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onde a ajuda e amizade deles foi essencial na minha integração.
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Abstract

Infrastructure as Code (IaC) is the process of managing IT infrastructure via programmable configuration

files (also called IaC scripts). IaC has progressively gained more adoption in the DevOps landscape.

Even so, IaC is not a silver bullet; akin to other software artifacts, IaC scripts can suffer from bugs. Au-

tomated analysis tools to detect smells in IaC scripts exist, however, they focus on specific technologies

such as Ansible, Chef, or Puppet. This means that when the detection of a new smell is implemented in

one of the tools, it is not immediately available for the technologies supported by the other tools — the

only option is to duplicate the effort.

Since the IaC technologies ecosystem is very scattered, we address the generalization problem and

we present GLITCH, a technology-agnostic framework that enables automated detection of IaC smells.

GLITCH allows polyglot smell detection by transforming IaC scripts into an intermediate representation,

on which different smell detectors can be defined. GLITCH currently supports the detection of nine

security smells and nine design & implementation smells. We compare GLITCH with state-of-the-art

smell detectors. For the security smells, the results show that GLITCH can reduce the effort of writing

security smell analyses for multiple IaC technologies and it obtains higher precision and recall than the

current state-of-the-art tools. For the design & implementation smells, we concluded that GLITCH has

enough information in its intermediate representation to detect technology-agnostic smells detected by

state-of-the-art tools.

Keywords

Infrastructure as Code, Intermediate Representation, Static Analysis, DevOps, Code Smells, Security

Smells
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Resumo

Infraestrutura como Código (IaC) é o processo de gerir infraestruturas informáticas através de ficheiros

de configuração programáveis. IaC tem sido cada vez mais adotado no ambiente de DevOps. Apesar

disso, como em outros artefactos de software, scripts de IaC podem ter bugs. Ferramentas de análise

automática para detetar problemas em scripts de IaC existem, no entanto, estas focam-se em tecnolo-

gias especı́ficas como Ansible, Chef, ou Puppet. Isto quer dizer que quando a deteção de um novo

problema é implementada numa ferramenta, esta não está imediatamente disponı́vel para as tecnolo-

gias suportadas por outras ferramentas — a única opção é duplicar o esforço.

Como o ecossistema de tecnologias IaC é muito disperso, considerámos importante resolver o

problema da generalização e para isso criámos a framework GLITCH. A GLITCH permite a deteção

automática de code smells em múltiplas linguagens ao transformar scripts de IaC numa representação

intermédia, sobre a qual diferentes detetores de problemas podem ser definidos. A GLITCH suporta

atualmente a deteção de nove problemas de segurança e nove problemas de design e implementação.

Para os problemas de segurança, os resultados que obtivemos não só mostram que a GLITCH permite

reduzir o esforço de escrever análises de segurança para múltiplas tecnologias de IaC, como também

que obtém precisões e revocações mais elevadas que o estado da arte. Para os problemas de design e

implementação, concluı́mos que a GLITCH tem informação suficiente na sua representação intermédia

para detetar problemas agnósticos à tecnologia que são detetados por outras ferramentas do estado da

arte.

Palavras Chave

Infraestrutura como Código, Representação Intermédia, Análise Estática, DevOps, Problemas em Código,

Problemas de Segurança
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Infrastructure as Code (IaC) is a tactic that has been progressively gaining more adoption in the De-

vOps landscape given its many advantages, such as enabling scalable and reproducible environments

or the traceability provided by version control software (e.g., git1). Guerriero et al. [1] define Infrastructure

as Code as “the DevOps tactic of managing and provisioning infrastructure through machine-readable

definition files, rather than physical hardware configuration or interactive configuration tools”. The use

of IaC scripts is essential to efficiently maintain servers and development environments. Rahman et al.

state an example which illustrates the importance of IaC in large companies [4]:

Fortune 500 companies, such as Intercontinental Exchange (ICE), use IaC scripts to

maintain their development environments. For example, ICE, which runs millions of financial

transactions daily, maintains 75% of its 20000 servers using IaC scripts. The use of IaC

scripts has helped ICE decrease the time needed to provision development environments

from 1-2 days to 21 minutes.

Although Infrastructure as Code has many benefits, by using it we are introducing a new class of

possible issues — bugs in IaC scripts. For instance, due to bugs in their IaC scripts, GitHub experi-

enced an outage of their DNS infrastructure [5] and Amazon Web Services lost around 150 million USD

after issues with their S3 billing system [6]. As in software development, coding involves humans and

humans are prone to make mistakes. Since one of the main problems in software engineering is the

introduction of defects in code, a lot of effort has been made by the scientific community and companies

in the industry to develop tools that try to avoid, identify or even automatically repair bugs. In recent

years, efforts have been made in the same direction for IaC. For instance, Rahman et al. developed a

tool, called SLIC, capable of identifying possible security issues in Puppet2 scripts [4]. Sotiropoulos et

al. developed a prototype that tries to identify missing dependencies between resources and services

defined in a Puppet script [7]. Other examples include tools that find bugs and vulnerabilities in other

IaC technologies, such as, Ansible3, Chef4, and CloudFormation5 [8–10].

Existing tools that detect bugs in IaC code are very valuable. However, the great majority of work

in this area has a limitation: even though some solutions may be easily extendable, they tend to be

focused on a single technology. For instance, all the solutions mentioned above focus solely on a single

IaC technology. In a recent study, which describes the state of the art related to DevOps research,

Alnafessah et al. identified the need to surpass this limitation. In particular, they state that “a research

question is how to develop holistic and polyglot defect prediction and debugging environments for IaC ”

[11].

1https://git-scm.com/
2https://puppet.com/
3https://www.ansible.com/
4https://www.chef.io/
5https://aws.amazon.com/cloudformation/
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The importance of surpassing the technology limitation comes from the diversity of tools used in IaC.

By interviewing IaC experts, Guerriero et al. concluded that “the IaC technology ecosystem is currently

very scattered, heterogeneous and not fully understood, with no single tool dominating the market” [1].

In the same study, the authors identify the developers’ need for IaC development tools, such as IDEs,

static analysis tools, and security-related tools. Considering these statements, it would be valuable to

have an artifact capable of assembling multiple analysis techniques and generalizing them for different

IaC technologies.

1.1 Work Objectives

Our main goal is to create a framework in which we can develop technology-agnostic analyses for

IaC scripts. Although more technologies can be implemented in the future, we focus our attention

on technologies that deal with the configuration management of services, such as Ansible, Chef, and

Puppet. Our choice is related to the heterogeneity of tools for this purpose, and because the three

tools mentioned are the most adopted IaC tools (see Section 2.1.2). In our framework, researchers,

developers, and sysadmins should be able to develop new analyses, represent new IaC concepts, or

introduce new technologies. The IaC concepts will be the components of an intermediate representation

to which the analyses are applied. Scripts from the supported IaC technologies will be translated to the

intermediate representation, allowing the framework to apply the same analyses to IaC scripts from

different technologies. We will answer the following research questions:

RQ1: Is it possible to create a model which abstracts different IaC technologies? Are the con-
cepts expressed in the model relevant enough to apply different analyses from the literature to
it?

RQ2: What limitations do we find when creating a model which abstracts IaC concepts between
different technologies?

RQ3: Are we able to use our framework to obtain similar results to the analyses in the state-of-
the-art?

Framework requirements. We want our framework to be easily extendable in three different aspects:

analyses, the intermediate representation, and the IaC technologies supported. It must be designed

with software engineering principles that fulfill the extensibility goals. The intermediate representation

should allow the introduction of new IaC concepts without disrupting other work already present in the

framework. It must also be able to capture similar concepts from different technologies while assuring

4



it is expressive enough to allow the execution of analyses from the literature. Information to allow the

backtracking of smells to the original source code should be present in the framework’s intermediate

representation. Finally, we want to allow the users to fine-tune the analyses to their needs.

1.2 Contributions

The main contributions, which address our work objectives, can be summarized as follows:

1. A new intermediate representation that can be used to model IaC scripts and on which code smell

analyses can be implemented. We focus on rule-based analyses with a high prevalence of pattern-

detection techniques.

2. The framework GLITCH that is able to transform IaC scripts written in Ansible, Chef, or Puppet into

the new intermediate representation and supports the detection of smells on this representation.

3. The implementation of nine security smells and nine design & implementation smells in GLITCH.

For the security smells, we show that when compared with other state-of-the-art tools, GLITCH

has higher precision and recall.

4. Oracle datasets of security smells for Ansible, Chef, and Puppet. We also created a dataset of

Ansible scripts with over five million lines of code and a dataset of Chef scripts with over six million

lines of code.

5. An empirical study that investigates how frequently security, design, and implementation smells

occur in IaC. We consider Ansible, Chef, and Puppet scripts. We use three large datasets contain-

ing 196,755 IaC scripts and 12,281,251 LOC. We show that all categories of security smells are

identified across all datasets, and we identify some smells that might affect many IaC projects.

6. Replication packages publicly available as Docker containers and archived online with permanent

links. These replication packages contain large datasets of IaC scripts, oracle datasets for secu-

rity smells that were manually annotated, and ready-to-use tools to detect security and design &

implementation smells. To the best of our knowledge, these are the first assets that enable truly

reproducible research on this topic.

7. A Visual Studio Code6 extension for GLITCH.

We hope that GLITCH becomes a standard to develop research about script analyses in IaC. GLITCH

is free and open-source, so the scientific community is able to contribute to enriching our framework. As

the intermediate representation gets richer, more complex and accurate analyses can be applied to it.

6https://code.visualstudio.com/
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As more IaC technologies are supported, more value will be given to analyses developed in GLITCH.

The source code for GLITCH can be found at: https://github.com/sr-lab/GLITCH.

Research Papers Parts of the work presented in this thesis were used in two papers co-authored

by my supervisor Prof. João F. Ferreira: GLITCH: Automated Polyglot Security Smell Detection in In-

frastructure as Code which was accepted for publication in ASE 20227 and awarded with an Artifact

Evaluation Award of Reusability [12]; and Polyglot Code Smell Detection for Infrastructure as Code with

GLITCH [13], which is a tool paper that will be submitted to ICSE 20238.

1.3 Novelty of our solution

To the best of our knowledge, we are the first to develop a polyglot code smell detection framework for

IaC scripts. The publication of our paper [12] in ASE 2022 is proof of the novelty of our solution. There

are some tools, such as Tortoise [14] and SLIC [4] which could be extended to other technologies.

Rahman et al. extended the study done with SLIC by creating a new tool, called SLAC, which also

identifies security issues in IaC scripts. The new tool is capable of analyzing Ansible and Chef scripts

instead of Puppet [10]. However, the authors were not able to reuse previous components from SLIC and

had to develop a new Parser and Rule Engine, which are the two components that build SLIC and SLAC.

Even inside the new tool, Ansible and Chef are handled separately, which leads to inconsistencies [12].

As SLAC, some other tools try to handle more than one IaC technology. Checkov9 is a policy-based

static analysis tool which is capable of analyzing scripts from multiple IaC tools (e.g., Kubernetes10 and

Terraform11). Although Checkov considers more than one technology and the model it uses has some

abstracted concepts (e.g., attributes and a graph representing connections between nodes), policies

must be created for each tool. We consider it is important to mention that these tools are only focused on

a single type of analysis, and more flexible models would be necessary to extend them to other analyses.

We can think of two main reasons why the technology barrier has not been addressed yet. First, IaC

is a recent trending topic. By using data from Google Trends, Rahman et al. identified that “interest

in IaC has increased steadily after 2015” [15] (Figure 1.1 show the updated graphic until 2022 from

which Rahman et al. achieved their conclusions). Secondly, at first glance, the ratio between benefits

and difficulties to solve the technology limitation may not look appealing to the scientific community.

However, we consider the benefits to be extremely valuable to the industry, since the IaC technology

ecosystem is very scattered, and research could become even more relevant if generalized for more

7https://conf.researchr.org/home/ase-2022
8https://conf.researchr.org/home/icse-2023
9https://github.com/bridgecrewio/checkov

10https://kubernetes.io/
11https://www.terraform.io/

6

https://github.com/sr-lab/GLITCH
https://conf.researchr.org/home/ase-2022
https://conf.researchr.org/home/icse-2023
https://github.com/bridgecrewio/checkov
https://kubernetes.io/
https://www.terraform.io/


Month

In
te

re
st

 O
ve

r T
im

e

0

25

50

75

100

2004-01 2005-01 2006-01 2007-01 2008-01 2009-01 2010-01 2011-01 2012-01 2013-01 2014-01 2015-01 2016-01 2017-01 2018-01 2019-01 2020-01 2021-01 2022-01

Google Trends for Search Term 'Infrastructure as Code'

Figure 1.1: Interest in IaC as a search topic from 2004 until 2022 based on Google Trends data.

than one tool.

1.4 Document outline

Throughout this document, we explore the IaC ecosystem, propose a solution to the problem of polyglot

code smell detection in IaC scripts, and evaluate our solution. We begin in Chapter 2 by introducing

the necessary IaC background, describing the current state-of-the-art in code smell detection for IaC

scripts, and exploring usages of intermediate representations in Software Engineering. In Chapter 3, we

describe in-depth our framework GLITCH and its intermediate representation. Chapter 4 and Chapter 5

provide two empirical studies that evaluate our approach with GLITCH and investigate how frequently

code smells occur in IaC. Finally, Chapter 6 concludes the document by summarizing our achievements,

answering our research questions, and discussing future directions.
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1 ---
2 - name: Update web servers
3 hosts: webservers
4 remote_user: root
5

6 tasks:
7 - name: Ensure apache is at the latest version
8 ansible.builtin.apt:
9 name: apache2

10 state: latest
11 - name: Create default page file
12 ansible.builtin.copy:
13 dest: /var/www/html/index.html
14 content: "Welcome, {{ ansible_default_ipv4.address }}!"
15 - name: Start apache service
16 ansible.builtin.service:
17 name: apache2
18 enabled: yes
19 state: started

Figure 2.1: Ansible Playbook which installs Apache, creates an HTML file to be provided, and enables the Apache
service.

In this chapter, we present the motivation that led us to try to solve the problem of polyglot code smell

detection in IaC scripts and the background and related work necessary to understand the solution we

present. We start in Section 2.1 by giving context about what is Infrastructure as Code, its benefits, an

overview of the technologies ecosystem, and a description of the most adopted configuration manage-

ment of services technologies — Ansible, Chef, and Puppet. Section 2.3 highlights the importance of

support tools in software engineering and IaC, and describes the state-of-the-art tools to analyze IaC

scripts. Finally, in Section 2.4, we describe the importance of intermediate representations in a variety

of Computer Science areas, and how these representations are applied.

2.1 Infrastructure as Code

Infrastructure as Code (IaC) is the process of managing IT infrastructure using configuration files

that can be written as regular code. In the modern world, where applications require high scalabil-

ity and availability, IaC proves to be necessary by decreasing maintenance costs, reducing the risks

of manual misconfiguration or inconsistencies by human error, and allowing faster deployments and

problem-solving. The ability to version control the configuration of a system is one good example of the

advantages of this approach since it enables all the beneficial practices already explored in software

engineering. For instance, source code history allows implicit communication in a team and simplifies

the process of pinpointing when and why a configuration error was introduced. One simple example

to understand the power of IaC is the following: imagine that system administrators (sysadmins) have

ten machines with SSH access and they want them to work as web servers. To achieve their goal,

the sysadmins will need to install the Apache HTTP server1, create an HTML file to show on the web

page, and start the Apache service. Usually, they would connect to each machine, install the Apache

1https://httpd.apache.org/
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package, create the file and start the service manually. However, this process may take some time, it is

repetitive and it is prone to human error (e.g., inconsistencies between machines). Instead, it is possible

to automate this procedure using an IaC tool, such as Ansible. Ansible allows to configure machines by

executing a list of tasks in each one of them. The configuration is done from a central machine that con-

nects by SSH to each host and executes the commands to complete the defined tasks. The sysadmins

could define the program in Figure 2.1 and execute it with Ansible to achieve their goal. Section 2.1.2.A

describes in more depth how Ansible works and its features.

2.1.1 Case studies

Case studies that highlight the benefits of IaC to companies have been addressed in the literature.

Rahman et al. identified four studies that describe how IaC benefited information technology organiza-

tions [10]:

For example, the use of IaC scripts helped the National Aeronautics and Space Adminis-

tration to reduce its multi-day patching process to 45 minutes. Using IaC scripts, application

deployment time for the Borsa Istanbul, Turkey, stock exchange reduced from ∼10 days to

an hour. With IaC scripts, Ambit Energy increased their deployment frequency by a factor

of 1,200. The Enterprise Strategy Group surveyed practitioners and reported the use of

IaC scripts to help IT organizations gain 210% in time savings and 97% in cost savings on

average.

Many other relevant examples can be found. Edgenuity is an organization that provides online learn-

ing and teacher resources. The company decided to change to the cloud at the beginning of 2020 and

choose Chef to leverage this process. By using IaC scripts, what once would take the company’s De-

vOps team 4 to 5 days to deploy, would now take less than 3 hours. The usage of Chef also allowed

Edgenuity to scale from supporting 500,000 connections to 5 million when the COVID-19 pandemic hit

while minimizing disruption to the students [16]. Germany’s Federal Office for Agriculture and Food used

Ansible to decrease the time used in IT management and configuration by more than 50% [17]. Jewelers

Mutual Insurance Company collaborated with Zivra to integrate Puppet into their workflow. They were

able to reduce the time to create an environment of about 30 servers from 4 to 6 weeks to under 1 day

and increased consistency across their heterogeneous environments [18].

From the case studies above, we consider there are two main takeaways. First, we can conclude

that IaC technologies are widely used in the industry and with important benefits to companies adopting

them. Secondly, we can confirm the heterogeneity of the IaC ecosystem, since we have organizations

choosing different technologies for the same purpose. Although Ansible, Chef, and Puppet focus on

the same class of problems, they have differences between them. These differences will be further
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explained in Section 2.1.2. Organizations, after analyzing the different options, end up choosing the

technology which they consider more fit to their goals. Edgenuity chose Chef “because it was the only

automated application packaging and delivery solution that was technology agnostic” [16]. Germany’s

Federal Office for Agriculture and Food states as reasons to use Ansible: “firstly because of the quality

of Red Hat’s support, and secondly because the Red Hat Ansible Tower solution works best with our

existing Red Hat environment” [17]. Finally, Jewelers Mutual Insurance Company decided to work with

Puppet “because whether you’re a developer or sysadmin, Puppet is intuitive and the learning curve

is not steep” [18]. There is no standard technology to solve every IaC problem, so, it is important to

generalize support tools to multiple technologies.

