
Enabling Censorship-Resistant Tor Communications through WebRTC-Based
Covert Channels

(extended abstract of the MSc dissertation)

Francisco Manuel Almeida Silva
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professor Nuno Santos and Professor Diogo Barradas

Abstract—The Tor anonymity network is widely used by jour-
nalists and whistleblowers to safely share sensitive information.
This has led repressive regimes to block access to Tor by
employing extensive network-level interference techniques. Tor
pluggable transports such as meek or obfs4 aim to help Tor
users in bypassing simple blocking mechanisms by leveraging
a bridge to tunnel Tor traffic through either an inconspic-
uous carrier protocol, e.g., HTTPS, or an alternative traffic
obfuscation protocol. However, covert tunnels like these can be
accurately identified using machine learning classifiers. This
detection approach excels even when the network flows are ob-
fuscated or encrypted as it only needs to compute the statistical
properties of flows. This work proposes TorCloak, a new Tor
pluggable transport that offers strong resistance against traffic
analysis attacks based on state-of-the-art machine learning
techniques. To this end, we harness recent innovations in
censorship-resistant communication to securely tunnel covert
Tor traffic through video streaming applications based on
WebRTC technology. Covert channels created this way prevent
a censor from distinguishing TorCloak traffic from unmodified
WebRTC streams using deep packet inspection or machine
learning classifiers. In this report, we present a complete
instrumentation study of the WebRTC protocol and the design
and implementation of the TorCloak system. Through extensive
experimental evaluation, we also show TorCloak’s resistance to
traffic analysis while delivering good performance.

I. INTRODUCTION

Tor[1] is a widely used overlay network that allows a user
to browse the Internet anonymously, without exposing its IP
address to the destination. When a user wants to connect
to a web page, an encrypted path is constructed, passing
along at least three servers. The communication is forwarded
through said servers and delivered to the final destination
(for example, a web server).
Since Tor allows for these kinds of anonymous communi-
cation, several state-level adversaries have started targeting
Tor and making strong attempts at identifying and blocking
this kind of traffic. There is a growing sophistication of
techniques that censor states can employ to achieve this, such
as blocking IP addresses of Tor relays or using DPI (Deep
Packet Inspection) to recognize traffic generated by Tor
clients and blocking it. There are however some advances
on Tor’s side also to try to disguise Tor traffic and avoid this
kind of blockage, namely by leveraging the so-called Plug-
gable Transports [2]. Pluggable transports such as meek [3]

or obfs4 [4] aim to help Tor users in bypassing simple block-
ing mechanisms by leveraging a Bridge to tunnel Tor traffic
through either an inconspicuous carrier protocol. However,
recent advancements in traffic analysis [5] have shown that
covert tunnels like these can be accurately identified using
machine learning (ML) classifiers.
In this work, we propose to build TorCloak: a new technol-
ogy that will allow Internet users to circumvent Tor blocking
and give users unrestricted access to Tor while, simultane-
ously, preventing these communications from being detected
by government-controlled ISPs. TorCloak will consist of a
new Tor pluggable transport (and surrounding ecosystem)
that will establish covert channels between Tor browsers
and TorCloak bridges, which act as proxies to the free
Tor network. TorCloak will set up these covert channels by
piggybacking Tor traffic on the video streams of widely-used
web conferencing services based on WebRTC technology,
e.g., meet.jit.si.
To this end, we propose to leverage Protozoa [6]. Currently,
Protozoa can establish high-performing, traffic analysis-
resistant covert channels over encrypted WebRTC streams to
tunnel TCP/IP payload traffic to the open Internet. Our idea
is then to harness this capability in our system to securely
transmit Tor traffic between Tor clients and bridges.
In order to provide a secure and inconspicuous covert chan-
nel over WebRTC in the presence of a sophisticated traffic
analysis-capable adversary, we need to overcome several
challenges. The first challenge of this work is how to encode
Tor data across multiple WebRTC implementations.
WebRTC has been currently adopted by numerous services
that integrate real-time communication capabilities. This
integration has been greatly facilitated by the simplicity of
the JavaScript WebRTC API [7]. This creates a lot of oppor-
tunities to create tools similar to our proposal, but it does
also introduce a lot of variation on the implementation used.
Since WebRTC is an open-source project, each WebRTC-
based web streaming application can implement its own
variation of it. We need to encode our covert data while
maintaining the overall structure of the WebRTC protocol,
to avoid errors in the client side or possibly in the WebRTC
gateway. These errors would severely impact our tool’s
throughput as well as make it easier for the adversary to

1

Censored Region Free Region

Alice (Client) Bob (Proxy)

Covert Channel
WebRTC media stream

Signaling
Signaling

SIP	servers

Packet eavesdrop and
active manipulation

Censor

Figure 1. WebRTC covert tunnel over a Whereby call.

detect out of the ordinary WebRTC video streams and block
them. Secondly, we need to balance performance and
resistance against traffic analysis, since we cannot use the
full space of the WebRTC data structure, the throughput of
our covert channel is reduced drastically. There is a inherent
trade-off between the bandwidth of the covert channel and
how resistant to errors and traffic analysis it is. It is important
to find a reasonable balance so that the system still has
enough bandwidth to allow users to use it for typical Internet
tasks. Lastly, we need to design a practical TorCloak
bridge distribution service to guarantee a secure and stable
support to our tool. We need to, once again, find the balance
between having a system easy to find for any user that needs
it while maintaining some difficulty for a censor to identify
it and block it.

II. BACKGROUND AND RELATED WORK

In this section we provide an overview of the existing
system, which TorCloak is based on: Protozoa, the existing
approach for creating WebRTC-enabled covert tunnels.

