
Team Formation in Gamified Environments

Pedro Alexandre Gonçalves Vilela

Thesis to obtain the Master of Science Degree in

Engenharia Informática e de Computadores

Supervisor: Prof. Carlos António Roque Martinho

Examination Committee

Chairperson: Prof. José Carlos Martins Delgado
Supervisor: Prof. Carlos António Roque Martinho

Member of the Committee: Prof. João Miguel de Sousa de Assis Dias

November 2022





Acknowledgments

I would like to thank my parents for their friendship, encouragement and caring over all these years,

for always being there for me through thick and thin and without whom this project would not be possible.

I would also like to thank my grandparents, aunts, uncles and cousins for their understanding and support

throughout all these years.

I would also like to acknowledge my dissertation supervisors Prof. Carlos Martinho and Samuel

Gomes for their insight, support and sharing of knowledge that has made this thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

i





Abstract

This work targets the formation of coalitions in a learning environment such that all members gather the

most knowledge possible while being engaged in the tasks. To accomplish this objective, various state-

of-the-art group formation and agent representation approaches were investigated based on how closely

they are related to our problem. The algorithms were implemented in a framework we selected that

allows the comparison of the selected algorithms to other, already tested approaches. These previously

implemented algorithms are stochastic, therefore less computationally complex, and faster at finding

their solution, but with no guarantees to finding the optimal solution. To compare between coalition

formation algorithms, we conducted simulations to evaluate their computational efficiency and solution

quality. The algorithms are evaluated by the ability and engagement levels of the groups they form, the

time they take to find these solutions, and other aspects such as if the solutions always have fixed groups,

i.e. groups where the students are the same for every group work, as it can be detrimental to the class

dynamic. With the simulations, we reached the conclusion that deterministic approaches can indeed

compete and even surpass stochastic ones, for around 20 students. To evaluate the applicability of

our algorithms’ real-world deployment, we experimented with professors, by having them going through

a usability test using an existing group management tool. From the experiments, we gathered some

feedback, which we will use to improve the group management tool and the usability of the algorithms.

Keywords

Coalition structure generation; Interaction profile; Exact algorithms; Heuristic algorithms; ODP-IP; Syn-

ergistic relations.

iii





Resumo

Este trabalho tem como objetivo a formação de grupos em contexto de aprendizagem tal que to-

dos os membros consigam obter o máximo conhecimento possı́vel enquanto estão empenhados nas

tarefas. Para concretizar este objetivo, foram investigados vários algoritmos de formação de gru-

pos e representação de agentes no estado-da-arte, dos quais realçamos os mais relevantes para o

nosso problema. Os algoritmos foram implementados numa framework que selecionamos que permite

comparar os algoritmos selecionados com outras abordagens já testadas. Estes algoritmos são es-

tocásticos, logo, menos complexos computacionalmente e mais rápidos a encontrar uma solução, mas

sem garantia de encontrar a solução ótima. Para comparar as técnicas de formação de grupos, re-

alizámos simulações para os algoritmos. Os algoritmos foram avaliados pelos nı́veis de habilidade e

empenho dos membros dos grupos que formam, o tempo para encontrar uma solução, e outros aspetos

como, por exemplo, se as soluções contêm sempre grupos fixos, ou seja, grupos onde os alunos são os

mesmos para todos os trabalhos de grupo, aspeto que pode ser prejudicial para a dinâmica da turma.

Com as simulações, chegamos à conclusão que as abordagens determinı́sticas conseguem de facto

competir e até mesmo superar as estocásticas, para por volta de 20 estudantes. Para avaliar a apli-

cabilidade dos nossos algoritmos num contexto mais realı́stico, fizemos experiências com professores,

através de um teste de usabilidade, usando uma aplicação de gestão de grupos já existente. Com as

experiências, reunimos feedback que pretendemos usar para melhorar a aplicação de gestão de grupos

e a usabilidade dos algoritmos.

Palavras Chave

Geração de grupos; Perfil de interação; Algoritmos exatos; Algoritmos heurı́sticos; ODP-IP; Relações

sinergéticas

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 Traditional group formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 State-of-the-art group formation and agent representation . . . . . . . . . . . . . . . . . . 10

2.3 Group Interactions Manager for Multiplayer sErious games . . . . . . . . . . . . . . . . . 15

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Solution Implementation 21

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 ODP-IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 C-Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Coalitions’ value estimation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Synergy-based characteristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Algorithm limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 GIMME-Web updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Evaluation 35

4.1 Algorithms validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Computational efficiency tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Quality assurance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Usability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2.A Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



4.2.2.B Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion 47

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 System limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

A Questionnaire for user tests 55

B Suggestions given by the users for GIMME-Web 65

viii



List of Figures

2.1 An illustration of Integer Partition (IP)’s branch-and-bound technique when searching a

subset of 8 agents, for the partition {1,3,4}. Here the algorithm recognises that the coali-

tion structure containing Cx or Cy, Ci cannot be optimal, and does not proceed deeper into

the search tree. v(C) is the value of the coalition C given by the characteristic function.

Max3 and Max4 represent the max value of any coalition of size 3 and 4 respectively.

Source: [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 This figure depicts an example of a matrix update step of the Coalition-Link (C-Link) algo-

rithm, where the optimal coalition structure is {{a1},{a2},{a3, a4}}, and shows an illustra-

tion of the update on the dendrogam on the left and on the PL matrix. Source: [2] . . . . . 13

2.3 Example of a synergy graph with 5 agents used by the Dynamic programming for optimal

connected Coalition structure Evaluation (DyCE) algorithm. Source: [3] . . . . . . . . . . 14

2.4 Example of edge contraction performed by the Coalition Formation with Sparse Synergies

(CFSS) algorithm. Sources: [4,5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The space formed by the interaction dimensions: Focus and Challenge . . . . . . . . . . 17

3.1 UML of the Group Interactions Manager for Multiplayer sErious games (GIMME) model . 23

3.2 A screenshot of GIMME-Web’s home page. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The Adaptation Setup and Additional Adaptation Parameters tabs of the Professor dash-

board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The Students Setup and Tasks Setup tabs of the Professor dashboard. . . . . . . . . . . 30

3.5 Create Restriction page of the Professor Dashboard. . . . . . . . . . . . . . . . . . . . . . 31

3.6 The first half of the Class Learning State tab of the Professor dashboard. . . . . . . . . . 31

3.7 The second half of the class Learning State tab of the Professor dashboard. . . . . . . . . 32

ix



3.8 The Simulations tab, serving as a tutorial for the Professor dashboard. The pie chart in

the middle represents the progress in the tutorial. The stronger blue slice represents the

current week, in this case week one, while the light blue slice represents the previous

weeks. Hovering over the previous weeks’ slices, shows the corresponding message for

that week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 The Student dashboard of GIMME-Web. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Results of executing 120 runs of 20 iterations for each algorithm. . . . . . . . . . . . . . . 38

x



List of Tables

3.1 Example of tabular characteristic function, where every interaction profile wants to be in

the same group as similar interaction profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Time spent in seconds for each implemented algorithm, when run with 4, 8, 12, 16, 20,

24 players and forming groups of four agents. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Frequency of each answer for questions 2, 3 and 5 of the System Usability Scale (SUS)

questionnaire. First row represent options of the scale (complete questionnaire found in

Appendix A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



xii



Acronyms

C-Link Coalition-Link

CFSS Coalition Formation with Sparse Synergies

CSG Coalitional Skill Game

DP Dynamic Programming

DyCE Dynamic programming for optimal connected Coalition structure Evaluation

GA Genetic Algorithm

GIMME Group Interactions Manager for Multiplayer sErious games

GIP Group Interaction Profile

IP Integer Partition

KNN K-Nearest Neighbors

LB Lower Bound

ODP Optimal Dynamic Programming

ODP-IP Optimal Dynamic Programming - Integer Partition

PL Partition Linkage

PLS Player Learning State

PRS Pure Random Search

SEQ Single Ease Question

SUS System Usability Scale

TA Teacher Assistant

UB Upper Bound

WTSG Weighted Task Skill Game

xiii



xiv



1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organization of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2



1.1 Motivation

Recently, there has been a shift from more traditional instructor-centered paradigm, to more contempo-

rary active learning methodologies [6]. Being these active methodologies more student-centered, they

apply paradigms such as group based learning in order to improve the educational processes. The for-

mation of groups between students can be seen as a coalition formation problem, given that research

usually defines coalitions [5] as groups of agents that agree to coordinate with each other to achieve

their goals. Examples of applications of coalition formation include autonomous sensors to improve

surveillance [7] and virtual power plants to reduce the uncertainty of their expected outcome [8].

As more active methods promote peer discussions, less apt students can be aided by more apt

students and thus are less likely to give up. Not only that, but the protégé effect [9] may also occur

whenever more active students learn by explaining content to other students, finding gaps in their own

understanding [10]. Besides, different students may have different perspectives on the way they interact

with others to accomplish their learning goals, i.e. they may present different interaction profiles. In fact,

we will use the term interaction profile recurrently throughout the document, to represent the preference

of students for a certain way of interacting. However, more active methodologies may also reveal some

problems. In some cases, teachers who attempt cooperative learning encounter some complaints from

the students, for example, the brighter students can complain of being held back by the weaker ones

[10]. We believe this problem has higher chance of occurring if the groups are formed at random and

can happen even if the students choose their group. Given the aforementioned limitations, the goal of

this proposal is to find an algorithm that can improve group formation, by joining students deemed as

compatible according to their interaction preferences. We believe that this can, in turn, increase the

engagement and the ability gained of each student.

1.2 Problem

The problem of dividing students into coalitions can be defined as a coalition structure generation prob-

lem. A coalition structure generation problem is defined by the literature as the partitioning of a set

of agents into disjoint coalitions to maximize the total reward from the resulting coalitions, and can be

divided into three main steps [5]:

• Coalition structure generation: This step involves each agent joining a coalition. The resulting set

of disjoint coalitions is called the coalition structure, where each agent within a coalition coordinates

their activities, but agents do not coordinate between coalitions;

• Solving the optimization problem of each coalition. In this step, it is found the best way for the

members of a coalition to coordinate their actions, maximizing the performance of the coalition;

3



• Dividing the payoff of each generated coalition among its members.

This work is concerned with the optimization of the first activity of finding the coalition structure

that minimizes the agent’s incentive to deviate from their coalitions, taking into account their interaction

preferences to improve the collective ability of the members of the coalition. To do this, we analysed and

implemented a set of algorithms that satisfy this first step. As the supported use case for the algorithms

requires the formation of a new coalition structure as an organization for a group project, we will conform

our analysis to form coalition structures of around 20 students, the approximate size of a college lab

shift.

