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Abstract—This paper aims to reproduce the double descent
phenomenon described by Belkin [1], which suggests that neural
networks will perform better when they have more trainable
parameters than there are points in the training dataset used. We
first introduce core concepts in understanding how a neural net-
work is trained, before expanding into classical learning theory.
This will allow us to review the classical approach to the bias-
variance trade-off curve and how we reached this property. Then,
we look at regularization, which can be a culprit in explaining
the better performance for overparameterized regimes. After this
theoretical introduction, we look at related work that shows
that Belkin et al’s [1] study is not an isolated occurrence,
but one in many experiments that have originated discussion in
the scientific community regarding the bias-variance trade-off.
Among these, are results that aim to understand the reasoning
behind the decreasing generalization error in overparameterized
networks. Next we will show the results we obtained as we tried
to replicate the double descent phenomenon, which led us to
conclude that the phenomenon obtained by Belkin [1] is a
consequence of the methodology used when training networks,
resulting from different methods of initialization for under and
overparameterized neural networks, namely the weight reuse
strategy employed by the author, which leads to severe overfitting
near the thresholds defined.

Index Terms—Double descent curve, neural networks, machine
learning, overparameterization.

I. INTRODUCTION

A. Motivation

In the last years, there have been significant breakthroughs
in machine learning, and increasingly complex models have
materialized to allow studying richer data. On the core of
developing these models, the concept of bias-variance trade-
off [2] has been widely regarded as vital when it comes to
deciding the simplicity of a model. It has been intrinsically
related with underfitting and overfitting, meaning that models
need to be rich enough to properly consider data in its entirety,
but not too complex that they become too sensitive to noise
while being trained. However, recent studies [3], [4] break this
trend, by showing that neural networks perform better when
they are trained to overfit the data. In this paper, we will study
this theory further by analyzing the models used and studying
whether neural networks break this classical theory of machine
learning, or whether this comes from other underlying factors
not considered when making these studies.

B. Goals

With the results presented in the paper by Belkin et al [1],
classical approaches to the bias-variance trade-off have been
outdone by a more accurate method. By taking classically
overfitted models and expanding them further until better

accuracy is achieved, the authors show there is a next step
in the classic U-shaped bias-variance trade-off curve when the
model capacity is increased beyond a certain point.

The goal of this project is to recreate this experiment,
study the results obtained and, if possible to recreate, try to
understand the theoretical reasoning behind it, whether there
are some hidden features that make it fit the classical approach
or there are further explanations to justify this phenomenon,
shaking the core of the mathematical foundations for machine
learning. The model will be studied before and after training,
comparing its complexity in both stages. When studying them,
we will also analyze if some hidden regularization happened
that might justify the results obtained. If the experiment is
impossible to recreate, try to understand whether there is some
randomness associated with the experiment or there are some
overlooks by the authors that make it invalid.

II. THEORETICAL BACKGROUND

A. Neural Networks

A neural network is a model that processes information
given to obtain a desired result. The input is fed to the different
neurons in the network, which use mathematical functions to
translate it into the final output. According to Bishop [5],
a neural network can be simply described as “a series of
functional transformations.”.

A neural network is divided in different layers, each with its
own neurons. These layers interact with each other by feeding
information from one layer to another. When a lower layer
feeds an output as the input of the next one, this is called
forward propagation.

For each layer in the network, we define two initial parame-
ters, W [i] and b[i], representing the weights matrix and biases
matrix, respectively, where i represents the layer for which
these parameters are initialized, with i ∈ 1, ..., L, where L
represents the number of layers in our network. Using these
parameters, we can define an initial transformation over our
output as an equation:

Z [i] = X [i] ·W [i] + b[i], (1)

where X [i] represents a matrix which defines our input, and
Z [i] represents the activation matrix.

This activation matrix will then be transformed using a
function h[i](x). These functions which are the core of a neural
network are called activation functions. Through different
activation functions, multiple behaviours can be simulated, and
complex networks developed.



When using activation functions, we can distinguish them
between linear and nonlinear functions. Linear functions are
not widely used in deep learning for one main reason: all
layers of the model can be collapsed into one, since each layer
will be a linear function of the previous one, which means the
final output will be a simple linear transformation of our initial
input. With this problem, a model using linear functions has
very limited flexibility and complexity.