2.1.2 IaC Technologies Overview

Table 2.1: Categorization of IaC tools based on Guerriero et al.’s study [1].

Category IaC Tools

Container Orchestration Kubernetes, Nomada, Docker Swarmb,
Apache Mesosc

VM Management Vagrantd

Configuration Management of Services Ansible, Chef, Puppet, Saltstacke

Service Orchestration Terraform, Pulumif, CloudFormation,
Apache Brooklyng

Image/Container Builder Packerh, Dockeri

a https://www.nomadproject.io/ b https://docs.docker.com/engine/swarm/
c https://mesos.apache.org/ d https://www.vagrantup.com/ e https://saltproject.io/
f https://www.pulumi.com/ g https://brooklyn.apache.org/ h https://www.packer.io/
i https://www.docker.com/

The IaC ecosystem is composed of a high variety of technologies. Guerriero et al., in their study

about the adoption, support, and challenges of IaC, state that the ecosystem “is currently characterized

by a plethora of different and often overlapping (in terms of their goals) tools and languages” [1]. Accord-

ing to their study, no technology has more than 60% adoption and there are 10 technologies with at least

20% adoption, which shows the lack of homogeneity when choosing IaC technologies. The adoption of

technologies with similar purposes can be understood by the trade-offs between them. These trade-offs

can make a technology more appealing to some solutions than another with alike functionality. Ansible

and Chef are examples of two technologies with similar purposes; however, one main difference that we

may find is the configuration language. Chef uses the Ruby DSL, which is “aimed more at advanced

developers rather than those with little to no programming experience”. Ansible uses YAML, which “is

relatively easy to learn, regardless of your prior experience”. Given its simplicity, YAML is less powerful
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and, for that reason, it is not able to handle tasks as complex as Ruby DSL [19]. The trade-off between

the learning curve and the complexity of tasks a technology can achieve is important when deciding

which one will be used for solving a certain problem. In the IaC ecosystem, there are also technologies

that fulfill different purposes. In the same study, Guerriero et al. mention that “developers tend to select

a stack of tools, each having a different purpose, whose combination enables full IaC development”. For

instance, Terraform is usually used to provision infrastructure components, and Ansible deals with the

configuration management of services. We may use Terraform to create virtual machines and provide

their configuration with Ansible (e.g., install an application in each one).

Considering the diversity of IaC technologies with different purposes, it is important to categorize

them. Table 2.1 summarizes the categorization done by Guerriero et al. in their study [1]. In addition to

the examples provided by the authors, the table contains other technologies which we consider fitting to

these categories. The names of the technologies we added are underlined in the table.

In our work, we focus our attention on technologies that configure and manage services. Two reasons

led us to select this class of technologies. First, the existence of scientific work to create analyses for

scripts in these technologies allow us to test our framework by replicating these analyses and comparing

the results to the original studies (as shown in Chapters 4 and 5) [2–4,7,10,14]. Secondly, technologies

that deal with the configuration management of services appear to have an ecosystem with more het-

erogeneity and with more balanced adoption between them. In the study conducted by Guerriero et al.,

four technologies in this category were mentioned to be adopted by the industry (Ansible, Chef, Puppet,

and Saltstack) [1]. Out of these four, three of them had at least more than 29% adoption by the IaC

experts interviewed (Puppet – 29.5% / Chef – 36.3% / Ansible – 52.2%). Those 3 technologies are the

ones we further explore.

2.1.2.A Ansible

Ansible is an open-source infrastructure automation tool that uses a declarative language, called YAML,

to automate IT tasks. As described in Ansible’s documentation, the tool is able to “configure systems,

deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero

downtime rolling updates” [20].

Technology architecture. Ansible, unlike other configuration management technologies, works

with a push configuration setup. IaC technologies usually have two types of machines: a server or set of

servers where the configuration coded by sysadmins is maintained, and the nodes to be configured. In

a push configuration setup, the sysadmin commands the server to provide the configuration to a set of

nodes, instead of the nodes asking the server for their configuration. Without direct user interaction with

the nodes and with no initiative coming from them, push configuration technologies do not necessarily
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1 [webservers]
2 www1.example.com http_port=80
3 www2.example.com http_port=303
4

5 [webservers:vars]
6 max_requests_per_child=808
7

8 [dbservers]
9 db0.example.com

10 db1.example.com

Figure 2.2: Example of an Ansible Inventory with 2 tags (webservers and dbservers) and 4 hosts (ww1, ww2, db0,
and db1).

need an agent installed in each slave machine. That is the case with Ansible. A server (machine

with access to all nodes), which maintains the intended configuration, accesses each machine, usually

through SSH, and pushes small programs, called Ansible modules, which execute the necessary actions

to reach the desired state in the node. The list of nodes to be configured is maintained in an inventory.

An inventory is usually an INI file where nodes are listed and can be grouped by being assigned a certain

tag. An example of an inventory is shown in Figure 2.2.

Syntax and code structure. To define the desired state, sysadmins need to write code to achieve

it. Ansible code is organized into four different hierarchical levels: roles, playbooks, plays and tasks.

Ansible allows to group functionality into roles. Roles are folders that contain content such as tasks,

variables, static files, modules, or templates. The functionality of a role can then be reused in different

playbooks by including the role in a play or task. A playbook is a file written in YAML which contains

instructions to configure our nodes. A playbook is composed of a set of plays. Each play links a set of

hosts to a set of tasks. Hosts can be identified by a tag to which they belong (selecting a group of nodes)

or by their hostname. Tasks are the atomic building block of an Ansible configuration. A task has two

parts: an optional field with the task name, which is useful because the name will be printed when the

task is executed; the action the task itself will run, which is defined by selecting an Ansible module and

providing the arguments that achieve the state we want. Ansible also allows to group tasks in a block.

Blocks can be seen as special tasks where the single argument of their module is a list of other tasks to

be executed. For instance, blocks can be used to skip a group of tasks if a certain condition is not met.

Variables/Attributes. Ansible uses variables to manage differences between systems. Variables

can be assigned a different value for each node, using the same name. These values can then be used

in playbooks to change the behavior of tasks according to the node they are being applied to. We can

define variables in a variety of ways, including creating them in playbooks or the inventory. Figure 2.2

shows the definition of a variable in the inventory, called http port, with a different value for each web

server. In the same figure, we can also see the definition of a variable, called max requests per child,

which, instead of node specific, is defined for the group of nodes (webservers). Ansible has special
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variables related to information about the remote systems (nodes). These variables are called facts

and are automatically gathered by Ansible. Facts can give information such as the IP address or the

operating system of a node.

Execution order. By default, Ansible will execute the tasks in the order they are defined in the

playbook. However, it is possible to define tasks that only run when notified. These tasks are called

handlers and are triggered by a change in another task. For instance, we could define a task that

changes a configuration file for a package, notifying a handler to restart the related service only if the

content in the file changes.

Example and final remarks. Figure 2.1 is an example of an Ansible Playbook with a single play

containing three different tasks. In this case, the tasks use the apt, copy, and service modules, which

are built-in modules from Ansible. The playbook uses a fact to add the IP address of the node to the

content of the HTML file. All the information presented is based on Ansible’s documentation [20].

2.1.2.B Chef

Chef has more than one product that helps IT automation: Chef Infra, Chef Habitat, Chef InSpec,

and Chef Automate. We focus our attention on Chef Infra since this technology is the one with direct

correspondence to Ansible and Puppet. According to Chef’s documentation, “Chef Infra automates how

infrastructure is configured, deployed, and managed across your network, no matter its size.” [21].

Technology architecture. Such as Ansible, Chef has servers, which store configurations, and

nodes to be configured, in this case, called clients. A particularity of Chef is the existence of a work-

station, which corresponds to the everyday computer the sysadmin works with. Chef Workstation is a

set of tools, installed in the sysadmin’s computer, that allow to test Chef code and interact with other

components of Chef Infra. Namely, knife is a command line tool capable of interacting with the server,

which allows operations, such as uploading configurations from a workstation. In contrast to Ansible,

Chef Infra works with a pull configuration setup, requiring a client to be installed in each node. Peri-

odically, each client contacts the server to retrieve the latest configuration for that particular machine,

and, if it differs from the current one, the new instructions are applied to the node. Pull configuration

setups have the advantage of automatically converging to the desired state when new nodes are added.

If a workstation has SSH access to a node, we can add that node using the knife tool. This operation

consists of installing the Chef client in the new machine and adding the node to the inventory maintained

in the server.
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1 package 'apache2' do
2 action :install
3 end
4

5 file '/var/www/html/index.html' do
6 content "Welcome! I am " + node['ipaddress']
7 action :create
8 end
9

10 service 'apache2' do
11 action [ :enable, :start ]
12 end

Figure 2.3: Chef Recipe which installs Apache, creates an HTML file to be provided, and enables the Apache
service.

Syntax and code structure. As with any IaC technology, Chef also needs us to code the infrastruc-

ture configuration. The configurations are organized in fundamental units called cookbooks. Cookbooks

are folders created with the chef command-line tool, which contain all the necessary content to define a

certain scenario. We consider of particular interest recipes and attributes. Recipes are written using a

programming language called Ruby and they define the steps necessary to configure part of a system.

Recipes can have helper code, but their focus is on the definition of resources. We can see resources

as the equivalent of a task in Ansible. A resource is identified by its name and its type (package, ser-

vice, file, etc.). The action and properties associated with each resource define the desired state for the

selected configuration item.

Variables/Attributes. Attributes are another component of a cookbook. An attribute is a key-value

pair linked to a node. They can be defined in attribute files or recipes. An example of an attribute that

is linked by default to every node is the IP address. Attributes are relevant because we can use them to

modify the definition of a resource accordingly to the node being configured.

Execution order. For the execution order in Chef, we should consider the order of resources and

the order of recipes. Resources in each recipe are executed in the order they are defined in the file.

However, similarly to Ansible, Chef allows a resource to notify another resource when its state changes.

For that, we must identify the resource to be notified of, the action to perform, and when to perform it. A

resource can also subscribe to another resource, taking action if the state of the resource being listened

to changes. Recipes run in the order defined in a run-list. A run-list is an ordered list of recipes defined

by the user for each node.

Example and final remarks. Figure 2.3 is an example of a Chef recipe. In the example, we have

three resources with three different types: package, file, and service. We are configuring a web server

that will provide the content in the index.html file. Each node configured by this recipe will show a

different page since we are using the attribute ipaddress to set the content of the file. The tools provided

in Chef, the language used to define the policies, and the ability to create helper code in Ruby make
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Chef’s environment more complex than Ansible’s environment. All the information presented is based

on Chef’s documentation [21].

2.1.2.C Puppet

Puppet has a lot of similarities with Chef since the language it uses to program the configurations is

based on Ruby and the technology architecture is similar. The Puppet’s documentation describes Pup-

pet as “a tool that helps you manage and automate the configuration of servers” [22].

Technology architecture. Puppet has the same participants as the previous two technologies.

There are servers, usually called masters in Puppet context, and there are the nodes, called agents.

Masters maintain the code and data to configure a node or a group of nodes. The data is managed

by a component called Hiera, which will be better explained further ahead. As in Chef, Puppet uses

a pull configuration setup. Each node must have the Puppet Agent installed which communicates with

the master, at regular intervals, to retrieve the latest configuration for that specific machine. Master and

nodes communicate by HTTPS using SSL certificates managed by the master. Nodes are added to the

deployment by submitting a certificate signing request (CSR) to the master, which has to be accepted by

the admins. The agents use a library, called Facter, to collect information about themselves, information

to which we call facts. When a node asks for its configuration, it also sends its facts, which will be used,

together with the code and data the server has, to compile a catalog. A catalog describes the desired

state of a specific agent node. The agent receives its correspondent catalog and enforces the state

described there. Finally, the node reports back to the server with information such as the events that

occurred, metrics about the run, or the status of the resources in the node. Data such as reports, facts,

catalogs, and node information is stored in a component called PuppetDB. “Storing data in PuppetDB

allows Puppet to work faster and provides an API for other applications to access Puppet’s collected

data” [22]. For instance, the data can be used by an analysis tool to assess vulnerabilities or other

problems in the infrastructure.

Syntax and code structure. To write code in Puppet, we use Puppet’s Domain Specific Language

(DSL), which is based on Ruby. By using a DSL instead of Ruby itself, Puppet provides a more simplistic

language and forces the users to a resource-driven approach. Since the structure of the programs is

well-defined and much more limited, analysis tools tend to be easier to develop. In Puppet, we organize

our code into modules. Modules, which can be seen as the same as cookbooks in Chef, are directories

containing all the necessary content to manage a specific functionality in our infrastructure. Examples

of content are configuration files, static files, tests, parameter defaults, or examples of how to use the

module’s functionality. Configuration files are called manifests. Manifests can contain conditional logic,
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but their main goal is the definition of resources — the atomic building block of Puppet. The syntax for

resources and their concept is similar to Chef. A resource is declared by specifying a type, a title, and a

set of attributes, which describe the desired state for that aspect of the system. We can group resources

into classes. Classes are named blocks that can configure larger chunks of functionality. Besides the

benefit of being able to reuse groups of resources usually used together without having to write them

every time, classes can receive parameters to change the behavior of those resources. It is also possible

to create a hierarchy of classes, which is a useful concept from object-oriented programming.

Variables/Attributes. Manifests can contain references to values that are specific to a node or

group of nodes. We will call those references node attributes. When compiling a catalog, node attributes

are replaced by the value corresponding to the node asking for its configuration. There are two types of

node attributes: facts and Hiera key-value pairs. Facts, as explained above, are collected by the Facter

and contain information such as the IP address or the operating system. Hiera allows the creation

of hierarchies of attribute files. For instance, we could have attribute files specific to each node and

attribute files for nodes with a certain operating system. Hiera could first search for an attribute in the

node-specific file and then, if the attribute does not have a value there, in the correspondent operating

system file. These files, written in YAML, contain the key-value pairs. Using Hiera allows us to detach

data from code and gives us an easy way to change the behavior of a manifest, accordingly to the node

they are applied to.

Execution order. Puppet applies resources in the order they are defined in their manifest, but only

if the resource has no implicit relationship with another resource. We are able to specify relationships

between resources and the technology is responsible for defining the execution order that fulfills those

requirements.

Example and final remarks. Figure 2.4 is an example of a Puppet manifest that configures a web

server. The manifest has a class, called webserver, which contains the three resources necessary to

configure it (install the Apache package, create the HTML file and start the Apache service). The class

has a parameter, called content, which defines the text that will be presented on the page. On line 17,

we declare the class and set the content, enabling the resources in the class to be executed. On line 8,

we use a fact to add the IP address of the node to the page. All the information presented is based on

Puppet’s documentation [22].
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1 class webserver ($content = "") {
2 package { 'apache2':
3 ensure => present,
4 }
5

6 file { '/var/www/html/index.html':
7 ensure => file,
8 content => "${content} ${::facts['ipaddress']}",
9 }

10

11 service { 'apache2':
12 ensure => running,
13 enable => true,
14 }
15 }
16

17 class{'webserver':
18 content => "Hello from"
19 }

Figure 2.4: Puppet Manifest which installs Apache, creates an HTML file to be provided, and enables the Apache
service.

2.1.2.D Differences between tools.

IaC Tool Ansible Chef Puppet

Configuration Setup Push Pull Pull

Atomic Unit Task Resource Resource

Add. agent No Yes Yes

Syntax YAML Ruby Puppet DSL

Execution Order Procedural Procedural Declarative

Code Structure

Roles
- Playbooks
- - Plays
- - - Tasks

Cookbooks
- Recipes
- - Resources

Modules
- Manifests
- - Classes
- - - Resources

Table 2.2: Summary of differences between Ansible, Chef, and Puppet.

Table 2.2 summarizes the differences between the 3 tools we described. It is important to mention

the difference we consider between a procedural execution order and a declarative one. Procedural

means that the code order is always respected and the developer is responsible for ordering the op-

erations accordingly to what he expects. Declarative means that the developer only needs to define

requirements for the execution order and the program is responsible to find the right execution to fulfill

those requirements.

2.2 Code Smells in IaC

Like other software artifacts, IaC scripts can suffer from bugs. These bugs may be the result of introduc-

ing one or more code smells into the code base. Fowler defines a code smell as “a surface indication

that usually corresponds to a deeper problem in the system” [23]. Schwarz et al. define code smells
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as “flaws in code which may lead to problems” [3]. In this section, we describe two different classes of

code smells in IaC: security smells and design & implementation smells, which are the classes that we

implemented in GLITCH and that we studied in Chapters 4 and 5, respectively.

2.2.1 Security Smells

Security smells are coding patterns that can result in security weaknesses. Even when a security smell

does not lead to a security breach, it deserves attention and inspection. We focus our attention on the

security smells studied by Rahman et al. [4,10] (we adapted the descriptions by the authors [10]):

• Admin by default (CWE-250 [24]): This smell is the recurring pattern of specifying default users.

The smell can violate the “principle of least privilege” property, which recommends practitioners

to design and implement a system in a manner so that by default the least amount of access

necessary is provided to any entity [25].

• Empty password (CWE-258 [24]): The smell is the recurring pattern of using a string of length

zero for a password.

• Hard-coded secret (CWE-259, CWE-798 [24]): This smell is the recurring pattern of revealing

sensitive information, such as user names and passwords in IaC scripts.

• Unrestricted IP Address (CWE-284 [24]): This smell is the recurring pattern of assigning the ad-

dress 0.0.0.0 for a database server or a cloud service/instance. Binding to the address 0.0.0.0 may

cause security concerns as this address can allow connections from every possible network [26].

• Suspicious comment (CWE-546 [24]): This smell is the recurring pattern of putting information

in comments about the presence of defects, missing functionality, or weakness of the system (e.g.,

“TODO” and “FIXME”).