1.3 Approach

For this work, we investigated various state-of-the-art approaches in group formation and agent repre-

sentation. The algorithms we researched have not been much applied in school contexts, being deter-

ministic approaches compared to the majority that are stochastic, as mentioned by Cruz et al. [11]. The

authors justified the use of such stochastic algorithms due to their applicability to deal with a large num-

ber of variables and the possibility to rapidly generate useful (semi)-optimal solutions. We experiment

with deterministic approaches to find if they can be viable, despite their low use.

We estimate the quality of a coalition resorting to simulations endowing two traits to each agent: the

predicted ability increase, or the predicted knowledge gained by an agent working in said coalition, and

the predicted engagement, representing the subjective desire or motivation to continue interacting. The

quality of the coalition structure will be equal to the sum of all the coalitions’ qualities.

For our proposed solution, we will classify each agent with an interaction profile, according to its pref-

erences, where each agent of the same type has the same contribution to a coalition it is a part of. In

addition, we will also consider that agents can have relations of synergy, where they may prefer to work

with other agents in function of the compatibility between their interaction preferences. This aspect may

be implemented, for instance, by increasing the value of a coalition whenever two agents that are con-

sidered to have good interaction compatibilities are joined. Each coalition will then be evaluated based

on its members and their relations of synergy, also considering the agents’ predicted performance. After

evaluating each possible coalition, up to the preferred group size, we will run our proposed group forma-

tion algorithm to form the coalition structure with a higher overall performance based on the evaluation

made.

As a basis for our implementation, we use Group Interactions Manager for Multiplayer sErious games

(GIMME)1 [12], a group organization model aimed to improve the collective ability of learners working

1The GIMME project repository can be found at the following GitHub link: https://github.com/SamGomes/GIMME (as verified
by October, 24th, 2022).

4



in groups. We selected the GIMME framework, because, besides providing a good environment for the

implementation of our selected algorithms, it already included a set of stochastic algorithms that we used

for comparison, given that the use of stochastic algorithms prevails [11]. To allow professors to more

easily use our solution, we integrated it in the GIMME-Web2 platform, a web program that serves as an

interface to allow professors to form groups in a real class environment. We also evaluate this platform

in terms of its usability and gather feedback to aid its development.

1.4 Objective

Our objective is to compare the proposed solution with the already implemented algorithms, to reach a

conclusion on whether a more complex and deterministic approach can solve the problem and return

solutions with a higher ability increase and engagement than the stochastic ones, and also in a useful

time frame, to both improve the productivity of the group and the ability of each member in an edu-

cation/training environment, while taking into account the preferences of the agents when forming the

coalitions. More specifically, we will evaluate the algorithms by: (i) the quality of their solutions, mean-

ing the predicted ability increase and engagement of the coalition structure; (ii) the time they need to

find their solution, as with the increased complexity, we would not want algorithms that took hours each

time a new coalition structure needed to be formed. The relation of quality of solution and time to find

solution, will also help us determine if the increased complexity justifies the quality of the solution; (iii)

another important aspect to evaluate, as the suggested approaches are deterministic, i.e. the solutions

will be comparatively less varied each execution of the algorithms, we will also look at whether or not the

algorithms start joining the same people together, which can be seen as detrimental for the classroom

dynamic by some teachers [13]. In our preliminary experiments with users, we annotated the professors’

opinion to this approach about these aspects.

1.5 Organization of the document

This thesis is organized as follows: Chapter 1 went over the motivation for this work, a brief description

of the problem, what we researched to find a solution and our objectives. Chapter 2 details some of

the traditional group formation techniques and their applications, the state-of-the-art in group formation

algorithms and ways to value a coalition, the model that will serve as the basis for our implementation

and how this affects our implementation. In chapter 3 we describe the architecture of the model we will

use, the implementation of our solution, some of its limitations, and the updates we made to the interface

2The current version of GIMME-Web is available at: http://gimme-web.duckdns.org/ (as verified by September, 14th, 2022). Its
repository can be consulted via the following GitHub link: https://github.com/SamGomes/GIMME-Web (as verified by September,
14th, 2022).

5



of our program. Chapter 4 will explain the tests to validate our solution, how they support the viability of

the new options in the model, and the users’ experiments conducted to test the usability of the practical

web platform. In chapter 5, we conclude the document, presenting and discussing the results from this

work as well as some future research directions.

6



2
Related Work

Contents

2.1 Traditional group formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 State-of-the-art group formation and agent representation . . . . . . . . . . . . . . . 10

2.3 Group Interactions Manager for Multiplayer sErious games . . . . . . . . . . . . . . . 15

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7



8



In this section, we will start by describing how effective group formation techniques have been im-

plemented, followed by the state-of-the-art in group formation algorithms. Next, we will go over some

approaches of how to represent the agents in the group formation context, and then we highlight some

of the algorithms to divide these agents into coalitions. We follow this with an overview of GIMME,

the model that we uses as the basis of our implementation. We end the Related Work with a discus-

sion of the advantages and the disadvantages of the suggested representations and group formation

approaches.

2.1 Traditional group formation

In this section, we start by describing some traditional group organization methods that have been

proved to be effective in a variety of instructional settings [10], to insight environments that can easily

accommodate the deployment of a group formation approach: Problem Sets, where students complete

their assignments in teams, with the objective of only including the names of the people that participated

in creating the obtained solution, so that the ones who do not want to do any work but want to pass, are

incentivized to also participate; Laboratories and Projects: In some cases, the bulk of the work of group

projects and laboratory assignments are done by only some members of the group, so, in addition to

evaluating the group, we can have some individual testing to help correct the injustices and to assure

everyone learns by working in their part of the assignment; Jigsaw: This method is referred to works

that require multiple areas of expertise, for example, a laboratory exercise that might need expertise

in experimental design, equipment calibration and operation, data analysis and interpretation in light of

theory. After the group is formed, each member is assigned to a part and is given specialized training to

complete the assignment. Also, if everyone is tested for every part of the project, it will greatly improve

the learning from the assignment; Peer Editing: Instead of the instructor being the one criticizing a lab

report or a presentation, it is a pair of groups criticizing each other’s work, so that they can improve their

solution based in the others’ feedback and then submit their work to the instructor. This method also

has the advantage of lightening the work of the teacher, who is able to receive work already improved

by other students.

Knez et al. [14] experimented with their recommender system, ELARS, by performing online activities

in groups of students in computer science courses, forming either homogeneous or heterogeneous

groups. Their results concluded that, out of 64 students, 80% of the students thought it was effective

doing the activity in groups, with 47% agreeing with the idea of grouping students according to their

characteristics and 53% disagreed with fully random groups. Other research [11] mentioned that the

majority of group forming algorithms used in instructional contexts are of a probabilistic nature and

genetic algorithms. This is “due to their applicability to deal with a large number of variables and the

9



possibility to rapidly generate useful (semi-)optimal solutions.” Conversely, in this proposal, we will test

some deterministic approaches to see if the group organization techniques highlighted by Rahwan et

al. [5] can obtain better results compared to the probabilistic and genetic algorithms already implemented

in the GIMME model.

2.2 State-of-the-art group formation and agent representation

Next, we present some approaches defined in the literature as the state-of-the-art of group formation

algorithms and agent representations. Rahwan et al. [5] mentioned various algorithms and represen-

tations for the problem of finding coalition structures that maximize social welfare. Given that our goal

is to explore various approaches, hoping to discover which ones can better suit our group organization

needs, we started by reviewing some coalition structure generation algorithms highlighted by recent

research [5] that would be appropriate for the situation we are considering.

One algorithm that was proposed in the literature is the Inclusion-Exclusion algorithm created by

Björklund [15], which is an exact dynamic programming algorithm for set partitioning. The algorithm is

exact because it always returns the optimal solution, if it exists, and is dynamic because it sub-divides

a complicated problem into simpler ones, and, recursively, solves the sub-problems. This algorithm

is the theoretic state-of-art in terms of the worst-case scenario, running in O(2n). However, because

the algorithm encodes the information in extremely large numbers, with hundreds or even thousands of

digits each, and requires multiplying those numbers, the runtime of this algorithm grows at a rate of O(6n)

rather than the theoretic O(2n), as indicated by the tests performed by Michalak et al. [1]. Particularly,

for a set of 15 agents, the algorithm required more than five months to terminate, as of the date of this

document. We expect, in our case, to simulate the execution of our approach in a school or college

class, which typically has more than 15 students, thus rendering such a computationally expensive

method inadequate for our scenario.

Another approach mentioned is Integer Programming, which expresses the optimization of a linear

function restricted to a set of linear constraints with the variables also restricted to integers. However,

this approach has been shown to be inefficient, e.g., the industrial-strength solver created by IBM, ILOG

CPLEX1, quickly runs out of memory with around 20 agents, but tends to be very efficient in solving

other combinatorial optimization problems. Nonetheless, Integer Programming was shown to be signif-

icantly slower than other algorithms, such as the Integer Partition (IP) [16] and Dynamic programming

for optimal connected Coalition structure Evaluation (DyCE) [3] algorithms.

The IP algorithm [16, 17] represents its search space with disjoint subspaces based on the sizes of

each partition. For example, for a set of 5 agents, one possible partition would be {1,2,2}, which means

1A link to IBM’s ILOG CPLEX can be found at the following link: https://www.ibm.com/products/ilog-cplex-optimization-studio
(as verified by December, 18th, 2021).

10



Figure 2.1: An illustration of IP’s branch-and-bound technique when searching a subset of 8 agents, for the partition
{1,3,4}. Here the algorithm recognises that the coalition structure containing Cx or Cy, Ci cannot be
optimal, and does not proceed deeper into the search tree. v(C) is the value of the coalition C given
by the characteristic function. Max3 and Max4 represent the max value of any coalition of size 3 and
4 respectively. Source: [1].

that one coalition has one member, and the other two have two members each. With this representation,

it is possible to compute Lower Bounds (LBs) and Upper Bounds (UBs) on the quality of the best solution,

based on the average and on the maximum value, given by the characteristic function of every coalition

structure, respectively. In the context of our proposal, the characteristic function refers to the function

that maps each coalition to its value. Using LB, it is possible to eliminate some of the subspaces that are

not promising to contain the best solution, i.e. the subspaces with lower value than the LB. As for the UB,

it can be used to bound the quality of the best solution found so far, (quality of solution = UB ÷ value of

solution). The algorithm constructs a tree for every subspace, where every node represents a subset and

every path a partition. These trees are traversed in a depth-first manner, applying a branch-and-bound

technique, where the solutions are represented in a tree and the branches that have no potential of

becoming an optimal solution are eliminated, using the previously calculated LB and UB for the coalition

structures’ values. Figure 2.1 shows how IP searches a subspace of 8 agents, for the partition {1,3,4}.

