
ArgumentNext – Visualizing arguments in

the real world

Ana Sofia Silva

ana.sofia.m.s@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisbon, Portugal

October, 2022

Abstract

Argumentation has been part of humanity’s communication for centuries as a way of showing if
someone is in favor or against an idea. However, analysing argumentative text is a complex task, due to
its characteristics. To address this problem, it is necessary to search visual representations developed for
this type of data as well as other visual techniques.

As part of the DARGMINTS project, the goal of this work is to create visualizations that facilitate
the comprehension of argumentative text, both by analysts and non-experts. The solution consists
in two platforms: the Dashboard and the ScrollyTeller. The Dashboard is a platform about opinion
articles, with multiple interactive visual components and it was perceived as more confusing to non-experts
comparatively to experts in the field, due to the concepts’ complexity. In contrary, the ScrollyTeller, a
storytelling visualization which uses information about parliamentary debates and visual components to
tell a story, was well received by both, since the platform is more accessible.

Keywords: Argument visualization; Visual Analytics; Natural Language Processing; Text Vi-
sualization; Storytelling Visualization; Information Visualization.

1 Introduction

An argument is a statement or series of state-
ments that is used to convince people about an idea
or opinion. Argumentation has been present in hu-
manity for centuries. Our society, specially politics,
is built on argumentation: people try to convince
others about their theories and others support or
oppose to these by creating their own arguments.
To better understand these arguments, text is not

enough. That’s why that, in the nineteenth century,
argument mapping was introduced [1]. However, the
visual representation of arguments hasn’t changed
significantly since its inception.
Contrary to this, non-argumentative text visual-

izations have evolved a lot throughout the years.
These tools help analysts find patterns as well as an-
swer questions, for instance, about topics and stance
evolution.
Having this in consideration, this project joins ar-

gument maps with what was learned from text visu-
alizations throughout the years, thus creating new
ways of visualizing arguments that are more intu-
itive and easier to understand.
This work is part of the DARGMINTS project

that uses Natural Language Process algorithms and
Argument Mining to extract arguments from texts
and uses as case studies three different domains:
opinion articles, parliamentary debates and politi-
cal online forums.
The goal of this thesis is to create a visualiza-

tion for each case study with new and creative

visual components that facilitate the analysis
of argumentative text. To accomplish this, a pre-
viously created framework, called Visual Argument
(VA), is used as a foundation, which creates visual
components for mock-up argumentative text.

Therefore, an adaptation to include real data pro-
duced by the DARGMINTS project as well as to
contain new visual components is necessary. Since
the case studies are different from each other, dis-
tinct demonstrators were developed, which show the
versatility of the framework.

2 State of the Art

As noted in the previous section, it is impor-
tant to look to argument visualization but to non-
argumentative text visualizations as well. One type
of text visualizations is storytelling visualizations.

Argument visualizations haven’t changed sub-
stantially over the years and consist mainly in argu-
ment maps. An argument map is a diagram showing
the logical structure of an argument. Typically it
consists in nodes which represent propositions and
links which correspond to relationships such as evi-
dential support.

Argument visualization only emerged in the nine-
teenth century, and it was used by Richard Whately
in 1836 in a logic textbook [1]. In the twentieth first
century, different digital tools started to emerge.

Reason!Able [2] and Rationale [3], created by Tim
van Gelder, in 2000 and 2006, respectively, and Con-
vince Me, all use rectangles or ellipses to represent

1



nodes and arrows or lines to show the various links,
although having minor differences between them.
Even the most recent tools, like MindMup1, use

the same visual representations to show an argu-
ment.
Therefore, an argument map might be the best

way to analyse the structure of an argument but
it is not enough to understand if other charac-
teristics might have influenced its creation. Non-
argumentative text visualizations offer a panoply
of representations to show text characteristics that
might be present in argumentative text.
Tools for non-argumentative text explore different

characteristics, such as stance, sentiment, topic and
time in insightful ways.
For instance, ToPIN [4] visualizes time-anchored

comments in online educational videos by focusing
on the timecode of the comment, its topic, its type,
and the sentiment behind it.
Other text visualizations explore text analysis in

a deeper level, using linguistic measures such as the
density of words in the text. Although the analysis
itself does not concern this work, the used visual rep-
resentations served as inspiration for the solution.
Voyant Tools, for example, consists of 28 text anal-
ysis and visualization components2. Among them,
there is the Collocates Graph, which consists in a
forced network graph that demonstrates how terms
in the text occur in close proximity.
Some of the text visualization present multiple vi-