• Use of HTTP without SSL/TLS (CWE-319 [24]): : This smell is the recurring pattern of using

HTTP without the Transport Layer Security (TLS) or Secure Sockets Layer (SSL). Such use makes

the communication between two entities less secure [27].

• No integrity check (CWE-353 [24]): This smell is the recurring pattern of downloading content

from the Internet and not checking the downloaded content using checksums or gpg signatures.

• Use of weak cryptography algorithms (CWE-326, CWE-327 [24]): This smell is the recurring

pattern of using weak cryptography algorithms, namely, MD5 and SHA-1, for encryption purposes.

• Missing Default in Case Statement (CWE-478 [24]): This smell is the recurring pattern of not

handling all input combinations when implementing a case conditional logic.
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2.2.2 Design & Implementation Smells

Sharma et al. define design smells in IaC scripts as “quality issues in the module design or struc-

ture of a configuration project”. The same authors define implementation smells as “quality issues

such as naming convention, style, formatting, and indentation in configuration code” [2]. Sharma et al.

used the knowledge of traditional software engineering and best practices associated with code qual-

ity management to leverage the creation of a configuration smells catalog for Puppet scripts [3]. The

catalog is composed of thirteen implementation (e.g., improper alignment of arrows or long statements)

and eleven design configuration smells (e.g., insufficient modularization or duplicate block). Schwarz

et al. introduced new code smells for IaC based on the field of software engineering, such as Long

Resource and Too many Attributes, and categorized design & implementation smells as technology

agnostic, technology dependent, or technology specific [3]. Since our work is to generalize the detection

of smells to multiple IaC technologies, we focus on the technology-agnostic smells identified by Schwarz

et al. [3]. We define these nine design & implementation smells as follows (our definitions are based on

Sharma et al. and Schwarz et al.’s [2,3] definitions):

• Avoid Comments: Comments other than licensing information on the first lines should be avoided.

Based on Fowler, comments are often used as a deodorant to bad code [28].

• Duplicate Block: Blocks of statements occurring more than once and above a certain size thresh-

old may indicate a missing abstraction. According to Fowler, avoiding repetition leads to good

design [29].

• Improper Alignment: The source code is not aligned according to the technology’s style guide or

tabulation characters are used. Albayrak and Davenport conducted a study with Java code which

revealed that the presence of indentation defects decreases readability and significantly reduces

the detection of functional defects in the code [30]. Tabulation characters should be avoided to

minimize differences in the output between different coding environments.

• Long Resource: Atomic units in IaC should not surpass a threshold of lines of code. Since the

size of atomic units is limited by their number of attributes, only atomic unit types that may contain

source code in the values of their attributes (e.g., bash and exec) are considered. The Long

Resource smell maps to the Long Method smell by Fowler [28] but it is adapted to the IaC domain.

• Long Statement: Code statements that are too long and usually do not fit on the screen.

• Misplaced attribute: The order of the attributes inside an atomic unit should follow the technol-

ogy’s style guide. Both Chef and Puppet mention the order of attributes in their style guides [31,32].

• Multifaceted abstraction: Each abstraction should follow the single responsibility principle [33].

In IaC, each abstraction should only specify the properties of a single piece of software.
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• Too many variables (Schwarz et al. call it Too many attributes): A high density of variables should

be avoided to simplify the code and maximize its maintainability. This smell is derived from a

combination of the smells Long Parameter List and Speculative Generality by Fowler [28].

• Unguarded Variable: Variables should be enclosed in braces when being interpolated in a string.

2.3 Development Tools and Code Analysis

Tools that help the development of code and management of infrastructures are getting increasingly

more valuable. As companies grow, there are more developers involved and code is changed faster.

Code bases tend to get bigger, and so, more difficult to maintain. For instance, in January 2015, Google

code base had “approximately two billion lines of code in nine million unique source files”, and “on a

typical work day, (...) 16,000 changes to the codebase” were made [34]. Managing this kind of scale

requires a lot of human resources to code and make reviews, which leads to high costs for the com-

panies. With this rate of change, even with all the possible caution from developers, it is impossible to

not introduce bugs into the code base. Some of these bugs may cause major faults. For instance, on

June 2021, Fastly, a cloud-network provider with clients such as the New York Times and The Guardian,

experienced a global outage due to an undiscovered software bug triggered by a valid customer con-

figuration change [35]. On October 2021, Facebook experienced an outage that caused products such

as Messenger, WhatsApp, and Instagram to become globally unavailable. The outage was caused by a

command which was supposed to check the available capacity of Facebook’s global backbone network

but instead took down all its connections. Santosh Janardhan from Facebook stated that: “our systems

are designed to audit commands like these to prevent mistakes like this, but a bug in that audit tool

prevented it from properly stopping the command” [36]. The statement not only shows the need for tools

that support these operations but also the confidence developers and sysadmins have in these tools to

help them. Examples directly related to bugs in IaC scripts are the outage of GitHub’s DNS infrastruc-

ture in 2014 [5], and issues in Amazon Web Services’ S3 billing system which made the company lose

around 150 million USD in 2017 [6].

A lot of effort has been made by the scientific community and the industry to develop tools that try

to support developers in their actions. For instance, IDEs (Integrated Development Environments), such

as IntelliJ IDEA2, help to avoid bugs by giving code suggestions, analyzing and highlighting possible

mistakes, supplying powerful refactoring tools, and other supporting features. These features allow de-

velopers to focus on bugs related to functionality instead of worrying so much about simpler bugs, such

as typos or a variable name that the developer missed changing in a refactor. Plugins for IDEs allow the

addition of complex analyses to the coder’s workflow. EcoAndroid is an example of a plugin for IntelliJ

2https://www.jetbrains.com/idea/
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IDEA and Android Studio that suggests automated refactorings for reducing the energy consumption of

Java Android applications [37,38]. Bots that execute code analyses in a Continuous Integration pipeline

are another popular approach to reduce the introduction of bugs into the code base. For example, Re-

pairnator3 is a bot that assembles multiple program repair approaches, coming from academic research,

to create automatic and human-competitive patches to Java programs [39].

The increasing relevance of IaC and its parallelism with “regular” code led researchers to investigate

how to develop analyses that identify or repair bugs in IaC scripts. We divide research in this area into

two groups: identifying faulty IaC scripts, and detecting and repairing IaC issues. Inside these groups,

there are multiple approaches explored.

2.3.1 Identifying faulty IaC scripts

The objective of identifying faulty scripts is to give the users tips about where to spend their time im-

proving code that might lead to issues in the future. Tools with this principle in mind should return the

probability of a script being faulty. Techniques to identify faulty IaC scripts tend to rely on machine

learning methods.

Rahman and Williams extracted characteristics of defective IaC scripts by using qualitative analy-

sis [40]. The qualitative analysis was applied to text features that appeared in faulty scripts. The text

features were obtained by applying text mining techniques to convert Puppet scripts into tokens (words

in the script). The characteristics associated with defective scripts that were found are file-system op-

erations, infrastructure provisioning, and managing user accounts. The authors applied two techniques

to the tokens that generate new features capable of being used as input to predictive models: the BOW

technique, and the TF-IDF technique. The Random Forest (RF) technique was used to build the mod-

els. The training datasets were created by crawling open-source projects, generating the features, and

manually labeling defective scripts. 10-fold cross-validation was used to evaluate the models. These

models were able to obtain median F-Measure values between 0.70 and 0.74 depending on the dataset

and text feature extraction technique [40].

Rahman and Williams, in another work, followed a similar approach but with a focus on source code

properties, such as lines of code, number of attributes, or URL occurrences [41]. They found that using

these properties as input to predictive models outperformed the BOW technique from the previous work.

The authors tried to use other techniques to build the models, such as Logistic Regression (LR) and

Naive Bayes (NB). Depending on the dataset and evaluation metric, different techniques were better,

but the Random Forest technique was outperformed in the great majority of the experiments. Rahman

and Williams found that the properties with the strongest correlation to a script being defective are the

number of lines of code and hard-coded strings [41].

3https://github.com/eclipse/repairnator
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Palma et al. complemented the two previous works by addressing the problem that datasets with

IaC scripts tend to have a number of defective samples much smaller than non-defective ones [42]. To

minimize the consequences of unbalanced datasets, the authors used different techniques to build the

models. These techniques use novelty detection, which means that the models are trained using only

non-defective samples. Defective samples are identified as anomalies that differ from the data provided

to the model (novelties). For the dataset used, the RF technique had a precision of 0.08 while these

techniques had a precision of up to 0.86, showing much better results. The authors focused on Ansible

instead of Puppet, but stated that they planned to “investigate how novelty detection generalizes on

software defect datasets from different configuration management languages” [42]. The dataset used

was built by the RADON framework created by Palma et al. [9].

Palma et al. developed a framework called RADON Framework for IaC Defect Prediction which is “a

fully integrated Machine-Learning-based framework that allows for repository crawling, metrics collec-

tion, model building, and evaluation” [9]. The study conducted with the RADON framework concluded

that, when considering individual projects/repositories as the training base for a model, the Random

Forest technique outperformed other techniques, such as Support Vector Machine and Logistic Regres-

sion, regardless of the metrics used or the project’s characteristics. The authors also concluded that

IaC-oriented metrics (e.g., lines of code or number of attributes) achieve better results than process

metrics (e.g., the total number of lines added or the number of developers that changed a file) or delta

metrics (amount of change in a file). The RADON Framework is capable of categorizing IaC scripts

as possibly faulty or not, without manual intervention, by analyzing commits and issues in the project’s

repository. Palma et al. show their interest to extend their approach to other IaC technologies and

languages [9].

2.3.2 Detecting and repairing IaC issues

Approaches that try to detect and repair IaC issues try to minimize faults caused by human error. These

tools give more confidence to the artifacts being deployed, increase awareness of the users about what

they should not do, and analyze a large number of scripts when the scale does not allow humans to do

it. These approaches are more diverse than the ones to identify faulty IaC scripts.

Rahman et al. applied qualitative analysis on Puppet scripts to identify seven security smells, such

as Hard-coded secret and Use of HTTP without TLS [4]. The qualitative analysis allowed them to

detect patterns for each security smell. These patterns were used to create the rules for SLIC, a tool

to detect security smells in Puppet scripts. The authors divided SLIC into two components: a parser

and a rule engine. The parser goes through an IaC script and returns a set of tokens to which the rule

engine applies its rules based on pattern matching. The authors submitted 1000 randomly selected

occurrences of security smells identified by SLIC and out of the 104 responses they got, 64.4% of the
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practitioners agreed with the smells identified [4]. Rahman et al. created a new tool, called SLAC, to

replicate the previous work to Ansible and Chef [10]. The authors explored two new security smells:

Missing default in case statement and No integrity check [10].

Sharma et al. used puppet-lint4 to detect implementation smells and developed a tool, called Pup-

peteer, to detect design smells [2]. Using these tools, the authors analyzed 4621 Puppet repositories

with 8.9 million lines of code to answer questions such as the distribution of maintainability smells in

configuration code. They found Improper Alignment to be the most detected implementation smell and

Insufficient Modularization the most detected design smell [2]. Schwarz et al. extended the research

done by Sharma et al. by applying the detection of IaC smells to another technology, namely Chef. The

authors developed a tool to detect code smells in Chef scripts and conducted a study by executing the

tool on around 3200 Chef cookbooks. The results allowed to conclude that “these smells are adequate

to be used to investigate the quality of IaC in general” [3].

As in the work to identify security smells [4], Rahman et al. applied qualitative analysis, but in-

stead of code snippets, the authors used defect-related commits to identify defect categories for IaC

scripts [43]. They identified eight categories, with configuration data-related defects being the most fre-

quent category, and idempotency being the least frequent one. The authors used the information from

the qualitative analysis to create empirical rules that automatically identify defect categories in enhanced

commit messages (ECMs). ECMs are the combination of commit messages with the bug report descrip-

tions that are linked to the commits (e.g., issues). These rules were used to build a tool, called ACID,

with an average precision and recall across all categories of 0.84 and 0.96, respectively [43].

Chen et al. took a different approach to identify error patterns [44]. In their paper, the authors

extracted error-fix-induced code changes from historical commits, and then used a clustering algorithm,

namely HDBSCAN, to group similar code changes. By manually analyzing the clusters, they identified

error patterns in the scripts, which were grouped into categories, such as operating system-related

errors and file-related errors. The authors used the error patterns to propose a set of rules which were

implemented in a tool called Puppet Analyzer [44].

Borovits et al. created an approach, called DeepIaC, to identify inconsistencies between task names

and task bodies of Ansible scripts by leveraging word embedding and deep learning. The models,

created using Convolutional Neural Networks (CNNs), classify a task as consistent or inconsistent and

were able to obtain an accuracy between 0.785 and 0.915 [45].

A problem that may emerge in IaC scripts is missing dependencies between resources. Shambaugh

et al. addressed this problem by creating a tool, called Rehearsal, that checks if Puppet manifests are

deterministic and idempotent [46]. The authors translate IaC scripts into an intermediate language that

models resources as the description of their file-system transformations. Logical formulas are created

4http://puppet-lint.com/
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based on the semantics of each language’s primitive and of the manifest’s resource graph (representa-

tion of the valid sequences to apply the resources). By providing these formulas to an SMT solver, the

solver decides if the program is deterministic or not. However, since the analysis is static, some trans-

formations can not be identified, namely in manifests where the exec resource is used to run embedded

shell scripts [46]. Sotiropoulos et al. took a different approach to find missing dependencies, which

allows to overcome the issue with embedded shell scripts [7]. Their method collects the system calls

invoked by a Puppet program and uses them to model the file-system transformations in an intermedi-

ate representation, called FStrace. The Puppet resources are linked to the correspondent system calls,

which allows inferring the relationships between resources by interpreting the semantics of the FStrace

program. These relationships are compared to the ones in the dependency graph, which is defined in

the Puppet manifest, to check if there are missing dependencies [7]. Their work also identifies missing

notifiers, which were not covered in Shambaugh et al.’s work [46].

Weiss et al. created a tool, called Tortoise, that aims to avoid configuration drifts in Puppet scripts

when sysadmins use the shell to fix configuration errors [14]. Tortoise records system calls and file

system changes caused by shell commands. The tool uses the recorded information and the original

Puppet manifest to build a model in a language with primitive operations that manipulate files. The

model is translated to logical formulas that are solved by an SMT solver, generating possible patches to

Puppet scripts. Constraints coming from the manifest are considered as soft constraints, and the ones

coming from shell updates are seen as hard constraints. This allows to update the manifests while trying

to minimize changes. The patches are then ranked in a way that favors repairs with fewer changes. By

doing experiments with 42 scenarios where the manifests would need repair, the authors identified that

“the highest-rank repair Tortoise synthesized was the correct repair 76% of the time, and the correct

repair was in the top five Tortoise-synthesized repairs 100% of the time” [14].

Ikeshita et al. used a mixed approach that uses both test suites and static verification to check

if a Chef program is idempotent [47]. The approach uses an intermediate model that describes file-

system manipulations. The model goes through a static verification, capable of reducing the number of

necessary tests to check the idempotence of the program [47].

2.4 Intermediate Representations in Software Engineering

Intermediate representations allow the creation of abstractions useful for a variety of purposes. For

instance, an intermediate representation may allow the abstraction of concepts to make the job of rea-

soning about an analysis easier. Another example is the usage of an intermediate representation to link

new information to a subset of an existing representation. In our work, we use an intermediate represen-

tation to create a common structure to which scripts from multiple technologies can be translated. Many
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areas of research in Computer Science benefit from the usage of intermediate representations, and we

describe some of them below.

2.4.1 Usage of intermediate representations in IaC

As described in Section 2.3.2, some analysis tools for IaC use intermediate representations [7, 46, 47].

Namely, these tools use intermediate representations to describe file-system manipulations executed by

IaC scripts. The manipulations include the creation and removal of files or directories, the creation of

links, or the renaming of a file. Shambaugh et al. translated IaC scripts to an intermediate representation

by mapping types of resources to their file-system operations [46]. Sotiropoulos et al. used system calls

executed by each resource in an IaC script to automatically map the resources to their file-system

operations, which were represented in an intermediate language [7]. Even though the main goal of

these authors was not the translation of scripts from multiple IaC technologies to these intermediate

representations, that would be possible and would allow the execution of the same analyses in other

technologies. In Section 3.3.1, we explain why we did not use these intermediate representations in our

work.

2.4.2 Usage of intermediate representations in other domains

Besides IaC, other areas of Software Engineering use intermediate representations to achieve their

goals. In this section, we describe examples of intermediate representation usage in refactoring tools,

software-defined networks, and formal verification of programs.

Silva et al. proposed a language-agnostic tool, called RefDiff 2.0, to identify refactoring operations in

source code [48]. The tool is capable of identifying refactors in Java, JavaScript, and C. More languages

can be supported by adding plugins to the system. The authors’ approach was to create an intermediate

representation, called Code Structure Tree (CST), that abstracts the specificities of each programming

language. A CST is a tree-like structure that is focused on coarse-grained code elements, such as

classes or functions, and the relationships between them. The nodes of the tree contain the following

information about a code region: identifier, namespace, parameters list, tokenized source code, tok-

enized source code of the body, and node type. The node types vary with the programming language’s

characteristics. For example, in C, the authors defined file and function as the only node types, while

in JavaScript the type class also exists. Although different types between languages exist, the analysis

rules do not consider specific types, but only the relations of equality or inequality between node types,

following the language-agnostic approach. When it comes to relationships, the CST can represent calls

(e.g., a method calling another method) or a hierarchy (e.g., a class containing a method or a class ex-

tending another class) between nodes. All the analyses are then executed using the CST, which allows
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working with different programming languages by only implementing the translator to this representa-

tion. Using a dataset of real refactorings in Java, RefDiff 2.0 got a precision of 0.96 and a recall of 0.80,

which although not better than the state-of-the-art, it achieved similar enough results considering the

language-agnostic approach. The evaluation for JavaScript and C obtained a precision of 0.91 and 0.88

and a recall of 0.88 and 0.91, respectively for each language [48].