Additionally, this algorithm has the characteristic of being anytime, meaning that its solution improves

gradually overtime, allowing it to return a valid solution at any moment during its execution.

Another algorithm is the Dynamic Programming (DP) algorithm, proposed by Yeh [18]. This algorithm

is based on the dynamic-programming principle, which is appropriate when the problem can be broken

down into smaller problems. The way this algorithm solves the smallest problems first is by, given a set of

agents, finding an optimal partition for every coalition of size 2 and storing them in memory, and then use

these results to compute the optimal partition of the coalitions of size 3 and so on until it finds an optimal

11



partition for the original set. Later, Rahwan et al. [19] observed, through the graphical representation of

the search space created by Sandholm et al. [20], where every node represents a coalition structure, that

some of DP’s operations were not needed to ensure an optimal solution and used this idea to develop

the Optimal Dynamic Programming (ODP) algorithm, that performs only one third of DP’s operations,

without losing the guarantee of finding an optimal solution.

Using the previous approaches, a new algorithm was developed by Rahwan et al. [21], creating the

Optimal Dynamic Programming - Integer Partition (ODP-IP). This algorithm uses an adapted version of

both algorithms and executes them concurrently, using the information provided by ODP to speed up

IP’s search. This combination has the advantages of both of its parts, being O(3n) and exact like ODP

and returning solutions anytime like IP, outperforming both ODP and IP, although it is unlikely to solve

group formation problems with 40 agents or more [5]. This is the fastest anytime exact algorithm to date,

thus we believe in our case it may be able to find a solution in a short amount of time, given that our

problem implies groups with a considerably lower number of agents than the algorithm’s experimentally

defined upper bound.

Another class of approaches to solve the coalition structure generation problem are the heuristics

algorithms. These algorithms do not guarantee that an optimal solution is ever found, and they also

cannot provide any guarantees on the quality of their solution. However, they are more suitable to

larger problems that exact approaches cannot handle. From this class of algorithms, we highlight the

Coalition-Link (C-Link) algorithm, proposed by Farinelli et al. [2]. This algorithm aims to partition a set of

agents into groups, based on the concept of similarity. The similarity would be estimated with a suitability

function sf(Ci, Cj) to determine at each step how convenient it is to join the two coalitions Ci and Cj .

The authors suggest that this gain can be calculated as the value of the junction of two coalitions after

subtracting the value of the two coalitions before joining. To store this information, the algorithm updates

in each iteration the Partition Linkage matrix PL(t), with the values of sf(Ci, Cj) in the entry (i, j). The

approach starts from a partition where every coalition is formed by a single agent and initializes the

PL matrix with the suitability values of each pair of agents. In every iteration after that, the algorithm

computes the most suitable pair of coalitions and, if merging a pair of coalitions has a positive gain, they

are removed from future iterations and their union is added instead. If the best suitability is negative or

if the grand coalition was formed, the algorithm stops. Figure 2.2 shows an example of a matrix update

step of the C-Link algorithm. With this method we may be able to achieve good-enough solutions, using

much less time and memory compared with a more complex approach, as it was empirically shown to

have good results, requiring O(n3) operations in the worst case.

Yet another way of approaching the coalition structure formation problem is by putting constraints

on the possible coalitions. The first algorithm we present of this category is the DyCE, proposed by

Voice et al. [3]. The particularity of DyCE is that it resorts to a graph G = (I, E), with I being the set of

12



Figure 2.2: This figure depicts an example of a matrix update step of the C-Link algorithm, where the optimal
coalition structure is {{a1},{a2},{a3, a4}}, and shows an illustration of the update on the dendrogam
on the left and on the PL matrix. Source: [2]

agents and E the set of edges between agents, and the algorithm only considers the feasible coalitions,

which are the ones represented in this graph. An example of this graph can be seen in Figure 2.3. The

algorithm proceeds by calculating the w value for each feasible coalition. The authors informally define

the w function as, for any coalition C, the maximum total value of any sub-coalition of the coalition C.

The algorithm starts by initializing every coalition w value as −∞, which, as mentioned by the authors,

requires a large enough memory block to store all of these values. Then it evaluates each feasible

coalition and stores their values given by the characteristic function. After this initialization step, the

algorithm goes over every coalition C in order of their size and, if the coalition C is feasible, it computes

w(C) and updates the stored value in memory. To calculate w(C) for a coalition C ̸= I, DyCE cycles

through every feasible sub-coalition C ′ ⊂ C that is smaller than n − |C|, (with n being the total number

of agents), and |C| ÷ 2, and then stores in w(C) the maximum between w(C \C ′)+w(C ′) and the value

given to C by the characteristic function. As an example considering the graph from Figure 2.3, for the

coalition {1,4,5}, its w value would be max(v({1, 4, 5}), w{1} + w({4, 5}), w({5}) + w{1, 4}), with the

v function representing the characteristic function. The last step consists on the computation of w(I),

working similarly to the previous step. To get the optimal coalition structure from w(I) the algorithm

recursively replaces a coalition C with C ′ and C \C ′ such that w(C) = w(C \C ′)+w(C ′), stopping when

no more subdivisions are possible.

An alternative algorithm was proposed by Bistaffa et al. [4], the Coalition Formation with Sparse

Synergies (CFSS) algorithm, an anytime algorithm based on edge contraction, i.e. removing an edge

from a graph and merging the two nodes that were joined by that edge. In our case, each node would

initially represent a singleton coalition, and whenever two nodes were merged, we would join the two

coalitions represented by those nodes, as seen in Figure 2.4(A). Furthermore, the contraction of an edge

can be interpreted as the transition from one coalition structure to another. As an example, contracting

the edge ({a1},{a3}) in Figure 2.4(B) corresponds to transitioning from {{a1},{a2},{a3},{a4},{a5}} to

13



Figure 2.3: Example of a synergy graph with 5 agents used by the DyCE algorithm. Source: [3]

Figure 2.4: Example of edge contraction performed by the CFSS algorithm. Sources: [4,5]

{{a1, a3},{a2},{a4},{a5}}. Based on this observation, the algorithm repeats the process of contracting

edges until it visits all coalition structures, marking the previously contracted edges to avoid contracting

them in the future, ensuring that each coalition structure is visited no more than once. In Figure 2.4,

the red dashed lines are these previously visited edges, while the green lines are the edges whose

contraction is still possible. Similarly to the IP algorithm, a branch-and-bound technique is used to

speed up the search, to determine if a coalition structure is worth searching, by calculating an upper

bound for said coalition structure and, if this upper bound is not greater than the best solution found so

far, the coalition structure is skipped. Also similarly to IP, the CFSS algorithm can also return anytime

solutions if the problem it is trying to solve is too complex. The experiments conducted by the authors

show that the CFSS algorithm can solve problems of 60 nodes in a matter of seconds, but is unlikely to

scale beyond tens of agents.

For the coalition structure generation algorithms to work, they need to represent a population of

agents with a diverse set of characteristics. To satisfy this requirement, we present some agent repre-

sentations that can alleviate the computations needed to determine the values of each coalition. These

representations work by restricting the coalitions that can be formed or by making generalizations of the

14



agents, and how they can be applied in group organization.

The first representation, proposed by Bachrach et al. [22], referred to as a Coalitional Skill Game

(CSG), defines every agent with a set of skills and every task with a set of required skills to complete

it. A CSG has the objective of creating teams with a diverse skill set, so that they are able to respond

to a more varied set of tasks. In this representation, the set of skills of a coalition is composed by the

union of the sets of its members and a coalition is valid if it has the necessary skills to solve the tasks

they are required to solve. So, the value of each coalition is based on the number of tasks its members

can achieve. The authors also defined another type of CSG, the Weighted Task Skill Game (WTSG),

where each task has a weight associated and the value of each coalition is now the sum of the weights

of the tasks it can perform. This allows every coalitional game to be converted to a WTSG, although it

can generate a very large CSG representation, with the number of tasks exponential to the number of

agents.

Another representation, proposed by Aziz et al. [23], endows the agents with a set of types, in the

sense that if two agents, when added to any coalition, increase its value by the same amount, they are of

the same type and also referred to as strategically equivalent. The authors prove that, if we are given a

valid type-partition, i.e. the partition of an agent population into sets according to the type of the agents,

the number of types is bounded by a constant, and if the characteristic function is easy to compute, then

an optimal coalition structure can be computed in polynomial time.

Other approaches described by research to characterize agents in coalition structure generation

problems, are synergy-based representations [24], whose objective is to represent the links between

agents that, for example, already know each other or like to work together. Originally proposed by

Conitzer et al. [25], this representation considers that each agent has a utility when they are joined with

other agents, and, if two agents with a synergistic link are joined, they give a bonus gain to the coalition

they are a part of. Conversely, in the case that the agents of a coalition do not have a synergistic link,

the algorithm assumes that a coalition formed by such agents has no added value and that the agents

will partition themselves in the best possible way. This representation was then applied by Otha et

al. [24] in an algorithm that would add an agent to a coalition at random, and then, with some probability,

repeatedly add a new random agent until an agent was not added or the coalition had all agents. With

this approach, they were able to solve, in a few milliseconds, group formation problems with around a

hundred agents, and a few links between agents.

2.3 Group Interactions Manager for Multiplayer sErious games

We will now describe Group Interactions Manager for Multiplayer sErious games (GIMME) [12], a model

developed for managing collective learning, and that will serve as a basis to our implementations and

15



exploratory study. This model aims to improve the collective ability of learners integrated in an interactive

serious environment, e.g. a group project, and operates iteratively, repeating three steps:

1. Initialize/Update players’ states, where the player and group states are created or updated from

the results of previous iterations. These players’ states are characterized by two metrics: ability, or

the previously acquired knowledge, and engagement, the desire or motivation to continue interact-

ing. In the first iteration, the player states can be initialized, e.g., from personality questionnaires;

2. Organize the players into groups. Next, the players are organized into groups, and a Group

Interaction Profile (GIP) is defined for each group, according to each members’ preferences. A

GIP represents the types of interactions that need to be promoted to improve collective ability;

3. Promote the group interactions in each group: finally, appropriate techniques are selected to

promote the styles of interaction conveyed in the GIP of each group.