A. Encoded Media Tunneling

Protozoa [6] is a new tool that, by using web streaming
application-based WebRTC, creates a covert tunnel between
the user located on the censored region and another one
(e.g. a friend) on an uncensored region. Protozoa employs a
technique named encoded media tunneling which consists of
embedding the covert data into the already encoded video
frames, after, for example, a lossy compression algorithm
has been applied. This allows it to highly boost the band-
width of the covert channel, since data will not be going
through any kind of compression algorithm after.
The general operation of Protozoa can be grasped with the
help of Figure 1 which shows two Internet users. One of
them (the client) is located in a censored region where
the access to certain content or services is blacklisted by
a state-level censor who can inspect and control all the
network communications. The client intends to overcome
these restrictions and access blocked content without the
censor’s awareness. This will be achieved with the help of
a trusted user (e.g., a family member) located in the free
Internet region who will act as a proxy.

Protozoa creates a high-performance covert channel
(≈1.4Mbps) between the client and the proxy such that the
former can transparently tunnel through all the IP traffic
generated between local networked applications (e.g., a web
browser) and remote Internet destinations (e.g., Youtube). To
create such a covert tunnel, the two users must establish a
video call using a WebRTC-enabled streaming website, such
as Whereby (https://whereby.com). As it is common in
such services, one of the users must first create a chatroom,
obtain a corresponding URL identifier, and share that URL
with the other user via some out-of-band medium (e.g., SMS
or email). Upon receiving that URL, the invited user can
then join the chatroom and a video call is initiated. At
this point, the WebRTC stack implementation of each of
the users’ browsers engages with the Whereby servers into
the execution of WebRTC-specific signaling protocols that
guarantee the authentication of both communicating peers
and the integrity and confidentiality of the ensuing peer-to-
peer encrypted video transmission between them.
Protozoa replaces the bits of the encoded video signal after
the input has been compressed by the WebRTC video codec,
helping to increase the capacity of the channel, as well as its
resistance against traffic analysis. It does this by leveraging
two hooks built into the WebRTC stack – upstream and
downstream – which can, respectively intercept outgoing
frame data after being processed by the video engine, and
intercept incoming data frames right after the transport layer
has reconstructed an encoded frame.
Having this design allows Protozoa to have the following
advantages: it can achieve a channel bandwidth capacity
in the order of 1.4 Mbps while providing strong resistance
to traffic analysis. The evaluation results showed that if a
censor would like to block 80% of all Protozoa flows it
would erroneously flag approximately 60% of all legitimate
traffic. Protozoa does however have its limitations as well:
On its own, Protozoa cannot perform the discovery of trusted
proxies. It relies on the user inside the censored region to
know a contact outside of the censored region, in who he
can trust and rely on to be his proxy. It does not possess any
mechanism does matches users to proxies in an automated
way.

III. INSTRUMENTATION FRAMEWORK FOR WEBRTC
AND VP8/VP9

In this section, we present a detailed explanation of our
instrumentation framework for the WebRTC Code Stack.

A. WebRTC Gateways
WebRTC calls are, by default, peer-to-peer: that is, every
peer sends its video and audio stream to every other peer,
in a mesh-like configuration. However, this type of solution
is not scalable beyond a few participants [8], [9]. Another
major problem of WebRTC peer-to-peer calls was IP address
leakage [10], [11]. As it obvious, for the basis of WebRTC
to work each peer must know the other peers’ IP address
in order to establish a connection. In the early days of the
Internet this might not have been a problem, but now, with

2

all of the user’s concerns with privacy, it’s a huge deal. You
might not want to share your IP address with your video call
peer or peers. In order to solve these problems, most popular
WebRTC services use media servers, called gateways, to
protect and scale video calls for many participants [12].
These are usually called WebRTC gateways: media servers
that become a central management machine for the video
call, communicating with each peer individually. This con-
figuration allows each peer to send their stream to the central
server instead of sending to every other peer. It highly
reduces resource consumption and avoids a direct connection
between each peer, avoiding possible IP address leakage.
Basically, each participant has a peer-to-peer connection
with the gateway.
There are two main configurations of gateways used by
popular WebRTC services:
• MCU (Multipoint Control Unit) [13]: a server which mixes

all of the incoming stream of the multiple peers connected
to them and sends back a single stream to the participants,
using a topology called Point-to-multipoint [14].

• SFU (Selective Forwarding Unit) [15]: the most used
approach, based on a technique known as simulcast [16].
SFUs implementations vary but most can implement
different techniques to manage the audio and video
streams of each peer according to their connectivity and
hardware. SFUs allow different peers to have different
speeds/resolutions of video streams according to their
network’s capabilities.

It is however important to note that WebRTC gateways
implementations are not always exactly like the described
implementation - different WebRTC services adapt their
implementation according to their needs and infrastructure,
not following any specific implementation standard, as we
noted during our testing, and will now describe. Most
WebRTC services do not exactly publish how their services
work internally and do not share implementations of their
gateways. This makes it hard for developers and testers to
make use of their structure, since it basically becomes a
black box. In the next section we will describe our process
to instrument WebRTC.

B. Understanding WebRTC Video Frame Flows

WebRTC is built on top of an open standard. It is constantly
growing and being developed in several different program-
ming languages. For this reason, specially for someone who
is not familiarized with WebRTC, it’s particularly hard to
find specific documentation about the code and it’s flow,
without actually following the code function by function.
For this particular reason, we had the need to create an
instrumentation tool that would allow us to better understand
and debug the whole WebRTC C++ Code Stack. This tool
will serve as a complement to the already existing WebRTC
statistical and logging capabilities [17].
One of the first important steps to master WebRTC is
to figure out the actual flow the program takes during a
videocall. This allows us to visualize each function and

better understand where certain errors may be occurring.
To do this, we placed several variables across the WebRTC
function following its function calling. This allowed us to re-
construct two of the main flow paths of WebRTC: receiving
and sending of video frames and packets. These two flows
are crucial in our context and in the development of similar
multimedia covert streaming tools based on WebRTC. T
It also important to note two key definitions to understand
the flows. There are two types of data structures used in
WebRTC sending and receiving:
• RTP Frames: actual encoded video frames, with a larger

size, already processed by the video engine and codec and
ready to be sent

• RTP Packets: pieces of video frames, with a reduced size.
They are sent through the network and reconstructed in
the receiver end to create a video frame again.