The problems faced using linear functions can be avoided
by using differentiable, nonlinear functions. These give a much
greater flexibility to represent data through more complex
functions, allow the use of backpropagation to train models,
and allow a multiple layer architecture to be used to be able
to process more complex data. The rectified linear activation,
or ReLU for short, is a piecewise linear function that is
widely used in deep learning. This function has a simple step
function as its derivative, which makes computation much
faster when doing backpropagation. This and the fact that,
empirically, it has nearly identically accurate results to other
more complex functions, makes this function very efficient.
Other well known examples of nonlinear functions used are
the sigmoid, the hyperbolic tangent, or tanH, and the softmax
functions. Knowing this, we can define this transformation in
the form

Y [i] = h[i](Z [i]). (2)

This matrix Y effectively represents the output of layer i
and is called a hidden layer, and will be fed as the input of
layer i+1. A matrix Y [i] is the equivalent of the matrix X [i+1]

as defined before.
This process of forward propagation represented in equa-

tions (1) and (2) is the method by which a feed-forward neural
network obtains the predicted label for a certain input. Once
layer L has been reached, the corresponding Y [L] matrix will
represent our model’s prediction.

B. Training

Now that we know how our network produces a result from
a given input, we must learn how to train it to better fit our
data and produce a correct result. This is done by minimizing
what is known as an error function.

An error function helps measure how accurate the current
model is when confronted with a training set. By analysing
how far from correct the model’s prediction is, we can later
adjust it to better fit the problem at hand. Commonly in neural
networks, the maximum likelihood approach is used. In many
cases, this corresponds to minimizing the sum-of-squares error
function. Thus, the error function would be represented by

E(W ) =
1

2

N∑
i=1

(yn − t)2 (3)

where y represents the model’s final prediction and t the
correct label for the given input. In other cases, such as
classification, the approach used would be using the cross
entropy loss function.

When training a model, we take into consideration the loss
value (how inaccurate the model’s predictions are) of the
training set. While the loss is high, the model cannot label the
data and needs adjustments by updating the weight parameters
of the network. Once the loss is low enough, we can stop the
training process.

This raises the question: How does a model update its
weights using these functions? To do this, a combination
of forward and backwards propagation is applied, using the
calculated loss and initial weights.

With the forward propagation, an initial prediction is ob-
tained from a model to the input it received. When working
with a training set, the correct labels from the inputs fed to a
model are previously known. When comparing the predicted
label and the real one, if the labels do not match, an error
function is used to train the model to better predict it the next
time. By applying these labels to the derivative of the error
function, this information will be able to propagate backwards
throughout all the layers, using the derivative of the activation
function of each layer. When the initial layer is reached, using
the transformations mentioned before, the weights and bias
matrices will be updated which will update the model for its
next predictions.

To effectively train a model into obtaining more accurate
results, our objective is to minimize the error function, thus
we try to find a minimum for this function. To do this, we start
by looking at the gradient of the error function with respect
to y.

Once the gradient is calculated, this result must be prop-
agated throughout the network. This step is called gradient
descent. We do so by updating the weights and bias matrices
with a chain of equations propagated throughout successive
partial gradient calculations throughout the network.

Using this chain of equations, we are capable of traversing
our network backwards, updating the weights and biases of
each layer, thus training our model given correct labels.

The most used version of this algorithm is the Stochastic
Gradient Descent (SGD), where instead of performing these
operations over all data points in our database, random points
are chosen from the training set in order to perform these
calculations, making this algorithm much more efficient.

C. Dimensionality

After understanding how we will develop and train a model,
now we look at the data for which we want to train it. When
analyzing a dataset, one of the most important things to take
into account is its dimensionality.

Dimensionality represents the number of features we have
on a dataset. When dealing with high dimensionality, the
complexity of a problem becomes many times greater. This
is known as the curse of dimensionality, a term coined by
Bellman [6]. This problem can be easily understandable when
we consider only the three geometrical dimensions. Having
D representing the dimension of a problem, when D = 1
we have only one independent variable which can easily be
represented by a line over one axis. Likewise, when D = 2,



we will have the space represented by the area within two axis
and for D = 3 this space will be encapsulated in the volume
between three axis.