Also related to refactoring, Koppel et al. developed an approach to build source-to-source transfor-

mations that runs on multiple programming languages by using a new way of representing programs,

called incremental parametric syntax [49]. The authors state that intermediate representations do not

work for source-to-source transformations since information is lost, which ends up creating unsuitable

programs for humans to read. Their approach decomposes languages into generic and language-

specific parts, allowing transformations to only run on the generic parts. Programmers can exclusively

implement generic nodes for the parts of each language they need for a certain transformation, and

the code related to other parts remains unchanged, maintaining the code readable. Although the au-

thors mention that intermediate representations do not work for their use case, they state that these

representations work for writing code analyses and code-generators [49].

With the advance of software-defined networking (SDN) in network management, many network

programming languages (NPLs) have been proposed that allow operators to very efficiently program

network data planes (NDPs). An NDP is the layer of a network device responsible for the forwarding

of packages. In SDNs, the NDPs functionality is delivered through software. Considering the variety of

NPLs and NDPs, Li et al. proposed an intermediate representation to express NPLs, called Network

Transaction Automaton (NTA) [50]. The creation of this representation addresses two problems men-

tioned by the authors: the lack of interoperability between programs written in different languages, and

the dependent evolution of NPLs bound to specific NDPs. To achieve compatibility between each NPL

and all the NDPs and vice-versa, an architecture was proposed with NTA as its core. NPLs have a

translator (frontend) to the intermediate language, and NDPs have a compiler (backend) from NTA to

their correspondent representation. This architecture allows NPLs and NDPs to evolve independently.

An NTA is an automaton with edges associated with network transactions. Network transactions contain

the necessary information to model the classes of NPL semantics considered by the authors. These

transactions can be represented as three-tuples with the next hop to be forwarded, the consumption of

network resources, and a stateful operation capable of checking and updating node variables. Programs

are translated to NTAs which are then composed using customized automaton operations. The compo-

sition of programs, which can be written in different languages, enables interoperability between NPLs.

Li et al. showed that NTA can express the semantics of 6 NPLs used in the industry and is capable of

efficiently compose the translated programs without semantic loss [50].

Another field of Computer Science where intermediate representations are present is in the formal
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verification of programs. Programs written in regular programming languages, like Java and C, are

translated to intermediate verification languages (IVLs), such as Boogie [51] and Why3 [52]. The inter-

mediate language works as a separation between the backend and frontend of the formal verification.

Leino described both components of this architecture: “front end is concerned with breaking down the

semantics of given source-language programs into the more primitive operations of the intermediate

language, and the back end is concerned with encoding the meaning of the intermediate program as

efficient theorem-prover input” [53].
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In this chapter, we describe our framework GLITCH, a technology-agnostic framework that enables

automated detection of IaC smells. We start by explaining the motivation behind GLITCH and describe

its architecture. In Section 3.3, we present our new intermediate representation to abstract IaC scripts

and explain why representations from the literature do not fulfill the requirements for GLITCH. Sections

3.4 and 3.5 describe the IaC technologies and analyses already implemented in GLITCH. Finally, in

Section 3.6, we discuss the implementation of GLITCH, explain how to extend our framework, and

explore the Visual Studio Code extension we created for GLITCH.

The source code for GLITCH can be found here: https://github.com/sr-lab/GLITCH.

3.1 Motivation

As discussed in Section 1.3, the interest in Infrastructure as Code has increased steadily since 2015.

However, we still have few analysis tools to help develop IaC, and the ones we have do not address the

scattered IaC technology environment (discussed in 2.1.2). Another problem is that the tools developed

in academic research tend to ignore usability concerns because the focus is on fast prototyping to prove

an idea. For instance, SLIC and SLAC [4, 10] do not have a proper command-line tool or another type

of user interface which makes the usage of those tools harder.

To solve the problems above, we decided to create the framework GLITCH. GLITCH allows the

creation of new analyses that generalize to multiple IaC technologies. The generalization increases

the number of available analyses to each technology while promoting developments in research by

increasing the impact new studies might have. GLITCH promotes usability since the framework already

provides an easily extendable command-line tool. Finally, GLITCH increases the consistency between

analyses for different technologies.

For instance, both SLIC and SLAC are very valuable since they cover a wide range of security smells

and three of the major IaC technologies. However, their implementations are separate and involve

substantial duplication. If one wishes to implement the detection of a new smell, one has to develop a

different implementation for each of the IaC technologies supported. Consequently, it is often the case

that the detection of security smells is inconsistent for different IaC technologies. Figure 3.1a presents

part of a Chef script with no security smells taken from the project Vagrant Chef for CakePHP.1 For this

example, SLAC reports a false positive: a non-existent security smell of type Hard-coded secret. On

the other hand, if we consider the same script in Puppet (Figure 3.1b), SLIC will not report any security

smell. Surprisingly, inconsistencies exist even when considering the same tool: SLAC will not report any

security smell when considering the same script in Ansible (this happens because SLAC uses separate

code for Ansible and Chef). These inconsistencies would not occur if we had polyglot defect prediction

and debugging environments for IaC.

1https://github.com/FriendsOfCake/vagrant-chef/blob/288336e506a5009ed93c06a784fa93e30a27040c/cookbooks/
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server_root_password = node['mysql']['server_root_password']
execute 'set-mysql-root' do

command <<-EOH
mysqladmin -u root password #{server_root_password}
mysql -uroot -p#{server_root_password} -e (...)

EOH
only_if "/usr/bin/mysql -u root -e 'show databases;'"

end

(a) Part of a Chef script (from Vagrant Chef for CakePHP)

$server_root_password = $facts['mysql']['server_root_password']
exec { 'set-mysql-root':

command => @("COMMAND"/L)
mysqladmin -u root password ${server_root_password}
mysql -uroot -p${server_root_password} -e (...)

| COMMAND,
only_if => "/usr/bin/mysql -u root -e 'show databases;'"

}

(b) Same part of a Chef script rewritten in Puppet

Figure 3.1: Inconsistencies in state-of-the-art tools: SLAC reports false positive “Hard-coded secret” for script (a);
SLIC does not report any security smell for script (b).
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Figure 3.2: A diagram of a simplified version of GLITCH’s architecture.

3.2 Architecture Overview

Figure 3.2 enumerates the main components of GLITCH’s architecture. The architecture considers three

components: (1) a parser for each technology which will transform the scripts into our intermediate

representation (see Section 3.6.1); (2) the intermediate representation to which different analyses can

be applied (see Section 3.3); (3) the different analyses developed on our framework (see Section 3.5).

GLITCH receives as input the scripts of the supported IaC technologies (see Section 3.4) and outputs a

report with the smells found by each enabled analysis.

3.3 Intermediate Representation

In this section, we explore the intermediate representation used by GLITCH. In the following subsections,

we explain why we decided to create a new intermediate representation and describe it.

3.3.1 Motivation

When we considered the problem of polyglot analyses for IaC, the solution we found was to create an

intermediate representation. As shown in Section 2.4, other authors found the same solution to similar

problems. We decided to create an intermediate representation from scratch since we were not able to

percona/recipes/server.rb#L28
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find in the literature a representation capable of abstracting concepts present in IaC scripts from different

technologies.

In Section 2.4.2, we describe intermediate representations used in other domains of Computer Sci-

ence. However, we are not able to reuse these representations since they miss necessary information

from the IaC domain. For instance, let us consider the intermediate representation developed by Silva et

al. [48] called Code Structure Tree (CST). We chose the study by Silva et al. since we consider it to be

the pair problem/solution with more similarities to our own. Each CST node represents a code element

in the source code of one of the supported programming languages. As described in Section 2.4.2,

the nodes have the following information: identifier, namespace (optional), node type, parameters list

(optional), tokenized source code, and tokenized source code of the body. The relationships between

nodes can represent calls (e.g., a method calling another method) or a hierarchy (e.g., a class contains

a method or a class extends another class). Let us also consider the security smell Admin by Default

described in Section 2.2.1. This security smell is the recurring pattern of specifying default users with

more privileges than required and it is detected in GLITCH by the following rule:

(isAttribute(x) ∨ isV ariable(x)) ∧ (isUser(x.name) ∨ isRole(x.name)) ∧ isAdmin(x.value) ∧ ¬x.has variable

In the rule above, x refers to a node in the representation, and the dot notation is used to access node

attributes. The functions isAttribute and isVariable check the node type, and the remaining functions

check for patterns on a string. Considering the attributes in the nodes of a CST, we could map the

attribute name to the identifier, the node type exists and can be checked, however, the concept of value

is not present, which means the rule to detect the Admin by Default smell could not be expressed

using a CST. Another example is if we consider the resource “apache2” in Figure 2.3, a CST would not

capture the resource type “service” since the representation is focused on relationships between nodes

instead of their content. However, as we will mention in Chapter 5, the detection of some smells requires

information about the resource type. To retrieve this type of information, we need to take into account

the constructs of IaC scripts, which excludes the usage of representations from other domains.

Even though we can not use representations from other domains, in Section 2.4.1 we describe

intermediate representations used for IaC. These representations describe file-system manipulations

executed by IaC scripts and map them to the resources defined in the source code. We did not use these

representations since their focus is on the effects of a script in the file system, ignoring the structure and

content of the scripts. For instance, if we consider the rule defined for the smell Admin by Default, these

representations would not have the required information to implement our rule.

To conclude, we decided to create a new intermediate representation since, to the best of our knowl-

edge, no representation exists that abstracts IaC concepts in a structured and hierarchical way that

allows the implementation of rules such as the one defined for the smell Admin by Default.
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<S> ::= <project>
| <module>
| <unitblock>

<project> ::=
Project {

name: <str>,
modules: <module>*
blocks: <unitblock>*

}

<module> ::=
Module {

name: <str>,
blocks: <unitblock>*

}

<condition> ::=
ConditionStatement {

type: IF | SWITCH
condition: <str>,
else_statement: <condition>,
is_default: <bool>

}

<variable> ::=
Variable {

name: <id>,
value: <value>,
has_variable: <bool>

}

<unitblock> ::=
UnitBlock {

name: <str>,
path: <str>,
type: SCRIPT | TASKS | VARS |

BLOCK | UNKNOWN
atomic_units: <atomicunit>*,
variables: <variable>*,
attributes: <attributes>*
comments: <comment>*,
conditions: <condition>*,
unit_blocks: <unitblock>*

}

<atomicunit> ::=
AtomicUnit {

name: <str>,
type: <id>,
attributes: <attribute>*

}

<attribute> ::=
Attribute {

name: <id>,
value: <value>,
has_variable: <bool>

}

<comment> ::=
Comment {

content: <str>
}

- - - - - - - - - - - - - - - - - - - - - - - - - - -
<value> ::= <str> | <number> | <bool> | <value>* | <id>
<id> ::= ;sequence of alphanumerics which starts with a letter
<str> ::= "<character>*" <number> ::= ;integer or double
<bool> ::= True | False

Figure 3.3: Abstract syntax of our intermediate representation.

Ansible Chef Puppet

Modules Roles Cookbooks Modules

Unit Blocks Playbook Recipe Class

Atomic Units Task Resource Resource

Figure 3.4: The table describes what component of each IaC tool corresponds to a component of the intermediate
representation.

3.3.2 Abstract Syntax

Figure 3.3 describes the abstract syntax of our intermediate representation. We follow an object-

oriented approach with a hierarchical structure. As the top-level structure, the intermediate represen-

tation can model a Project, a Module, or a Unit block. Projects represent a generic folder that may

contain several modules and unit blocks. It is common in IaC technologies that a folder for each project

is created and it has a recommended structure2. Table 3.4 shows the relation between the high-level

code structures in each IaC technology and the abstract concepts in our intermediate representation.

As the table shows, it is possible to find similar structures in different technologies. Modules are the

top component from each structure and they agglomerate the scripts necessary to execute a specific

functionality. Modules are file system folders, usually with a specific organization (e.g., a role in Ansible

2Best practice for Ansible:
https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html#sample-directory-layout
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1 resource "aws_instance" "app_server" {
2 ami = "ami-830c94e3"
3 instance_type = "t2.micro"
4

5 tags = {
6 Name = "ExampleAppServerInstance"
7 }
8 }

Figure 3.5: Terraform resource that creates an AWS EC2 instance.

usually has a tasks and vars folder where, respectively, the tasks and variables for the role are defined3).

Unit Blocks correspond to the IaC scripts themselves or a group of atomic units. For instance, in Puppet,

we can agglomerate resources in classes. In Ansible, we can define IaC scripts that only define tasks

or variables. The field type allows us to distinguish the type of a unit block. Atomic Units are the building

block of IaC scripts. Atomic units define the system components we want to change and the actions we

want to perform on them. Finally, IaC technologies may define concepts similar to regular programming

languages, such as Condition Statements and Comments, which are also considered in our intermediate

representation. As shown in Figure 3.3, unit blocks can have attribute definitions, variable definitions,

and conditions. Atomic units have attribute definitions. When the field value in attribute and variable

definitions contains variable references, the flag has variable is set to true.

It is important to mention that even though we focus our attention on technologies for the configuration

and management of services, namely, Ansible, Chef, and Puppet, other categories of IaC technologies

share similar constructs. Figure 3.5 shows how to define a resource in Terraform4 to create an AWS

EC2 instance5. If we implemented a Terraform parser to our intermediate representation, the resource

in Figure 3.5 would be translated to an atomic unit with the name “app server”, type “aws instance”, and

three attributes.

Figures 3.6 and 3.7 show a graph-based visualization of how our intermediate representation models

the scripts in Figure 2.1 and Figure 2.3, respectively. The translation of scripts to our intermediate

representation generates a tree of relationships between IaC constructs. As described in our abstract

syntax and as represented in both figures, the nodes of our intermediate representation carry information

about themselves, such as the type of atomic units.

3.4 Supported IaC Technologies

As described in Section 1.1, we focused our attention on technologies that perform configuration man-

agement of services. In GLITCH, we implemented parsers from IaC scripts to our intermediate repre-

sentation for Ansible, Chef, and Puppet. As stated in Section 2.1.2, these three technologies are the

3https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html#sample-directory-layout
4https://www.terraform.io/
5https://aws.amazon.com/ec2/
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---
- name: Update web servers
  hosts: webservers
  remote_user: root


  tasks:
  - name: Ensure apache is at the latest version
    ansible.builtin.apt:
      name: apache2
      state: latest
  - name: Create default page file
    ansible.builtin.copy:
      dest: /var/www/html/index.html
      content: "Welcome, {{ ansible_default_ipv4.address }}!"
  - name: Start apache service
    ansible.builtin.service:
      name: apache2
      enabled: yes
      state: started

Unit Block

name = Update web...

Module

name = websample

Atomic Unit

name = apache2
type = apt

Atomic Unit

type = copy

Atomic Unit

name = apache2
type = service

Attribute

key = state
value = latest
has_variable = false

Attribute

key = dest
value = /var/www...
has_variable = false

Attribute

key = content
value = "Welcome...
has_variable = true

Attribute

key = enabled
value = yes
has_variable = false

Pa
rs

er

Attribute

key = state
value = started
has_variable = false

Figure 3.6: Example of the translation of an Ansible script (Figure 2.1) to our intermediate representation.

package 'apache2' do
  action :install
end
 
file '/var/www/html/index.html' do
  content "Welcome! I am " + node['ipaddress']
  action :create
end
 
service 'apache2' do
  action [ :enable, :start ]
end

Unit Block

name = webserver.rb

Module

name = websample

Atomic Unit

name = apache2
type = package

Atomic Unit

name = '/var/www...
type = file

Atomic Unit

name = apache2
type = service

Attribute

key = action
value = :install
has_variable = false

Attribute

key = content
value = "Welcome..."
has_variable = true

Attribute

key = action
value = :create
has_variable = false

Attribute

key = action
value = [ :enable, ...
has_variable = false

Pa
rs

er

Figure 3.7: Example of the translation of a Chef script (Figure 2.3) to our intermediate representation.

most adopted in the category of configuration management of services. In the future, GLITCH can be

extended to support more technologies by following the steps in Section 3.6.5.

3.5 Supported Analyses

In this section, we describe how GLITCH detects the code smells described in Sections 2.2.1 and 2.2.2.

We focus on rule-based analyses with a high prevalence of pattern-detection techniques. This type of

technique is commonly used in the literature, as is the case with the SLIC and SLAC tools [4,10].

3.5.1 Security smells

We implemented in GLITCH the nine security smells described in Section 2.2.1. Table 3.1 defines the

rules used by GLITCH to detect those security smells. The formalism used to define rules is similar to the

one used by SLIC [4] and SLAC [10]. The functions isAttribute, isVariable, isComment, isAtomicUnit, and

isConditionStatement verify the type of instance being analyzed (e.g., if the node x is an Attribute node,

isAttribute(x) is true). Each node in our representation is referred to by the variable x. We traverse the
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Smell Name Rule

Admin by default (isAttribute(x) ∨ isVariable(x)) ∧ (isUser(x.name) ∨ isRole(x.name)) ∧ isAdmin(x.value) ∧ ¬x.has variable

Empty password (isAttribute(x) ∨ isVariable(x)) ∧ isPassword(x.name) ∧ length(x.value) == 0

Hard-coded secret (isAttribute(x) ∨ isVariable(x)) ∧ (isPassword(x.name) ∨ isSecret(x.name) ∨ isUser(x.name)) ∧
¬x.has variable

Invalid IP address binding (isAttribute(x) ∨ isVariable(x)) ∧ isInvalidBind(x.value)

Suspicious comment isComment(x) ∧ hasWrongWords(x.content)

Use of HTTP without TLS (isAttribute(x) ∨ isVariable(x)) ∧ isURL(x.value) ∧ hasHTTP(x.value) ∧ ¬hasHTTPWhiteList(x.value)

No integrity check (isAtomicUnit(x) ∧ hasDownload(x.attributes) ∧ ¬hasChecksum(x.attributes)) ∨ ((isAttribute(x) ∨
isVariable(x)) ∧ isCheckSum(x.name) ∧ (x.value == ”no” ∨ x.value == ”false”))

Use of weak crypto alg. (isAttribute(x) ∨ isVariable(x)) ∧ isWeakCrypt(x.value) ∧ ¬hasWeakCryptWhiteList(x.name) ∧
¬hasWeakCryptWhiteList(x.value)

Missing default case statement isConditionStatement(x) ∧ x.is default == False ∧ ¬isDefault(x.else statement)

Table 3.1: Rules to detect security smells used by GLITCH.

