compared it
to state-of-the-art systems, namely Kappa [19]. This study
shows that, while employing a reactive approach, a dimin-
ished set of invocations will be affected by checkpointing,
introducing no runtime overhead to most executions.

While the results from this work are promising, there are
a few limitations and plenty of ideas for future work. For in-
stance, as mentioned, R-Check can only checkpoint functions
in the case of controlled evictions or function timeouts. We
highlight that this is already the case with the existing offer
of IaaS and similar cloud services. However, other techniques
are required for handling unpredictable failures in critical
workloads. An avenue for future work could be studying
other complementary techniques for a system that strives to
have high availability in the presence of unexpected crashes.

Also, with our current approach, when a VM is evicted, all
functions are required to be checkpointed. However, many
of those functions could finish within the termination grace
period, so checkpointing those functions is a waste of re-
sources for the provider and an unnecessary increase in wait
time for the customers. Following a similar approach to the
one presented in [20], it would be possible to characterize
function invocations and predict which workloads would
likely finish within the grace period and do not need to be
checkpointed.
Finally, as seen in Section 4, uploading and downloading

checkpoint objects is currently the major bottleneck of R-
Check. However, observed throughputs are much lower than
the actual per-instance advertised bandwidth. One possible
improvement is to leverage checkpoint image sharding to
maximize horizontal upload/download throughput.
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