sual components in a dashboard like layout, such as
the MonkeyLearn3 tool, which is a no-code interface
that helps create visualizations using AI technology
for text analysis.
Storytelling visualization were also explored since

they are a creative way of telling a story based on
visual components. Most of them use scrolling as a
trigger event to change the state of the visualization.
According to Jeffrey Heer and Edward Segel [5],

there are three types of storytelling visualizations.
A Martini Glass visualization, initially, is guided by
questions and observations created by the author,
afterwards, the reader can interactively explore the
shown visualization 4 5. An Interactive Slideshow,
follows a slideshow structure, and provides some in-
teraction mid-narrative, which allows the user to ex-
plore the data before moving on to the rest of the
story 6 7 8. Finally, a Drill-Down Story, presents a

1MindMup website: https://www.mindmup.com/
2List of Voyant Tools: https://voyant-tools.org/docs/

#!/guide/tools
3MonkeyLearn: https://monkeylearn.com/
4Are Pop Lyrics Getting More Repetitive?: https://

pudding.cool/2017/05/song-repetition/
5Can Data Die?: https://pudding.cool/2021/10/lenna/
6Twenty Years Of The NBA Redrafted: https://

pudding.cool/2017/03/redraft/
7Homan Square: A portrait of Chicago’s detainees:

https://www.theguardian.com/us-news/ng-interactive/

2015/oct/19/homan-square-chicago-police-detainees
8How China’s economic slowdown could

weigh on the rest of the world: https://www.

theguardian.com/world/ng-interactive/2015/aug/26/

china-economic-slowdown-world-imports

Figure 1: Architecture Diagram

general theme first and allows the reader to choose
between instances of that theme to learn more about
it 9. This provides a way for the user to read the
stories they want, when they want.

In conclusion, multiple visualizations of different
types were explored, in order to make a creative so-
lution. Argument maps remain an important visual
component but time, stance and topic should also be
analysed. Storytelling visualizations can also pro-
vide a better and more engaging way of telling a
story taken from argumentative text.

3 Visual Argument Framework

Since there is not yet a platform that uses visual
components to analyse all the characteristics present
in argumentative text, there is a great potential in
using the work seen in the state of the art as an
inspiration to this framework.

This framework must provide visual components
that interact with each other, whilst being indepen-
dent and the platforms this framework creates must
be usable by experts and non-experts in linguistics.

Since the first case study, opinion articles, refers to
a deeper argumentative text analysis, which means
the information regarding the structure of the ar-
gument will be more important, the platform needs
to allow the analysis of the components of the argu-
ment and the evolution of the arguments throughout
the documents.

Contrary to this, in the parliamentary debates
case study, the goal is to tell a specific story us-
ing the provided data, so this demonstrator needs
to be able to convey the story in the most precise
and clear way possible, while providing means for
scroll, zoom, hover and other forms of interaction.

3.1 Architecture

The developed demonstrators follow the architec-
ture presented in Fig.1, where the VA Framework is
shown as part of the web platform.

9OECD Better Life Index: https://www.

oecdbetterlifeindex.org/

2

https://www.mindmup.com/
https://voyant-tools.org/docs/#!/guide/tools
https://voyant-tools.org/docs/#!/guide/tools
https://monkeylearn.com/
https://pudding.cool/2017/05/song-repetition/
https://pudding.cool/2017/05/song-repetition/
https://pudding.cool/2021/10/lenna/
https://pudding.cool/2017/03/redraft/
https://pudding.cool/2017/03/redraft/
https://www.theguardian.com/us-news/ng-interactive/2015/oct/19/homan-square-chicago-police-detainees
https://www.theguardian.com/us-news/ng-interactive/2015/oct/19/homan-square-chicago-police-detainees
https://www.theguardian.com/world/ng-interactive/2015/aug/26/china-economic-slowdown-world-imports
https://www.theguardian.com/world/ng-interactive/2015/aug/26/china-economic-slowdown-world-imports
https://www.theguardian.com/world/ng-interactive/2015/aug/26/china-economic-slowdown-world-imports
https://www.oecdbetterlifeindex.org/
https://www.oecdbetterlifeindex.org/


Figure 2: Example of the list component

Figure 3: Example of the filter bar component

The datasets are retrieved from JSON or CSV files
and passed to the Data Processor, which is respon-
sible for reading and processing the data, depending
on the needs of the platform. The processed data is
then passed to the Visualization App, which is spe-
cific to the platform, and it is in charge of creating
the structure of the platform in question. After the
platform structure is constructed, the Visualization
App emits an event through the Event Bus, which,
in turn, emits events to create the necessary compo-
nents that exist in the VA Framework.
The Event Bus also permits the transmission of

data between components which allows for great in-
teractivity.
The VA framework is composed by various com-

ponents, that will be listed next.

