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ABSTRACT
False positives are an inherent part of bug analysis tools, but devel-
opers lose faith in tools that present false positives too frequently.
SmartBugs in particular, a framework designed to analyse Ethereum
smart contracts, provides reports from 11 different analysis tools,
and consequently reports many false positives. We extend Smart-
Bugs with a bug prioritization algorithm that leverages machine
learning and sorts bug reports, ranking true positives above false
positives, thus providing a better experience for developers. Using
SARIF only features and ensemble regressor models we save up to
80% of a developer’s time, an almost 5x gain in efficiency in the
process of analysing bug reports.
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1 INTRODUCTION
Bug analysis tools must find a balance between false positives and
false negatives, therefore it is likely that any given analysis has a
number of both. However, developers have a particular discontent-
ment for the former. Each false positive bug report implies time
wasted in manual analysis, and developers tend to ignore tools that
waste their time. A report by Kremenek and Engler [16] showed
that developers quit tools that present between 10 to 20 false pos-
itives in a row. For that reason it is crucial that bug reports are
organized and prioritized by their likelihood of being true bugs,
so that developers can focus their efforts on reports that are more
likely to cause real issues.

In this project, we aim to improve the SmartBugs framework by
extending it with a bug prioritization mechanism. SmartBugs [11] is
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an extensible and easy-to-use execution framework that simplifies
the execution of analysis tools on smart contracts written in Solidity,
thus allowing easy execution of multiple analysis tools. Solidity [8]
is the main programming language through which smart contracts
are written for the Ethereum blockchain. As of the time of writing,
Ethereum sits as the second biggest blockchain-based platform,
worth almost 500 billion US dollars. Most of this value comes from
Ethereum’s capacity to deploy distributed applications (Dapps) that
are executed across a decentralised network of nodes. As a key
component of a half a trillion dollar industry, it is crucial that smart
contracts written in Solidity have no dangerous bugs that affect the
integrity of the Dapps they define. Even the smallest of bugs could
lead to catastrophic consequences, such as TheDAO exploit [2] that
resulted in the theft of 50 million USD, and that could have been
fixed by exchanging two lines of code. Unfortunately, writing bug-
free smart contracts is no trivial feat, and SmartBugs was created
in order to allow its users to analyse their smart contracts with
multiple tools. As of today, SmartBugs makes use of 11 analysis
tools, that give 11 different outputs for each smart contract analysed.
However 11 different outputs means a much greater number of bug
reports, both true and false positives.

An empirical study on the status of smart contracts in the Ethereum
blockchain using SmartBugs [7] resulted in 93% of 47,587 analysed
contracts to be marked as vulnerable, foreshadowing a large ratio
of false positives. Another difficulty appears as the consequence of
the variety of tools. Some of these 11 tools are static analysis tools
(e.g. Securify [31]), some are dynamic analysis tools (e.g. Maian
[22]) and some, like HoneyBadger [30], even focus on finding code
structures that might look like bugs, but that are in fact not bugs
at all. This means that whatever approach taken must consider
this heterogeneity. Each tool has its own internal methodology and
gives a different output. One of the features of SmartBugs is to
parse every tool output and produce a consistent result in the Static
Analysis Results Interchange Format (SARIF) [23] that provides
the only common ground between all results. This heterogeneity
proves to be both and advantage and a disadvantage that will be
further discussed in future sections.

Previous work has been performed on the issue of bug prioriti-
zation, but all previous approaches focus on prioritization of bug
reports created by a single tool. Since our goal is to improve Smart-
Bugs, in this project we focus on prioritization of multiple bug
reports from different tools. Our context opens up new opportu-
nities that can be explored to improve the prioritization process.
For example, it brings the possibility of using consensus between
multiple tools.

It seems reasonable to assume that if a certain bug is detected
by multiple tools simultaneously, it is more likely to be a true bug.
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Alternatively, bugs reported by a single tool might prove to be less
trustworthy reports. There also exist other tools such as eThor [26],
that can probably guarantee the absence of Reentrancy bug and
would therefore be useful in a consensus scenario. Like previous
work that we will explore in a later section([19], [15]), we will also
explore machine learning techniques to reach our solution.

1.1 Work Objectives
The main goal of this project is to extend the SmartBugs framework
with a bug prioritization mechanism capable of ranking analysis
reports created by multiple tools. In particular, we hope to be able
to quickly present the vast majority of true positives from multi-
ple different analysis tools to users who want to have their smart
contracts analysed.

This is achieved with help from a machine learning model whose
features are the SARIF output of each tool. As mentioned above,
one of SmartBugs’ features is to reduce all bug reports to the SARIF
format. Short for Static Analysis Results Interchange Format, SARIF
[23] is a format designed to integrate and standardize results from
multiple analysis tools. Through the use of SARIF, every tool present
in SmartBugs has an equivalent representation in the machine
learning model. This is, all tools present the same features (the
SARIF features) to the model, instead of using tool-specific features
that might not be available to other tools. This provides the model
with information on consensus between the analysis of each tool.

The model must then use this consensus information to learn
how to prioritize bug reports, presenting those considered as most
likely to be true positives towards the beginning of the prioritized
list of bug reports. If the tool presented in this project achieves
good results, than a developer tasked with analysing a list of priori-
tized bug reports provided by SmartBugs will have a much easier
time doing so than another developer analysing the same, but non-
prioritized, list of reports. The better prioritization is, the more time
the developer saves while looking for bugs in his program, and the
less likely he is to abandon the framework.

To achieve the best result possible in prioritization, it is impor-
tant to understand what machine learning algorithm would be a
better fit for our context. We experiment with multiple models
and analyse their results. We try classification models, regressor
models and ensemble models to know which one is the most suit-
able for this environment. The results also provide an analysis on
the effectiveness of the SARIF format in this context. If SARIF pro-
vides enough information for consensus, than the machine learning
model is more likely to have good results, if it does not, the opposite
may apply.