We will now go over steps 1 and 2 in more detail. The GIMME model characterizes a Player Learning

State (PLS) by two metrics: ability – the player’s previously acquired knowledge – and engagement –

the subjective desire or motivation to continue interacting. A PLS is represented by the tuple < ability,

engagement >. Ability can be estimated based in the progression of a player in a task. Engagement

can be estimated, for instance, by the ratio of time spent attending the task and completing it [26], which

means that a person that spends most of the time failing the task or a player that completes the task

very fast or does not even try to complete it, is classified as having low engagement. In any other case

the player is classified as engaged.

To profile the players’ interactions, GIMME defines an interaction style as the space formed by two

dimensions: Challenge – the intention of the agent of providing/embracing an easier or more challenging

route for task completion, between “Facilitate” and “Complicate” – and Focus – the agent’s predisposition

to interact while paying attention to themselves or others. As an example, if a player’s preference relates

Challenge with Focus, and is reflected in the range [-3, 3] in both dimensions by the profile <2.74;0.20>,

this means the player is classified as a Mutual Facilitator. As each agent is endowed with one of these

nine styles of interaction, they can be used as the types referred in section 2.2, when representing

agents with types.

We can discretize this space into 9 different areas, as seen in Figure 2.5:

• Self Facilitator: the focus is on facilitating own task progression;

• Mutual Facilitator: the consideration of mutual help as a way to learn;

• Others’ Facilitator: the consideration of a fully altruistic task completion as a way to learn, even

while disregarding own harmful consequences;

16



Figure 2.5: The space formed by the interaction dimensions: Focus and Challenge

• Self-oriented: interaction consisting on a balanced urge for self development;

• Neutral: unpolarized interaction with no predominant challenge or focus. It can be considered as

a transitive state, before the agent assumes a stronger interaction style in the future;

• Others-oriented: the focus is on others’ task completion, but does not influence others positively

nor by making the task more challenging;

• Self Challenger: the completion of complicated self-oriented tasks as a way to learn;

• Mutual Challenger: the consideration of mutual competition as a way to learn;

• Others’ Challenger: complicating others’ tasks in the hope of valuing own efforts.

As for the group organization itself, several approaches have already been explored in preliminary

tests performed in the scope of the GIMME model [12]. The most simple was inspired by the Pure

Random Search (PRS) algorithm. The PRS-inspired approach generates several group organization

samples, evaluates their quality, and selects the best one. The problem with this approach is that

it is based exclusively on exploration, disregarding any information obtained from previous iterations.

Besides, in order for it to be more effective, its implementation also relied on the strong assumption

that the optimal groups’ interaction corresponded to the average of the group members’ interaction

preferences.

17



Due to the limitations of the PRS algorithm, an evolutionary approach, in the form of a genetic

algorithm, was then considered and tested. In this implementation, each genetic individual is endowed

with a group configuration, represented by an array of player id sets, and an array of GIPs, so that each

interaction profile is associated with one group of the configuration. Three main genetic operators were

considered: (i) the selection operator, where the algorithm ranks the individuals based on their fitness,

calculated as the sum of the predicted ability increases and engagement values of all agents since the

last iteration; (ii) the crossover operator, that works on two phases: in the first one, the groups are

crossed and in the second phase, the GIPs of the groups are crossed; (iii) and the mutation operator,

that also has two phases. First the groups are mutated and then the GIPs. The mutation of a group

configuration consists on swapping two groups’ members, and the mutation of a GIP in the increase or

decrease of its value by a low random margin.

To evaluate the quality of a GIP in respect to a player, the K-Nearest Neighbors (KNN) was used

for Regression, computing the predicted performance based on the average of the past performances’

GIPs experienced. Both the PRS and genetic approaches suffer from the low accuracy problem of the

KNN estimator, because of the lack of stored data, taking several iterations before being able to make

reliable predictions. This problem can be mitigated with a bootstrapping phase to populate the estimator.

The bootstrap, that considers initial players’ preferences, inferred, for example, from personality ques-

tionnaires, that then simulates an execution of the algorithm through several iterations using these initial

preferences. By generating an initial population of estimated player performances for different GIPs, the

early solutions can have an increased accuracy, regardless of the optimization process.

2.4 Discussion

Having presented the algorithms and representations, we are now going to mention the advantages and

disadvantages of each.

Starting with the representations, seeing as this is to be applied to a class of around 20 people, there

might not be a varied skill set among the agents, as everyone should have all the necessary skills to

take on the tasks. So it still appears to be better to apply representations that consider the preferences

of each agent. By classifying each agent with an interaction profile based on their preferences, that are

more varied than the agents’ skill sets, we can easily distinguish each agent by their type and estimate

what their contribution might be when in a coalition, using the nine interaction profiles described in

section 2.4 as the set of possible types the agents can have. Besides, we can also consider synergistic

relations between interactions, i.e. that some interactions are compatible with other, specific interactions.

A synergy-based representation can benefit from a graph representation, allowing us to trim infeasible

coalitions whose members are not linked. Furthermore, it could allow the professor to have a better

18



control over the coalition formation process.

Regarding group formation, we already presented some deterministic and stochastic algortithms that

can be applied. In fact, the present work serves as an extension to the GIMME model, that adds the

deterministic ODP-IP and C-Link algorithmic alternatives to the already implemented PRS and genetic

stochastic group formation procedures. Starting with the PRS algorithm, it is a simple first approach

that relies exclusively on exploration. In preliminary experiments, the algorithms also made some strong

assumptions such as the preferences of a group being the averages of the preferences of their members.

It also did not take into account possible synergies between agents, problem we will try to resolve with

the new representation. Still, a genetic algorithm was developed next, targeted to fix these issues with

exploitation and lack of assumptions. These two approaches have a common problem, being the number

of iterations needed in order to make well-founded, reliable predictions, due to the impreciseness of the

KNN estimator. This problem may also occur with the deterministic approaches, as these also depend

on the characteristic function to classify the coalitions. To solve this problem, a bootstrapping phase can

be used, adapting the one already implemented for the new approaches, by considering initial players’

preferences, inferred, for example, from personality questionnaires and simulating a GIMME execution

through several iterations using these initial preferences, generating an initial population, alleviating the

initial low accuracy.

Each of the deterministic algorithms also has its own disadvantages. The ODP-IP algorithm, being

an exact algorithm, guaranteeing to find an optimal solution, is much more computationally complex than

the other algorithms, so it can take a long time to find solutions for a higher number of agents, problem

that the C-Link algorithm avoids by sacrificing the quality of the solution, but since the number of agents

is quite low in the proposed use case, we consider the ODP-IP algorithm a better approach, as it will find

the optimal coalition structure, according to the characteristic function. We also presented the DyCE and

CFSS algorithms. The former is a dynamic programming algorithm like ODP, that, by default, restricts

the feasible coalitions by considering only the coalitions that contain agents with synergies, and the

latter uses the concept of edge contraction and branch-and-bound techniques. Both algorithms should

be faster than ODP-IP without putting restrictions over the agents, as the experiments made by Voice et

al. [3] show that DyCE is faster than ODP and, in turn, Bistaffa et al. [4] showed that CFSS is faster than

DyCE, although this requires that the synergy links between the agents to form the synergistic graph are

not hard to identify. Additionally, Bistaffa et al. [4] noted some advantages CFSS has over DyCE. Firstly,

as CFSS partitions the search space non-redundantly, it allows parallelisation, while DyCE does not due

to the exponential memory requirements in the number of agents, limiting its scalability. The CFSS also

has the advantage of allowing anytime solutions, similar to ODP-IP. However, because of this similarity, it

might be redundant to test another algorithm that would consider every possible coalition, giving priority

to the ones that contain synergies, therefore, we find more interesting to test DyCE that only considers

19



the feasible coalitions. Either way, if we make it so the previous algorithms are able to define feasible or

infeasible coalitions, the need for the DyCE approach, whose only advantage over ODP-IP is an easy

representation of the feasible coalitions, ceases to exist. Besides comparing the speed of each approach

to solve the coalition structure formation problem, our objective is also to determine if the algorithms can

solve our problem in an adequate time frame, i.e. in a couple of minutes, and if the resulting coalition

structures have high quality, i.e. result in coalitions allowing the proliferation of high ability increase and

engagement.

Concluding this section, the most relevant researched algorithms are: ODP-IP and C-Link algorithms.

We will consider a representation where agents are classified in one of nine interaction profiles based on

their preferences, and having the agents connected by synergies, that can either be used to represent

how much two profiles want to be paired up or to represent the feasible coalitions, by choosing players

that either have to be joint in the same coalition, or separated into different coalitions.

20



3
Solution Implementation

Contents

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 ODP-IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 C-Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Coalitions’ value estimation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Synergy-based characteristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Algorithm limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 GIMME-Web updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

21



22



Figure 3.1: UML of the GIMME model

In this section, we will detail the architecture of the GIMME model, how we implemented the coalition

structure generation algorithms, the main adjustments we made to the original implementation of the

new algorithms, the previous algorithms and interfaces, some limitations found during implementation

and at the end, we describe the web platform serving as an interface for deploying our algorithms.

3.1 Architecture

We will now give a more detailed description of how the GIMME group management meta-model is im-

plemented and how the new algorithms were integrated. First, from a technical perspective, the GIMME

model is implemented mostly in Python and is currently divided into the following modules: Adaptation,

ConfigsGenAlg, RegressionAlg, Auxiliary Structs and Model Bridges (see the UML presented in Figure

3.1).

Adaptation encapsulates all functionalities of GIMME and is responsible for initializing and executing

adaptation iterations. ConfigsGenAlg is an abstract base class for the coalition structure generation al-

gorithms. It is in this module where we find the implementations of all the coalition structure generation

algorithms. For the implementation of the new algorithms we had to implement a sub-module of Con-

figsGenAlg, the GIMME Solver module, constituted by a C++ implementation of the ODP-IP and C-Link

23



algorithms, that the Python side calls to generate a coalition structure. The other most relevant mod-

ule for our work is the RegressionAlg module. Here we can find the implementation of the algorithms

that serve as characteristic functions, namely the previously mentioned KNN and the newly added tab-

ular algorithm, which considers the synergies between interaction profiles. Model Bridges allows for

transparent model connections whenever data needs to be fetched, decoupling the algorithms and the

storage structures. These bridges are mainly used to store the information of the agents and the created

tasks.