The tool is composed of several simple incremented coun-
ters, placed in different locations of the WebRTC code stack,
and incremented each time that piece of code runs.This
variables allow not only to confirm the path of execution of
the WebRTC program but also to check for possible errors in
frame or packet processing, why these errors are occurring
and detect whether they are locally generated or possible
due to the presence of a WebRTC gateway.

C. Instrumenting the WebRTC Receiving and Sending Flows

Taking a deeper dive into the receiving of a frame in the
WebRTC Code Stack:
1) The first step is toretrieve the actual packets from the

host’s network and construct or RTP Packets.
2) The packets are then routed through several func-

tions for processing until they are actual recon-
structed into frames and fed to RtpVideoStreamRe-
ceiver2::OnAssembledFrame()

3) Finally, right before being routed outside of WebRTC’s
control and onto the actual screen of the user, the frames
are inserted into a buffer to then be routed to the user’s
scren

The key point to retrieve here is that we want to make
sure that our counters are placed right on each edge of the
WebRTC path. What we mean by this is we want to make
sure that we can account for a packet right as it enter the
WebRTC scope and account for a frame right before it leaves
the scope of WebRTC. This way we can make sure that any
possible errors or packet loss that occurs inside of our host’s
WebRTC scope we can detect and understand why. It also
makes sure that if the packet loss or any other error is due
to some outside entity not related to our host, we can be
aware of that. For example, if we see that in our sender end
we are sending 10 packets to the network but only receiving
5 in the receiver end of the WebRTC scope, we are sure that
any possible issue that is occurring is unrelated to WebRTC
itself.
Now analyzing the sending flow of a frame in the WebRTC
program flow:

3

1) The first function will receive a video frame from the
input device, which could be a webcam or some virtual
emulator.

2) WebRTC will then process the frame and encode it
according to the configured video codec, in this example,
VP9.

3) After the encoded process has been done, the frame is
ready to be sent through the network.

4) The frame is then transformed into multiple packets that
can then be sent through the network onto the receiving
end.

In summary, the goal of instrumenting WebRTC in this form
is to allow developers and researchers to easily understand
the basis of the WebRTC infrastructure and design without
the need to read through pages and pages of technical docu-
mentation. Specifically, we intend to shed light into the most
important and critical areas of code for the development of
a multimedia covert streaming tools based on WebRTC. For
this, it is important to be able to insert covert data without
disrupting previous video encoding or other processes that
can lead to errors and discarding of frame, worsening the
tool’s throughput.

IV. TORCLOAK

In this section, we present the design and implementation of
TorCloak, our proposed new Tor Pluggable Transport that
leverages WebRTC services to deploy covert channels to
bypass censorship.

A. Design Goals and Threat Model

Goals : The overall goal of TorCloak is to securely by-
pass Tor traffic censorship imposed by an adversary using
advanced traffic analysis techniques. Such an adversary is
assumed to actively attempt to detect streams that make
use of TorCloak to bypass its censorship mechanisms and
actively disrupt and tear down those streams. The design of
TorCloak is driven by the following sub-goals:
1) Unobservability: A censor must not be able to distin-

guish regular WebRTC videocall streams from streams
carrying covert data.

2) Unblockability: There must be significant collateral
damage to a countries’ social and economic status if a
censor attempts to block the carrier WebRTC application
upon which TorCloak sits.

3) Video-carrier independence: TorCloak’s encoding strat-
egy should be able to allow it to work under any
WebRTC-based carrier application.

4) Reasonable performance: TorCloak must achieve suffi-
cient performance for allowing most typical Internet tasks
(e.g. exchange e-mails, upload files, watch standard to
high-resolution videos).

5) Uphold Tor’s anonymity properties: Since we are
building our system to use Tor traffic, it is crucial that
it maintains the many security and privacy features of
the Tor Network and does not pose a threat to the Tor
infrastructure.

Threat model: : In the context of TorCloak, the goal of the
adversary is to detect and block the usage of the system,
without jeopardizing legitimate WebRTC connection that
can be vital to the country’s economy. We assume that
the adversary is a state-level censor, able to observe, store,
interfere with, and analyze all the network traffic of the
Internet infrastructure originated from TorCloak endpoints,
if within the censor’s jurisdiction. The adversary is also able
to block generalized access to remote Internet services it
deems sensitive, such as the Tor Network. The censor is
considered to have advanced tools based on Deep Packet
Inspection (DPI) and statistical traffic analysis to detect and
block these services.
However, several attacks are out of scope. We assume
that the censor does not have control and access over the
used WebRTC gateways. In other words, the censor cannot
observe the video streams and evaluate whether the video
streams contain covert data or not. Secondly, we deem
the adversary to be computationally bounded and unable
to decrypt any encrypted traffic for services it does not
control, such as Tor Traffic. The adversary’s control is also
limited to the network: it has no control over the software
installed on end-user computers and does not have the
power to deploy rogue software on these machines, with
the purpose of monitoring systems on network edges. Thus,
TorCloak’s users and bridges are assumed to be executing
trusted software. Also, as mentioned earlier, the adversary
will only seek to rapidly disrupt and tear down traffic which
is suspected of carrying covert channels, and it will refrain
from blocking the carrier application all together, avoiding
the blockage of an important and highly used service by
the population and damaging its economy. Lastly, we also
assume the censor has no control over the Tor network and
its infrastructure, and so, cannot easily control or observe
any of the traffic after it enters or exits the Tor Network.