3.2 List Component

Since the provided dataset presents more than 300
documents, a list component, seen in Fig.2, was in-
cluded, which is divided in three parts. The filters’
bar will be explained next. The filtered documents
list presents all the documents that match the filters.
Finally, the selected documents list presents all the
documents that were selected. To know how many
documents are filtered or selected there are written
indicators on top of both lists specifying it.

3.3 Filter Component

To easily search the various documents, there are
a series of filters that can be used to filter the list of
articles, as seen in Fig.3, such as the search bar used

Figure 4: Example of the text component with all
annotators selected

Figure 5: Example of the text component with one
annotator selected

to search the title of the article. It is also possible to
filter the list by date and topic. The filter component
also interferes with the Network Graph Component.

3.4 Text Component

Since knowing the text of the selected documents
is a crucial aspect of any tool of this type, as seen in
the works in the state of the art section, a text com-
ponent was included in the framework. This com-
ponent shows the raw text of a document and other
characteristics, such as the annotators. An annota-
tor is the person who manually extracts the propo-
sitions that constitute an argument. This process is
also called text segmentation and the text fragments
are called Argumentative Discourse Units (ADUs).

Since each article has three annotators assigned to
it and each created its list of annotations with argu-
ment maps, it was to be expected that some parts of
the text had more common annotations than others.
To indicate this, it was created a form of heatmap,
where the most intense color shows the parts with
more common annotations. Fig.4 presents an exam-
ple with three paragraphs, where the last one has
the most intense color, showing that it has more ar-
guments in common.

The heatmap only appears when all the annota-
tors are selected. If only one is selected, the compo-
nent changes view, showing the annotations of the
selected annotator underlined, seen in Fig.5.

3.5 Argument Map Component

As previously seen, the framework needs to allow
the analysis of the argument structure, making it
possible to identify the present ADUs and relations.
As the related work indicates, this analysis is possi-
ble through the use of argument maps. In Fig.6, it is
presented an example of an argument map developed
by the VA Framework. The ADUs are represented
as rectangles of different colors, which correspond to
their types and the relations are represented as ar-
rows of different colors, red for attack and green for
support relations.

3



Figure 6: Example of the argument map component

Figure 7: Example of the network graph component
using Cytoscape.js

3.6 Network Graph Component

As seen in the state of art section, network graphs
are frequently used to represent the connections be-
tween entities or keywords, depending on the data
they are conveying. Since the provided data presents
no information about the places and the people, the
comparison of the documents can only be about the
words that relate to the article or debate, depending
on the dataset. Therefore, the connections will rep-
resent the similarity of the documents. Due to un-
satisfying results in the first approach, two different
libraries were used for each case study: D3.js10 and
Cytoscape.js11. In both representations, the docu-
ments correspond to nodes and the connections cor-
respond to links. The stronger the link, the stronger
the connection. In other words, if a link is darker
and thicker, it means that the documents connected
to that link are more similar.
In Fig.7, it is presented the network graph com-

ponent using Cytoscape.js and in Fig.8, it is pre-
sented the network graph component using D3.js
force model algorithm. Although they use differ-
ent tools for the nodes layout, the behaviour is the
same.

10D3.jshttps://d3js.org/
11Cytoscape.js: https://js.cytoscape.org/

Figure 8: Example of the network graph component
using D3.js

Figure 9: Example of the distribution compo-
nent using the paragraphs in the axis

Figure 10: Example of the distribution compo-
nent using the time in the axis

3.7 Distribution Component

One aspect that must be allowed by the frame-
work is the ability of seeing the documents through
time or, in a more atomic scale, the annotations
throughout the document. Similarly to the ToPIN
tool, seen in the state of the art section, this com-
ponent consists in an axis, rectangles and links that
connect the previous two.

In Fig.9, the component presents an axis that rep-
resents the length of the document. Each line sep-
arating the axis represents a paragraph. In Fig.10,
the axis represents time.