3.2 ODP-IP

This algorithm was integrated in the GIMME model in two parts: the Python1 side, responsible for

computing the values for each possible feasible coalition, according to the characteristic function, their

respective profiles and to translate the optimal coalition structure to the correct format from the answer

given by the C++ module side, containing the implementation of the ODP-IP algorithm. We decided to

implement it this way, because the programming language used for the GIMME platform was Python, but

the ODP-IP algorithm is so complex that, when implemented in Python, it took too much time to complete

even with only 16 players and so we let most of the computations be handled by the faster C++ module.

We used the original implementation of ODP-IP made by the creators of the ODP-IP algorithm as a

basis for our implementation2, implemented in Java.

The C++ module receives as input: the number of players, an array with the values for every possible

coalition, given by the characteristic function, where every position of the array corresponds to the value

of the coalition represented by that position in binary (for example, if the value of the 75th position of

the array is 5.0, it means that the coalition 1001011, 75 in binary, consisting of a1, a2, a4 and a7, has the

value given by the characteristic function of 5.0), the minimum and the maximum number of players per

group, and two lists with constraints on how the agents can be distributed: one list contains the agents

that need to be together in a group and, the other, the agents that cannot be in the same group.

The ODP-IP algorithm consists of two algorithms: ODP and IP that, in this case, are operating it-

eratively, starting by initializing various structures and variables, followed by an iteration of the ODP

algorithm, that goes over 2/3 of the search space, finishing with IP that goes over the remaining sub-

spaces, repeating these last two steps if an acceptable solution was not found.

The original implementation, already described in section 2.2, supported the use of feasible coalitions

during the IP part of the algorithm, but due to, in our case, the ODP side being the one used the most,

because we are forming groups with a low number of agents, i.e. the range of values of which ODP is

responsible, we needed to extend this functionality to also be considered during the ODP’s calculations.

1https://www.python.org/ (as verified by September, 14th, 2022).
2https://github.com/trahwan/ODP-IP (as verified by October, 18th, 2022).

24



To achieve this, we changed how the feasible coalitions are considered and also added a phase to

compute this feasible coalitions. In the original implementation, they were either true or false, whether

they were feasible or not. The feasible coalitions computation phase allowed us to add other features,

such as: choose the minimum and maximum number of players per group and the possibility to create

any number of constraints between the agents, where the user can select any set of agents and whether

they need to be in the same group or separated. This phase goes as follows: (i) initialise an array of

booleans with 2n positions, where every position says if the coalition that corresponds to the value of

that position in binary is feasible or not; (ii) go through every position of the array and mark as true all

coalitions with a valid number of players per group, and also give a boost to their value; (iii) go through

every position of the array again and verify, for every feasible coalition, if they satisfy every constraint

defined by the user. If they do not, set them to false and change their value to a low positive number, to

make the algorithm prioritize the other coalitions, but to choose one of these if the constraints set make

it impossible to satisfy every constraint, for example, if a1 and a2, and a2 and a3, need to be together,

but a1 and a3 have to be separated, there is no coalition structure that can satisfy all three constraints.

If this happens, the algorithm would still return a solution with all three together as it results in the least

number of unfeasible coalitions, i.e. a higher overall value for the coalition structure. In the case that

there are constraints that require agents to be together, every coalition with all those agents, will receive

an additional boost to their value, to prioritize coalitions that satisfy these constraints over the others.

3.3 C-Link

The C-Link approach is deterministic and greedy that, at each time step, will merge the two coalitions

that result in a higher value. Like the ODP-IP algorithm, this approach has a Python side that computes

every coalition value, according to the characteristic function, up to the max number of players per

coalition, and is also responsible for constructing the optimal coalition in the correct format from the C++

module side. This module contains the C-Link algorithm following Farinelli et al.’s pseudocode [2], that

we adapted according to the constraints of our problem.

The algorithm uses a linkage function to determine the value of merging two coalitions together. As

suggested by the authors, this value is computed as v(C1 ∪ C2) − v(C1) − v(C2), where C1 and C2

are two coalitions and v(C) the value of the coalition C according to the characteristic function. This

approach starts by initializing the coalition structure with singleton coalitions, i.e. one agent per coalition

and the Partition Linkage (PL) matrix which stores the value lf(Ci, Cj) in the entry (i, j). In the next step

we compute the best linkage value and the coalitions that achieve it. We will use these coalitions in the

main loop that involves: (i) removing the two coalitions we found in the previous step and adding the

merged coalition to the coalition structure, (ii) deleting the rows and columns of the removed coalitions

25



and adding one row and one column for the new merged coalition, and (iii) computing the new two best

coalitions to merge.

The main difference between the original C-Link and our version is the condition to stop the loop.

Originally, when there is no possible merge with a positive linkage value or the size of the coalition

structure is 1, i.e. a coalition with all agents, the algorithm would stop. However, as in our case we have

to respect the minimum and maximum number of players per group, we allow merges with negative

linkage value, considering always the best of such merges and as long as the merge respects the

maximum number of players per group, and we now stop if in any iteration we cannot find any merge

that would respect the number of players per group limitations, for example, if the maximum number of

players per group was 4, but we could only get coalitions with 5 or more players. In addition, we stop

if the number of coalitions in the coalition structure is equal to the maximum number of groups. After

exiting the loop we redistribute the players from coalitions smaller than the minimum size. These two

steps of our version of C-Link will guarantee that the final coalition structure will have coalitions with

sizes between the minimum and the maximum plus one number of players per group, in case someone

remains when every other coalition already has maximum size.

3.4 Coalitions’ value estimation phase

For the ODP-IP and C-Link algorithms to compute their solutions, they require the value for every coali-

tion they will consider. To do this, we execute a function before the algorithms, to estimate the value

for each coalition, according to the characteristic function. This estimation phase starts from the total

number of coalitions minus one down to zero, one by one, and does the following: (i) it converts the

current number to binary and checks if it corresponds to a group with a valid group size and, if it does,

(ii) compute the interaction profile of the group as the average of the interaction profiles of its members.

(iii) Finally, it predicts, for every valid coalition, its value according to the characteristic function. This

estimation phase, in contrast to the algorithms is implemented in Python.

3.5 Synergy-based characteristic function

Our original idea for a new characteristic function was based on the concept that every person would

have some connections to some other people in the class and they would prefer to work with said people.

However, finding these connections might be to difficult to do in every single class and also, two people

knowing each other does not necessarily mean they will work well together.

Because of this, we developed a new characteristic function in addition to KNN, that we refer to tabu-

lar regression characteristic function. This method consists of using a table whose values correspond to

26



the synergy between two interaction profiles, as shown in Table 3.1. We consider an interaction profile

to have two dimensions, challenge and focus. For this characteristic function, we consider the range of

each dimension of the interaction profile. If the individual is closer to complicate in the challenge dimen-

sion, then we assign it 0 in the first position, and 1 if closer to facilitate. Likewise for the focus dimension,

if the individual is closer to self, we assign 0 at the second position, and if closer to others, we assign 1.

So, if an interaction profile is “00”, it means, the individual is categorized as “Self-Challenger” (refer to

Figure 2.5). It is to note that, with this representation, we cannot represent neutral interaction profiles.

Due to our assumption that in our simulation an exact neutral value of 0.5 will be rare, it was assumed

that an exact value of 0.5 would be considered equal to 1 in that dimension.

With this, we have a more general way to define synergies that will not depend on the individual and

can be estimated either during the execution of the algorithms, or with questionnaires. To determine the

value of a certain coalition, we compute the average value of each pair of players, according to the table.

There is also another part of this characteristic function, that uses another table, with the same format,

but this time, it is used between each player of a coalition and each of the possible tasks, to find the best

task to assign to that coalition. In this case, the task chosen will be the one with an higher sum of values

for each member of the group.

Table 3.1: Example of tabular characteristic function, where every interaction profile wants to be in the same group
as similar interaction profiles.

Interaction Profile 00 01 10 11
00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

This method will serve as an alternative to the KNN characteristic function, as it is less complex and

allows for the user to freely choose how each profile interacts with one another.

3.6 Algorithm limitations

In this section, we will mention some of the limitations of this solution. The first is the memory required

by the algorithms. Both algorithms always need to keep the quality of every possible coalition in memory,

their average ability and engagement and each of their profiles, computed as the average of the pref-

erences of each player in that coalition. These arrays have all size 2n, as each position of the array in

binary corresponds to one coalition. Additionally, all the computations need to be done for all coalitions

that can possibly be selected, which, in our case, means that they need to respect the minimum and

maximum size per group. As for the profiles and average characteristics of each coalition, the char-

acteristic function requires these values in order to get the coalitions’ values, therefore we cannot only

compute the profiles and characteristics of the coalitions of the coalition structure.

27



For ODP-IP the only change in terms of memory made was the addition of the feasible coalition array,

an array of booleans, that for each position, says if the corresponding coalition in binary is feasible. This

array has size 2n and so, as mentioned by Michalak et al. [1], ODP-IP is O(2n) in terms of memory.

The C-Link algorithm is much less complex than ODP-IP, requiring only the PL matrix to be stored

in memory, which has n2 entries. Unfortunately, due to estimation phase in Python, our implementation

of the C-Link algorithm is also O(2n), losing some of its advantageous points over ODP-IP. Additionally,

because of C-Link’s performance in our simulations, we decided to not implement restrictions at this

stage, as it would slow it down even more, making it a less reasonable solution than ODP-IP.

3.7 GIMME-Web updates

In this section, we describe the updates performed to GIMME-Web, a web program that serves as an

interface to allow professors to form groups in a real class environment. A screenshot of its home page

is displayed in Figure 3.2. In terms of backend, GIMME-Web was implemented using the Django3 web

framework, however, we had to change the database system, from SQLite4, the default service when

creating a Django project, to MySQL5. This change was required, due to the time it took for the website

to respond to any access to the database. Additionally, while working on the databases, we noticed that

some code in the GIMME side was accessing the database during execution to get one value at a time

instead of getting every value all at once, which also slowed down the execution of the program. The

rest of the changes in the backend were just to integrate the new approaches and add the functionality

for the tutorial section of the platform.

In the platform, users can register as Professors or Students, with each role having a different dash-

board. We will start with the professor role, which was the side we changed the most, whose main

objective is to manage the class. This dashboard has the following functionalities:

Manage adaptation iterations: In this section shown in Figure 3.3, the professor can change pa-

rameters such as the group size, by adjusting the slider to select the minimum and maximum number

of students per group; and configure the bootstrap phase. The Additional Adaptation Parameters tab

is where the professor can select between different group formation and regression approaches and

configure some of their parameters.