While this can make it much harder to deal with higher
dimensional spaces, normally real data can be effectively
confined by using different feature engineering techniques. For
this reason, when dealing with these problems, it is important
to try to reduce the effective dimensionality of the data as
much as possible and try to reduce the problem to a lower,
equally representative, dimension.

D. Bias-Variance Trade-off

When given a wide variety of hypotheses and confronted
with the possibility to still further develop new ones, we must
know how to decide which one best fits our goals.

Considering that neural networks work over real valued
targets, our problem will consider functions that map certain
input labels to a real valued label, given by f : X → R. When
looking at a certain hypothesis h, we revisit the squared error
to decide how well it will fit our sample.

Esample(h) =
1

N

N∑
i=1

(h(xn)− f(xn))
2 (4)

With this equation, we have a way to measure how far
from the correct labels our hypothesis is. If we consider the
whole population, then we now have a formula which helps
us measure how accurate our hypothesis is by expanding it to
the whole population.

Epopulation(h) = Ex[Esample(h)] (5)

Finally, we can then calculate the expected population error
for a learning model which follows hypothesis h on a given
sample D as the average population error of h for all possible
training sets:

ED[Epopulation(hD)] (6)

Through the use of different properties, as expanded in
Wichert and Sa-Couto [7], we derive a final formula for the
expected error of a certain hypothesis:

Ex[ED[(hD(x)−ED[hD(x)])2]+(ED[hD(x)]−f(x))2]. (7)

This formula can be divided into two very important terms
for our future model analysis. The variance (21) and the
squared bias (22).

V AR(x) = Ex[ED[(hD(x)− ED[hD(x)])2] (8)

Bias2(x) = (ED[hD(x)]− f(x))2] (9)

Analysing both terms separately, we can see that variance
represents how sensitive to noise a model is, i.e., a low
variance means the results are similar when using training data
or when using real data to test a model. High variance means

the model was very sensitive to noise when being trained, and
so it adjusted itself to arbitrary patterns on the training data,
so it performs well on the training data but not on validation
sets.

Bias represents how skewed a model is towards a particular
result. It can be explained as a tendency from the network
given by biased data or a very low training set.

To know how to properly decide how to fit a model,
we must first understand how to detect high bias and high
variance. High bias occurs in a model when the accuracy for
both training and test sets is low, i.e., when the model is
underfitting. This means it has not yet been trained enough
to properly represent the data under study. On the other hand,
as said above, high variance means the model is overfitting,
being too sensitive to noise from the training data. This can
happen when we try to get the loss value too close to zero
when training a model.

This presents the problem on how to get a model that
performs well on both sets, properly representing our data,
and having a low bias, but also detaches itself from the
training data, working properly as a standalone model for our
generalized data, meaning it does not overfit. In figure 1, we
have a visual representation of this trade-off in what is widely
known as the bias-variance trade-off curve. We can see that
by achieving a balance between variance and bias, we achieve
a sweet spot when it comes to our model’s complexity.

Fig. 1. Illustration of the trade-off between bias and variance. The optimum
model will achieve perfect balance between both parameters. (Figure taken
from [8])

E. Model Complexity

When talking about overfitting and underfitting, another key
concept that arises is the concept of model complexity. When
looking at a model that is too simple to properly represent
our data, we say that this model is not complex enough, i.e.,
it underfits. Similarly, if it overfits our data, we see that the
model is too complex.

To get a better understanding on how to effectively compute
this complexity, we will look at one notion that tries to quantify
it by measuring the model’s capacity: the VC dimension [9].



When it comes to the VC dimension, we look at H as the
hypotheses space, where h ∈ H. This dimension represents
the cardinality of the largest set that H can shatter.

A hypotheses space H is said to shatter a set of N points
if for every possible combination of these points, there is a
hypothesis h ∈ H that can correctly label them.

To measure the VC dimension, we must first find a set
of k points that H can shatter and then find a set of k + 1
points that H cannot shatter. What this will do is prove that
V C(H) ≥ k and V C(H) < k + 1, ultimately meaning that
V C(H) = k. Although the first part of this proof is generally
easy, the second one is not. For this reason, we follow a
simple heuristic that enables us to compute this dimension
faster. This heuristic says that the VC dimension of a model
is approximately the number of free learnable parameters of
the model. In practice, this is what we will use to compute
the complexity of our neural networks. Although the notion
of VC dimension was developed with binary classification in
mind, we will be applying the same logic to our study.