To test and train the machine learning model, this work must
also have an annotated bug dataset. Our dataset was created by
joining multiple other datasets together and is now available for
use in other works. As it merges multiple other datasets into one,
it became a necessity to parse them all to the same format. This
format must be flexible enough to take advantage of consensus,
something we found lacking in most bug datasets. Therefore our
own format had to be created.

In conclusion, this work addresses the following research ques-
tions:

• RQ1: Does the SARIF format provide enough information
on consensus to achieve reasonable results in bug prioriti-
zation?

• RQ2: Can consensus of bug reports between multiple tools
be used to better predict true and false positives?

• RQ3: What is the most effective machine learning algo-
rithm to prioritize bug reports from multiple tools in the
context of SmartBugs?

2 BACKGROUND
This section describes some background information necessary to
understand the rest of this paper.

2.1 The Problem of False Positives
A true positive occurs when a report correctly (true) gives a positive
(positive) result. In the context of this work a true positive refers
to a bug report that is indeed a bug. A false positive occurs when
a report incorrectly (false) gives a positive (positive) result. In the
context of this work a false positive refers to a bug report that is not
actually a bug. The same logic applies to true and false negatives.

Ideally a bug analysis tool would only give true positives and
true negatives, meaning that it could find all bugs present in smart
contracts and give no incorrect report. In reality however, both false
positives and false negatives occur during the execution of most
analysis tools. False negatives happen when a bug is not detected
by the tool and false positives happen when an incorrect bug report
is given.

False positives represent a great hurdle for widespread use of bug
analysis tools. This is because false positives imply time wasted on
manual analysis of nonexistent bugs. Legunsen et al. [17] reported
spending 1,200 hours to inspect, discuss and patch 852 violations,
averaging 1.4 hours per violation. Breno at all. found in their study
[19], that there was little time difference in analysing a true or a false
bug report, only that false positives skip the patch implementation
phase. Therefore, each false positive has a significant time loss
implication for the developer. If a bug analysis tool returns too
many false positives, developers lose faith in said tool and abandon
it due to its high time cost. Kremenek and Engler concluded in their
study [16] that in order for a developer not to lose faith in a bug
analysis tool, it must not present any false positives in the first 3
reports and have no more than 10-20 false reports in a row. Should
any of these conditions be broken, there is a high chance that the
developer will stop the inspection. In this work we will thrive to
maintain these conditions.

2.2 SmartBugs
SmartBugs [11] is an extensible and easy-to-use execution frame-
work that simplifies the execution of analysis tools on smart con-
tracts written in Solidity. As described in the introduction section,
SmartBugs was developed to satisfy a necessity to evaluate the
validity of smart contracts written for the Ethereum blockchain. Its
objective was to create an environment where users could test their
smart contracts, developers could test their bug analysis tools, and
researchers could perform empirical studies on the state of smart
contracts in the blockchain.

2
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SmartBugs architecture is composed of a web dashboard, a com-
mand line interface, the runner, the tool configurations, the bug
analysis tools and datasets. The two aspects of greater importance
are the tools and the datasets. Tools in SmartBugs are implemented
as docker images stored in DockerHub [6]. Where images were
available said images were used, otherwise they were created and
publicized. The choice to use Docker images was made to ease the
addition of new tools, allow the execution to be reproducible and
to use the same execution environment for all tools.

The 11 tools currently supported are: HoneyBadger [30], Maian
[22], Manticore [20], Mythril [21], Osiris [29], Oyente [18], Securify
[31], Slither [9], Smartcheck [28], Solhint [10] and Conkas [32].
What is important to note here is the wide variety of bug anal-
ysis tools. Some are static analysis tools and some are dynamic,
each with their own characteristics. HoneyBadger is a particularly
interesting example, as it hopes to find not bugs, but honey pots.
Honey pots are traps laid by developers that are made to look like
bugs, but that are actually not bugs at all. The peculiarity of each
tool is part of the appeal of SmartBugs, as it easily allows users to
have their smart contracts analysed by multiple tools and angles.
As mentioned above, adding more tools is relatively easy, and the
number of tools has been steadily increasing with each published
work on this framework. The approach presented in our solution
must take this design philosophy into account.

The datasets are the smart contracts to be analysed by the tools.
The sbcurated dataset consists of 143 smart contracts with 208 tagged
vulnerabilities. Contracts in this dataset are either real contracts
that have been identified as vulnerable or contracts that have been
purposely created to illustrate a vulnerability. Developers can use
this dataset to test and compare their bug analysis tools with the
rest of the market. It can also be used to rank and evaluate the 11
tools against a variety of known vulnerabilities. The next section
will describe the results of such an evaluation.

The sbwild dataset contains 47,398 contracts extracted from the
Ethereum blockchain. The set of vulnerabilities of those contracts
is unknown, as they have not been manually studied by experts.
This dataset allows researchers to perform empirical analysis of the
state of the blockchain at large.

This paper extends the SmartBugs framework by adding a pri-
oritization mechanism capable of ranking each bug report by the
likelihood of being a true bug. Reports from all 11 different tools
will be merged together and fed to a machine learning model so it
can learn to prioritize them based on the consensus between the
various tools. The machine learning in question is further explained
in the next sections.

2.3 Bug Prioritization with Machine Learning
While we have not come across any other works on the subject of
bug prioritization of reports provided by multiple analysis tools,
bug prioritization itself is a well studied-field. This subsection looks
at some of these works.

2.3.1 An Empirical Assessment of Machine Learning approaches for
Triaging Reports of a Java Static Analysis Tool. Koc et al. explored
in their aptly named report "An Empirical Assessment of Machine
Learning approaches for Triaging Reports of a Java Static Analysis
Tool" [15] how effective different machine learning techniques

are at classifying a bug report as a true or a false positive. Their
motivation, as well as ours, was to lower the cost that false positives
represent to developers in order to make static analysis tools more
useful. The goal of this study is to build a classifier that identifies a
bug report as either a true or a false positive. The static analysis
tool selected for the study was FindSecBugs (version 1.4.6) [12], a
popular security checker for Java web applications.