B. Architecture
Figure 2 depicts the general architecture of TorCloak. Tor-
Cloak makes use of the WebRTC framework, which handles
the signaling and establishment of video calls between
the client and bridge. The system itself consists of three
components (highlighted in green shade): client, bridge and
broker. The client runs a Tor proxy that exposes a SOCKS
interface to local applications, e.g., the Tor Browser or
Tor’s command line interface. The client then tunnels away
local Tor traffic by embedding it into video frames using
the Protozoa encoders and sending them through the video
stream of a carrier WebRTC-based application (e.g. Jitsi
Meet). At the other end of this tunnel, a bridge routes the
then already decoded Tor traffic to a Tor relay so it can then
be forward to its final destination. The broker coordinates all
of the bridges composing TorCloak’s bridge infrastructure
and runs a directory service that allows users to locate
available bridges.
To illustrate the process, Figure 2 shows Alice, a user
located in a censored region controlled by a state-level
adversary, using a TorCloak bridge located in a free Internet

4

Censored Region Free Region

TorCloak
Client PT

Broker

TorCloak
Bridge PT

c) Sends
random

Chatroom ID
a) Register bridge

availability

e) Estabilish WebRTC
videocall

g) Access cnn.com via
TorCloak

Tor Network

d) Finds available bridge
and informs

of Chatroom ID

Alice Browser

b) Alice
request's
cnn.com

f) Forwards the
request

Entry Exit

Middle

WebRTC
Gateway

TorCloak MessagesTorCloak Messages

Figure 2. TorCloak Architecture.

region. To access www.cnn.com through the Tor network
in a censorship-resistant fashion, Alice must get access to
the TorCloak PT client software (e.g., through some out-of-
band channel) for her local platform, which can be desktop
or mobile. She must then configure her Tor client to use
TorCloak as the designated Pluggable Transport. Alice can
then initialize her browser, which will cause the TorCloak
client to generate a random RID and password on a chosen
WebRTC platform (in our case Jitsi Meet) and send it to
the broker. The broker will then pick an available bridge
and send it the RID and password. The bridge and client
can now join the chosen chatroom. It is important that the
chatroom is password-protected so that only the user and
the bridge can access the same room. The covert channel is
then established between client and bridge and the pluggable
transport is ready to covertly tunnel Tor traffic through this
channel.

C. Management of Bridge Addresses and Membership

We begin our discussion of the main technical challenges
that we had to tackle by focusing on the management of
bridges’ rendezvous addresses and membership. This man-
agement is essential to create a sustainable, easily scalable
and censorship-resistant infrastructure.
1) Looking up rendezvous addresses: As described above, to

establish a covert channel, the user must know in advance
the chatroom’s RID and password made available by
the bridge for its connection. However, by constantly
eavesdropping on the users’ network requests, the ad-
versary may try to intercept this information, join the
same chatroom, and start snooping into the transmitted
(altered) video frames. By intercepting covert Tor frames
embedded in the WebRTC frames, an adversary could de-
termine the presence of suspicious content and block the
transmission. There is also the chance that, by performing
data analysis during a sufficiently large period, a state-
level adversary would be able to detect the transmission
of such RIDs and correlate Bridges’ IP addresses. So,
there needs to exist a secure way for bridges to share
their RIDs.

2) Rotating rendezvous addresses: Another problem related

to chatroom RIDs is how to manage them and rotate
them. Should RID addresses be rotated per user? Per
session? Per bridge? This is important because reusing
or maintaining the same RID for a long period or for
multiple users increases the chance of the RID getting
leaked or the allow the adversary to, via random guess-
ing, discover a RID and monitor that specific chatroom
indefinitely. Despite the video call rooms being password
protected, so even if an adversary gets hold of a RID
we cannot join the room, we can attempt to bruteforce
the password. With enough computer power (available
to most powerful censors) we can possibly bruteforce
the password and join the room, giving him access to
the covert session and breaking anonymity.

3) Handling bridge churn: TorCloak must also be able to
deal with the addition or removal of bridges, and effi-
ciently manage their distribution and workload. Bridge
providers might decide to leave at any time, even during
a covert data transmission session. The bridge attribution
can also be done with the user’s region in mind, to reduce
latency. The broker must also assure that its bridges are
available and functioning properly.

4) Bridge authentication: Since the bridge providers can be
untrusted entities unless they are properly authenticated,
there needs to be a mechanism in place that allows users
to validate the identity of the bridge provider before
they decide to rely on their services for establishing
covert channels. Otherwise, an adversary may attempt
to deploy a malicious TorCloak bridge in the hopes of
eavesdropping and exposing the user’s transmissions and
data.

To provide such an out-of-band channel, our initial approach
was to consider Tor’s pre-existing directory service for
managing bridges, namely BridgeDB1. Upon discussion with
Tor’s anti-censorship team, we realized that using BridgeDB
would involve a large amount of changes to BridgeDB,
which would make this approach cumbersome. Instead,
we agreed to follow a structure similar to Snowflake’s[18]
proxy dissemination mechanism. Specifically, we deploy

1https://bridges.torproject.org/

5

a broker, whose job is to connect TorCloak Clients to
TorCloak bridges. This consists of a simple API which
clients will use to share a RID they are intending to join,
alongside with the RID’s corresponding password. To avoid
the possible blockage of the broker by a censor, in the near
future, we intend to deploy a mechanism similar to Domain
Fronting[19].
The rotation of the chatroom RIDs must also be managed
and controlled to ensure maximum resistance again censor-
ship. On spin up, the TorCloak Client generates a RID for
that session. The client can then publish this RID on the
broker, which will then transmit it to an available bridge. The
bridge’s only work is to join the chatroom corresponding to
that RID and establish the covert session. The RID is only
valid in a per session per user basis. This mean that after
that specific videocall session is terminated, a new RID must
be generated and shared to initiate a new session.
Bridges themselves also advertise their public key certifi-
cates to the broker. The TorCloak client can then download
such certificate from the broker and verify the bridge’s
identity using it. Upon startup, the client will request the
bridge to send an authenticated message, which can then be
used to authenticate the chosen bridge (hence solving the
fourth challenge listed above).