F. Regularization

As seen in the previous section, we ideally want our model
to have a low enough bias such that it will be complex enough
to correctly label our data, and a high enough variance so that
it will be flexible enough to adjust to new data, but not high
enough that it will overfit. This balance is easy to find in
some cases, but the more complex our data is, the harder it
becomes to find the perfect balance between bias and variance.
For this reason, the concept of regularization was introduced.
Regularization controls the rate at which our model trains itself
and learns. By adding a coefficient to our learning function, it
will discourage our model to learn a more complex or flexible
model, tending to stay how it currently is. This helps dealing
with noise in our training set and avoid overfitting. This is done
by adding a term to our learning algorithm that will reduce
the generalization error while having minimal impact in the
training error, i.e., it will reduce the variance of our model
with neglectable variance of the bias, thus resulting in an
equally representative, but slightly less complex model. This
type of trade-off results from regularization strategies based
on regularizing estimators.

III. STATE OF THE ART

Until now, we followed the classical machine learning
approach, assuming the bias-variance curve as a fundamental
guide to model selection [10]. This intuition is still largely
followed by the scientific community and taught as a property
from supervised learning. However, recent studies have started
to refute this idea, particularly when dealing with neural
networks, and have started questioning whether this notion
applies at all.

In Neal [11], the author goes into detail about the intuition
behind the bias-variance trade-off. It explains that by having
a larger hypotheses space, we expect the variance to increase
and the bias to decrease. This evolution stems from the fact
that with a wider array of hypotheses to choose from, the

likelihood that some approach an ideal function f to our
problem increases. When looking at bias and variance as two
separate terms, the author quotes Geman et al’s [2] work,
from which the decomposition arises.

ESR(hs) = Ebias(hs) + Evariance(hs) + Enoise. (10)

From this formulation, we can see the direct, seemingly
proportional, anticorrelation between bias and variance. If the
average error remains constant and the bias varies, we expect
the variance to vary as well to compensate this change, and
vice versa. The author goes on to present the findings in which
this trade-off stands and the reason why it is so commonly
used. However, in Chapter 4, the refutation arguments begin.
One of the main focus is the contrasting results when dealing
with neural networks. Here, the author claims that some claims
such as “bias falls and variance increases with the number
of hidden units” is empirically false for many datasets. They
go on to say that in some experiments made by Geman et
al [2], the conclusions are misleading and too simplistic in
determining the veracity of their claims.

To further defend their claim, Neal [11] skips ahead 20
years, to the more recent experiments made by Neyshabur et
al [12] (which we will further develop later in this section),
which prove that the opposite of Geman et al’s [2] claims
actually happen. Wider neural networks lead to a decrease in
test error, which shows that when dealing with wider neural
networks, the expected increase in variance in exchange for
low bias does not necessarily happen.

Finally, the author takes Belkin et al [1] to show that
there might indeed be a next step in the evolution of a
neural network training. If we increase the hypotheses space
enough, it will eventually lead to a decreasing test risk, while
maintaining a training risk very close to zero. Although this
experiment does not make the proper distinction between bias
and variance, this decrease in test risk may further refute the
claim made by Geman et al [2].

In Neyshabur et al [12], the authors try to explain the role
of inductive bias as a capacity control parameter for neural
networks, arguing that increasing the number of hidden units
is not consistent with an increase in capacity. With this notion
of inductive bias, the authors also state that implicit norm
regularization also play a very important role in deep learning.

By studying a single-layer network, where the hidden layer
has H rectified linear units, the authors state that by increasing
the number of units H, normally we would reach what is
known as the sweet spot in the bias-variance curve, where
further increase of H leads to overfitting and thus an increase
in test error. However, as stated before, and in accordance
with the theory of the double-descent curve, what the authors
observed is that by increasing H, they reached zero training
error, but the test error continued decreasing, as seen in figure
fig. 2. This experiment was done using stochastic gradient
descent and no explicit regularization, which led the authors to
believe that there was some implicit regularization happening.
They reached this conclusion when, by manipulating the data



in the dataset to try and force overfitting, the network kept
producing good results.