Function String Pattern

isUser() ”user”, ”uname”, ”username”, ”login”, ”userid”, ”loginid” (...)

isRole() (the config is empty for this function)

isAdmin() ”admin”, ”root”

isPassword() ”pass”, ”pwd”, ”password”, ”passwd”, ”passno”, ”pass-no” (...)

isSecret() ”auth token”, ”authetication token”, ”secret”, ”ssh key” (...)

isInvalidBind() ”0.0.0.0”

hasWrongWords() ”bug”, ”debug”, ”todo”, ”hack”, ”solve”, ”fixme” (...)

hasHTTP() ”http”

hasHTTPWhiteList() ”localhost”, ”127.0.0.1”

isDownload() “(http|https|www[^ ,]*\.iso”, “(http|https|www)[^ ,]*\.tar\.gz” (...)

isCheckSum() ”gpg”, ”checksum”

isWeakCrypt() ”md5”, ”sha1”, ”arcfour”

hasWeakCryptWhiteList() ”checksum”

Table 3.2: String patterns used in the GLITCH’s rules. These are configurable. The configuration shown is the one
used by the improved version of GLITCH.

nodes using a depth-first search (DFS). We start in the initial node (a Project, a Module, or a Unit Block)

and then we execute the DFS considering each collection inside the node as its children. Each node may

have more than one security smell, and so every rule is applied, even if a smell was already identified

for that node. Previous nodes do not influence the analyses of other nodes. The function hasDownload

goes through a list of attributes and verifies if at least one of them isDownload(x.value) is true. The same

goes for the function hasChecksum but instead of using isDownload, it uses isChecksum. The function

isDefault is a recursive function that returns true if a default branch is found in the case statement, and

false otherwise. The remaining functions are defined in Table 3.2. These functions verify if any of the

string patterns described are present in the values they receive.

The GLITCH framework allows the definition of different configurations to identify security smells.

These configurations change the keywords in the (disjunctive) string patterns for each function defined

in Table 3.2. In the table, we describe the configuration used by the improved version of GLITCH to

which we will refer in Chapter 4. In Section 3.6.7, we describe in more depth how configurations in

GLITCH are defined.
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3.5.2 Design & Implementation smells

We implemented in GLITCH the nine design & implementation smells described in Section 2.2.1. There

are differences in the detection techniques of these smells between the works by Sharma et al. [2]

and Schwarz et al. [3]. We based our implementation on the techniques applied by Schwarz et al. [3].

Appendix A describes in depth the techniques we implemented in GLITCH to detect the nine design &

implementation smells described.

3.6 Implementation

In this section, we focus on the implementation aspects of our framework GLITCH. We developed our

framework using object-oriented programming. For the programming language, we chose Python since

it is one of the most popular programming languages [54], enables fast development, and has pop-

ular packages for machine learning, which usage is very frequent in static analysis and program re-

pair. Figure 3.8 describes the class model of GLITCH’s implementation. We developed a package for

each of the components in Figure 3.2: parsers, inter, and analysis. The usage flow between pack-

ages is the same as the one in the components from Figure 3.2. Although in the following sections

we summarize how to extend GLITCH, we recommend developers to check GLITCH’s documentation:

https://github.com/sr-lab/GLITCH/wiki

3.6.1 Parsers

In order to transform IaC scripts to our intermediate representation, first, we need to parse the scripts

to get a representation that we can manipulate in Python. To parse the Ansible scripts we use the

ruamel.yaml package6 for Python. The ruamel.yaml package allows to save comments in the AST,

which is the reason why we choose it instead of the yaml package7. The Chef scripts are parsed using

Ripper8, a script parser for Ruby. To transform the output to Python objects, we developed a parser for

Ripper’s output using a package called ply9. Finally, for Puppet scripts, we developed our parser10 using

the same ply package. We decided to develop our parser since we did not find any other good options to

parse Puppet DSL in Python. After we obtain the Python representation, we map it to our intermediate

representation.

6https://pypi.org/project/ruamel.yaml/
7https://pypi.org/project/PyYAML/
8https://github.com/ruby/ruby/tree/master/ext/ripper
9https://github.com/dabeaz/ply

10https://github.com/Nfsaavedra/puppetparser
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ResourceChecker
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+ is_resource_body_without_attributes(ast: ChefParser.Node): bool
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IncludeChecker
+ code: str
+ is_include(ast: ChefParser.Node): bool
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ConditionChecker
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+ is_case_condition(ast: ChefParser.Node): bool
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+ check_attribute(a: Attribute, file: str): list[Error]
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Figure 3.8: The UML Class diagram of the GLITCH framework.
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3.6.2 Intermediate Representation

Figure 3.8 describes the class model used to implement our intermediate representation. Every ele-

ment besides Project and Module inherits from CodeElement or from its subclass Block. The class

CodeElement retains information about the element in the source code, namely, the line, column, and

code snippet that corresponds to that element. Currently, the implementation does not consider the col-

umn field. The line and code fields allow us to map the errors found in the intermediate representation

back to the original source code and present the error to the user.

3.6.3 Command-line Tool

GLITCH provides a command-line interface that receives a path of the file or folder to analyze and

supports multiple options. Some relevant available options are:

• --tech [ansible|chef|puppet]: The IaC technology in which the scripts analyzed are written. This

option is required.

• --smells [design|security]: The type of smells being analyzed. Currently, it supports nine security

smells [12] (described in Section 2.2.1) and nine design & implementation smells [13] (described in

Section 2.2.2). If omitted, every smell implemented in the tool is analyzed.

• --dataset: This flag is used if the folder being analyzed is a dataset. A dataset is a folder with

subfolders to be analyzed.

• --config PATH: The path for a config file. Otherwise, the default config will be used.

• --tableformat [prettytable|latex]: The presentation format of the tables that show stats about

the analysis.

• --csv: This flag produces the output in CSV format.

The last two options are particularly useful for researchers who need to analyze datasets of IaC scripts

and generate CSV data that can be automatically analyzed or tables that can be directly added to

research papers (e.g., Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 were automatically generated by GLITCH

with some manual styling).

3.6.4 Methodology to add new analyses

To create new analyses, the developers need to implement a new subclass of RuleVisitor (see Fig-

ure 3.8). The new subclass should implement the abstract methods to check components of the inter-

mediate representation and override the others if necessary (e.g., different way to check a Unit Block). If
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if tech == Tech.ansible:
self.imp_align = DesignVisitor.AnsibleImproperAlignmentSmell()

elif tech == Tech.puppet:
self.imp_align = DesignVisitor.PuppetImproperAlignmentSmell()

(...)
errors += self.imp_align.check(u, u.path)

Figure 3.9: Implementation of specific behavior when creating new analyses.

specific behavior for a technology is required, the visitors select, in their constructor and according to the

technology, instances of the subclasses of SmellChecker. The subclasses implement the method check

that verifies if a certain smell is detected on a component. The method check is called later in the imple-

mentation of the methods to check the components of the intermediate representation (see Figure 3.9).

The class PuppetImproperAlignmentSmell, which implements the smell Improper Alignment for Puppet

only, is an illustrative example of the implementation of specific behavior.

We also need to add identification codes and descriptions for the new types of smells on the ERRORS

constant present in the Error class.

3.6.5 Methodology to add new IaC technologies

To add a new IaC technology, the developers need to create a new subclass of Parser. The methods

parse file, parse folder, and parse module need to be implemented and should return the translation of

the script or set of scripts to our intermediate representation. The new technology must be added to the

enumeration Tech and the developer should add to the command-line tool the parser that corresponds

to the new technology.

3.6.6 Methodology to extend the intermediate representation

To extend the intermediate representation, developers need to create a class for the component being

added. The class should inherit from CodeElement or, if the new component can contain statements

from the technology being abstracted, from Block. The parsers for the IaC technologies should be

changed to consider the new component if the component exists on that technology. Finally, the class

RuleVisitor must be changed to include the new component. Default behavior to check the component

should be implemented on RuleVisitor or behavior to every existent subclass of RuleVisitor should be

added.

3.6.7 Analyses Configuration

The GLITCH framework allows to define configurations in INI files. Configurations allow users to tweak

the tool to best suit the needs of the IaC developers and to better adapt to each IaC technology. One
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def config(self, config_path: str):
config = configparser.ConfigParser()
config.read(config_path)
SecurityVisitor.__WRONG_WORDS = json.loads(config['security']['suspicious_words'])
SecurityVisitor.__PASSWORDS = json.loads(config['security']['passwords'])
SecurityVisitor.__USERS = json.loads(config['security']['users'])

Figure 3.10: Example of the implementation of a config method for a subclass of RuleVisitor.

example of usage is to define the keywords that trigger the detection of a certain smell. Configurations

are loaded by the config method implemented in each subclass of RuleVisitor. Figure 3.10 shows an

example of how to implement a config method using the package configparser11. A default configuration

is defined for GLITCH and should be changed if a RuleVisitor depends on a new configuration field.

3.6.8 Execution statistics and Output

At the end of a run, GLITCH outputs execution statistics and the smells found for the given input. Exe-

cution statistics include the number of files and lines of code analyzed, and the number of occurrences,

smell density, and proportion of scripts for each smell. The metrics smell density and proportion of

scripts are explained in Section 4.1.3. The smells found are described by the line where they occurred,

a snippet of code, and the name of the smell, possibly with a small explanation.

3.6.9 Integration Tests

GLITCH has integration tests for each implemented smell in each technology. The tests use the frame-

work unittest12 from Python. Each test has its corresponding IaC script with smells previously identified

by the developer. The tests compare if the smells identified by GLITCH are the same as the ones

manually identified.

3.6.10 Visual Studio Code extension

Sadowski et al. mention the importance of including detection tools in the developers’ workflow [55]. For

that reason, we created a Visual Studio Code extension for GLITCH, which is available here:

https://marketplace.visualstudio.com/items?itemName=sr-lab.glitch-iac

The extension uses visual feedback to alert developers to the lines where smells were detected by

GLITCH (see Figure B.1). By hovering the line with the mouse, developers can get more information

about the smell, namely the name of the smell found and a small explanation about it. The extension

has settings to disable the analyses, define the path for an analyses configuration, the technology to

analyze, and the types of smells to detect.

11https://pypi.org/project/configparser/
12https://docs.python.org/3/library/unittest.html
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As described in Section 3.5.1, we implemented the nine security smells studied by Rahman et al. [4,

10] in GLITCH. In this chapter, we evaluate the accuracy of GLITCH in the detection of security smells

and compare its accuracy to state-of-the-art tools. We also conduct a large-scale empirical study that

analyzes security smells on three large datasets containing 196,755 IaC scripts and 12,281,251 LOC.

Finally, we discuss the obtained results. The contents of this chapter were published at ASE 2022 [12].

A replication package containing all the datasets used, including the three oracle datasets that were

manually annotated, is available here:

https://doi.org/10.6084/m9.figshare.19726603.v2

4.1 Evaluation

We aim to answer the following research questions:

RQ4.1. [Abstraction] Can our intermediate representation model IaC scripts and support automated de-

tection of security smells?

We are interested in determining whether our intermediate representation is capable of abstracting

relevant information from IaC scripts written in different IaC languages so that one can define

security smell detectors on it.

RQ4.2. [Accuracy and Performance] How does GLITCH compare with existing state-of-art tools for de-

tecting security smells in terms of accuracy and performance?

We are interested in comparing the accuracy and performance of GLITCH with the accuracy of

existing tools, such as SLIC [4] and SLAC [10].

RQ4.3. [Frequency] How frequently do security smells occur in IaC scripts?

We are interested in characterizing how frequently security smells are present in IaC scripts. This

research question was addressed by Rahman et al. [4] for Puppet and by Rahman et al. [10] for

Ansible and Chef. They used different tools for answering this question. Here, we want to use

GLITCH to investigate whether there are any noticeable differences.

4.1.1 Datasets

This section describes how we constructed the datasets used for our evaluation. Since we consider

Ansible, Chef, and Puppet scripts, our first step was to attempt to obtain the same datasets as used

in the studies involving SLIC and SLAC [4, 10]. We got hold of the publicly available datasets1 and

Docker image2, and we observed that only the oracle for Ansible was available. We thus contacted the
1https://doi.org/10.6084/m9.figshare.8085755
2https://hub.docker.com/repository/docker/akondrahman/slic_ansible
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Puppet

Attribute Ansible Chef GH MOZ OST WIK

Repository count 681 439 219 2 61 11

Total IaC scripts 108,509 70,939 10,009 1,613 2,840 2,845

Total LOC (IaC scripts) 5,180,747 6,071,035 610,122 66,367 217,843 135,137

Table 4.1: Attributes of IaC Datasets.

Attribute Ansible Chef Puppet

Total IaC scripts 81 80 80

Total LOC (IaC scripts) 4,185 4,630 4,367

Table 4.2: Attributes of Oracle Datasets.

first author of the studies mentioned above, who very kindly shared with us a Puppet dataset almost

identical to the one used in the empirical study using SLIC (there were small differences in the number

of Puppet scripts contained in the dataset). We constructed oracle datasets for Chef and Puppet as

these oracle datasets were not available as part of Rahman et al.’s replication packages. We further

contacted the first author about the availability of the oracle datasets and learned that these datasets

reside in computing clusters to which the first author no longer has access to. Given this, we decided to

reuse their oracle for Ansible and the Puppet dataset and to construct new oracles for Chef and Puppet,

and new IaC datasets for Ansible and Chef.

4.1.1.A IaC datasets

To perform an empirical study of security smells in Ansible, Chef, and Puppet scripts, we require three

datasets of IaC scripts, one for each technology. As mentioned above, we reused Rahman et al.’s

Puppet dataset [4], which is composed of four different sub-datasets. Three datasets are constructed

using repositories collected from three organizations: Mozilla (MOZ), Openstack (OST), and Wikimedia

(WIK). The fourth dataset is constructed from repositories hosted on GitHub (GH).

For Ansible and Chef, we created two new datasets by selecting OSS repositories from GitHub. As

described in previous research [56], OSS repositories need to be curated. We apply the same criteria

that Rahman et al. [4] used to construct their Puppet sub-datasets extracted from GitHub (except that

we consider all the available repositories created between 2012 and 2022):

• Criterion 1: At least 11% of the files belonging to the repository must be IaC scripts. This follows

from a Jiang and Adams’s study [57], where it was observed that in OSS repositories, a median
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of 11% of the files are IaC scripts. The rationale is to collect repositories that contain a sufficient

amount of IaC scripts for analysis.

• Criterion 2: The repository is not a clone.

• Criterion 3: The repository must have at least two commits per month. This is based on Mu-

naiah et al. [56], who used the threshold of at least two commits per month to determine which

repositories have enough software development activity.

• Criterion 4: The repository has at least 10 contributors. Similar to Rahman et al. [4], we assume

that this criterion may help us to filter out irrelevant repositories.

Table 4.1 presents the number of repositories, the number of IaC scripts, and the number of LOC in

the three IaC datasets. The Ansible dataset was constructed from 681 repositories and contains 108,509

Ansible scripts (5,180,747 LOC). The Chef dataset was constructed from 439 repositories and contains

70,939 Chef scripts (6,071,035 LOC). The Puppet dataset was constructed from 293 repositories and

contains 17,307 Puppet scripts (1,029,469 LOC). When considering the three IaC datasets as a whole,

there are 1413 repositories with 196,755 IaC scripts. In total, there are 12,281,251 LOC.

4.1.1.B Oracles

To determine the accuracy of GLITCH and to compare it with other tools, we require three oracle

datasets, one for each IaC technology considered. In what follows, we describe how we selected the

IaC scripts included in each oracle and how we annotated the datasets.

File collection. For the Ansible oracle, we reused Rahman et al.’s oracle [10], which contains 81 IaC

scripts. We constructed new oracle datasets for Chef and Puppet. To ensure that the size of the three

oracles was similar, based on the size of the Ansible oracle dataset, we decided to create oracles with

exactly 80 IaC scripts. To select the files, we wrote a Python script that kept selecting a random file

from the respective IaC dataset described in the previous subsection while the desired size was not

achieved. For each file, we ran GLITCH and either SLAC (if the file was a Chef script) or SLIC (if the

file was a Puppet script). We kept track of the number of security smells reported and their respective

categories. If, after analyzing a file, the file contained a smell of a category that up to that point had less

than 5 reports, then the file was included in the oracle dataset. After the minimum number of reports for

each smell was achieved, the remaining files were added to the dataset without restrictions. Table 4.2

presents the number of IaC scripts and the number of LOC in the three oracle datasets.

Annotating the oracle datasets. After collecting the scripts that make the oracle datasets, we man-

ually annotated them, identifying security smells. Despite the use of analysis tools in the file selection
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Ansible Chef Puppet

No agreement 0.9 6.1 4.9

2 raters agreed 86.4 73.6 78.6

3 raters agreed 12.7 20.3 16.5

Table 4.3: Agreement distribution for the oracle datasets (%).

process described above, we guaranteed that the location of the security smells was not disclosed. In

other words, at the annotation stage we only had access to the files, but not the reports. We did this

to reduce bias in the annotation process. The Ansible oracle dataset was already annotated, but since

the numbers of smell occurrences did not match the numbers reported in Rahman et al.’s study [10], we

decided to reannotate the dataset. To annotate the oracle datasets, we used closed coding [58], where

three raters identified security smells and their agreement was checked. In total, there were seven raters

involved. One of the raters was the first author. For each of the three IaC technologies, we recruited two

postgraduate students who had experience with IaC and/or cybersecurity. They were given access to:

the 80 files in the oracle datasets, a general description of the IaC technology, and a description of the

nine security smells considered. For each report, raters identified the name of the file, the category of

the security smell, and the line where it occurs; they collated this information in a CSV file.

We then manually inspected the three CSV files produced for each oracle dataset, and we decided

to keep only the classifications where at least two raters agreed. Table 4.3 shows the agreement distri-

bution for each dataset. We only consider the lines of code where at least one rater identified a smell.