3.8 MapOverview Component

Since the previous version of the VA Framework
did not allow to analyse the structure of more than
one argument map without scrolling up and down

4

https://d3js.org/
https://js.cytoscape.org/


Figure 11: Example of the map overview component

Figure 12: Example of the bar chart component

multiple times, a solution was created. This compo-
nent consists in a small representation of the argu-
ment map, as presented in Fig.11, without its text,
so, if wanted, the user can have a zoomed-in view of
the argument map with the text.

3.9 BarChart Component

In the state of art, both text visualizations and
storytelling visualizations resorted to simple charts
to show fundamental information about the data
they were conveying. It is not illogical to think that
charts like bar charts, stacked bar charts, line charts,
etc., can be useful to show data that are present in
the provided datasets. Some of the requirements
can be met with one of these straightforward charts.
Although they are simple, the framework can im-
prove it, by allowing interaction and customization.
An example of this new component can be seen in
Fig.12.

3.10 StackedBarChart Component

A stacked bar chart is another example of a simple
chart, that can be used to convey useful information.
In the example shown in Fig.13, the structure is sim-
ilar to the Bar Chart Component, except for the two
series, red and green, that constitute the bar. Each
color has a meaning depending on the data that is
being conveyed.

3.11 PositionChart Component

This component is a variation of the Stacked Bar
Chart Component. While in the previous compo-
nent it is already known by how many pieces the bar
will be separated before hand, in this component it
is dynamic, according to the selected documents.
The Position Chart Component was only used for

the opinion articles. The component has two bars,

Figure 13: Example of the stacked bar chart com-
ponent

Figure 14: Example of the position chart component

separated by white lines; each piece represents a se-
lected document. In Fig.14, the example shows the
component with three documents selected.

3.12 LineChart Component

The Line Chart Component is fundamentally a
simple line chart that allows to see the evolution of
anything through time.

In Fig.15, there are two axis, the vertical axis,
with the percentage values, and the horizontal axis,
with time values – in this case, referring to legisla-
tures.

4 Visual Argument Platforms

To show the versatility of the Visual Argument
Framework, two distinct demonstrators were created
for the two case studies. The first platform to be de-
veloped was the Dashboard, which uses data about
opinion articles, and focuses more in the analysis of
arguments. The second platform is the ScrollyTeller,

Figure 15: Example of the line chart component

5



Figure 16: Screenshot of the global view of the Dash-
board

Figure 17: Screenshot of the specific view of the
Dashboard

a storytelling visualization about parliamentary de-
bates, with the goal of being more accessible to non-
experts on the linguistics field.

4.1 Dashboard

The structure of the Dashboard consists in two
views: a global and a specific view, shown as tabs,
both constituted by compartments that lodge the
visual components created by the VA Framework.
The global view, as seen in Fig.16, presents the list

component on the left, showing the multiple docu-
ments on the dataset, including optional filters.
On the right side, in the top row, there is the net-

work graph component showing the connections be-
tween these documents according to their keywords.
However, as seen in the picture, this component was
not giving good results, as it was not possible to take
significant conclusions about the connections of the
documents. A solution for this problem will be dis-
cussed next.
Concluding this view, in the bottom row, three

similar charts are presented: the bar chart, the
stacked bar chart and the position chart. The bar
chart presents the distribution of the types of ADUs
in the selected documents. The stacked bar chart
shows how many support and attack relations there
are for each topic in the selected documents. Fi-
nally, the position chart shows how many support
and attack relations each selected document has.
The specific view appears when a document is se-

lected in the list and it only refers to that specific
document. As seen in Fig.17, this view consists in
three components with a group of buttons on the
top-right side of the screen.

Figure 18: Screenshot of argument map in dataset
format

The group of buttons refers to the annotators of
the selected article. The buttons 1 to 3 correspond
to the annotators 1 to 3, while the button ”T” corre-
sponds to all the annotators – ”Total”. By clicking
on one of these buttons, it is possible to see the an-
notations of a specific annotator or of all of them.
This affects both this view and the global one.

On the left side of this view, the distribution com-
ponent shows the distribution of relations through-
out the document. The axis is separated in lines
that represent the end of a paragraph. Each rectan-
gle represents an argument map and by clicking on
it, the corresponding argument map is shown. The
connections between the rectangles and the timeline
correspond to the relations present in that map, each
with the color associated with their type.

The full text of the document can also be anal-
ysed. This component, as previously explained,
changes according to the option selected in the group
of buttons.