To try and explain this phenomenon, Neyshabur et al [12]
consider a simple network with linear activation functions and
only one hidden layer. When considering a network such as
this one, controlling the size H corresponds to controlling the
rank of the weights matrix W , as this model can be expressed
as a matrix-factorization model, where y = Wx = V UT . To
regularize this model, we must only regularize the norm of V
and U . Thus, the authors conclude that this norm will represent
a better inductive bias than the number of weights. This leads
them to conclude that, in reality, a network with an infinite
number of hidden units would result in ideal performance.

Fig. 2. Results obtained by Neyshabur et al [12] when analyzing the MNIST
and CIFAR-10 databases. (Figure taken from [12])

In Geiger [13], the authors propose a theory for what
happens in the transition between an under-parameterized
model and an over-parameterized one.

Throughout their paper, they draw an analogy [14], [15]
between deep neural networks and a random dense packing
of repulsive particles. From this analogy they equate a neural
network’s units to particles in these systems, who only interact
with each other within a certain range. In these systems, the
energy is zero while there is still space for the particles to
exist without interacting with each other and as soon as the
system is full of particles, the energy will increase with density
as new particles are added. For this comparison, the authors
consider deep neural networks using the hinge loss. While
the neural network is trained on a low enough number of
points, the network can reach zero training loss. However,
when increasing the training set size, the network becomes
unable to achieve this perfect training. This transition happens
when the number of points in our dataset becomes closer to the
number of parameters in the network, hence the comparison
with the aforementioned system.

In their paper [13], the authors reproduce the double-descent
curve for the MNIST dataset using fully connected neural net-
works, which leads them to conclude that the border between
under and overparameterization, which they call the ”jamming
point”, is a crucial boundary when it comes to generalization
error. What this means is that in under parameterized regimes,
the generalization error slowly increases, meaning that models
trained in these conditions will perform worse on real sets the
closer they are to the jamming point. On the other hand, this
behavior reverses in the overparameterized scenario, where
the further away we go from the jamming point, the more

this generalization error decreases. Regularization or early
stopping in training these models make the double descent
phenomenon disappear, which proves that the peak of curve
relates to a very strong overfitting of the models.

In their study, the authors considered a plane of (N,P ),
where N represents the degree of freedom of a neural network,
which through a comparison with the estimation of the VC
dimension, can be considered the network’s capacity, and P
represents the size of the training set. In this plane, they
established the jamming point N∗(P ), which depends on P
but does not necessarily take the same value. So taking the
authors’ generalization assumption and an established (N,P )
plane, intuition tells us that ideal network performance would
be achieved as N → ∞. If we consider their assumption, a
network will constantly keep learning and the generalization
error will still decrease as the capacity of the model increases,
which pushes us towards this conclusion.

In figure fig. 3, the authors show the existence of this double
descent curve on the MNIST dataset obtained under their
training conditions. They show that for small and big enough
datasets, overfitting has a weak effect on the test error without
causing a significant increase on it, while for neural networks
whose size was closer to the jamming point mentioned before,
specifically when N/N∗ = 1, the effect of overfitting causes
a much more significant increase in test error.

With this result, the authors show that traditional methods
of stopping training once a representative enough model has
been achieved and not further increasing the model size is
only a good practice until the jamming point, and that beyond
this threshold models will tend to increasingly get better
generalization error, thus achieving better results than the
contrasting underparameterized models.

The authors conclude that this result is a consequence of
constraint satisfaction when looking at the overparameterized
regimes. They theorize that when a function’s capacity goes
over the number of points in the dataset, there are no con-
straints that remain unsatisfied, and thus the network cannot
be stuck in a local minima, instead always being able to obtain
the global minima. This means that for overparameterized
regimes, a network that is trained enough over the training
set will be able to find the best possible solution.

This result is backed by other recent studies [16]–[24],
where many authors claim that overparameterized SGD leads
towards a global minima when training neural networks.

In Advani [16], the authors show that for shallow networks
initialized with small weights, larger networks generalize
better than smaller ones for almost noise-free datasets. When
looking at their results in figure fig. 4(b), when training a
model with a low noise dataset, overparameterized models
show no signs of overfitting, providing very good generaliza-
tion results. However, if we look at figure fig. 4(a), for noisier
settings, even though overparameterized models are able to
fully learn the training dataset, they don’t generalize as well
as smaller models, especially those trained with early stopping.
Additionally, the closer the size of the models gets to the
overparameterized regime, the more important early stopping



(a) Evolution of different sized neural networks when trained
over a period of time. Training was stopped when zero loss
was achieved on training set.