The percentage values shown are for the cases where there was no agreement, two raters agreed, or

all the raters agreed. When a rater did not identify a smell identified by another rater, we considered the

label “none” to be attributed. The results on the table demonstrate that at least two raters agreed on the

great majority of subjects: 99.1% in Ansible, 93.9% in Chef, and 95.1% in Puppet. We calculated the

agreement distribution instead of other statistics, such as Cohen’s Kappa or Krippendorff’s alpha, since

these statistics consider the probability of chance agreement. We argue that, since our annotation task

includes finding the smells in the scripts, the likelihood of chance agreement is significantly reduced. Af-

ter this process, we obtained: an oracle of 44 Ansible security smells categorized as shown in Table 4.4

and with 69 files with no smells; an oracle of 105 Chef security smells categorized as shown in Table 4.5

and with 43 files with no smells; and an oracle of 65 Puppet security smells categorized as shown in

Table 4.6 and with 52 files with no smells.
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4.1.2 Accuracy of GLITCH

To determine the accuracy of GLITCH, we ran it for the oracle datasets. We also ran SLIC for the

Puppet oracle dataset and SLAC for the other two oracle datasets. We measured the precision and

recall of each tool. Precision refers to the fraction of correctly identified smells among the total identified

security smells, as determined by each tool. Recall refers to the fraction of correctly identified smells that

have been retrieved by each tool over the total amount of security smells. Since it is easy to configure

GLITCH (see Section 3.6.7), we used two versions of GLITCH for each oracle dataset: one version was

configured to behave similarly to SLIC (or SLAC), and the other was an improved version. As described

in Section 3.5.1, the difference between the two versions is in the keywords for each function in Table 3.2:

one uses the keywords used by SLIC (or SLAC) and the other configuration was tweaked by us. In the

tables below, we use the headers GLITCH (SLIC) and GLITCH (SLAC) to refer to GLITCH configured to

behave similarly to SLIC and SLAC, respectively. The header GLITCH refers to the improved version of

GLITCH that uses the rules shown in Table 3.2.

Tables 4.4, 4.5, and 4.6 report the accuracy results for Ansible, Chef, and Puppet, respectively. We

use N/I to denote that the detection of a certain smell is not implemented (e.g., SLAC does not detect the

smell Admin by default for Ansible scripts); N/A to denote that a certain smell cannot occur (e.g., Ansible

does not have switch statements, so the smell Missing default case statement does not apply); and N/D

to denote that the tool does not report any security smell or to denote that there are no occurrences

of a given smell (see, for example, the recall value of GLITCH for the Use of weak crypto algorithm in

Table 4.4). To facilitate comparison between tools and IaC technologies, we decided to keep all the rows

in these tables, even when there are no smell occurrences or when its detection is not implemented.

4.1.2.A Accuracy results for the Ansible oracle dataset

As shown in Table 4.4, GLITCH configured to behave similarly to SLAC has the same precision and

recall as SLAC (same average). There is a small discrepancy in the recall values for No Smell. This

happens because SLAC detects one No integrity check smell in an Ansible script where no smells should

be detected. The difference between both tools is that GLITCH enforces the detection of No integrity

check smells only on Atomic Unit nodes, while SLAC ignores the type of node, which leads SLAC to

detect this type of smell in the definition of a variable.

Regarding the improved version of GLITCH, the average precision improves from 67% to 77% and

recall improves from 79% to 87%. There are also improvements regarding files with no smells. We

can also see that it supports the smell Admin by default with perfect precision and recall. GLITCH

keeps the values of precision and recall when they were already 100%. It also improves the precision for

Hard-coded secret by 10 percentage points (from 32% to 42%); for Suspicious comment by 8 percentage

points (from 67% to 75%); and for Use of HTTP without TLS by 24 percentage points (from 71% to 95%).
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Recall for Suspicious comment improved from 67% to 100%. The only case where improvements do not

occur is for the smell No integrity check, where the single occurrence is not detected (note that SLAC

did not detect it either). This happens because the occurrence of this smell is regarding a URL referring

to a YAML file, which GLITCH does not consider (i.e., the string pattern isDownload() shown in Table 3.2

does not contain URLs that end with .yml). Finally, the worst precision value is for the smell Hard-coded

secret (42%). This happens mainly because the string patterns isSecret(), isPassword(), and isUser()

are the ones with more possibilities, thus increasing the probability of having false positives. Some of

the possibilities are keywords such as “user”, which result in a higher number of false positives.

4.1.2.B Accuracy results for the Chef oracle dataset

Table 4.5 shows that when GLITCH is configured to behave similarly to SLAC, it actually obtains better

results than SLAC: the average precision improves by 28 percentage points (from 49% to 77%) and

the average recall improves by 16 percentage points (from 60% to 76%). There are also improvements

regarding files with no smells. Contributing to these improvements is the substantial increase in precision

for the smells Empty password and No integrity check. Regarding the first smell, this is because SLAC

wrongly treats variables as empty values; regarding the second, GLITCH searches for links in the values

of variables and attributes, while SLAC is searching for links on a line-by-line basis.

When compared to GLITCH configured to behave similarly to SLAC, the improved version maintains

the average precision and increases the average recall by 10 percentage points (76% to 86%). When

compared to SLAC, the results for all smells improve, except for Invalid IP address binding and Use of

HTTP without TLS, where the results are the same, and for Suspicious comment, where the precision

decreases. This decrease in precision is because GLITCH uses a larger set of keywords (this is similar

to what caused the low precision for the smell Hard-coded secret when analyzing the Ansible oracle

dataset). This is also why the worst precision value is for the smell Hard-coded secret. The worst recall

value is for the smell Admin by default (41%). This happens because there are some scripts in the

dataset that configure the execution of MySQL commands. The commands executed as root, such as

the following, were considered by the raters as a security smell: cmd = "mysql -uroot ...". However,

for this smell, GLITCH only considers the value of attributes or variables that define users (e.g. user:

root).

4.1.2.C Accuracy results for the Puppet oracle dataset

Similar to what was described above, Table 4.6 shows that when GLITCH is configured to behave sim-

ilarly to SLIC, it also obtains better results than SLIC: the average precision improves 8 percentage

points (from 60% to 68%) and the average recall improves 10 percentage points (from 72% to 82%).

Contributing to this is the fact that GLITCH detects smells of type Missing default case statement with
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Original Oracle

SLAC GLITCH (SLAC) GLITCH

Smell Name Occurr. Precision Recall Precision Recall Precision Recall

Admin by default 7 N/I N/I N/I N/I 1.00 1.00

Empty password 1 1.00 1.00 1.00 1.00 1.00 1.00

Hard-coded secret 8 0.32 1.00 0.32 1.00 0.42 1.00

Invalid IP address binding 1 1.00 1.00 1.00 1.00 1.00 1.00

Suspicious comment 6 0.67 0.67 0.67 0.67 0.75 1.00

Use of HTTP w/o TLS 20 0.71 1.00 0.71 1.00 0.95 1.00

No integrity check 1 0.00 0.00 0.00 0.00 0.00 0.00

Use of weak crypt. alg. 0 N/I N/I N/I N/I N/D N/D

Missing def. case stat. 0 N/A N/A N/A N/A N/A N/A

No smell 69 0.98 0.87 0.98 0.88 1.00 0.94

Average 0.67 0.79 0.67 0.79 0.77 0.87

Table 4.4: GLITCH vs SLAC: Accuracy for the Ansible Oracle Datasets (N/I - Not implemented, N/A - Not applicable,
N/D - No data)

high precision. Also, the precision for the smell Empty password is noticeably higher (GLITCH reports

no false positives). This is because GLITCH seems to deal better with variables. There are also im-

provements regarding files with no smells.

When compared to GLITCH configured to behave similarly to SLIC, the improved version maintains

the average precision and improves the average recall by 3 percentage points (82% to 85%). The

precision and recall for No Smell decreased by 1 and 6 percentage points, respectively. We can see that

for the smell Admin by default many more true positives are identified, but there are some false positives.

There were no reports for the smell No integrity check. Precision and recall improved or remained the

same for all the smells, except for Suspicious comment. Similar to what happened with the Chef oracle

dataset, the precision values for the smells Hard-coded secret and Suspicious comment are low due to

the use of more keywords.

4.1.3 Security Smells Frequency

Using GLITCH, we performed an empirical study to quantify the prevalence of security smells in Ansible,

Chef, and Puppet. Similar studies were performed by Rahman et al. [4] (for Puppet scripts using SLIC)

and Rahman et al. [10] (for Ansible and Chef scripts using SLAC). Here, the goal is to use GLITCH

and investigate whether there are any noticeable differences. The IaC datasets used are described in

Section 4.1.1 and their attributes are shown in Table 4.1. This means that, when considering the three

IaC datasets as a whole, this empirical study considers 1413 repositories with 196,755 IaC scripts. In

total, we analyze 12,281,251 LOC.

Similar to previous studies, the first step was to determine the occurrences of security smells for

each IaC script. We then calculated the two following metrics:
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Original Oracle

SLAC GLITCH (SLAC) GLITCH

Smell Name Occurr. Precision Recall Precision Recall Precision Recall

Admin by default 37 0.00 0.00 N/D 0.00 0.94 0.41

Empty password 4 0.00 0.00 1.00 0.75 1.00 0.75

Hard-coded secret 13 0.13 0.54 0.20 0.69 0.20 0.69

Invalid IP address binding 7 1.00 1.00 1.00 1.00 1.00 1.00

Suspicious comment 4 0.80 1.00 0.80 1.00 0.40 1.00

Use of HTTP w/o TLS 13 0.71 0.92 0.71 0.92 0.71 0.92

No integrity check 6 0.20 0.33 1.00 0.33 1.00 1.00

Use of weak crypt. alg. 1 0.25 1.00 0.25 1.00 0.50 1.00

Missing def. case stat. 20 1.00 0.45 1.00 0.95 1.00 0.95

No smell 43 0.85 0.79 0.95 0.93 0.95 0.88

Average 0.49 0.60 0.77 0.76 0.77 0.86

Table 4.5: GLITCH vs SLAC: Accuracy for the Chef Oracle Datasets (N/I - Not implemented, N/A - Not applicable,
N/D - No data)

Original Oracle

SLIC GLITCH (SLIC) GLITCH

Smell Name Occurr. Precision Recall Precision Recall Precision Recall

Admin by default 14 N/D 0.00 N/D 0.00 0.81 0.93

Empty password 5 0.60 0.60 1.00 1.00 1.00 1.00

Hard-coded secret 11 0.10 0.73 0.14 0.82 0.14 0.82

Invalid IP address binding 6 1.00 1.00 1.00 1.00 1.00 1.00

Suspicious comment 9 0.75 1.00 0.60 1.00 0.39 1.00

Use of HTTP w/o TLS 5 0.38 1.00 0.42 1.00 0.45 1.00

No integrity check 1 N/I N/I N/I N/I N/D 0.00

Use of weak crypt. alg. 4 0.43 0.75 0.50 0.75 0.57 1.00

Missing def. case stat. 10 N/I N/I 0.83 1.00 0.83 1.00

No smell 52 0.95 0.71 0.98 0.77 0.97 0.71

Average 0.60 0.72 0.68 0.82 0.68 0.85

Table 4.6: GLITCH vs SLIC: Accuracy for the Puppet Oracle Datasets (N/I - Not implemented, N/A - Not applicable,
N/D - No data)

• Smell density: frequency of a given security smell for every 1,000 LOC [10,59]. For a given smell x,

SmellDensity(x) =
Total occurrences of x

Total line count for all scripts/1000

• Proportion of scripts (Script%): percentage of scripts that contain at least one occurrence of smell

x.
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Puppet

Ansible Chef GH MOZ OST WIK

SLAC GLITCH SLAC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH

Admin by default N/I 10,222 248 1,821 34 1,201 4 30 35 172 6 136

Empty password 1,973 1,432 115 303 131 348 20 20 24 127 36 66

Hard-coded secret 47,735 45,325 15,100 7,763 5,608 6,236 394 592 1,751 2,172 858 1,114

Invalid IP address bind. 914 2,033 499 603 179 96 20 26 90 45 41 18

Suspicious comment 10,498 10,749 2,267 4,343 868 1,802 202 285 309 965 343 609

Use of HTTP w/o TLS 4,812 3,393 2,507 2,281 934 703 52 31 453 163 164 111

No integrity check 1,146 1,359 1,662 304 N/I 44 N/I 0 N/I 4 N/I 3

Use of weak crypt. alg. N/I 1,502 76 147 227 109 48 28 27 18 26 21

Missing def. case stat. N/A N/A 702 1,890 N/I 527 N/I 210 N/I 36 N/I 83

Combined 67,078 76,015 23,176 19,455 7,981 11,066 740 1,222 2,689 3,702 1,474 2,161

Table 4.7: Smell Occurrences. (N/I - Not implemented, N/A - Not applicable, N/D - No data)

Puppet

Ansible Chef GH MOZ OST WIK

SLAC GLITCH SLAC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH

Admin by default N/I 1.97 0.04 0.30 0.06 1,97 0.06 0.45 0.16 0.79 0.04 1.00

Empty password 0.38 0.28 0.02 0.05 0.21 0.57 0.30 0.30 0.11 0.58 0.27 0.49

Hard-coded secret 9.21 8.75 2.49 1.28 9.19 10.22 5.94 8.92 8.04 9.97 6.35 8.24

Invalid IP address binding 0.18 0.39 0.08 0.10 0.29 0.16 0.30 0.39 0.41 0.21 0.30 0.13

Suspicious comment 2.03 2.07 0.37 0.72 1.42 2.95 3.04 4.29 1.42 4.43 2.54 4.51

Use of HTTP w/o TLS 0.93 0.65 0.41 0.38 1.53 1.15 0.78 0.47 2.08 0.75 1.21 0.82

No integrity check 0.22 0.26 0.27 0.05 N/I 0.07 N/I 0.00 N/I 0.02 N/I 0.02

Use of weak crypt. alg. N/I 0.29 0.01 0.02 0.37 0.18 0.72 0.42 0.12 0.08 0.19 0.16

Missing def. case stat. N/A N/A 0.12 0.31 N/I 0.86 N/I 3.16 N/I 0.17 N/I 0.61

Combined 12.95 14.66 3.81 3.21 13.07 18.13 11.14 18.40 12.34 17.00 10.90 15.98

Table 4.8: Smell density (per KLOC). (N/I - Not implemented, N/A - Not applicable, N/D - No data)

Puppet

Ansible Chef GH MOZ OST WIK

SLAC GLITCH SLAC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH SLIC GLITCH

Admin by default N/I 5.7 0.2 1.7 0.3 3.6 0.2 1.5 1.1 5.2 0.2 4.0

Empty password 0.8 0.4 0.2 0.3 1.1 2.5 0.6 0.9 0.7 3.5 0.4 1.1

Hard-coded secret 18.3 13.9 7.7 5.2 18.2 20.2 9.9 12.3 24.6 31.3 17.0 19.1

Invalid IP address binding 0.7 0.7 0.5 0.4 1.4 0.7 0.7 0.6 2.8 1.4 1.4 0.6

Suspicious comment 5.4 5.4 2.6 3.8 5.3 8.9 8.6 11.0 7.0 13.5 9.1 13.7

Use of HTTP w/o TLS 2.3 1.6 1.8 1.8 5.1 3.7 1.5 0.9 8.2 3.1 3.8 2.5

No integrity check 0.8 0.9 1.4 0.4 N/I 0.4 N/I 0.0 N/I 0.1 N/I 0.1

Use of weak crypt. alg. N/I 0.6 0.1 0.2 1.6 0.8 1.4 0.4 0.8 0.5 0.5 0.4

Missing def. case stat. N/A N/A 0.9 2.1 N/I 2.9 N/I 9.9 N/I 1.0 N/I 1.8

Combined 23.8 19.6 11.4 10.4 25.5 29.6 18.0 27.5 32.5 40.1 26.8 31.5

Table 4.9: Proportion of Scripts (Script%) with at Least One Smell. (N/I - Not implemented, N/A - Not applicable, N/D - No data)
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4.1.3.A Occurrences

Looking at Table 4.7, we observe that all categories of security smells are identified across all datasets.

Overall, GLITCH detects 76,015 security smells for Ansible, 19,455 for Chef, and 18,151 for Puppet.

GLITCH identifies fewer security smells in the Chef dataset than SLIC. On the other hand, GLITCH

identifies more security smells than SLIC in the Ansible and Puppet datasets (76,015 vs 67,078 and

18,151 vs 12,884). When using GLITCH for Ansible and Puppet, the three most dominant security

smells are Hard-coded secret, Admin by default, and Suspicious comment. For Chef, the three most

dominant security smells are Hard-coded secret, Suspicious comment, and Use of HTTP without TLS.

4.1.3.B Smell density

Table 4.8 shows the smell density for the three datasets. Overall, GLITCH detects 14.66 security smells

per 1,000 LOC in Ansible scripts, 3.21 in Chef scripts, and an average of 17.38 in Puppet scripts.

For all datasets, the dominant security smell is Hard-coded secret, followed by Suspicious comment.

Given that the precision values for these smells tend to be the lowest (see Section 4.1.2), this suggests

that many of these are false positives. The third most dominant security smell differs across the three

datasets: for Ansible, it is Admin by default (1.97); for Chef, it is Use of HTTP without TLS (0.38); and

for Puppet, it is Admin by default when considering the GitHub dataset (1.97), Missing default case

statement when considering the Mozilla dataset (3.16), and Admin by default when considering the

Openstack and Wikimedia datasets (0.79 and 1.00, respectively).

4.1.3.C Proportion of Scripts (Script%)

Table 4.9 shows, for the three datasets, the proportion of scripts with at least one occurrence of a smell.

For Ansible, GLITCH detects at least one of the eight identified security smells in 19.6% of the total

scripts. For SLAC, the percentage is 23.8%, but note that SLAC only supports six security smells. This

is not very different from the values obtained by Rahman et al. [10], where the percentages obtained with

SLAC were 25.3% and 29.6% for their GitHub and Openstack datasets, respectively. For Chef, GLITCH

detects at least one of the nine identified security smells in 10.4% of the total scripts. For SLAC, the

percentage is slightly higher at 11.4%. Here, we note a more noticeable discrepancy with Rahman et al.’s

study [10]: the percentages obtained with SLAC were 20.5% and 30.4% for their GitHub and Openstack

datasets, respectively. For Puppet, in the GitHub, Mozilla, OpenStack, and Wikimedia datasets, GLITCH

detects at least one of the nine identified security smells in, respectively, 29.6%, 27.5%, 40.1%, and

31.5% of the total scripts. These percentages are slightly higher than those obtained for SLIC.