Configure students and tasks: The professor can use the tabs in Figure 3.4 to select, from all

registered students or tasks, which of them may be selected when forming the groups. If necessary, the

professor can also change the students’ learning state in the Student Setup tab, as well as create new

tasks or edit existing ones in the Task Setup tab. Additionally, in the students setup tab, the professor

3https://www.djangoproject.com/ (as verified by September, 14th, 2022).
4https://www.sqlite.org/index.html (as verified by September, 14th, 2022).
5https://www.mysql.com/ (as verified by September, 14th, 2022).

28



Figure 3.2: A screenshot of GIMME-Web’s home page.

can define restrictions to the groups, i.e. whether students need to be separated or in the same group.

The page to create the restrictions can be seen in Figure 3.5.

Monitor the state of the class: In the first half of this tab (Figure 3.6, the professor can start a new

iteration, observe the proposed groups and their characteristics, such as their preferences and assigned

tasks, can verify individual metrics for each student, such as their estimated ability, engagement, pref-

erences and grade, swap students between groups and change how the color scale is displaying, either

a relative or an absolute range. The scale only changes the minimum and maximum value of the scale.

The relative scale has the lowest grade as minimum and the highest as maximum, and the absolute

scale has 0% as minimum and 100% as maximum. In either case, closer to red means lower ability level

and closer to green higher ability level. In the second half displayed in Figure 3.7, there is a scatter plot

of the interaction profiles attributed to the groups, as well as a bar chart representing the average ability

and engagement of all students currently selected for the current iteration.

Tutorial: In the Tutorial tab, shown in Figure 3.8, the professor can simulate their participation in a

course, during 6 weeks, where in each week, they are given a set of tasks to do in that week, going

over the main functionalities of the professor dashboard. This section was originally created to test the

interface with users and was adapted to aid inexperienced users to navigate the interface.

The students can monitor their current learning state, obtain descriptions and files of the tasks as-

signed to them, and upload the results of those tasks. Besides this, the students also have access to

the current group they are on, the tasks available to complete and the student’s past preferences and

learning state as perceived by the system (see Figure 3.9).

29



Figure 3.3: The Adaptation Setup and Additional Adaptation Parameters tabs of the Professor dashboard.

Figure 3.4: The Students Setup and Tasks Setup tabs of the Professor dashboard.

30



Figure 3.5: Create Restriction page of the Professor Dashboard.

Figure 3.6: The first half of the Class Learning State tab of the Professor dashboard.

31



Figure 3.7: The second half of the class Learning State tab of the Professor dashboard.

Figure 3.8: The Simulations tab, serving as a tutorial for the Professor dashboard. The pie chart in the middle
represents the progress in the tutorial. The stronger blue slice represents the current week, in this case
week one, while the light blue slice represents the previous weeks. Hovering over the previous weeks’
slices, shows the corresponding message for that week.

32



Figure 3.9: The Student dashboard of GIMME-Web.

33



34



4
Evaluation

Contents

4.1 Algorithms validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Usability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

35



36



In this section, we will go over the tests we made to evaluate the new approaches and their use when

integrated with the GIMME-Web program, what we expected to happen and what we actually observed.

4.1 Algorithms validation

After implementing the described approaches, we conducted some experiments, comparing both the

previous and the new algorithms in terms of computational efficiency and quality of the solution. For

both cases we run a simulation, consisting of: (i) define the number of runs and iterations, create the

agents and tasks, each with a random interaction profile, and initialize the approach to be tested; (ii)

execute the algorithm with the desired configuration; (iii) after each iteration, simulate how each agent

performed according to the coalition structure returned by the algorithm. These experiments where

executed on a computer using an AMD Ryzen 5 3600 with 3.6 GHz of clock speed and 16GB of RAM.

4.1.1 Computational efficiency tests

In terms of computational efficiency, we executed one run of 20 iterations with 4, 8, 12, 16, 20 and 24

players for each algorithm (Random, Pure Random Search, Genetic Algorithm (GA), ODP-IP with the

KNN regression algorithm, ODP-IP with the tabular regression algorithm, C-Link with the KNN regression

algorithm and C-Link with the tabular regression algorithm), with 4 players per group.

What was expected was: ODP-IP is the most complex approach, as it is deterministic and exact, with

complexity of O(3n) and so, it should be the algorithm that takes the longest and should also have worst

scaling capabilities for a higher number of agents. As for C-Link, its purpose is to be much faster to find

a solution, as it is a greedy approach with a much lower complexity of O(n3), being in theory even faster

than the previous best approach, the Genetic Algorithm.

As we can see from the graph in Table 4.1, for 20 players, ODP-IP is indeed the approach that takes

the longest, as expected. However, the C-Link algorithm, although much less complex, for the same

number of agents, ends up taking times closer to ODP-IP instead of being even faster than the GA. This

repeats again for 24 players, but now with an even bigger increase in execution time. In the case of

ODP-IP, this is mostly due to its complexity, as even in the github page with the original implementation

of the algorithm in Java, they do not recommend going over 24 agents, as the algorithm would take too

long to finish. With our implementation, for 24 players, the ODP-IP implementation of the algorithm in

C++ takes ∼185 seconds, or ∼63% of the total execution time. As for the rest of the execution time, it is

spent in the estimation phase, implemented in Python. The same ratio between algorithm and estimation

phase, does not apply when looking at the C-Link algorithm. An execution of the C-Link algorithm with

24 agents, takes ∼74 seconds, with the C++ portion running for only ∼0.42 seconds, i.e. ∼0.56% of the

total execution time. As we can see, the C-Link algorithm is working as intended, but is being held back

37



Figure 4.1: Results of executing 120 runs of 20 iterations for each algorithm.

by the estimation phase, making it so this implementation of the C-Link algorithm, which is supposed to

be even faster than GA, in practice, many times slower than this approach.

Table 4.1: Time spent in seconds for each implemented algorithm, when run with 4, 8, 12, 16, 20, 24 players and
forming groups of four agents.

4(s) 8(s) 12(s) 16(s) 20(s) 24(s)
Random 5.01E-05 5E-05 0.0001 0.0002 0.0002 0.00025

PRS 0.0635 0.1224 0.1806 0.2405 0.3032 0.3717
GA - 1.2413 1.7463 2.2762 2.7918 3.4218

ODP-IP 0.0860 0.1547 0.2963 0.7954 6.4920 289.11
Tabular ODP-IP 0.0925 0.1490 0.2355 0.5750 5.7021 290.63

C-Link 0.0573 0.1264 0.2854 0.7756 4.9758 74.390
Tabular C-Link 0.0539 0.1116 0.1932 0.5007 4.3812 71.379

4.1.2 Quality assurance tests

We also performed some tests to evaluate the quality of the solutions of the new algorithms. These tests

consisted on executing 120 runs with 20 iterations for every algorithm, and estimating the average ability

increase of each player for every iteration. The results of this test were plotted in Figure 4.1.

From this we can clearly see that the approach that achieves the best results is the ODP-IP algorithm,

followed by the C-Link algorithm, both using KNN to estimate the profiles of each player. Going into more

detail, in the first iterations, the GA algorithm has the worst results, as the estimator it uses to predict the

players’ state lacks stored data to make reliable and well-founded assertions. The algorithms ODP-IP,

C-Link and PRS have similar results at the start, because neither of the approaches has any data to

make informed decisions, so they are all in the same situation and any group they choose will have

38



around the same results. They still get better results than GA algorithm, due to assuming that the profile

of a coalition is the average of the profiles of its members, adding some information to the early iterations.

In the case of ODP-IP and C-Link, as they are deterministic, if no restrictions are applied, they will always

give the same answer, so the variation of their results only depended on the profiles generated for the

players and how these players react to the coalition they are in. They then both grow at a faster rate than

PRS, because they consider more coalitions. For ODP-IP, as it is complete, it considers every coalition

that can possibly be formed, and C-Link builds the coalition structure in a greedy manner, choosing

at each step the best coalitions to merge, while PRS just generates random coalition structures and

chooses the best one, so, in the best case, the answer will be the same as ODP-IP, but in practice, on

average, it cannot guarantee as good as an approximation as C-Link.

Looking at the different versions of ODP-IP and C-Link, we can see that, with the tabular characteris-

tic function, the algorithms have worse results than with the KNN characteristic function. The table used

for the characteristic function is the same as in Table 3.1, where an agent will prefer to be paired with

other agents with the similar interaction preferences. One of the reasons for these results comes from

the simplicity of the tabular approach, as the value of a coalition is simply the average of the values of

the links between each player of the coalition, where the value of each link is the position in the table

that corresponds to the estimated profile of both players in link, while KNN considers how each player

reacted to the profiles in previous iterations. This, however, does not the mean that in a real context,

these characteristic functions will obtain the same results as in the simulations.

Another important aspect to consider, is the variety of the solutions. With the new approaches

being deterministic, we incur the risk of the groups formed being very repetitive, which can be seen as

detrimental for the classroom dynamic by some teachers [13]. Looking at the quality of the solutions

graph 4.1, we can see that, at around iteration 7/8, for the simulations used for the experiment, the

average ability increase stabilizes. At this point, the algorithms have a good enough estimate of the

players’ interaction profiles and, in the case of the deterministic approaches, as their estimates will not

change much from these iterations onward, they return almost always the same coalition structures.

Even so, this happens at such a late step that the repetitiveness of the coalitions might not be too

relevant, i.e. at the final weeks of the semester, and, before this point, the deterministic approaches

give always better results than the other approaches. In the case the professor chooses to maintain the

groups, he/she can create restrictions to keep certain students together.

4.2 Usability tests

We also conducted some usability tests, in order to test the usability of the GIMME-Web platform where

the algorithms were integrated, which we will describe in more detail in this section.

39



4.2.1 Method

The objective of this experiment was to evaluate the usability with professors, to also get their opinions

about the current implemented functionalities, if they were useful and, if not, what would be needed to

make them useful. We believe that these tests, notably the observations we performed, are useful to

guide future improvements for (the user interface of) the platform. Our usability tests were conducted

with a small number of participants, including both professors and Teacher Assistants (TAs) from different

departments, with two observers. We decided to test both professors and TA, because: the professors,

having more experience, are more capable at giving feedback about features that might be helpful to

manage a class of students; as for TAs, these are mostly assigned to the laboratory classes, where most

of the group work occurs, so we were looking for feedback on the applicability of the platform to manage

the work done in such classes.