(b) Test error at the end of training (solid line) and minimum
error achieved (dashed line) as network size increases over
different sized training sets.

Fig. 3. Results obtained by Geiger [13] when analyzing the MNIST dataset
with a 5 hidden layer fully connected neural network. (Figure taken from
[13])

becomes for underparameterized regimes, since longer training
leads to the most severe overfitting in this point. Even though
it yields better results, this early stopping denies the double
descent phenomenon as it prevents the near-transition point
overfitting.

With these results, the authors show that for shallow net-
works, overparameterized networks operate ideally in low-
noise settings, where larger networks will generalize signif-
icantly better than underparameterized networks.

IV. RESULTS

In Belkin et al’s [1] work, the authors propose that an
overparametrized network yields much better results than an

(a) Results on random labelled data.

(b) Results on almost noise-free labels.

Fig. 4. Results obtained on a randomly generated dataset by Advani [16].

underparametrized one, thus surpassing the common practice
of achieving the ”sweet spot” in the classically considered
bias-variance curve [25], [26] and choosing this model as the
best.

During my work, my main goal was to reproduce the double
descent curve proposed by Belkin et al and discover the
underlying mechanics that exhibited during this phenomenon.

To replicate this phenomenon, I focused my efforts on the
MNIST [27] dataset. As a heavily studied dataset, this is a
well-documented and tested dataset, which requires almost no
data preparation that can lead to practical differences when
comparing my models to the ones obtained in Belkin et al.

We developed our neural networks on a subset of this data,
working with all 10 classes of the original 10 dataset, but only
4200 points for training and 4000 points for testing.

A. Naive approach

The first attempt to replicate the double descent curve is
a simple 2-layer fully connected neural network. With this
architecture, we have a hidden layer with a ReLU activation
function and an output layer that simply performs a linear
transformation, thus has no activation function.

The networks were trained to minimize the mean squared
error using stochastic gradient descent with momentum de-
fined to 0.95, an initial learning rate of 0.01 and a step decay
of 10% every 500 epochs. To speed up training, batches of
256 points were used. Additionally, no explicit regularization
was added. These models were all trained over 6000 epochs.

For each layer, Glorot initialization [28], which is an
initializer that draws a uniform distribution based on the
number of parameters of the layer, was used to set the initial
value of the weights.

If we look at the results obtained in figure 5, we see we
get a constant decrease in the validation loss while the trained



models approach 0 accuracy loss and then further models seem
to stabilize in how low they can get this validation loss. The
dashed line represents the interpolation threshold as defined by
Belkin [1]. With this line, we can see that neural networks do
tend to perform better after the overparameterization threshold
has been achieved, but we do not see the double descent
phenomenon manifesting itself here.

Fig. 5. Results obtained on the MNIST dataset following the naive approach
described describing the squared loss value’s evolution over the increasing
number of parameters .

Other tests using increased depth and different loss functions
were also performed and the double descent curve still did
not manifest itself. Following this naive approach, it was not
possible replicate the double descent curve as the models
seemed to always improve with the added complexity.

B. Belkin’s approach

In a second attempt to replicate the double descent curve,
we employ the strategies employed in Belkin et al [1] while
maintaining the architecture described in section 4.2.

As presented by the authors, different learning strategies
were implemented before and after a threshold defined be-
forehand, which the authors call the ”interpolation threshold”.
This threshold delimits the parameters of the neural network.
To calculate the number of parameters in my network, I used
the formula

#Parameters = (I.H) +H + (H.C) + C (11)

where I represents the size of the input (in this case a 28x28
matrix of pixels), H represents the number of hidden units in
the ReLU layer and C represents the number of classes, which
coincides with the number of units in the output layer.