4.1.1 Problems in the implementation

During the development of the Dashboard, there
were a few setbacks. For instance, regarding the
integration of the opinion articles dataset, there was
a complication concerning the argument maps, since
these were in a different structure in the dataset than
the framework was expecting.

In Fig.18 it is shown an example of an argument
map in the structure provided by the dataset. The
different map layouts caused some conflict in the
framework, since it was not prepared for this form
of data. As it is possible to see in Fig.18, the argu-
ment maps in the dataset were composed by extra
nodes that indicated the nature of the link between
two nodes. This varies from the expected layout,
where the arguments maps are constituted by nodes
with the information necessary to know if they are of
support or attack, and where they connect directly
to each other without extra nodes in the middle.

Therefore, the framework, mainly, this compo-
6



nent, had to be adapted, which required some com-
plex changes to translate from one layout to other.
In particular, it was necessary to pass the informa-
tion from the extra nodes to the information nodes,
to have the desired layout.
The remaining components did not have problems

with data integration, except for the map overview,
which is similar to the argument map component.
Another problem that occurred during the plat-

form’s implementation concerns the network graph
that, when using data about opinion articles, was
not giving significant results. The D3.js force model
algorithm did not seem to be applying the force nec-
essary to approximate the most similar nodes as can
be seen by the long strong lines present in the graph,
as seen in Fig.16. Even after altering some parame-
ters in this tool’s configuration, the structure of the
network graph did not change.
Thus, other solutions were explored regarding the

construction of network graphs. Cytoscape.js was
one of the tools found that could improve the struc-
ture of the graph, while being easily integrated with
the already existing libraries in the project. Cy-
toscape.js12 is a JavaScript library used for graph
analysis and visualization that allows users to easily
display and manipulate rich and interactive network
graphs. This library granted the same interaction
level as D3.js.
After integrating this library within the frame-

work, the graph using data from opinion articles
had more important results. As seen in Fig.7, there
are notable clusters representing articles that depict
similar subjects. This is due to the force applied on
the nodes – when the link is stronger, the nodes are
closer to each other.
The use of this library, however, has a downside:

the loading time, which is significantly longer than
when using D3.js.

4.2 ScrollyTeller

The ScrollyTeller was the second demonstrator to
be created, and uses data about parliamentary de-
bates from 2005 to 2015, which corresponds to leg-
islatures X, XI and XII. While comparing the three
legislatures, which faced entirely different circum-
stances regarding their govern, it was possible to
analyse patterns and the evolution of the parties’ ini-
tiatives. After some examination, using the Flour-
ish13 tool to generate instantaneous charts to easily
observe these patterns, evidence that initiatives got
more rejected in the first legislature, where Partido
Socialista had absolute majority, became clearer.
Therefore, the premise of the story turned into if ab-
solute majorities indicated more rejected initiatives
or not.
Since the ScrollyTeller is a storytelling visualiza-

tion, it is expected to combine text and visual com-
ponent to tell this story. This visualization focuses

12Cytoscape.js: https://js.cytoscape.org/
13Flourish: https://app.flourish.studio/

Figure 19: Screenshot of the bar chart component
with buttons, with option ”PEV”

on a specific story while allowing the users some in-
teractivity mid-narrative, so it is possible to explore
the data before moving on to the rest of the story.
Relating this to the three approaches seen in the
state of the art section, the platform corresponds to
a Interactive Slideshow.

Furthermore, for the more curious users, an area
is provided to allow the exploration of data that is
not at all present in the story.

To allow this structure, a library with the same
name was used14, which is a JavaScript library that
creates the HTML elements that allow the scrolling
of data, which is retrieved from CSV files.

The library also allows to easily change the graphs
of each story section while the user is scrolling and
the story is being told. Therefore, the usage of the
ScrollyTeller library allowed a development more fo-
cused on the visual components of the VA Frame-
work and their integration with another type of vi-
sualization than with HTML elements and scrolling
events.

Having in mind the chosen structure, library
and story, it was possible to develop a prototype
for the ScrollyTeller platform. This demonstrator
starts with the initial page, stating the title of the
story. Afterwards, it is presented a brief introduc-
tion about the data used for the story, in order to
contextualize the user about it.

Following this, the platform maintains the same
pattern: container of text on the left accompanied
with a graph on the right.

Most of the visual components that were used in
the Dashboard demonstrator were used in the Scrol-
lyTeller, such as the bar chart and the stacked bar
chart, which can be seen in Fig.19. The distribution
component was also used but it was adapted, since it
was conveying more data. For this platform, it was
created a line chart to convey the necessary data.