The authors tested multiple machine learning models with a
variety of features to understand which one performed the best.
The results point to Long Short Term Memory Recurrent Neural
Networks and Gated Graph Neural Networks being the best models
among the ones tested. This, the authors theorize, is because they
are the only two tested models that retain information about the
order/relation of the code in the initial program. This would suggest
that models that keep more information about the original program
have better results than models that keep less. Additionally, the
authors also test multiple versions of data preparation for each
model. Their conclusions on this aspect lead to the idea that more
data preparation leads to "cleaner" features and better results.

2.3.2 Prioritizing Runtime Verification Violations. This study by
Miranda et al. [19] has a slightly different nuance from the last.
While Koc et al. were looking to triage their bugs and drop those
considered as false positives, Miranda et al. only wish to prioritize
them. This is, they will re-organize bug reports and change their
order based on the probability of being a true or a false bug. Reports
considered more likely to be true will be put towards the beginning
of the list, while reports less likely to be true will be presented last.
This way, no incorrectly identified true positive will be lost to the
user. Therefore, strictly speaking, the authors of this paper are not
trying to classify bugs as true or false, but instead trying to calculate
likelihood of being true positives and then using that information
to organize a list of prioritized bug reports. This approach has the
same advantages as the previous one, saving precious developer
time, while it avoids the downside of missing true bugs that have
been incorrectly identified as false positives.

To do this, authors prepared five probability categories with the
values of: very-low, low, medium, high, and very-high probability
of being true bugs. The various bug reports were then classified to
one of these categories with help from a classifier machine learning
model, and then later prioritized according to these values. From
the tested models, it was the Gradient Boosting Classifier, an en-
semble model, that performed the best. Ensembles are machine
learning models that are trained by joining the results of multiple
other models. This is something suggested by Koc et al. during the
future work section of the previous study. There he suggested that
ensemble classifiers might provide better classification performance
when compared to simple classifiers, and RVPrio confirms this to
be the case.

This work also presents the APBD metric to evaluate the pri-
oritized list of reports, as well as a prioritization graph and time
table. We have also chosen to implement these metrics and they
are further discussed in future sections.

3 SMARTBUGS REPORT PRIORITIZATION
This next section focuses on the bug prioritization mechanism
implemented into the SmartBugs framework.
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3.1 Data Preparation
The first step of our solution is to prepare the data that will later
be fed to the machine learning model. This includes the collection
of datasets, merging of bug reports, and even a proposed standard
for bug repositories.

3.1.1 Datasets. For this project, we have chosen to implement su-
pervised machine learning techniques. This is, the machine learning
model is trained with already classified data. In our case it means
that the bug reports provided to the machine learning model will
already have information that classifies them as either true or false
positives. Supervised machine learning techniques allow develop-
ers to train more accurate models when compared unsupervised
machine learning techniques (techniques that allow us to train
models without previously classified data), but it requires that we
prepare data that already has said classification.

In order to achieve this, our bug datasets must already have
metadata information about which bugs exist in the datasets so that
we can later match that information with the reports provided by
SmartBugs’ execution. It is a consequence of this method however,
that we trust the classification provided by the dataset itself. Should
the classification that is used to train the machine learning model
be proven to be untrustworthy, than we can also assume that the
trained machine learning model will also be as inaccurate as the
data it is trained on.

Taking all this into consideration, the datasets used in this project
are:

(1) SmartBugs’ sbcurated dataset, including 143 faulty smart
contracts manually analysed by experts

(2) SolidiFI’s bug dataset [27], containing 550 faulty smart con-
tracts created through bug injection

(3) HuangGai’s manual dataset [13], containing 964 faulty
smart contracts manually analysed by experts

The datasets chosen can be roughly separated into two cate-
gories:

(1) Datasets that have been manually verified by experts
(2) Datasets that have been automatically generated through

bug injection, but not manually verified by experts
Datasets that have been manually verified have the advantage

of being more likely to be correctly classified. As an expert familiar
with the bugs in question has verified its content, the probability of
it being incorrectly classified is smaller when compared to a purely
automatic procedure. The downside of this approach is its high cost
of development. After all, an expert must spend a significantly high
amount of time to manually evaluate all the bugs in the dataset. As
a result, these datasets are often much smaller than their automatic
counterparts.

Datasets that have been automatically generated through bug
injection but not manually verified by experts are the opposite. The
completely autonomous process through which they are created
requires very little of the developer’s time if we consider that the
tool that provides the injection has already been developed. As
a result, these datasets are usually much larger than those that
have a higher human component in their development cycle. The
downside is that it leaves more room for error in classification, as
no expert will verify the results provided by the bug injection tool.

For this project we chose a mixture of the two, using manually
verified datasets when possible, and then bolstering the numbers
of our dataset through bug injection.

After acquiring the datasets, the next step is to run the SmartBugs
framework with all tools enable and save the output SARIF file.

3.1.2 Merging Bug Reports Together. The next step of data prepara-
tion is to join the multiple reports given in SARIF format in such a
way that we can see which reports belong to the same bugs. Do note
that if all 11 tools present in SmartBugs report a bug, there would
exist 11 different reports concerning the same bug. The goal is to
join all reports of the same bug together in the same line of a CSV
file, thus allowing the machine learning model to grasp information
on consensus.

Each CSV line has a bug_id, followed by the report of each tool.
Each tool’s report is further divided into the rule_id of the bug
that was found by the tool, as well as the level of the bug the
tool characterized it as (error or warning). Should a tool not have
found the bug, than the columns related to it will be left empty.
The final result is a CSV file where each line represents a bug, and
each column has the reports of each tool on that same bug. These
columns will be used as our machine learning model’s features, this
is the information through which it learns.