D. Tunneling Covert Tor Traffic through the Bridge
Tunneling Tor traffic through WebRTC covert channels
while preserving the compatibility with the Tor pluggable
transport API requires a non-trivial integration of complex
and heterogeneous pieces of software. Figure 3 sheds light
on how we design the internals of TorCloak’s client and
bridge, representing also how their subcomponents interact
with each other during Alice’s visit to cnn.com using our
system. These subcomponents perform various functions,
most notably: i) SOCKS [20] proxy interfacing with external
applications (i.e. local Tor client), ii) client and bridge con-
troller to orchestrate all of the components, iii) Tor pluggable
transport specification implementation, and iv) WebRTC-
covert channel management and data transmission. The Tor
proxy is configured to use the TorCloak pluggable transport.
Upon starting, it instantiates a TorCloak gateway, which is
based on the Protozoa architecture. The gateway exposes
an internal SOCKS proxy to receive the locally generated
Tor traffic. Tor cells can then be encoded as TorCloak
messages into WebRTC frames and sent through a WebRTC-
based carrier application video call tunnel. The upstream
and downstream hooks intercept, respectively, outgoing and
incoming WebRTC frames to be processed by TorCloak, and
to be encoded or decoded accordingly. The client/bridge
controller is responsible for the coordination of all these
components, processing local Tor events and exceptions, and
performing TorCloak-specific protocols to synchronize the
client and the bridge.
In particular, the main integration challenges we faced are
as follows:
1) Retrofit Protozoa with the existing Tor pluggable trans-

port software: To allow TorCloak to be readily used by

TorCloak Client TorCloak Bridge

SOCKS
Proxy

Onion PortTor Protocol

Tor Protocol

PT

PT Protocol

Free Region

Censored Region

WebRTC
Upstream

Hook
Downstream

Hook

SOCKS
Proxy

meet.jit.si/RID

TorCloak
Gateway

Encoder

Client
Controller

Decoder

WebRTC
Upstream

Hook
Downstream

Hook

SOCKS
Proxy

TorCloak
Gateway

Encoder

Bridge
Controller

Decoder

PT

PT Protocol

Tor Network

Alice's Application

WebRTC
Gateway

TorCloak MessagesTorCloak Messages

meet.jit.si/RID

Figure 3. TorCloak’s Main Components.

Tor users, the pluggable transport has to be able to inter-
act with the whole already existing Tor infrastructure and
software while leveraging the covert WebRTC channels.

2) Traffic analysis resistance: We needed to consider that
transmitting Tor traffic through the covert channel might
create traffic patterns susceptible to traffic analysis at-
tacks, since the frame size and delivering timings might
change.

3) Performance degradation: It is also possible that Tor’s
network performance will decrease when tunneled
through Protozoa channels. Despite Protozoa’s improve-
ments in the covert channel throughput, there exists a bot-
tleneck when streaming traffic through WebRTC-based
covert channels, which is bounded by the throughput
achieved by the carrier video call data streams. It stands
to reason that the Tor circuits tunneled through these
channels will also be throttled.

Faced with the aforementioned challenges, we now present
our solution focusing on two main aspects: VP9 codec
adaptation and covert frame encoding and decoding.
Covert frame encoding and decoding: Similarly to Pro-
tozoa, TorCloak’s encoding mechanism replaces the bits
of the encoded video signal, after it has been processed
by the video encoding engine. This is done by modifying
the WebRTC stack bundled into the Chromium Browser.
To access the video frames generated by the WebRTC
application and implement encoded media tunneling, the
WebRTC Protozoa stack includes two included hooks that
can intercept the processing of the media streaming different
directions, i.e., upstream or downstream. The upstream hook
intercepts outgoing frame data, i.e., from a local camera
device to the network. It is placed after the raw video signal
has been processed by the video engine, and right before
the frame data is passed over to the transport layer where
SRTP packets are created, and sent to the network. The
downstream hook intercepts incoming frame data, i.e., from
the network to the local screen. It is placed right after the
transport layer has finished reconstructing an encoded frame
sent in multiple network packets, and right before handing
it over to the video engine to be decoded and rendered on

6

screen.
We make use of a data structure called encoded frame
bitstream (EFB). This is the frame format that Protozoa also
uses and it naturally separates the frame’s zones where we
can encoded data and those where encoding data will most
likely harm the functioning of the video stream, leading to
losses. We chose this data structure because, besides its
header, it contains partitions that only store the encoded
video bytes, and nothing else. Furthermore, this data, after
being generated by the video encoding engine, is no longer
modified, and is only encrypted and protected with authen-
tication markers before being assembled into packets. The
only thing we need to keep in mind is, while it is possible to
fully replace the content of the EFB field, the undisciplined
corruption of a frame bitstream can prevent the video
decoder in the WebRTC downstream pipeline from correctly
decoding video frame data at the receiver’s endpoint. We
verified that in such situations, WebRTC triggers congestion
control mechanisms in the downstream pipeline for ensuring
the reception of video. This results in severe reduction
of the channel bandwidth. To overcome this problem, the
downstream hook feeds the WebRTC video decoder with a
pre-recorded sequence of valid encoded frames instead of
the corrupted frames received over the network. This allows
us to establish a covert channel without triggering any frame
corruption control mechanisms.
VP9 codec adaptation: When adapting our prototype to
newer versions and services, we discovered that several
WebRTC-based videocall applications, such as Jitsi Meet,
had moved away from older video codecs like VP8 and
adopted newer and improved ones such as VP9. This meant
that, as mentioned above, we needed to to adapt Protozoa’s
EFBs to the new data format of VP9. The main difference
between the structures of both codecs are: the addition of one
extra compressed header, joining the already pre-existing
uncompressed header.
So, in order to maintain the codec’s headers, and avoid
corrupting the frame and triggering control mechanisms,
we need to adjust our offsets to account for the new
header. Using the VP9 Decoding Specification [21] together
with WebRTC’s VP9 decoding structure we were able to
determine the correct offset calculation to be able to replace
the bytes corresponding to pixel data without disrupting
the headers, maintaining the frame’s integrity. The general
structure of a VP9 TorCloak bitstream is represented on
Figure 4. Here we can see that TorCloak replaces the
EFBP payload containing carrier video bits with covert data,
while maintaing the header structure intact for the decoding
process.