The usability tests started with a brief description of the context the tool was to be used in and of

a few concepts that would appear during the experiment, that we felt necessary for the user to know

when using the platform. These concepts were the interaction profile (and the focus and challenge

dimensions), and the student state, i.e., ability and engagement. These definitions are also present

as tooltips in the platform. Following this introduction, we asked the users to read the first page of the

questionnaire, that gives instructions on how to answer the questions, and then start the experiment.

The experiment proceeded as follows: the user would be asked to follow the tutorial section of the

GIMME-Web, as seen previously in Figure 3.8. This tutorial presented a scenario in which the user is a

professor of a 6 week course and is asked to do the tasks expected to be done during a semester. To

aid the user during the experiment, and also to make the test less time consuming and repetitive, we

provided some controls to simulate these tasks, for example, when the user first evaluates one student,

we gave the option to simulate the evaluation for the rest of the class automatically. One of the weeks of

the simulation is also a “free” week, where the user can change any parameter and test the platform as

they wish.

Alongside the tutorial, we asked the user to answer some questions in the questionnaire related to

the tasks they had done in each week. We based the post-task questions on Single Ease Question

(SEQ) [27] questionnaire. This consists on a single Likert Scale question, with a scale from 1 to 7,

on how easy the task was to complete. After the experiment, we also asked the users to answer a

post-study questionnaire about their satisfaction with the platform in general. For this purpose we used

the System Usability Scale (SUS) [28], constituted by Likert Scale questions, with a scale from 1 to 5,

whose final score gives us the overall satisfaction of the platform of the user. This score is computed

as (X + Y) * 2.5, where X is the sum of the points for all odd-numbered questions minus 5 and Y is 25

minus the sum of the points for all even-numbered questions. Finally, we have a final open question to

allow the users to freely write any additional comment the user might have had. This questionnaire can

40



be consulted in Appendix A. Besides the questionnaire we observed the user interact with the platform,

registering unintended actions and criticism they pointed during the experiments.

4.2.2 Results

4.2.2.A Questionnaire

From the questionnaire, we gathered information about the tasks and of the platform as a whole. Starting

with the feedback of the tasks, we were trying to understand how difficult they were to complete and

reached the conclusion that, for almost all the users, most of the tasks felt straightforward to complete.

There were some exceptions however. Even so, the self-reported results from SEQ also demonstrated

that there were three tasks that felt slightly difficult (to complete) for at least one of the participants. We

will now describe each of these tasks and our reasoning for this difficulty felt by the users:

Select Tasks With how the simulation is structured, there are 4 tasks per week that user needs to

select, i.e., add it to the group of tasks that will be assigned to the groups when forming them, while

also having to remove the tasks from the previous week. There are buttons that select or remove all

tasks at once, but, in this case, the select all button selects all tasks from every week, so the user is

forced to select that week’s tasks one by one, making more cumbersome to complete.

Create group restrictions This task requires the user to create two restrictions, one separating and

one joining two students. This is by far the most complex task in terms of number of clicks. It also

requires a not so obvious at first glance series of inputs. Looking at Figure 3.5 as an example, the

user must select the students that will be a part of the restriction, have the type of restriction selected

and then click on the plus sign in the “Constraints” section.

Change method to create groups This was one of the optional tasks, suggested to experiment

with during the free week. By “method to create groups”, we mean the group formation and quality

estimation algorithms previously mentioned in this thesis. This functionality was incorporated in

the Additional Adaptation Parameters, as seen in Figure 3.3. Because these parameters are too

advanced for the average user, it is kept hidden and thus more difficult to find. Some of the difficulty

may also come from not understanding what each algorithm does or even what is the benefit of

changing the approach.

The second part of the questionnaire was about the platform as a whole. Overall, the users found the

system easy to use, the functionalities well integrated and the platform was not unnecessarily complex.

In the table 4.2, we can see the results for the following questions of the questionnaire:

Question 2 I found the system unnecessarily complex

Question 3 I thought the system was easy to use

Question 5 I found the various functions in this system were well integrated

41



Table 4.2: Frequency of each answer for questions 2, 3 and 5 of the SUS questionnaire. First row represent options
of the scale (complete questionnaire found in Appendix A)

1 2 3 4 5
Question 2 1 3 1 0 1
Question 3 0 1 2 1 2
Question 5 1 1 0 3 1

As for the scores obtained with the SUS questionnaire, we performed 6 tests with different users and

got from lowest to highest, in a scale of 0 to 100: 40.0, 45.0, 67.5, 80.0, 92.5 and 92.5, corresponding

to an average of 69.6, i.e., an acceptable score but still requiring some work. We note the lower scores

we got, meaning that, in some cases, our platform can still be hard to use to some users.

4.2.2.B Observations

During the experiment, we recorded some of the actions the users did while completing the tasks and

also the criticism they made. This feedback will later be used, to improve the platform, adding function-

alities and adjusting the currently implemented ones.

One thing to note that is exclusive to the experiment is the fact that the tutorial section of the dash-

board is located at the top of the page. This is where the instructions for the experiment are located and

so, the user would often need to scroll up to see the next step and would also make it so they wouldn’t be

able to see the instructions while executing the tasks. The extra time and actions just to check what was

asked of the users, is not relevant to the usability of the platform, and thus not taken into consideration.

The tests also occurred in a controlled environment, and the users could take the time they needed and

could also ask for any clarification if stuck in some step.

We will now go over our observations. One of the most common issues we noticed was the user

not noticing the select all button in the student tab. This was due to the position of the button, being in

the opposite side of where the students to select were, and also the color of the button that, as seen in

Figure 3.4 is the same color as the background.

Another common issue observed, was related with the functionality to manually evaluate a student.

To accomplish this, we need to click the “Manually evaluate student” button, located in the students

setup, also in Figure 3.4. What actually happened was, when asked to evaluate a student, the users

went first to the group sections and looked over there. After failing to find the button they returned to

the student setup tab and, even then, they took some time to find the button. With the users comments,

we reached the conclusion that the button was not where they expected and was also not clear that that

was the button, as only when hovering over it can the tooltip be seen. Some users also pointed out how

awkward it is to select each week tasks. If we want to select more than one task per week, but not all of

them, we have to select them one by one, a time consuming process.

Another common observation was in relation to the interaction profiles of the formed groups. These

42



are indicated in the groups by the color of the traced circle around the students, as seen in Figure

3.6. Additionally, the groups appear as points in the “Overall Performance Distribution” tab, as seen

in Figure 3.7, and the colors of the circles correspond to the squares they land on in this graph. The

problem observed was that the users did not relate the points to the groups or, if they did, which group

corresponded to each point. It is important to note that, when hovering over a group, it would tell its

position in graph, but due to the inexperience of the users, this was not enough to easily identify the

groups in the graph. In regards to the colors of the circles that represent the students, these change

depending on their performance and on the currently selected scale, either absolute or relative, as

mentioned in section 3.6. However, the relative scale was not easily understood by most users, with one

user pointing out that, with the default selection being the relative scale, which has both extremes equal

to 0%, it caused even more confusion. Other users also commented that the relative scale might make

it seem that some students might be having some difficulties with the material, when they can have over

80% ability, but be the lowest grade overall, therefore, appearing as red.

Still in relation to the groups, some users questioned the position where these appeared. The groups

position in the section is completely random, and, so, they can appear over other groups or even close

to the edge, which causes the pop-up with the group’s information to not be visible. This problem could

be solved by placing each of the formed groups in a specific position every time, or making it so the

boxes appear only where they can be completely seen.

In regards to the previously mentioned restriction creation functionality, besides the “creating a re-

striction” procedure already described, after creating a restriction, we noticed that most people went

back to double check if the restriction was successfully created, as there was no indication that it was.

This was also aided by the fact that, in contrast with other pages, this was a pop-up that didn’t have a

confirmation button.

The feedback given by the users also included some suggestions of the changes we could implement

to make GIMME-Web more user friendly. Some of the more common suggestions can be found in

Appendix B

4.3 Discussion

In this section we will go over the results of the tests, what we expected to occur versus what actually

happened, and the conclusions we can take from the experiments.

Firstly, looking at the performance tests, the ODP-IP algorithm is the algorithm with the worst scaling,

taking the longer than the other algorithms when the number of students increases. This is indeed what

we expected and can be explained by the complexity of the algorithm, being O(3n), i.e. exponential

in the number of agents. Conversely, the C-Link approach did not behave as expected. The main

43



advantage of this approach was how fast it can find a good enough solution in a short amount of time.

In practice this was not what happened, due to the estimation phase that both deterministic approaches

need to execute in order to have the values for the coalitions. In the case of C-Link, this part of the

algorithm takes over 99% of the execution time and so, with the current implementation, makes the

C-Link approach almost obsolete. During the development phase of these algorithms, we raised the

possibility of implementing the GIMME framework in C++, to help solve the performance problems of

the more complex approaches. With this change, the C-Link algorithm would be able to fulfil its role of

handling cases with a higher number of students.

Going over the quality of solution tests, we can see that the deterministic approaches achieve higher

or equal average ability increase than the other algorithms. This is due to the deterministic approaches

considering more coalitions than the other algorithms, and in the case of the ODP-IP, every possible

coalition, so these results are expected. In the case of the tabular characteristic function, it still achieves

less favorable results than the KNN characteristic function. This could have happened, because the table

used for the simulations might not have been the most optimal one, or the fact that this approach does

not consider previous approaches when assigning a value to a coalition. Nevertheless, one advantage

of the tabular function, is that it requires less memory accesses, so it is a bit faster when the algorithms

are executed through the GIMME-Web platform.

In conclusion, based on how the algorithms are currently implemented, we can consider two scenar-

ios:

20 students or less : With this number of students, ODP-IP does not take a long time to compute

a solution and, as it always achieves results with the most average ability increase, it should be the

best choice.

More than 20 students : At this stage, ODP-IP and C-Link start to take much longer due to their

poor scaling, the estimation phase specifically for C-Link, so they cannot practically be used. So the

best choice for the algorithms should be the PRS algorithm for the first couple of iterations due to the

initial solutions having higher quality, followed by GA when it starts to outperform PRS.

If C-Link had the expected performance, it would make it a valid option for a higher number of stu-

dents. Unfortunately it is not case, so for now, the PRS and GA are the better options for cases with

more students. What can be done instead is, when using the platform, we can change the algorithms

implicitly depending on the situation as, from the results of the user tests, the “Additional Adaptation

Parameters” section is not very user friendly and, so, most of the users will not use this functionality

efficiently.

Overall, from the usability tests, we expected to get feedback to improve the professor dashboard of

the GIMME-Web platform, as it was being improved upon alongside the integration of the new algorithms.