This approach, however, raises a technical difficulty: How to
determine if the two bug reports concern the same bug? When a
large file is analysed, multiple bugs can be present, and consequently
multiple bug reports may appear on the analysis tools. The issue of
how to organize these bug reports appears.

To resolve this issue, we need a systematic way to join our reports
together. The solution implemented in this paper is as follows:

(1) Two reports concern the same bug if they are reported on
the same line and source file

(2) Two reports concern the same bug if the bug in question is
of the same category

If both of the rules above apply we consider these reports to be
about the same bug, if not we consider them to relate to different
bugs.

The first item is easy to verify, but the second proved more
complicated. When it comes to category, we have mapped each
of the rule_id’s of each tool to a category and use said category
in the rules described above. This is, if a tool reports a bug of the
arithmetic category, while a different tool reports a bug of the access
control category on the same line, then we consider them to be
referring to different bugs.

The categories we have chosen to use for this project follow
the DASP10 (Decentralized Applications Security Project Top 10)
regulation [3]. DASP10 divides solidity bugs into 10 categories:

(1) Reentrancy Occurs when external contract calls are al-
lowed to make new calls to the calling contract before the
initial execution is complete

(2) Access Control Vulnerabilities that give attackers straight-
forward ways to access a contract’s private values or logic

(3) Arithmetic This category contains issues such as integer
overflow and underflow

(4) Unchecked Return Values For Low Level Calls Vulner-
abilities created by low levels calls such as call() and send()

4
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failing silently without the developer noticing and while
the program continues executing

(5) Denial of Service Vulnerabilities that stop the service
(6) Bad Randomness Vulnerabilities created by variables that

are not truly random
(7) Front-Running Refers to vulnerabilities that occur when

users spend more gas to have their transaction run first
(8) Time Manipulation Vulnerabilities created when miners

purposely manipulate the exact time their blocks are mined
(a variable that can be used inside smart contracts)

(9) Short Address AttackVulnerabilities created when poorly
coded clients encode arguments incorrectly before includ-
ing them in transaction

(10) Unknown Unknowns Everything else
Each rule id of each tool was mapped to one of these DASP10

categories that we will continue to use throughout this project.
Using these categories we can follow the two rules presented above
and join our bug reports together.

3.1.3 Retrieving Information from Datasets. The next step in the
data processing pipeline is to prepare a CSV file containing the
solutions to our experiment. Since our machine learning model
uses supervised learning methods, it is important to prepare data
where we know the classification results beforehand. This way we
can train a better model.

To obtain said data, we need to look at each dataset used, and
parse the location and category of each bug to a solutions CSV file
that will later be joined with the bug reports CSV file prepared in
the previous sub section.

Since each dataset used in this project had its own unique way
to declare the bugs it carries, a unique parser had to be developed
for each dataset to parse their bug metadata to our desired CSV file.

In short, there are two pieces of information we need to extract
from every bug’s metadata:

(1) The location (file and line of code) where said bug appears
(2) The category of the bug in question
Each dataset had its own way to store information, from JSON

files to CSV files and even comments. The location of the bug was
retrieved from these files and the category was inferred from the
datasets folder structure. It was however necessary to map these
categories (each dataset had its own), to the DASP10 categories
presented above. This is necessary for the future step of matching
bug reports resulting from SmartBugs execution to the actual bugs
of the dataset. At the end, we are left with the location and DASP10
category for each bug in the dataset that we store in a specific
format.

3.1.4 Proposed Format. The format we use to store our bug’s meta-
data is as CSV file where each row has the following columns:

(1) Contract name: The contract name of the contract in ques-
tion, including its relative path from the main folder. This
way we can differentiate between multiple contracts with
the same name, but on different folders.

(2) Lines: The next piece of information is the lines where the
bug is located on. To allow more versatility in expressing
bugs that can be accepted to be reported on multiple lines,
there exist multiple ways to declare in what lines a bug

Figure 1: bad randomness vulnerability example

is located. First, a simple number can be used to express
a single line, i.e. the row "contract.sol,100,access_control"
describes that there is a bug in contract contract.sol, on
line 100 whose category is access_control. Another way to
express lines is using a "-" operator. A lines value of 100-120
implies that a bug can exists between line 100 and line 120.
Lastly, our format also accepts the "/" operator. A line value
of 100/105 means that a bug exists on either line 100 or line
105. It is also important to notice that multiple operators
can be used simultaneously. For example a lines value of
100-120/132 means that a bug exists either in between lines
100 and 120 or in line 132. This way of expressing lines
can be used to better describe bugs that can be reported on
multiple lines

(3) Category: The last piece of information described in each
row of our solutions CSV file is the category of the bug in
question. As mentioned above this, category must be one
of the previously described DASP10 categories. Similarly to
lines, there exist multiple different ways to express which
categories to accept a bug report as. The simplest way is
to simply write a single category in the category field. The
row "contract.sol,100,access_control", as mentioned above,
describes that there is a bug in contract contract.sol, on
line 100 whose category is access_control. Another way
would be to use the "/" operator. A category value of arith-
metic/denial_service wouldmean that a certain bug is either
of the arithmetic or of the denial_service category. Since
there is no continuity between different categories as exists
between numbers, there is no "-" operator for the category
value. There is however an "ANY" value that matches to any
category. As for the lines value, this way of expressing the
category of a bug is more expressive, allowing us to accept
bug reports of bugs whose categories are ambiguous.

In most cases, when parsing from the datasets used to our CSV
format there is a single line and single category reported, making
little use of the "-" and "/" operators. That isn’t to say, however,
that there is no use to them. The datasets we used simply did not
have that information available, so it would have required manual
analysis of all 1,657 faulty smart contracts in our final dataset to
add this information to their metadata.

There are plenty of use cases for the proposed format. Take the
bad randomness vulnerability presented in figure 1 for example.