For neural networks smaller than the interpolation threshold,
a strategy called ”weight reuse” was used. An initial set
of weights was defined using a Glorot initialization for the
first network trained. From then on, all subsequent networks
will be initialized with the learned weights of the previous
network, where the added weights are sampled using normally
distributed random numbers with a mean of 0 and variance

of 0.01. The objective of this weight reuse strategy is to
ensure the networks get as close as possible to the absolute
minimum of the loss function they are trying to minimize.
When using SGD, each step ideally gets our network closer to
the intended minimum. However, with big enough steps this
minimum can be overshot, while small enough steps might
not learn enough relevant information to take us closer to
the minimum. This strategy aims to tackle this problem by
continuosly trying to get as close as possible to this minimum
with subsequent networks. In all networks smaller than the
interpolation threshold, a step size decay of 10% every 500
epochs has also been set to ensure it gets as close to a
minimum as possible and an early stopping condition was set
to stop training when 100% training accuracy was met.

For networks larger than the interpolation threshold, the
weights were all initialized using the aforementioned Glorot
initialization and a fixed step size throughout all training.

In both cases, training was stopped after 6000 epochs.
Under the conditions set in section 4.1, three different

thresholds were set to test the consequences of using the
weight reuse strategy defined by Belkin et al.

For the first step, a threshold on 16705 parameters was used.
This corresponds to a neural network with a hidden layer with
21 units and an output layer with 10 units.

With the condition set, 16 models were trained before
achieving the threshold and 5 models were trained after.

Under these conditions, Belkin et al [1] says that in
the underparametrized regime we will witness the classic
”U”-shaped curve, where we can observe overfitting, as the
training loss decreases to values very close to 0, while the
validation loss decreases until a certain point and then starts
increasing. This well known behaviour occurs because the
trained models are adjusting themselves too closely to the
training data and developing a bias towards it. This will make
them underperform in newly presented data, which translates
in a higher validation loss.

If we look at the results obtained in figure 6, we can witness
this behaviour in the graph to the left of the threshold line,
where the models were trained using the weight reuse strategy.
The solid line represents the treshold defined in training, while
the dashed line represents the threshold as defined by Belkin
[1].

After this expected behaviour, the authors propose that
in the overparametrized regime, we will witness a sudden
decrease in the validation loss while the training loss continues
approaching 0. This also matches the results obtained, where
we can observe this sudden descent to the right of the threshold
line. In this step, the models were trained without weight reuse,
with each model being trained independently.

For the second and third step of this experiment, we set
the threshold to 31810 parameters and 39760 parameters,
respectively. This corresponds to a neural network with 40
hidden units and 10 output units for the second step and a
neural network with 50 hidden units and 10 output units for
the third step.



Fig. 6. Results obtained on the MNIST dataset using the weight reuse strategy
with a threshold on 16705 parameters describing the squared loss value’s
evolution over the increasing number of parameters .

If we analyze the results obtained under these conditions
in figures 7 and 8, we can easily identify the double descent
curve phenomenon, where the peak of validation loss occurs
always in the thresholds set, and after we witness the steep
descent in validation loss, which approaches the training loss
again.

Fig. 7. Results obtained on the MNIST dataset using the weight reuse strategy
with a threshold on 31810 parameters describing the squared loss value’s
evolution over the increasing number of parameters.

The authors propose that this double descent curve is
intricately connected to the capacity of the function class (in
our case the capacity of the neural network), where increasing
this capacity beyond a certain threshold will yield the results
obtained here.

According to the authors, this threshold is a fixed value
given by

threshold = n.K (12)

Fig. 8. Results obtained on the MNIST dataset using the weight reuse strategy
with a threshold on 39760 parameters describing the squared loss value’s
evolution over the increasing number of parameters.

where n is the number of subsamples and K is the number of
classes for training in the given dataset.

According to this equation, the double descent curve would
be visible when our neural networks would have more than
42000 trainable parameters with the training dataset we are
using. This does not match the results obtained. As we have
seen, this double descent curve depends on the threshold set in
training and not in a capacity dependent predefined threshold,
as all the thresholds we have set are still smaller than the
threshold proposed by the authors.

For this reason, we need to compare what is the difference
between our naive approach, where we could not obtain the
double descent curve, and Belkin’s approach, where we could
very clearly see the double descent curve shape reveal itself,
however not as described by Belkin [1], but simply as a
consequence of the weight reuse threshold defined by us.

C. Contrasting naive approach against Belkin’s approach

When comparing the two learning strategies described be-
fore, the most obvious difference is the weight reuse approach
used by Belkin [1], where a more complex model starts
its learning with the weights of a previously trained, simpler
model.