E. Extension to Mobile Platforms

Although we have only implemented a desktop version of
TorCloak by the time of the writing of this document, we
intend to develop a mobile version in the near future. For
the desktop setting, we leveraged Protozoa’s mechanisms
for tunneling arbitrary IP-traffic, which make use of Linux

Uncompressed
Header

Compressed
Header Compressed Frame Data

Size of
Tile1

Size of
Tile 2

Size of
Tile 3

Size of
Tile N Tile 1 Data Tile 2 Data Tile 3 Data Tile N Data

Packet Length Packet ID Packet Frag.
Number Last Frag Flag

Tor Packet Data

Segment 1 ... Segment n Terminator

TorCloak Message

Encoded Frame Bitstream

Figure 4. Format of VP9 encoded bitstream with replaced TorCloak data.

namespaces to create virtual network environments. How-
ever, in a mobile operating system such as Android, we can-
not adopt this approach since user-level applications do not
have the privileges to access kernel-level operations. As we
want TorCloak to be installed and used by common Internet
users, we require a user-friendly alternative, compatible with
the existing Android API [22].
For this setting, we intend to follow a similar approach to
already mobile-friendly PTs, following a similar approach
to the one used to create ORBot2.

V. IMPLEMENTATION

We developed a TorCloak in about 4000 lines of C++ code.
This includes the whole Pluggable Transport related code,
that handles Tor events, as well as the instrumentation of
the native WebRTC codebase of the Chromium browser
v100.0.4896.127, a stable release from April 2022. TorCloak
requires the proper establishment of a WebRTC video call
session for embedding data into encoded frames sent over
the network. For this purpose, WebRTC must be able to
access a video feed that can be directly obtained from
the physical camera available in the system. Alternatively,
it is possible to setup a camera emulator by using the
v4l2loopback kernel module [23] and feed recorded video
with the help of the ffmpeg video library [24]. We will now
describe in more detail about the most critical aspects of the
implementation of TorCloak.
TorCloak is structured in five main components: i) Client
Pluggable Transport, ii) SOCKS proxy, iii) Bridge/Client
Controller, iv) Encoder Hook and v) Decoder Hook. The
Pluggable Transport Client implements the Tor PT API in-
structing Tor how to open and control the TorCloak process.
The SOCKS proxy is responsible to receive Tor data which
is then routed to the respective encoder/decoder hook, to
be encoded/decoded into the WebRTC video stream. The
Client and Bridge controllers managed every component of
the TorCloak structure.
One of the key aspects of TorCloak is the communication
between the actual TorCloak process and the modified
Chromium browser process. These need to exchange data in
order to encode locally generated Tor traffic into the already

2https://guardianproject.info/apps/org.torproject.android/

7

encoded video frames of WebRTC. For this purpose, we
employ two pipes for receiving upstream and downstream
messages from the WebRTC layers. These pipes consist of
FIFO (first in first out) queues, that i) send the frame data
received over the WebRTC session running in the Chromium
browser process, to then be decoded by the TorCloak process
and ii) and receive the frame data with the encoded data from
the TorCloak process and send it over the WebRTC session
running in the Chromium browser process.

VI. EVALUATION

This section describes our evaluation methodology for as-
sessing the quality and performance of TorCloak. First we
will describe the goals and approach of our evaluation.
Then, we present the experimental testbed we designed for
performing our experiments and the metrics we used to
assess the quality of our solution.

A. Evaluation Goals and Approach

Our main evaluation goals are the following: evaluate the
performance of TorCloak’s covert channel when in compari-
son to the normal Tor Network, and ii) compare our system’s
performance with other similar systems and assess its ability
to be used for typical internet tasks.
o perform these experiments, we adopt the following set of
performance metrics: we leverage throughput and latency as
the metric of performance of the covert channel. This allows
us to have a good view on the system’s capability to be used
to perform regular internet tasks, that mostly depend on the
channel’s bandwidth and latency
To measure the throughput and latency of our covert chan-
nels tunneled through WebRTC video calls channel, we are
leveraging iPerf [25] and HTTPing [26]. This enables us to
stress the covert’s channel capacity and latency.

B. Experimental Testbed and Datasets

Our laboratory testbed, illustrated in Figure 5, is composed
of four 64-bit Ubuntu 18.04.5 LTS virtual machines (VMs)
provisioned with one Intel(R) Xeon(R) CPU E5506 at
2.13GHz with 8 Cores and 8GB of RAM. VM1 and VM3
execute an instance of our prototype, operating as a TorCloak
client and bridge, respectively. VM2 acts as the gateway and
router for the client TorCloak VM. Finally, VM4 is used to
pose as a server in the open Internet which receives requests
from the TorCloak bridge in VM3 acting on behalf of the
client in VM1.
WebRTC application: We tested our system using Jitsi
Meet, operating with the VP9 video codec and using a
WebRTC gateway. This allowed us to better imitate a real
life scenario, since most modern browser already deploy the
VP9 codec. Furthermore, we empirically verified that Jitsi
Meet employs a WebRTC gateway for its video calls.
Video dataset : To conduct our experiments, we used
500 videos from Protozoa’s dataset “Chat” category. These
videos were collected from YouTube and generally represent
the usage of video calls for “chatting”.