Variables with bad randomness were declared in lines 16 and
17. They were however, only used in line 18, which is where the
vulnerability applies. Where should this bug be reported? In lines
16 and 17, or line 18? Both approaches seem reasonable and it is up
to the dataset’s author to decide. If the author marks lines 16 and
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Table 1: Metadata method per bug dataset

Dataset Language Method

SmartBugs [11] solidity JSON & Comments
SolidiFI [27] solidity CSV & Comments
Jiuzhou [14] solidity Json
Huang Gai [13] solidity Txt & Comments
Defects4JS [25] java CSV
BugsJS [1] java CSV
The Bug Prediction Dataset [24] java CSV
Bug-Fix Dataset [4] java CSV
Unified Bug Dataset [5] java CSV

17, he is marking 2 different bugs, and a report on line 18 would be
considered false. If the author marks line 18, then only one bug is
declared and any reports on lines 16 or 17 will be considered false.
Using our format however, the author could write 16-17/18 on the
lines value and accept both cases.

It is also important to note that different analysis tools take
different approaches and may report the bug in any of the two
present cases. Only using our format could both reports be counted
as true positives.

Because we do believe our format to be more expressive than
any other we have come across, we would like to suggest to our
readers to use it as well in their bug datasets. This level of flexibility
will allow for better descriptions, and therefore analysis, of bugs.

Based on the study of multiple bug datasets available, table 1
describes what methods are currently in use to present the metadata
related to bugs in nine datasets.

As seen in table 1, most datasets already use CSV files for their
metadata (usually one per source file), so a transition to a different
format shouldn’t be overly difficult. Furthermore, we would suggest
for it to be a CSV file for each source code file (as it is already
common practice) as well a single CSV file containing all bugs in
the dataset to facilitate works such as ours that look at the dataset
in its entirety.

Lastly, it is important to notice that multiple ways to select
metadata can be used simultaneously, such as the case for the
SolidiFI dataset, where both CSV files and comments are used. So
there is no need to exclusively use the standard suggested while
disregarding previous approaches.

3.1.5 Final Data. Returning to our own data processing pipeline,
after preparing both a bug reports CSV file and a solutions CSV file,
the last step is to join them both, obtaining a single CSV file with
all bugs and all bug reports. The objective is to classify each bug
report in the bug reports CSV file as either a true or a false positive
based on the bug information available in the solutions CSV file.

The final CSV file will have all the columns of the bug reports
CSV (the rule_id and level found by each tool) as well as a final
column describing if this report refers to a true or a false positive.

A report from the bug reports CSV file is considered a true
positive when:

(1) The bug report was reported on the same file as a bug in
the solutions CSV file

(2) The bug report’s lines matches, or are at least a subset of, the
same bug’s line in the solutions CSV file. Do note that the
solutions CSV file can accept multiple lines as the location
of the bug as per described in the previous section.

(3) The report’s category matches at least one of the categories
of the bug in the previous line

Should all these conditions prove true, then the bug report is
considered to be a true bug report, otherwise it is considered to
be a false positive bug report. At the end of file we put all the true
positives not caught by the tools, making sure all bugs and bugs
reports are properly represented in the final CSV file.

This final CSV file contains all bug reports and all bugs properly
connected, so the machine learning model can learn which reports
represent true positives, and which reports represent false positives.

3.2 Machine Learning Model
This sub section describes the details about the machine learning
model implemented. First it describes some additional data prepa-
ration that had to implemented and then discusses the features
available to the model.

3.2.1 Data Division and Balancing. Two matters had to be ad-
dressed to finish preparing the data that is fed to the machine
learning model.

The first is related to data division between training and testing
sets. Here, a balance must be struck between increasing the size of
the training set and increasing the size of the testing set.

On one hand, increasing the size of the training dataset will give
more information for the machine learning model to train with.
Havingmore information could allow for better trainedmodels, that
can better predict the classification of our bug reports. Increasing
our model’s accuracy is of crucial importance, so the bigger the
training set, the better.

On the other hand, increasing the size of the testing dataset
allows for a better evaluation of the machine learning model. A
bigger testing set means there is more data to test the model with,
and will consequently allow us to test the model under a wider
range of scenarios. Just like the data training set, the bigger the
testing set, the better.

To strike a balance between these two conditions we have cho-
sen to use 80% of our total data as the training set data, and the
remaining 20% as the testing set data. This way we can spend most
of our data on training, while retaining a significant amount for
testing. The advantage of separating our data as such, is that we
can test the model with data it has never seen before, avoiding any
biases in the model itself for the data it is tested with.

Lastly, it is important to note that the data for each set is ran-
domized. This is, 20% randomly chosen data will be used for testing,
and the remaining 80% will be used for training. The order of each
dataset is also randomized. This way we can avoid any unwanted
correlation between training and testing sets.

The second matter that must be addressed in the context of data
preparation is data balancing. Due to the nature of the data in this
thesis, we can expect the majority of bug reports used as data to
refer to false positive bug reports. From the data used, 166,348 out
of 192,073 reports concern false positives, while only 25,725 out of
192,073 reports concern true positives.
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The implication of this imbalance is great. As the vast majority
of bug reports concern false positives, a machine learning model
that always predicts the bug report as false will be correct the vast
majority of the time. As 86% of our reports concern false positives,
a machine learning model that always classifies reports as false
positives will have an accuracy of 86%, which might seem high but
would in fact be useless. To avoid this issue, developers can look at
more metrics besides accuracy that will be described and discussed
in the next section, and developers can also balance their data to
minimize or avoid the issue altogether.

There exist two major approaches to achieve data balancing:

• Undersampling techniques
• Oversampling techniques

Undersampling techniques reduce the majority class in the im-
balanced dataset until the dataset is balanced. In our case, since we
have 166,348 false positive bug reports and 25,725 true positive bug
reports, we would need to eliminated 166,348 - 25,725 = 140,623
false positive bug reports to reach a balance. There exist multiple
different algorithms to achieve this, but the common point between
all undersampling techniques is that data will be lost to achieve
a balance. The disadvantage of these techniques is that we must
effectively ignore the vast majority of the data we have acquired.