For all datasets, the dominant security smell is Hard-coded secret, followed by Suspicious comment.

Given that the precision values for these smells tend to be the lowest (see Section 4.1.2), this suggests
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Puppet

Tool Ansible Chef GH MOZ OST WIK

SLIC/SLAC 797 76,153 2,615 380 915 866

GLITCH 1,668 8,335 86 14 35 27

Speedup 0.48 9.14 30.41 27.14 26.14 32.07

Table 4.10: The average execution times between 5 runs (seconds).

that many of these are false positives. However, there is an exception: for Ansible, the second most

dominant smell is Admin by default (5.7%); since the accuracy of GLITCH for this smell is high, this

suggests that there is a substantial number of Ansible scripts that are affected by this problem. The third

most dominant security smell differs across the three datasets: for Ansible, it is Suspicious comment

(5.4%); for Chef, it is Missing default case statement (2.1%); and for Puppet, it is Use of HTTP without

TLS when considering the GitHub dataset (3.7%), Missing default case statement when considering

the Mozilla dataset (9.9%), Admin by default when considering the Openstack and Wikimedia datasets

(5.2% and 4.0%, respectively). We note that the high accuracy of GLITCH for the smell Missing default

case statement, suggests that a substantial number of scripts in the Mozilla dataset are affected by this

problem.

4.1.3.D Execution times

The execution times of GLITCH, SLIC, and SLAC for the three datasets are shown in Table 4.10 (in

seconds). These times were obtained in a server machine running Debian 10, with 4 Intel(R) Xeon(R)

CPU E5-2630 v2 @ 2.60GHz, 64GB RAM, and with a Toshiba MG03ACA100 hard drive. We executed

5 runs for each pair tool/dataset and averaged the obtained execution times. Each run was executed in

its own Docker container created from the Docker image we provide in the replication package. Runs

from the same set of 5 runs were executed simultaneously. GLITCH is much quicker than SLIC and

SLAC when running on Chef or Puppet scripts (speedups vary from 9.14× to 32.07×). SLIC and SLAC

respectively call puppet-lint3 and foodcritic4 to analyze each Puppet or Chef script. The overhead of

creating a new system process for each script analyzed and other non-related analyses performed by

puppet-lint and foodcritic are the main reason for the slower execution times. However, when compared

to SLAC, GLITCH takes more than double the time to run on the Ansible dataset. This happens because

we parse Ansible scripts using ruamel.yaml, a Python package slower than the popular yaml package,

but with the advantage of saving comments in the AST.

3https://github.com/rodjek/puppet-lint
4http://www.foodcritic.io/
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4.2 Discussion

In this section, we answer the research questions listed in Section 4.1, and we outline potential threats

to the validity of our work.

4.2.1 Answers to Research Questions

Given the findings reported in the previous section, we answer the research questions posed in Sec-

tion 4.1 as follows:

Answer to RQ4.1 [Abstraction]. Can our intermediate representation model IaC scripts and sup-

port automated detection of security smells? Yes. We demonstrate that our intermediate representation

can model scripts written in different IaC technologies, with our current implementation supporting An-

sible, Chef, and Puppet. We also define and implement nine rules that operate on the intermediate

representation and that can be used to detect security smells. New rules can be easily created and ex-

isting rules can be easily changed. We evaluate our implementation with three large datasets containing

196,755 IaC scripts and 12,281,251 LOC. This strongly suggests that the intermediate representation is

robust enough to support a large variety of IaC scripts.

Answer to RQ4.2 [Accuracy and Performance]. How does GLITCH compare with existing

state-of-art tools for detecting security smells in terms of accuracy and performance? As shown in

Tables 4.4, 4.5, and 4.6, the average precision and recall values of GLITCH are substantially better than

the average precision and recall values of SLIC and SLAC. For Puppet, average precision and average

recall improved by 8 and 13 percentage points, respectively. For Ansible, average precision improved by

10 percentage points and average recall improved by 8 percentage points. For Chef, the improvement

was more expressive: the average precision and average recall improved by 28 and 26 percentage

points, respectively. In terms of performance, as Table 4.10 shows, GLITCH is much faster at analyz-

ing Chef and Puppet scripts than tools such as SLIC or SLAC (speedups vary from 9.14× to 32.07×).

For Ansible, GLITCH takes more than twice as long as SLAC, but it can still analyze IaC scripts in an

acceptable amount of time (e.g., it took us around 28 minutes to analyze more than 5M LOC).

Answer to RQ4.3 [Frequency]. How frequently do security smells occur in IaC scripts? All

categories of security smells are identified across all datasets considered in this work. For Ansible,

GLITCH detects at least one of the eight identified security smells in 19.6% of the total scripts. For Chef,

it detects at least one of the nine identified security smells in 10.4% of the total scripts. For Puppet,

in the GitHub, Mozilla, OpenStack, and Wikimedia datasets, GLITCH detects at least one of the nine

identified security smells in, respectively, 29.6%, 27.5%, 40.1%, and 31.5% of the total scripts.

In general, the most dominant security smell is Hard-coded secret, followed by Suspicious comment.

Given that the precision values for these smells tend to be the lowest (see Section 4.1.2), this sug-
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gests that many of these are false positives. For Ansible, the second most dominant smell is Admin

by default (5.7%). For Chef and the Mozilla dataset of Puppet scripts, the third most dominant smell

is Missing default case statement (2.1% and 9.9%). Since the accuracy of GLITCH for these smells is

high, this suggests that there is a substantial number of Ansible and Chef scripts that are affected by

these problems.

4.2.2 Threats to Validity

A threat to conclusion validity is that the identification of security smells in the oracle datasets are sus-

ceptible to the subjectivity of the raters. We mitigated this by using three raters, with two of them not

being authors of the paper and with experience in IaC technologies and/or cybersecurity. Also, we only

kept the classifications where at least two raters agreed.

A threat to internal validity is that, due to the complexity and generality of GLITCH, there may exist

implementation bugs in the codebase. We extensively tested the tool to mitigate this risk. Furthermore,

all our code and datasets are publicly available for other researchers and potential users to check the

validity of the results. Finally, the detection accuracy of GLITCH depends on the rules that we have pro-

vided in Table 3.1. These rules are heuristic-driven and can result in false positives and false negatives.

A threat to external validity is that, since we focus on Ansible, Chef, and Puppet scripts, our findings

may not be generalizable to other IaC technologies. Moreover, in its current form, our internal repre-

sentation might not be rich enough to detect other categories of security smells not considered in this

paper. We mitigated this risk by ensuring that the concepts modeled by the intermediate representation

are as general as possible and by choosing to demonstrate its validity using three different IaC tech-

nologies that, as shown in Table 2.2, have different characteristics (procedural vs declarative, different

configuration setup, etc.). Also, the classification of security smells used is subject to practitioner inter-

pretation and their relevance may vary from one practitioner to another. To mitigate this, we followed

classifications established by previous work [4, 10]. Finally, all the datasets used in our work are from

open-source projects and not from proprietary sources.
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In this chapter, we study the use of GLITCH to detect design & implementation smells in IaC scripts.

We use the same three IaC datasets as in Chapter 4, whose attributes are presented in Table 4.1.

Table 5.1 also presents the values for each attribute considering only the code GLITCH was able to

analyze in this study. These values were obtained from GLITCH’s output. The content of this chapter is

unpublished, but it is part of a tool paper that will be submitted soon [13]. We focus our evaluation on

the following questions:

RQ5.1. [Expressiveness] Is it possible to implement in GLITCH the detection of design & implementation

smells present in state-of-the-art tools and obtain similar results?

RQ5.2. [Frequency] How frequently do design & implementation smells occur in IaC scripts?

The replication package for the experiments in Sections 5.1 and 5.2 is available here:

https://doi.org/10.6084/m9.figshare.21407058.v1

5.1 Comparing GLITCH to state-of-the-art tools

We are interested in comparing GLITCH to the two state-of-the-art tools that detect design & implemen-

tation smells: Puppeteer [2], which detects smells in Puppet, and Schwarz et al’s tool, which detects

smells in Chef. To achieve this goal, we created two oracle datasets from the datasets described in

Table 5.1. The oracle datasets were created by randomly selecting 20 files for each smell, with the smell

being detected on each of the selected files by Puppeteer if we were handling Puppet scripts or Schwarz

et al’s tool if we were handling Chef scripts. This resulted in a total of 80 Puppet files and 160 Chef files.

Afterward, we executed GLITCH and the two state-of-the-art tools on these oracle datasets and ob-

tained the results shown in Table 5.2. We identified smells with the same path, category, and location

as reported by each tool. In some cases, the tools do not output the same line number, although they

fundamentally detect the same smell (e.g., one shows the line number of the atomic unit, and the other

shows the line number of the attribute). For these cases, we had to manually inspect the files and check

Puppet

Attribute Ansible Chef GH MOZ OST WIK

Repository Count
Total 681 439 219 2 61 11

GLITCH 681 439 219 2 61 11

IaC scripts
Total 108,509 70,939 10,009 1,613 2,840 2,845

GLITCH 102,780 29,723 9,776 1,613 2,840 2,845

LOC (IaC scripts)
Total 5,180,747 6,071,035 610,122 66,367 217,843 135,137

GLITCH 4,873,597 1,638,539 531,577 66,367 217,843 135,137

Table 5.1: Attributes of IaC Datasets. The GLITCH rows have the values for each attribute considering the code
GLITCH was able to analyze.
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Smells #{GLITCH ∩ Puppeeteer}
#Puppeeteer

(%)
#{GLITCH ∩ Puppeeteer}

#GLITCH
(%)

#{GLITCH ∩ Schwarz}
#Schwarz

(%)
#{GLITCH ∩ Schwarz}

#GLITCH
(%)

Avoid comments - - 100.0 100.0

Duplicate block - - 100.0 97.6

Improper alignment 98.4 89.9 33.3 42.9

Long resource - - 82.4 82.4

Long statement 100.0 91.4 100.0 100.0

Misplaced attribute 100.0 100.0 97.8 97.8

Multifaceted abstraction - - 100.0 57.1

Too many variables - - 40.0 80.0

Unguarded variable 100.0 92.3 - -

Average 99.6 93.4 81.7 82.2

Table 5.2: Comparison of GLITCH to state-of-the-art tools (Puppeteer [2] and Schwarz et al.’s tool [3]).
#{x ∩ y}/#y represents the fraction of smells detected by y that are also present in x.

whether the tools agree, which was the reason why we only selected a subset of files. The replication

package has a script that automatically solves the cases we found on this subset of files.

We verified that GLITCH can detect almost every smell detected by Puppeteer [2] (first column). The

value for Improper alignment is slightly below 100% because GLITCH does not consider the alignment in

hashes1 since these structures, when used as values, are still represented as strings in our intermediate

representation. The second column shows that Puppeteer detects a lower percentage of the smells

identified by GLITCH. For Improper alignment, the reason is that GLITCH, in contrast to Puppeteer,

follows the Puppet style guides,2 which state that the hash rocket for attributes in a resource should

be only one space ahead of the longest attribute name. For the other smells, we were not able to

conclude why Puppeteer was not able to detect them, however, the smells identified by GLITCH, from

our perspective, are true positives.

When verifying if GLITCH was able to detect the smells identified by the tool developed by Schwarz

et al. [3], there are two smells with lower percentage values: (1) Improper alignment and (2) Too many

variables (third column). The main reasons for each smell are: (1) the Schwarz et al.’s tool presents

false positives for attributes with names such as variables and attributes because they have structured

values which are indented in the lines following the name of the attribute; (2) GLITCH does not consider

variable references when calculating the ratio between variables and lines of code. Comparing the ability

of Schwarz et al.’s tool to detect the smells found by GLITCH (fourth column), there are two smells with

a lower percentage: (1) Improper alignment and (2) Multifaceted abstraction. The main reasons for the

lower values are: (1) GLITCH detects true positives that were not detected by the other tool and GLITCH

has some problems when handling blocks, such as conditionals, inside atomic units; (2) GLITCH finds

true positives that the other tool does not, since in the detection of this smell, the Schwarz et al.’s tool

does not handle multi-line strings and ignores the pipe character “|”.

1https://puppet.com/docs/puppet/latest/lang_data_hash.html
2https://puppet.com/docs/puppet/latest/style_guide.html
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5.2 Design & Implementation Smells Frequency

Tables 5.3 to 5.8 show the results of running GLITCH to detect design & implementation smells on the

datasets listed in Table 5.1.

Occurrences Overall, GLITCH detects 580,713 design & implementation smells for Ansible, 217,052

for Chef, and 61,766 for Puppet. For Ansible and Chef, the three most frequent smells are Avoid

comments, Duplicate block, and Long statement. Considering the four Puppet datasets, the most fre-

quent smells for Puppet are Avoid Comments, Improper Alignment, and Duplicate Block.

Smell density Overall, GLITCH detects 119.16 design & implementation smells per 1,000 LOC in

Ansible scripts, 132.47 for Chef, and an average of 67.10 for Puppet. For Ansible and Chef, the most

dominant smells are Avoid comments, Duplicate block, and Long statement. In the Puppet Github and

Puppet Openstack datasets, the most dominant smells are Avoid Comments, Improper Alignment, and

Duplicate Block. For the Puppet Mozilla and Wikimedia datasets, the smell Long Statement replaces

Improper Alignment in the most dominant smells.

Proportion of Scripts (Script%) GLITCH detects at least one design & implementation smell in

51.16% of Ansible scripts and 57.67% of Chef scripts. For Puppet, in the GitHub, Mozilla, OpenStack,

and Wikimedia datasets, GLITCH detects at least one of the smells in, respectively, 45.85%, 54.25%,

49.65%, and 52.97% of the total scripts. In Ansible and Puppet, even though the smell Duplicate block

has more occurrences than Long statement, the proportion of scripts where Duplicate block is detected

is lower. A similar case happens in Chef where the smell Duplicate block is the second most frequent

smell, but it is only detected on 5.52% of scripts. Contrariwise, the smell Improper alignment, which

is the fourth most frequent smell, is detected on 6.98% of scripts. One possible reason for the lower

proportion of scripts for Duplicate Block is that the detection of a Duplicate Block implies at least two

occurrences of this type of smell in the same script.

5.3 Discussion

In this section, we answer the research questions posed at the beginning of Chapter 5 and outline

potential threats to the validity of our work.

5.3.1 Answers to Research Questions

Given the results reported in Sections 5.1 and 5.2, we answer the research questions as follows:
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RQ5.1. [Expressiveness] Is it possible to implement in GLITCH the detection of design & implementation

smells present in state-of-the-art tools and obtain similar results? Yes. We demonstrate that

GLITCH can detect an average across all smells of 99.6% of the smells identified by Puppeeter

and 81.7% of the smells identified by Schwarz et al.’s tool. We also demonstrate that Puppeteer

detects 93.4% of GLITCH’s smells and that Schwarz et al.’s tool detects 82.2% of the smells

identified by GLITCH. The main reasons for disagreements are false positives/negatives by the

state-of-the-art tools and lack of granularity in the intermediate representation of GLITCH, which

is one of the future directions of our research (see Section 6.2). Overall, the agreement between

GLITCH and the state-of-the-art tools is high.

RQ5.2. [Frequency] How frequently do design & implementation smells occur in IaC scripts? GLITCH

detects at least one design & implementation smell in 51.16% of Ansible scripts, 57.67% of Chef

scripts, and an average of 50.58% of Puppet scripts between the four datasets. The high frequency

of the smell Avoid comments suggests that comments may be used as a deodorant to bad code

[28] in IaC scripts. When we consider the Chef scripts in our datasets, the smell Long statement is

detected on 13.21% of scripts and Improper Alignment on 6.98%. For the Puppet GitHub dataset,

the smell Long statement is detected on 7.48% of scripts and Improper Alignment on 12.62%.

These values suggest that the usage of style linters in the development of Chef and Puppet scripts

may need to increase. The smell Duplicate block is the second most frequent smell across all

technologies and the smell Multifaceted abstraction is detected on 6.22% of Ansible scripts, 5.14%

of Chef scripts, and an average between the four Puppet datasets of 3.84% of scripts. The high

frequency of both these smells suggests that abstractions should be used more often in IaC scripts.

5.3.2 Threats to Validity

A threat to conclusion validity is that the subset of scripts used to compare GLITCH to the state-of-the-

art tools was created by randomly selecting files for each smell, with the smell being detected on each of

the selected files, which may create bias. Instead of using GLITCH, we used the state-of-the-art tools to

detect the smells. Since our only goal was to compare GLITCH to these tools, we argue that the bias is

significantly reduced. A threat to internal validity is that, due to the complexity and generality of GLITCH,

there may exist implementation bugs in the codebase. We extensively tested the tool to mitigate this risk.

Furthermore, all our code and datasets are publicly available for other researchers and potential users

to check the validity of the results. A threat to external validity is that since we only compare GLITCH

to Puppeeteer and Schwarz et al’s tool, GLITCH may not be able to replicate other implementations of

these smells or implement other classes of smells. Also, since we focus on Ansible, Chef, and Puppet

scripts, our findings may not be generalizable to other IaC technologies.
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Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 427,686 87.76 39.76

Duplicate block 88,430 18.14 7.94

Improper alignment 480 0.10 0.13

Long Resource 6,441 1.32 3.24

Long statement 39,075 8.02 10.43

Misplaced attribute 0 0.00 0.00

Multifaceted Abstraction 14,182 2.91 6.22

Too many variables 299 0.06 0.29

Unguarded variable 0 0.00 0.00

Combined 580,713 119.16 48.93

Table 5.3: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Ansible dataset.

Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 186,916 114.07 47.29

Duplicate block 10,434 6.37 5.52

Improper alignment 4,187 2.56 6.98

Long Resource 688 0.42 1.74

Long statement 8,250 5.03 13.21

Misplaced attribute 3,099 1.89 5.92

Multifaceted Abstraction 2,551 1.56 5.14

Too many variables 190 0.12 0.64

Unguarded variable 0 0.00 0.00

Combined 217,052 132.47 57.67

Table 5.4: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Chef dataset.

Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 22,208 41.78 31.20

Duplicate block 2,066 3.89 3.23

Improper alignment 6,471 12.17 12.62

Long Resource 170 0.32 1.21

Long statement 1,689 3.18 7.48

Misplaced attribute 441 0.83 2.88

Multifaceted Abstraction 648 1.22 4.47

Too many variables 297 0.56 3.04

Unguarded variable 1,586 2.98 4.01

Combined 35,868 67.48 45.85

Table 5.5: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Puppet GitHub (GH)
dataset.
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Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 4,113 61.97 48.73

Duplicate block 356 5.36 4.40

Improper alignment 103 1.55 4.22

Long Resource 40 0.60 1.67

Long statement 193 2.91 6.70

Misplaced attribute 1 0.02 0.06

Multifaceted Abstraction 53 0.80 2.85

Too many variables 48 0.72 2.98

Unguarded variable 16 0.24 0.68

Combined 4,969 74.86 54.25

Table 5.6: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Puppet Mozilla (MOZ)
dataset.

Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 8,132 37.33 34.82

Duplicate block 535 2.46 4.54

Improper alignment 545 2.50 10.74

Long Resource 61 0.28 1.90

Long statement 314 1.44 7.75

Misplaced attribute 56 0.26 1.41

Multifaceted Abstraction 218 1.00 4.47

Too many variables 180 0.83 6.34

Unguarded variable 122 0.56 2.50

Combined 10,263 47.12 49.65

Table 5.7: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Puppet OpenStack (OST)
dataset.

Smell Occurrences Smell density (Smell/KLoC) Proportion of scripts (%)

Avoid comments 9,541 70.60 46.33

Duplicate block 257 1.90 1.90

Improper alignment 236 1.75 5.98

Long Resource 40 0.30 1.16

Long statement 348 2.58 7.56

Misplaced attribute 1 0.01 0.04

Multifaceted Abstraction 124 0.92 3.59

Too many variables 51 0.38 1.79

Unguarded variable 30 0.22 0.98

Combined 10,666 78.94 52.97

Table 5.8: Smell occurrences, Smell Density (SD), and Proportion of Scripts (PS) for the Puppet Wikimedia (WIK)
dataset.
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6.1 Conclusions

In this thesis, we present the first automated polyglot code smell detection framework for IaC – GLITCH.

GLITCH reduces the effort to write code smell analyses for multiple IaC technologies and avoids incon-

sistencies between implementations.

We start by explaining what Infrastructure as Code (IaC) is and describe its ecosystem. IaC suffers

from the same problems as traditional software engineering, namely, bugs in scripts, which led us to

study state-of-the-art analyses to detect problems in IaC scripts. In our study of these analyses, we

discovered that they all have a problem in common; they are implemented only to a single technol-

ogy. However, the IaC technology ecosystem is scattered and for that reason it is important that code

analyses are implemented for multiple technologies. We reached the question “How can we implement

polyglot analyses for IaC scripts?”. The idea we found to solve this problem was to create an interme-

diate representation to abstract IaC scripts on which analyses would execute. To gain confidence in our

idea, we studied approaches in the IaC domain and in other domains of Computer Science that use

intermediate representations to solve similar problems.

We present our solution called GLITCH, a new technology-agnostic framework that allows polyglot

smell detection in IaC scripts, by transforming them into a new intermediate representation on which

different smell detectors can be defined. GLITCH currently supports the detection of nine security smells

and nine design & implementation smells in Puppet, Ansible, or Chef scripts. We developed a Visual

Studio Code extension that allows developers to have immediate visual feedback on the smells detected

by GLITCH. To ascertain the value of our framework, we conducted a study for the two classes of smells

that we implemented.

In our study about security smells, our evaluation not only shows that GLITCH can reduce the effort

of writing security smell analyses for multiple IaC technologies, but also that it has higher precision

and recall than the current state-of-the-art tools. The study shows that it is possible and beneficial

to consistently detect security smells across different IaC technologies. We conducted a large-scale

empirical study where we consider the nine security smells documented in the literature. We found that

all categories of security smells are identified across all datasets, and we identified some smells that

might affect many IaC projects. Some of the rules for security smells currently implemented have very

high precision and recall, and have been used to identify a considerable number of smells in our study.

This suggests that IaC practitioners can benefit if they focus first on smells of those specific categories

(e.g., Admin by default and Missing default case statement).

We also implemented the detection of nine design & implementation smells in GLITCH and com-

pared it to existing state-of-the-art tools. We checked the proportion of output given by GLITCH that

is equivalent to the output given by other tools. We were able to conclude that GLITCH can express

the same detection techniques as other tools and obtain similar results. We conducted a large-scale
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empirical study where we consider the nine design & implementation smells that we implemented. We

found that around 51% of all IaC scripts suffers from at least one of the design & implementation smells

with the most frequent smells being Avoid comments, Duplicate block, and Long statement for Ansible

and Chef, and Avoid comments, Improper alignment, and Duplicate block for Puppet. We conclude that

the usage of style linters may need to increase and that abstractions should be used more often in IaC

scripts.

The main practical implication of this thesis is that it is now possible to implement new rules to detect

code smells that can be immediately applied to a variety of IaC technologies. Also, during the develop-

ment of this work, it became clear that there are no open replication packages that IaC researchers and

practitioners can use. Therefore, we constructed open-source replication packages that can be used

by the community. We argue that GLITCH and the datasets that we created and made available in our

replications packages are very valuable assets for driving reproducible research in the analysis of IaC

scripts.

Finally, we answer our research questions as follows:

RQ1: Is it possible to create a model which abstracts different IaC technologies? Are the
concepts expressed in the model relevant enough to apply different analyses from the literature
to it?

Yes, our intermediate representation can abstract different IaC technologies. We imple-
mented analyses in GLITCH to detect nine security smells and nine design & implementation
smells, which proves that the concepts expressed in our model are relevant enough to implement
different analyses from the literature. We also evaluate our implementation with three large
datasets containing 196,755 IaC scripts and 12,281,251 LOC. This strongly suggests that the
intermediate representation is robust enough to support a large variety of IaC scripts.

RQ2: What limitations do we find when creating a model which abstracts IaC concepts between
different technologies?

One limitation is the representation of technology-specific aspects (i.e. aspects that can
not be abstracted between multiple IaC technologies). We try to mitigate this limitation with
configurations that can be easily changed between technologies (see Section 3.6.7). For
instance, the detection of the smell Multifaceted abstraction requires knowing which types of
atomic units execute shell scripts. These types of atomic units change between technologies
and for that reason GLITCH has a configuration to define them. Also, we allow the definition
of technology-specific behavior for the detection of a smell. Another limitation is related to
the granularity of the model. Currently, the intermediate representation used by GLITCH
only considers high-level structures. However, some analyses require more knowledge about
low-level elements. For instance, the smell Improper alignment can be found on Puppet hashes,
but since GLITCH represents all values as strings, we are not able to detect it. Future work
should increase the granularity of the intermediate representation.
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RQ3: Are we able to use our framework to obtain similar results to the analyses in the state-of-
the-art?

Yes. For security smells, we were able to obtain higher precision and recall than state-of-
the-art tools. For design & implementation smells, GLITCH was able to detect the majority of
the smells that were detected by state-of-the-art tools. The empirical studies conducted on both
classes of smells are in agreement with studies in the literature.

6.2 Future Work

We identify three main challenges to address in the future:

1. Quality. This challenge is about increasing the precision and recall of GLITCH. For security

smells, the definitions of some rules (e.g., those that use many keywords) still report a consid-

erable number of false positives (e.g., Hard-coded secret). Future work should be invested in

improving the quality of the rules that GLITCH implements. Recent work by Reis et al. has im-

proved some of the rules for security smells and presented three new rules [60]. Since the authors’

implementation only considers Puppet, it would be interesting to implement these improvements

on GLITCH. Addressing this challenge is perhaps the most important step toward real-life adoption

of GLITCH.

2. Scope. This challenge is about extending GLITCH to support more IaC technologies and detect

more vulnerabilities. For example, it would be interesting to extend GLITCH to support Terraform

and to support the detection of faults regarding ordering violations [7] or intra-update sniping vul-

nerabilities [8]. Also, exploring automated repair techniques is an interesting avenue for future

work. The extension of the intermediate representation to be more granular is another important

aspect to consider. Every value contained in the current components of the intermediate represen-

tation is represented as a string, but we should have a more structured approach for these values

(e.g., we should model lists, dictionaries, integers, and operations between values). By address-

ing this challenge, we will be in a better position to provide a more precise characterization of the

expressiveness of the smell detection engine.

3. Development process. This challenge is about integrating these tools into the development

process, thus contributing to real-life adoption. Beyond the extension for Visual Studio Code that

we already developed, the following could bring added value: integration with continuous integra-

tion (CI) processes (e.g., GitHub actions), integration with popular IDEs, and explainable warn-

ings. Since GLITCH is much faster than other state-of-the-art tools for analyzing Chef and Puppet

scripts, it becomes more appealing to integrate GLITCH as part of a CI workflow [61].

73



74



Bibliography

[1] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption, support, and challenges of

Infrastructure-as-Code: Insights from industry,” in 2019 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2019, pp. 580–589.

[2] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration code smell?” in 2016

IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR). IEEE, 2016, pp.

189–200.

[3] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in Infrastructure as Code,” in 2018 11th

International Conference on the Quality of Information and Communications Technology (QUATIC).

IEEE, 2018, pp. 220–228.

[4] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells in Infrastructure as Code

scripts,” in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,

2019, pp. 164–175.

[5] J. Fryman, “DNS outage post mortem,” Jan 2014, accessed: 3 May 2022. [Online]. Available:

https://github.blog/2014-01-18-dns-outage-post-mortem/

[6] R. Hersher, “Amazon and the $150 Million typo,” Mar 2017, accessed: 3 May

2022. [Online]. Available: https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/

amazon-and-the-150-million-typo?t=1651588365675

[7] T. Sotiropoulos, D. Mitropoulos, and D. Spinellis, “Practical fault detection in Puppet programs,” in

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp.

26–37.
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In this appendix, we describe the techniques implemented in GLITCH to detect the nine design &

implementation smells described and studied in Chapters 3 and 5. We did not include this information

in this work’s main body since our focus is on the generalization of smells to multiple IaC technologies.

These detection techniques were already studied by Schwarz et al. [3] and we only adapted them to fit

into our framework and intermediate representation. Our goal was to compare GLITCH to the state-of-

the-art.

Algorithms A.1, A.2, and A.3 describe the detection techniques applied to identify design & imple-

mentation smells in unit blocks, atomic units, and comments, respectively. To detect the nine design &

implementation smells we selected, we do not need to check the remaining components of our interme-

diate representation. We consider the global variable config to be defined as an object that contains the

configurations for the current run of the algorithm being executed. The configurations vary according to

the IaC technology being analyzed. In the pseudo-code presented, we simplify how we return the smells

detected by only adding the name of the smell to the list errors. In the implementation of these algo-

rithms, other information, such as the line and a snippet of the source code where the smell occurred,

should be provided.

In Algorithm A.1, the function getVariableNames returns all the variable names defined in a unit

block. The same applies to the function getStrings, but instead of variable names, it returns all the string

literals. The function readLines receives a path for a file, reads it, and returns a list with each line of the

file. The variable VAR REFER SYMBOL, which is defined in the configuration, refers to the symbol used

to interpolate a variable in a string. Chef uses the symbol # and Puppet uses the symbol $. In Ansible,

variables are interpolated by using {{VARIABLE NAME}}, which avoids the smell Unguarded Variable.

For this reason, the variable VAR REFER SYMBOL is not initialized. The function checkDuplicateBlock

is defined in Algorithm A.8. The functions checkImproperAlignment and checkMisplacedAttribute are

defined in Algorithms A.4 and A.5 and Algorithms A.6 and A.7, respectively. The techniques to detect

the smell Improper Alignment and Misplaced Attribute are technology-dependent and are defined on the

configuration. These smells do not apply to Ansible scripts.

In Algorithm A.2, the variable EXEC is a list with the types of atomic units that execute shell scripts.

The values for the variable EXEC are different for Ansible, Chef, and Puppet. The functions checkImpr-

operAlignment and checkMisplacedAttribute are defined in the same way as in Algorithm A.1.

The variable FIRST CODE LINE used in Algorithm A.3 contains the number of the first line that is

not a comment or a white space.
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Algorithm A.1 Check implementation & design smells in a Unit Block
1: errors← []
2: variableNames← getV ariableNames(x)
3: strings← getStrings(x)
4:
5: linesOfCode← readLines(x.path)
6: for each line ∈ linesOfCode do
7: if ’\t’ ∈ line then
8: errors.append(’improperAlignment’)
9: end if
10: if len(line) > 140 then
11: errors.append(’longStatement’)
12: end if
13: end for
14:
15: if len(x.variables)/len(linesOfCode) > 0.3 ∧ u.type ̸= V ARS then
16: errors.append(’tooManyVariables’)
17: end if
18:
19: if config.V AR REFER SYMBOL ̸= None then
20: for each string ∈ strings do
21: for each var ∈ variableNames do
22: if config.V AR REFER SYMBOL + var ∈ string then
23: errors.append(’unguardedVariable’)
24: end if
25: end for
26: end for
27: end if
28:
29: if checkDuplicateBlock(x) then
30: errors.append(’duplicateBlock’)
31: end if
32:
33: if config.checkImproperAlignment(x) then
34: errors.append(’improperAlignment’)
35: end if
36:
37: if config.checkMisplacedAttribute(x) then
38: errors.append(’misplacedAttribute’)
39: end if
40:
41: return errors

Algorithm A.2 Check implementation & design smells in an Atomic Unit
1: errors← []
2:
3: if x.type ∈ config.EXEC then
4: for each attr ∈ x.attributes do
5: if ’&&’ ∈ attr.value ∨ ’;’ ∈ attr.value ∨ ’|’ ∈ attr.value then
6: errors.append(’multifacetedAbstraction’)
7: end if
8: end for
9: end if
10:
11: if x.type ∈ config.EXEC ∧ count(x.code, ’\n’) > 7 then
12: errors.append(’longResourse’)
13: end if
14:
15: if config.checkImproperAlignment(x) then
16: errors.append(’improperAlignment’)
17: end if
18:
19: if config.checkMisplacedAttribute(x) then
20: errors.append(’misplacedAttribute’)
21: end if
22:
23: return errors

Algorithm A.3 Check implementation & design smells in a Comment
1: errors← []
2: if x.line >= FIRST CODE LINE then
3: errors.append(’avoidComments’)
4: end if
5: return errors
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Algorithm A.4 Improper Alignment Detection in
Chef scripts
1: function CHECKIMPROPERALIGNMENT(x)
2: if isAtomicUnit(x) then
3: identation← None
4:
5: for each attr ∈ x.attributes do
6: fst← attr.code.split(’\n’)[0]
7: currIdent← len(fst)− len(fst.lstrip())
8: if identation ̸= None then
9: identation← currIdent
10: else if identation ̸= currIdent then
11: return true
12: end if
13: end for
14: end if
15:
16: return false
17: end function

Algorithm A.5 Improper Alignment Detection in
Puppet scripts
1: function CHECKIMPROPERALIGNMENT(x)
2: lName, lIdent, lSplit← 0, 0, ”
3:
4: for each attr ∈ x.attributes do
5: if len(x.name) > lName ∧ ’=>’ ∈ x.code then
6: lName, split ←

len(x.name), x.code.split(’=>’)[0]
7: lIdent, lSplit← len(split), split
8: end if
9: end for
10:
11: if lSplit ̸= ”” then
12: return true
13: else if len(lSplit)− 1 ̸= len(lSplit.rstrip()) then
14: return false
15: end if
16:
17: for each attr ∈ x.attributes do
18: fst← attr.code.split(’\n’)[0]
19: curArrow ← len(attr.code.split(’=>’)[0])
20: if curArrow ̸= lIdent then
21: return false
22: end if
23: end for
24:
25: return false
26: end function

Algorithm A.6 Misplaced Attribute Detection in
Chef scripts
1: function CHECKMISPLACEDATTRIBUTE(x)
2: if isAtomicUnit(x) then
3: order ← []
4:
5: for each attr ∈ x.attributes do
6: if attr.name = ’source’ then
7: order.append(1)
8: else if attr.name = ’owner’ ∨ attr.name = ’group’

then
9: order.append(2)
10: else if attr.name = ’mode’ then
11: order.append(3)
12: else if attr.name = ’action’ then
13: order.append(4)
14: end if
15: end for
16:
17: if order ̸= sorted(order) then
18: return true
19: end if
20: end if
21:
22: return false
23: end function

Algorithm A.7 Misplaced Attribute Detection in
Puppet scripts
1: function CHECKMISPLACEDATTRIBUTE(x)
2: if isAtomicUnit(x) then
3: i← 0
4: for each attr ∈ x.attributes do
5: if attr.name = ’ensure’ ∧ i ̸= 0 then
6: return true
7: end if
8: i← i + 1
9: end for
10: else if isUnitBlock(x) then
11: optional← False
12: for each attr ∈ x.attributes do
13: if attr.value ̸= None then
14: optional← True
15: else if optional = True then
16: return true
17: end if
18: end for
19: end if
20:
21: return false
22: end function
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Algorithm A.8 Simplified Duplicate Block Detection
1: function CHECKDUPLICATEBLOCK(x)
2: if isUnitBlock(x) then
3: code← read(x.path)
4: blocks← set()
5:
6: for i← 0 to len(code)− 150 do
7: h← hash(code[i : i + 150])
8: if h /∈ blocks then
9: blocks.update(h)
10: else
11: return true
12: end if
13: end for
14: end if
15:
16: return false
17: end function
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Figure B.1: GLITCH’s Visual Studio Code extension warning about the detection of three security smells:
Hard-coded secret, Hard-coded user, and Admin by default.
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