VM2
(Router)

VM1
(Client)

VM3
(Bridge)

VM4
(Open internet)

WebRTC
Gateway

Media

Media Media

Tor Traffic

Figure 5. Laboratory setup.

Tor circuit : To ensure we would keep our tests as consistent
as possible, our client was configured to use a specific Tor
circuit throughout our experiments. We manually selected all
relays comprising each Tor circuit based on Tor’s TopRelays
list [27], and chose different nodes within Europe. We
specifically chose nodes which had an advertised bandwidth
of over 50Mbits and an uptime of at least 50 days. This way
we can assure we are using high-performance and consistent
nodes, making sure our experiments are not bottlenecked by
the Tor circuit.
Network configuration : We conducted experiments in a
controlled, isolated deployment to benchmark results and
avoid outside interference (e.g., network impairments out-
side of our control). These tests are executed with an
artificial network delay of 50 ms to simulate a realistic
network delay for connections established within the same
continent [28]. We piggybacked our performance measure-
ments over these tests.

C. Performance Evaluation
This section describes the methodology used to perform our
performance evaluation. We will describe the setup used
to measure TorCloak’s throughput, latency and resource
utilization. Next, we present and analyze our obtained results
obtained.
Throughput: We conducted an experiment to quantify the
throughput of TorCloak’s covert channel. The experiment
was conducted with a total of 250 runs, while mirroring the
video transmitted on each side of the connection. This is
to make sure we mostly eliminate any throughput variance
related to the different dataset videos used. Different videos
have different video frame sizes, which means they can
encode more or less information. A video with rapidly
changing frames will need to send more and bigger frames
between peers, while a video that has little change from
frame to frame, i.e. a person sitting still while talking, will
need to send much less frames. By increasing the number
of videos we use, we can get a better sense of the average
throughput we can achieve.
We also used the same fixed Tor circuit in all of the
runs to ensure the most consistency (explained in de-
tail in VI-B). Even though relays advertise bandwidth

8

(a) Regular Tor (b) TorCloak

Figure 6. Regular Tor and TorCloak throughput comparison.

as part of the Tor consensus, relays may also impose
bandwidth restrictions per user/relay connection using the
TORRC options: PERCONNBWRATE, PERCONNBWBURST,
RELAYBANDWIDTHRATE and RELAYBANDWIDTHBURST
which use token buckets to rate the bandwidth of client
or relay data evenly to every connected client/relay dis-
couraging greedy users. Unlike advertised bandwidth, per
connection rates are not public, hence we conducted an
throughput experiment (in 50 runs) without TorCloak under
the same relays configuration to measure the actual per client
throughput of the testing relay.
Figure 6 shows the comparisons between the throughput
obtained by using the vanilla Tor Circuit vs. using Tor-
Cloak. Our numbers show that TorCloak achieves an average
throughput of 203 Kbps, while the 90th percentile sits at
212 Kbps, and the 75th percentile at 210 Kbps. We can
also see that the throughput has a slight variability, which
can be explained by still some existing heterogeneity of
the video source. This variability can also be attributed to
throughput variations in the Tor circuit, which despite being
composed of the highest throughput nodes, can still have a
lot of variance through out the day as its usage and number
of users increase or decrease.
Latency: To measure the latency of the channel, we con-
ducted a Round-trip time (RTT) measurement over Tor-
Cloak’s covert channel. Since ICMP is not operational
through Tor, we resorted to HTTPing [26] to conduct RTT
measurements. This tool performs a HTTP request and
measures the time it takes to receive the first byte of the
header. Figure 7 depicts the comparison of the average
latency between the regular Tor Network (left) and the one
using TorCloak (right). We can see the average latency of
the normal Tor circuit is around 500ms while the average
latency using TorCloak is around 5000ms. This is accounting
for the added 50ms artificial latency to emulate connections
established in the same continent.

(a) Regular Tor (b) TorCloak

Figure 7. Regular Tor and TorCloak latency comparison.
Comparison with Related Work:
Stegozoa : Stegozoa uses steganography to encode covert
data into WebRTC video frames, so it only uses a fraction
of the video payload to establish the covert channel – this
fraction must be minimal so that an attacker with access

System WebRTC Service Throughput
Protozoa Whereby 1.4 Mbps
TorCloak Jitsi 203 kpbs
Stegozoa Jitsi 8.2 kbps

DeltaShaper Skype 3.6 kbps

Table I
PERFORMANCE COMPARISON WITH RELATED WORK.

to the video payload cannot detect the presence of a covert
channel. Therefore, the reduced throughput of 8.2 kbps is
expected and composes a compromise to a stronger threat
model.
DeltaShaper : DeltaShaper encodes it’s covert data before
the video engine performs any kind of compression. To this
end, it must encode its covert data into the video image
bytes itself, and not the already encoded video bytes. To
avoid loss to compression algorithms and other compression
techniques, it must encode fewer bits to ensure the data is not
corrupted. Consequently, it can only provide a throughput
of approximately 3.6 kbps, significantly lower of that of
Protozoa or TorCloak, that encode their data after the video
has been encoded.
Protozoa : We also compare our values against Protozoa,
as it has a similar threat model and composes the basis of
TorCloak’s WebRTC mechanism. We can see that, despite
having similar basis, encoding its information after the video
has been encoded by the video engine and after any com-
pression algorithm was been applied, there is a significant
difference in throughput. This can be due to multiple factors:
i) Service Provider: Whereby and Jitsi may allow their users
to use different video bandwidths, which limits the amount
of covert data we can transfer; ii) WebRTC Infrastructure
Changes: At the time of designing Protozoa, Whereby still
used a P2P model for most of its video calls. This means
that the WebRTC traffic was not controlled by a WebRTC
gateway. The WebRTC gateway can impose some kind of
bandwidth control on the WebRTC traffic it forwards. iii)
Video Codec: Protozoa was designed to operate under the
VP8 video codec, unlike TorCloak which uses the newer
VP9 codec. We empirically verified that VP9 frames are
usually much smaller than VP8 frames: a frame with the
same resolution, 1280x720, has a size of around 1585 bytes
using the VP8 codec and only 88 bytes while using the VP9
codec. This can seriously harm our throughput as well since
they is not so much space as in the VP8 frames.