Oversampling techniques are the opposite, they increase the mi-
nority class in the imbalanced dataset until the dataset is balanced.
In our case, since we have 166,348 false positive bug reports and
25,725 true positive bug reports, we would need to create 166,348 -
25,725 = 140,623 true positive bug reports to reach a balance. There
exist multiple different algorithms to achieve this, but the common
point between all oversampling techniques is that data will be cre-
ated to achieve a balance. The disadvantage of creating data is that
the model will be trained with data that was algorithmically created
to be similar to previously classified data, having the potential of
being incorrectly classified, or too being similar to the original data,
creating biases in the model.

For this work we have chosen to use oversampling techniques,
as we have concluded that the cost of throwing away 73% (140,623
eliminated false positive reports out of 192,073 total reports) of our
dataset via undersampling techniques to be too high.

The specific algorithm chosen was the SMOTE (Synthetic Minor-
ity Oversampling Technique) algorithm. SMOTE creates synthetic
data points of the minority class by declaring data points on the
vector line between an original data point of the minority class and
their nearest neighbors of the same class. This way it creates data
points that are similar, but not equal, to the data points previously
existing, increasing the number of data points in the minority class
while maintaining high probability of a correct classification.

3.2.2 Features and Consensus. The final data to reach the machine
learning model is a balanced dataset where 80% of the dataset will
be used for training and the remaining 20% for testing. The features
available to the model are the columns of the CSV file presented in
the previous section, this is the rule_id and level resulting from the
analysis of each tool for each bug report. Should a tool not have
reported this bug, then these columns are left empty.

The consequence of this feature selection is information about
consensus. Our machine learning model has information about the

same bug, from all tools’ points of view and can use that information
to better classify bug reports as either true or false positives.

Should a specific tool (or conjunction of tools) prove to be more
reliable than others at classifying a certain type of bug report, than
our machine learning model can learn this information and rely
more on said tools. Should a specific tool (or conjunction of tools)
prove to be less reliable than others at classifying a certain type of
bug report, the opposite can apply.

This is the benefit of consensus between multiple analysis tools
and this is what we expect our machine learning model to learn
with.

4 EXPERIMENTAL SETUP
The next section describes the experimental setup used in this
project.

4.1 Metrics
The first thing to consider are the metrics chosen to evaluate the
solution. We have classification metrics that evaluate the machine
learning model and prioritization metrics that evaluate the final
prioritized list of bug reports.

4.1.1 Classification Metrics. They require discrete classifications
to be calculated. For regression models, we consider reports with
over 50% probability of being true as true for the context of these
metrics. The metrics are:

(1) Accuracy
(2) Precision
(3) Recall
(4) F1-Score
Accuracy is a metric that quantifies the amount of correctly iden-

tified samples, divided by the total number of samples. In simpler
terms, it measures the accuracy of the model, this is the probability
of a sample being correctly classified. As mentioned in the previ-
ous section, highly imbalanced datasets can easily achieve a high
accuracy by using simple blind classification to the majority class,
so further metrics are also needed. The worst value for this metric
is 0, and the best value is 1. The formula for this metrics is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

Please do note that true and false positives in this section refer to
the final classification of the machine learning model. This is, true
positives are bug reports considered as positive by the model and
that actually correspond to bugs according to the dataset’s classifica-
tion. False positives refer to bug reports the machine learning model
considered as positives but that in fact do not correspond to bugs
according to the dataset’s classification. Likewise true negatives
are reports the model considers as false and that do not correspond
to bugs, and false negatives are reports the model considers as false
but that do in fact correspond to actual bugs.

The next metric used is recall, used to evaluate the machine
learning model’s ability to find all positive samples. This is a great
counter-metric to accuracy, as a model that uses blind classification
to have good accuracy in an imbalance dataset will instead have the
lowest value of recall available. The worst value for this metric is 0,
and the best value is 1. The formula for this metric is as follows:
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

The next metric utilized is precision. Precision measures the
model’s ability to not misclassify a positive sample as negative.
Same as recall, it is also a great counter-metric to accuracy for the
same reasons. The worst value for this metric is 0, and the best
value is 1. The formula for this metric is as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

The last metric in this section is F1-Score. F1-score measures the
harmony between precision and recall. This is a useful metric, a
both precision and recall must be high in order to have an effective
machine learning model. The worst value for this metric is 0, and
the best value is 1. The formula for this metric is as follows:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

All these metrics will be applied to each machine learning model,
both in its training and testing datasets. The reason these metrics
are applied to both the training and testing sets is to check if the
model suffers from overfitting. Overfitting occurs when a statistical
model fits exactly against its training data, but then performs poorly
on never seen before testing data. By applying these metrics to
both training and testing sets, we can see if there is a big difference
between the two. Should that be the case, than the machine learning
model shows signs of overfitting. After checking these metrics, we
have concluded that our machine learning model does not suffer
from overfitting, as the results of these metrics are very similar in
both training and testing sets. For this reason, we have abbreviated
the training metrics from the tables presented in the next section.

4.1.2 Prioritization Metrics. These metrics evaluate the prioritized
list of bug reports directly. This list is produced based on the results
of themachine learningmodel. After themodel classifies the reports
they are then put in a list, where those considered most likely to
be true are presented first, and those considered less likely to be
true are presented last. This list is then evaluated through various
metrics.

APBD stands for Average Percentage of Bugs Detected. It is a
metric presented in RVPrio’s report [19], discussed in Section 2.
This metric takes a prioritized list of bug reports and computes the
weighted average of the percentage of true bugs revealed over the
course of said list. The worst value for this metric is 0, and the best
value is 1. The definition of APBD for a set of n bug reports R with
m bugs B existing in R is:

𝐴𝑃𝐵𝐷 = 1 − 𝑅𝐵1 + 𝑅𝐵2 + ... + 𝑅𝐵𝑚

𝑛𝑚
+ 1
2𝑛

RB1 represents the first true bug present in the list of reports R,
RB2 the second bug, and RBm the last bug present in set R.