With the feedback obtained, we were able to identify some issues in the platform, including problems

44



with the interface itself, i.e., some functionalities are not to obvious to use, and some functionalities that

are still missing.

45



46



5
Conclusion

Contents

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 System limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

47



48



In this section, we will go over our findings and if we were able to accomplish our goal of discovering

an algorithm that can help us in the group formation of students while also considering their interaction

preferences.

5.1 Conclusions

Our main objective was to find algorithms that could help us form groups of students, while considering

the different interaction profiles these students might have. After researching and comparing different ap-

proaches, we implemented two grouping algorithms and one quality estimation algorithm to the GIMME

framework, a model developed for managing collective learning, and that served as a basis to our im-

plementations and exploratory study. Later, it was integrated in the GIMME-Web platform, an interface

through which, professors use the algorithms to form groups. From the simulations conducted on these

algorithms, we reached very promising results both in terms of time and quality, with ODP-IP, for small-

medium sized classes, i.e., 20 students, took an acceptable time to complete while also providing the

best results of all the algorithms on average. The specifics of ODP-IP that made these results possible is

it being complete, i.e. it searches the entire subspace of possible coalitions, and it is always able to find

the best coalition for a given characteristic function. This is especially relevant in school contexts, where

deterministic algorithms have not been used much in opposition to stochastic approaches, as mentioned

by Cruz et al. [11]. Nevertheless with these results we hope to show that deterministic approaches can

still be a viable way to compute groups in a school environment.

5.2 System limitations and future work

During the implementation of the algorithms we noticed some limitations of our system. Python, at least

for the amount of computations required for more complex approaches, such as the new algorithms,

is too slow to allow an acceptable computation time. We first tried to alleviate the problem by imple-

menting the new approaches in C++, and using them as external modules in Python, delegating a great

portion of the computations to a much faster language. This, however, did not solve the problem, as

one computation-heavy part of the algorithms, where we determine the value of each coalition, was still

implemented in Python, with no option to extract it to C++ due to how the rest of the project was imple-

mented. For this thesis, unfortunately, there was not enough time to change all of the GIMME framework

to a faster language and, so, one of the approaches ended up not having its expected results. In the fu-

ture, we hope to implement the majority of the platform to C++, where our new deterministic approaches

can work more efficiently. With this change, it might be also possible to have C-Link handle restrictions,

like the rest of the approaches.

49



In regards to the GIMME-Web platform, with the feedback garnered from the usability tests, we

noticed various of this system’s limitations and we hope to change them accordingly, to have a more

user-friendly platform.

50



Bibliography

[1] T. Michalak, T. Rahwan, E. Elkind, M. Wooldridge, and N. R. Jennings, “A hybrid exact algorithm

for complete set partitioning,” Artificial Intelligence, vol. 230, pp. 14–50, 2016.

[2] A. Farinelli, M. Bicego, F. Bistaffa, and S. D. Ramchurn, “A hierarchical clustering approach to large-

scale near-optimal coalition formation with quality guarantees,” Engineering Applications of Artificial

Intelligence, vol. 59, pp. 170–185, 2017.

[3] T. Voice, S. D. Ramchurn, and N. R. Jennings, “On coalition formation with sparse synergies,” in

Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-

Volume 1. Citeseer, 2012, pp. 223–230.

[4] F. Bistaffa, A. Farinelli, J. Cerquides, J. A. Rodrı́guez-Aguilar, and S. Ramchurn, “Anytime coalition

structure generation on synergy graphs,” 2014.

[5] T. Rahwan, T. P. Michalak, M. Wooldridge, and N. R. Jennings, “Coalition structure generation: A

survey,” Artificial Intelligence, vol. 229, pp. 139–174, 2015.

[6] J. H. Tomkin, S. O. Beilstein, J. W. Morphew, and G. L. Herman, “Evidence that communities of

practice are associated with active learning in large stem lectures,” International Journal of STEM

Education, vol. 6, no. 1, pp. 1–15, 2019.

[7] Z. Han and H. V. Poor, “Coalition games with cooperative transmission: a cure for the curse of

boundary nodes in selfish packet-forwarding wireless networks,” IEEE transactions on communica-

tions, vol. 57, no. 1, pp. 203–213, 2009.

[8] E. Y. Bitar, E. Baeyens, P. P. Khargonekar, K. Poolla, and P. Varaiya, “Optimal sharing of quantity risk

for a coalition of wind power producers facing nodal prices,” in 2012 American Control Conference

(ACC). IEEE, 2012, pp. 4438–4445.

[9] “The protégé effect: How you can learn by teaching others.” [Online]. Available: https:

//effectiviology.com/protege-effect-learn-by-teaching/

51

https://effectiviology.com/protege-effect-learn-by-teaching/
https://effectiviology.com/protege-effect-learn-by-teaching/


[10] R. M. Felder and R. Brent, “Cooperative learning,” Active learning: Models from the analytical

sciences, vol. 970, pp. 34–53, 2007.

[11] W. M. Cruz and S. Isotani, “Group formation algorithms in collaborative learning contexts: A system-

atic mapping of the literature,” in CYTED-RITOS International Workshop on Groupware. Springer,

2014, pp. 199–214.

[12] S. Gomes, J. Dias, and C. Martinho, “Gimme: Group interactions manager for multiplayer serious

games,” in 2019 IEEE Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[13] J. Budden, “Grouping students,” 2008. [Online]. Available: https://www.teachingenglish.org.uk/

article/grouping-students

[14] T. Knez, M. H. Dlab, and N. Hoic-Bozic, “Implementation of group formation algorithms in the elars

recommender system.” International Journal of Emerging Technologies in Learning, vol. 12, no. 11,

2017.

[15] A. Björklund, T. Husfeldt, and M. Koivisto, “Set partitioning via inclusion-exclusion,” SIAM Journal

on Computing, vol. 39, no. 2, pp. 546–563, 2009.

[16] T. Rahwan, S. D. Ramchurn, V. D. Dang, A. Giovannucci, and N. R. Jennings, “Anytime optimal

coalition structure generation,” in AAAI, vol. 7, 2007, pp. 1184–1190.

[17] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci, “An anytime algorithm for optimal

coalition structure generation,” Journal of artificial intelligence research, vol. 34, pp. 521–567, 2009.

[18] D. Y. Yeh, “A dynamic programming approach to the complete set partitioning problem,” BIT Nu-

merical Mathematics, vol. 26, no. 4, pp. 467–474, 1986.

[19] T. Rahwan and N. R. Jennings, “An improved dynamic programming algorithm for coalition structure

generation,” in Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems-Volume 3, 2008, pp. 1417–1420.

[20] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé, “Coalition structure generation

with worst case guarantees,” Artificial intelligence, vol. 111, no. 1-2, pp. 209–238, 1999.

[21] T. Rahwan, T. P. Michalak, E. Elkind, M. Wooldridge, and N. R. Jennings, “An exact algorithm for

coalition structure generation and complete set partitioning.” Citeseer, 2013.

[22] Y. Bachrach, R. Meir, K. Jung, and P. Kohli, “Coalitional structure generation in skill games,” in

Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

52

https://www.teachingenglish.org.uk/article/grouping-students
https://www.teachingenglish.org.uk/article/grouping-students


[23] H. Aziz and B. De Keijzer, “Complexity of coalition structure generation,” arXiv preprint

arXiv:1101.1007, 2011.

[24] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki, and M. Yokoo, “Coalition structure gen-

eration utilizing compact characteristic function representations,” in International Conference on

Principles and Practice of Constraint Programming. Springer, 2009, pp. 623–638.

[25] V. Conitzer and T. Sandholm, “Complexity of constructing solutions in the core based on synergies

among coalitions,” Artificial Intelligence, vol. 170, no. 6-7, pp. 607–619, 2006.

[26] S. Järvelä, M. Veermans, and P. Leinonen, “Investigating student engagement in computer-

supported inquiry: A process-oriented analysis,” Social Psychology of Education, vol. 11, no. 3,

pp. 299–322, 2008.

[27] J. Sauro, “If you could only ask one question, use this one,” 2010. [Online]. Available:

https://www.measuringu.com/single-question

[28] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evaluation in industry, vol. 189, no.

194, pp. 4–7, 1996.

53

https://www.measuringu.com/single-question


54



A
Questionnaire for user tests

55



56



57



58



59



60



61



62



63



64



B
Suggestions given by the users for

GIMME-Web

In this section, we will list some of the most common suggestions given by the users from the user tests:

“Select all” button One suggestion we got was to change the color of the “select all” button to blue,

to also be consistent with other buttons found throughout the platform. This change will also be applied

to most other buttons.

Manually evaluate students The most common suggestion we got was to move the button to eval-

uate the students to the groups section.

Selecting tasks each week The most common suggestion given to help select the tasks each week

was to have a filter to only show the tasks of a specific week, so the users could use the “select all”

button to instantly select all the needed tasks.

Showing students performance To more clearly show how the students are performing during the

semester, it was suggested to use as default the absolute scale, instead of the relative scale.

Identification of the groups and their interaction profiles To more easily know the interaction

65



profile of each group, it was suggested we identified the points in the “Overall Preferences Distribution”

graph, for example, with the group id, and to make it so we could look at the groups and graph at the

same time, currently not possible with the page layout. One user also pointed out that, for colorblind

people, the current information displayed would be really difficult to understand, and the identification of

the points would also help in such cases.

Creating restrictions The confirmation button mentioned in the Observations section, section 4.2.2.B

was, in fact, the most common suggestion to indicate the restriction was successfully created.

66



67


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Approach
	1.4 Objective
	1.5 Organization of the document

	2 Related Work
	2.1 Traditional group formation
	2.2 State-of-the-art group formation and agent representation
	2.3 Group Interactions Manager for Multiplayer sErious games
	2.4 Discussion

	3 Solution Implementation
	3.1 Architecture
	3.2 ODP-IP
	3.3 C-Link
	3.4 Coalitions' value estimation phase
	3.5 Synergy-based characteristic function
	3.6 Algorithm limitations
	3.7 GIMME-Web updates

	4 Evaluation
	4.1 Algorithms validation
	4.1.1 Computational efficiency tests
	4.1.2 Quality assurance tests

	4.2 Usability tests
	4.2.1 Method
	4.2.2 Results
	4.2.2.A Questionnaire
	4.2.2.B Observations


	4.3 Discussion

	5 Conclusion
	5.1 Conclusions
	5.2 System limitations and future work
	Bibliography


	Bibliography
	Appendix A

	A Questionnaire for user tests
	Appendix B

	B Suggestions given by the users for GIMME-Web