VII. CONCLUSIONS

Oppressive regimes around the world have made use of
increasingly restrictive Internet censorship techniques, in
order to prevent their citizens from freely accessing or
publishing content from and to the Internet. To tackle this
issue, Protozoa has been proposed, leveraging the video
streams of WebRTC for tunnelling covert traffic. However,
Protozoa on its own, cannot perform the discovery of trusted
proxies.

9

We present the design and implementation of TorCloak, a
new Tor pluggable transport that leverages WebRTC video
streams to build a covert channel for Tor traffic. TorCloak is
completely compatible with Tor’s Pluggable Transport Spec-
ification and can be fully integrated into the Tor browser. It
offers users an automated and safe way to discover bridges
(proxies) to receive and forward their covert data.

REFERENCES

[1] Tor Project, “Tor faq,” https://2019.www.torproject.org/about/
overview.html.en, 2019, accessed: 2022-10-31.

[2] T. Project, “Tor pluggable transports,” https://2019.www.
torproject.org/docs/pluggable-transports, 2019, accessed:
2022-10-31.

[3] Arlo Breault, “meek,” https://trac.torproject.org/projects/tor/
wiki/doc/meek, May 2019, accessed: 2022-10-31.

[4] Y. Angel, “obfs4 (the obfourscator),” https://github.com/
Yawning/obfs4/blob/master/doc/obfs4-spec.txt, Jan. 2019, ac-
cessed: 2022-10-31.

[5] D. Barradas, N. Santos, and L. Rodrigues, “Effective detec-
tion of multimedia protocol tunneling using machine learn-
ing,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, Aug. 2018, pp. 169–
185.

[6] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes, “Poking
a hole in the wall: Efficient censorship-resistant internet
communications by parasitizing on webrtc,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 35–48.

[7] G. DEVELOPERS, “Webrtc. getting started with webrtc.”
https://webrtc.org/getting-started/overview, 2019, accessed:
2022-10-31.

[8] T. Levent-Levi, “What is WebRTC P2P mesh and why it
can’t scale?” https://bloggeek.me/webrtc-p2p-mesh/, 2020,
accessed: 2022-10-31.

[9] V. Pascual and G. Garcia, “WebRTC beyond one-to-one
communication,”
https://webrtchacks.com/webrtc-beyond-one-one/, 2014,
accessed: 2022-10-31.

[10] A. Fakis, G. Karopoulos, and G. Kambourakis, “Neither
denied nor exposed: Fixing webrtc privacy leaks,” Future
Internet, vol. 12, no. 5, p. 92, 2020.

[11] C. Castro, “Webrtc leaks: What they are and how to prevent
them,” Mar 2022, accessed: 2022-10-31. [Online].
Available: https://www.techradar.com/vpn/webrtc-leaks

[12] T. Levent-Levi, “Seven Reasons for WebRTC Server-Side
Media Processing,” Tech. Rep., 2015.

[13] M. Westerlund and S. Wenger, “RTP Topologies,” Internet
Requests for Comments, RFC 7667, 2015. [Online].
Available: https://tools.ietf.org/html/rfc7667

[14] T. Levent-Levi, “WebRTC Multiparty Video Alternatives,
and Why SFU is the Winning Model,”
https://bloggeek.me/webrtc-multiparty-video-alternatives/,
2016, accessed: 2022-10-31.

[15] B. Grozev, L. Marinov, V. Singh, and E. Ivov, “Last N:
Relevance-Based Selectivity for Forwarding Video in
Multimedia Conferences,” in Proceedings of the 25th ACM
Workshop on Network and Operating Systems Support for
Digital Audio and Video, 2015.

[16] C. Hart and O. Divorra, “Optimizing video quality using
Simulcast,” https://webrtchacks.com/sfu-simulcast/, 2016,
accessed: 2022-10-31.

[17] M. Foundation, “Rtcstatsreport - web apis: Mdn,” accessed:
2022-10-31. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/API/RTCStatsReport

[18] D. Fifield, Threat modeling and circumvention of Internet
censorship. University of California, Berkeley, 2017.

[19] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson,
“Blocking-resistant communication through domain
fronting.” Proc. Priv. Enhancing Technol., vol. 2015, no. 2,
pp. 46–64, 2015.

[20] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones, “Rfc1928: Socks protocol version 5,” 1996.

[21] “Rtp control protocol (rtcp) extensions for single-source
multicast sessions with unicast feedback,”
https://datatracker.ietf.org/doc/html/rfc5760, accessed:
2022-10-31.

[22] “Documentation — android developers,”
https://developer.android.com/docs, accessed: 2022-10-31.

[23] “V4L2LOOPBACK,”
https://github.com/umlaeute/v4l2loopback, 2005, accessed:
2022-10-31.

[24] “FFMPEG,” https://ffmpeg.org, 2000, accessed: 2022-10-31.

[25] V. GUEANT, “Iperf - the ultimate speed test tool for tcp,
udp and sctptest the limits of your network + internet
neutrality test,” accessed: 2022-10-31. [Online]. Available:
https://iperf.fr/

[26] Pjperez, “Pjperez/httping: Httping - a tool to measure rtt on
http/s requests.” [Online]. Available:
https://github.com/pjperez/httping

[27] “ Tor Project. Tor metrics - relay search,”
https://metrics.torproject.org/rs.html#toprelays, 2018,
accessed: 2022-10-31.

[28] “Monthly ip latency data,” 2022, accessed: 2022-10-31.
[Online]. Available:
https://www.verizon.com/business/terms/latency/

10