The higher the APBD value, the more true positive bug reports
are presented at the beginning of the list, which is good. In counter-
part, the lower the APBD value the fewer true positive bug reports
are presented at the beginning of the list, which is bad. This is a
useful metric, because it measure the prioritization of the sorted
list, rather than the model itself, which is our final output.

Figure 2: Example of a prioritization graph

In practice, APBD is our most valued metric, as it is the only
metric presented so far the measures the prioritized list presented
to the user directly. It was to achieve this prioritized list that the
machine learning model was developed to begin with.

The next metric is the prioritization graph. The same as APBD,
this metric works directly over the prioritized list that results from
our machine learning model’s predictions.

It fundamentally measures the same thing, but presents it in
form of a graph instead of a number. Figure 2 shows an example of
a prioritization graph.

The horizontal axis in this graph represents the number of re-
ports analysed, starting from zero and ending at the end of the
prioritized list. The vertical axis represents the percentage of true
bugs found until that point in the horizontal axis, and goes from 0
to 100%.

The graph starts at 0,0 as no true bugs (0% on vertical axis) have
been found after analysing 0 reports (0 on the horizontal axis). The
graph must also end at end_of_list,100% as all true bugs (100% on
vertical axis) have been found after analysing all bug reports in the
prioritized list (end_of_list on the horizontal axis).

The green line in the example represents the perfect prioritized
list, where all true bugs are at the beginning of the list. Since every
report at the beginning of the list is a true positive, the vertical axis
quickly grows to 100% until the all true bugs are found, and then
remains constant at 100% as only false positives are left. The green
line represents the ideal prioritization, so the closer our models
follows the green line the better.

The red line represents a non-prioritized list, where true positives
bug reports have been equally spaced throughout the list. This is,
to find 50% of all true positives bug reports we would have to look
at 50% of all reports, and to find 75% of all true positive bug reports
we would also have to look at 75% of all available reports. Basically,
the red line represents a list that has not been prioritized at all, and
what would happen if no prioritization is applied. The closer our
model follows the red line the worst. If the model performs even
worst than the red line (that is to say it is constantly bellow the red
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Table 2: Testing metrics for each ensemble model tested

Model Accuracy F1-Score Recall Precision APBD

Decision Tree Class 0.985 0.947 0.987 0.909 0.921
Perceptron 0.836 0.606 0.941 0.447 0.830

Passive Aggressive Class 0.833 0.206 0.161 0.285 0.541
Ridge Class 0.822 0.594 0.971 0.428 0.835
SGD Class 0.837 0.613 0.961 0.450 0.838

KNeighbors Class 0.967 0.891 0.999 0.803 0.916

Decision Tree Regr 0.985 0.947 0.987 0.909 0.932
Logistic Regr 0.868 0.655 0.935 0.503 0.884

KNeighbors Regr 0.967 0.891 0.999 0.803 0.930
Linear Regr 0.822 0.594 0.971 0.428 0.882
SGD Regr 0.753 0.516 0.980 0.350 0.899
Ridge 0.882 0.594 0.971 0.428 0.882

ARD Regr 0.822 0.594 0.971 0.428 0.901
Bayesian Ridge 0.822 0.594 0.971 0.428 0.882

Ada Boost Class 0.952 0.874 0.991 0.741 0.906
Extra Trees Class 0.985 0.947 0.987 0.909 0.921

Gradient Boosting Class 0.964 0.882 0.999 0.789 0.915
Random Forest Class 0.985 0.947 0.987 0.909 0.921

Hist Gradient Boosting Class 0.985 0.946 0.987 0.909 0.921
Stacking Class 0.985 0.947 0.987 0.909 0.921
Voting Class 0.985 0.947 0.987 0.909 0.921

Ada Boost Regr 0.897 0.710 0.942 0.570 0.884
Extra Trees Regr 0.985 0.947 0.987 0.909 0.932

Gradient Boosting Regr 0.964 0.883 0.999 0.791 0.931
Random Forest Regr 0.985 0.947 0.987 0.909 0.932

Hist Gradient Boosting Regr 0.984 0.946 0.987 0.908 0.932
Stacking Regr 0.967 0.891 0.998 0.803 0.929
Voting Regr 0.967 0.891 0.999 0.804 0.932

line) than the model has failed as its prioritization results are even
worse than not prioritizing at all.

Lastly, the blue line represents the prioritization list resulting
from the analysis of our machine learning model. As mention above,
the closer this line follows the green line the better, the closer it
follows the red line the worst. In the example shown, the line
closely, but not perfectly, follows the green line showing a rather
good performance. Further discussion of the result of these metrics
will be presented in the following section.

5 EVALUATION
This section discusses the results of our experiments with a variety
of machine learning models.

Table 2 shows the results for all tested machine learning models.
Classifier models have been abbreviated to ’Class’ and regressor
models to ’Reg’. The first block presents pure classifier models, the
second presents pure regressor models, the third shows ensemble
classifier models and the fourth block shows ensemble regressor
models.

The table presents favorable results for most models. While some
models such as the Passive Aggressive Classifier have high values
in some metrics (namely its high accuracy of 0.833) but low results
in others (namely its low recall of just 0.161), many models have
consistently high results across the board. This phenomenon of high
variance between the metrics likely means that these models are
heavily biased towards marking any report as false, only achieving
a high accuracy due to the imbalanced dataset and failing to find
most true positive samples in the dataset. This shows the need to
look at all metrics as a whole.