The first thing to notice when looking at this strategy
defined by the authors is the mean and variance of the normal
distribution from which they sample new weights to increase
the matrix dimension for a more complex model. With a mean
of 0 and a variance of 0.01, this distribution will generate
weights extremely close to 0, which will have a very minimal
impact in the model training.

When we look at section 2.2, we can see the rule to
update our weights using gradient descent. We can see that
the learning of lower layers depends on the gradients of the
higher layers. With small weights, namely weights smaller
than 1, these gradients will get smaller as we move backwards
through our network, which will impact the learning of lower
layers negatively, making them learn much slower. What this



means is, using this strategy, the layers will be impacted a
lot more forcefully by the higher weights derived from the
previous model than the added random weights. Realistically,
while adding the extra complexity of more hidden units, the
weight reuse strategy is just propagating an already learned
model and keep trying to adjust more and more closely to the
training data with the added complexity. This is why we can
so clearly see the classically ”U”-shaped curve in the trained
models before the threshold. If we look at the results presented
in Chapter III, namely the works done by Geiger [13] and
Advani [16], we can see the authors concluded that in the
presence of early stopping or other forms of regularization,
the double descent curve did not show itself, only showing
itself when the model was trained until severely overfitting,
which is the behaviour we are forcing when using this weight
reuse strategy. When we start learning a fresh model after this
threshold, as it is expected, it yields better results than training
a model with weights that were already starting to overfit the
data. This explains the steep sudden decrease in validation
loss that we obtain after the threshold where we stop using
the weight reuse strategy.

If we look at the same architectures and same conditions
applied before, but without the weight reuse strategy, we can
see that the models before the defined threshold don’t overfit
in the given conditions and thus create better results as the
model complexity increases, with this improvement steadily
decreasing as we reach the overparametrized regime, after
which simply increasing the capacity does not yield significant
performance improvements.

This shows that for fully connected neural networks, the
cause of this double descent curve phenomenon is not di-
rectly correlated with a sudden spike in performance after
the threshold is achieved, but with a forced overfitting of the
models before the given threshold, which increases the training
risk to a peak before the weight reuse strategy ceases to be
implemented.

If we look at what happens to learning when the weight
reuse strategy is implemented the whole time, we see that
our intuitition is correct, as we can see that even past the
threshold calculated before, the model’s performance keeps
slowly learning the training set. However, it keeps overfitting
as the validation loss keeps increasing as we can see in figure
9.

Although these results do not prove or disprove the ex-
istence of the double descent curve, they highlight a clear
flaw in the methodology used in Belkin’s [1] work, which
shows that at least under these conditions, the existence of
this phenomenon is inconclusive.

V. CONCLUSIONS

In this document, we introduced the topic of the thesis
which was developed throughout the course of this year, while
explaining why these results might be extremely relevant to the
current paradigm of deep learning, in particular when working
with neural networks. We shed some insight over some basic
concepts to properly analyze a neural network, as well as how

Fig. 9. Results obtained on the MNIST dataset using the weight reuse strategy
throughout all models describing the squared loss value’s evolution over the
increasing number of parameters.

to train it; we understood the intuition behind the bias-variance
trade-off curve and understood why it could be extremely
useful for model selection when working with models that
follow this property and we saw the role regularization plays
in regulating the capacity of our hypotheses space.

We also explored some related work that has been refuting
the classical approach for some years, which worked as
additional pillars to our research. In this work [13], [16], we
have seen how generalization is affected in overparameterized
neural networks.

Lastly, we presented our results when replicating the double
descent curve as presented in Belkin [1]. We concluded that,
while overparameterized networks do seem to achieve better
generalization, the existence of the double descent curve in
fully connected neural networks as presented in this paper is
a consequence of the methodology used by the authors, namely
the weight reuse strategy employed in underparameterized
networks.

Even though the phenomenon presented by Belkin [1]
seems to be a consequence of the methods used, their conclu-
sions over overparameterized networks and how they general-
ize better seem to hold some truth. For this reason, we suggest
that further analysis need to be done in what could be causing
this by studying overparametrized networks, and whether this
slight improvement proves true ad infinitum or if there is
a limit to the generalization benefits on overparametrized
networks.
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