Figure 3: Random Forest Classifier model’s prioritization
graph

Figure 4: Random Forest Regressor model’s prioritization
graph

Dividing the table into blocks we can see that regressors have
overall better performance than classifiers and that ensembles have
more consistent metrics than either pure classifiers or regressors.
This seems to suggest that regressor ensembles are themost suitable
type of model for our environment. This makes us wonder why the
related-work instead choose to use classifiers over regressors.

This point is further illustrated in figure 3 and figure 4 that show
the prioritization graph for one of our best performing ensemble
models, the Random Forest model. Figure 3 shows the graph for
the classifier version and 4 for the regressor version.

As can be seen by comparing these graphs, the regressor version
of this model has a closer resemblance to the green line when
compared to the classifier version. This is particularly noticeable at
around the 95% mark on the vertical axis. This is because classifiers
are limited in their prioritization due to their binary output. As the
model simply classifies the report as true or false, we can only ever
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Table 3: Time table for the Random Forest Regressor model

Approach 10% 25% 50% 75%

Non-prioritized 10% 25% 50% 75%
Random Forest Regressor 75% 100% 100% 100%

Increase 7.5x 4x 2x 1.33x

prioritize the list of reports by putting those classified as true first
and those classified as false second. There is no way to distinguish
between two true or two false bug reports so the model cannot
recuperate well from mistakes in its classification.

The regressor model, however, gives a continuous output that is
more useful for prioritization. Reports can be organized by their
continuous probability value and so the model can more easily
recover from any missed classifications. This results in a much
smoother curve when transitioning from reports that the model
considers as true to reports the model considers as false.

Perhaps the best way to express the advantages of this prioriti-
zation is through table 3 shows a time table for the Random Forest
Regressor model.

The table expresses that after analyzing 10% of bug reports in
a non-prioritized list a developer would have found only 10% of
true bugs, but analysing the same 10% of reports in a list prioritized
by a Random Forest Regressor, the developer would instead find
75% of all true bugs, a 7.5x increase over a non-prioritized list. This
represents a major increase in utility from the point of view of a
developer that has too look through so many bug reports. In fact,
all true bugs of the dataset would have been found after analysing
only 21% of bug reports, saving almost 80% of the developer’s time
should he had analysed the whole list instead. This once again
proves that analysing a prioritized list of bugs is multiple times
more efficient than analysing the same list without prioritization.

6 CONCLUSIONS
The contributions of this paper start with the new bug dataset
created for the purposes of this project as well as the format it is
in. The proposed format is more flexible than any other we have
come across and it is most suitable for the purpose of this project.
We hope to see it implemented in more bug datasets in the future.

The implementation of a machine learning model based on con-
sensus from SARIF only features resulting from the analysis of
multiple analysis tools on the same contract, contributes to field to
bug prioritization. To our knowledge there are no other extensive
works on this field, and our project shows that consensus can be a
valuable feature for the purpose of bug prioritization.

The evaluation of multiple machine learning models is also a con-
tribution. The best results from our experiments correspond to the
Random Forest Regressor model. We thus conclude that regression
models are the most suitable models for prioritization problems,
unlike what was used by the related-work. We also conclude that
ensemble models are the most suitable models for our prioritization
environment, this time as suggested by the related-work.

As for final results, our best model proved to able to shorten
the extensive work of bug analysis by almost 80%. A developer

analysing bug reports prioritized by this model would have en-
countered all true bugs after analysing only 21% of all reports in
the dataset, an almost 5x increase in efficiency when compared to
non-prioritization.

6.1 Answer to research questions
After discussing the whole project we can now answer the research
question posed at the beginning of this thesis.

RQ1:Does the SARIF format provide enough information on
consensus to achieve reasonable results in bug prioritization?

A:Yes, using SARIF only features our machine learning models
were capable of achieving high values in all presented metrics. Our
best model could even make use of SARIF to reach an APBD level
of 0.932. As explored in Chapter 4 we have also used the SARIF
format to join multiple reports about the same bug together, so it
clearly has enough information to do that. Considering that the
format did not hinder our development cycle and that it allowed
for good results, we can thus conclude that the SARIF format does
provide enough information on consensus to achieve reasonable
results in bug prioritization

RQ2: Can consensus of bug reports between multiple tools be
used to better predict true and false positives?

A: Yes, consensus was used in this thesis to develop multiple
worthwhile machine learning models capable of prioritizing bug
reports. The best model was even capable of putting all true bug
in the dataset in the first 21% of the prioritized list of reports. This
would have saved the developer tasked with analysing said list
almost 80% of its time. As this result was achieved through a model
that learns on consensus alone, we can safely conclude that con-
sensus of bug reports between multiple tools can be used to better
predict true and false positives.

RQ3: What is the most effective machine learning algorithm to
prioritize bug reports from multiple tools in the context of Smart-
Bugs?

A: Based on our experiments, the most effective machine learn-
ing algorithm to prioritize bug reports from multiple tools in the
context of SmartBugs is the Random Forest Regressor model. Re-
gressor models proved to be more effective than classifiers and
ensembles more effective than their simpler counterparts. Out of
all ensemble regressors tested, the Random Forest Regressor model
had the better results, with an APBD of 0.932.

6.2 Future Work
Futurework on this topic should look to further increase the amount
of tools available to the SmartBugs framework, therefore increasing
the potential upside for consensus between multiple tools. This
work has shown that consensus can be a useful metric for bug
prioritization, so future work should seek to further capitalize on
this knowledge.

Second, it might be useful to develop a machine learning model
that not only depends on SARIF features and consensus although
they have proven to be useful features. It could prove effective
to not only use consensus but to also to look at the source code
directly in some way, shape or form. This is, to develop our own
bug analysis tool that would work in tandem with the solution
presented in this paper. This would be in agreement with Koc et al
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[15], that concluded for their context that machine learning models
that use the source code as features have better results than models
that do not. While the context of our work only looked at the results
of tools available to SmartBugs, it could perhaps show even greater
results by merging both aproaches.
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