Some components changed through scroll, as al-
lowed by the library, and others changed through
buttons, which is the case of the presented bar chart,
in Fig.19.

As previously described, this platform includes an
exploratory area, similar to the Dashboard demon-
strator, which consists mainly in a network graph
and a text box. This area can be seen in Fig.20,

14ScrollyTeller: https://github.com/ihmeuw/

ScrollyTeller

7

https://js.cytoscape.org/
https://app.flourish.studio/
https://github.com/ihmeuw/ScrollyTeller
https://github.com/ihmeuw/ScrollyTeller


Figure 20: Screenshot of the exploratory area of the
ScrollyTeller

which presents, on top, a series of filters that can
be applied to the network graph below. This graph
presents all the initiatives, in a force model algo-
rithm created by D3.js. Contrary to what happen
in the Dashboard, this force model algorithm had
good results with this dataset and it was not neces-
sary to use the Cytoscape.js library.
When a node is clicked on the graph, it is high-

lighted, and the details regarding that initiative,
such as the voting results and the debate interven-
tions, appear on the right side. This area allows the
user to know all the information of all the initiatives
present in the dataset.

4.2.1 Problems in the Implementation

The construction of this demonstrator was signif-
icantly easier and faster than the first. This relates
to the fact that by this time the VA Framework
was already improved, due to the development of
the Dashboard. Because of the framework’s versa-
tility, it was easily adapted to accommodate another
dataset, in order to create the ScrollyTeller.
Nevertheless, due to the fact the data was di-

vided in multiple files, it was harder to pass it to
the platform in the format they were in. To ad-
dress this problem, the files were processed, using
Python15 scripts. These scripts were able to cre-
ate new datasets with the needed fields from two
different datasets or with completely new computed
fields that were later used by the platform. This
processing was done previous to the development of
the platform to save time in its loading.
The difficulties regarding the development of this

platform itself concerned external aspects, such as
the used library. Every time an unknown library
is used, it is necessary a certain time to learn how
to work with it. Specific features of this tool were
more complex to understand, which slowed the de-
velopment time.
Another struggle when creating the ScrollyTeller

was writing the story. Since it portrays a complex
subject, the story needed to be written with care
and preciseness, which required time and political
knowledge.

15Pyhtonhttps://www.python.org/

Figure 21: Dashboard’s SUS survey results in the
first testing phase

5 Evaluation

In order to confirm if the requirements were
met and if there were improvements to be made,
it was important to evaluate the developed plat-
forms. Therefore, the testing plan was divided in
two phases. The first phase corresponded to a us-
ability testing with non-experts in the linguistics
field. In the second phase, the tests were conducted
with people from the DARGMINTS project, which
are experts in the platform’s domain.

5.1 Tests with Non-Experts

The first phase counted with twenty users, dis-
persed through various age groups.

Regarding the Dashboard, the users revealed more
difficulties when using the network graph compo-
nent, since they usually were not sure what it was
conveying, specially, what the connections were rep-
resentative of.

These users also struggled with the concept ”an-
notators”, consequently, selecting an annotator was
not intuitive since they could not find the respec-
tive buttons. Related to this, the heatmap present
in the text component was difficult to understand,
since there was no indication about what the colors
were conveying.

Overall, users felt there was a lack of captions and
text boxes explaining the components to help them
understand what each component was conveying.

As can be observed in Fig.21, the results of the
SUS survey present some divergence in the users’
opinions. Users had various struggles when perform-
ing the tasks, which made them feel they were not
prepared for such tool. Nonetheless, most users did
not think the platform was unnecessarily complex.
The SUS score for the Dashboard testing was 62.9,
which is below average and corresponds to a C-, on
a scale from A+ to F.

Regarding the ScrollyTeller, many users faced
struggles due to minimal orthographic errors, lack
of punctuation or lack of precise terms in the story.
Concerning the visual components, the users felt
there was a need for a tooltip in the line chart to
see the percentages of all points. In the exploratory

8

https://www.python.org/


Figure 22: ScrollyTeller Task 8 answers

area, they struggled to notice the graph updated af-
ter searching the title, since the node was not high-
lighted enough.
The purpose of the last task was to see if the

users understood the story, mainly its conclusion.
As can be seen in Fig.22, when asked if there was
a higher percentage in rejected initiatives in legis-
lature X than in the remaining legislatures, 40% of
the users said yes, while other 40% said yes, but was
unsure about it and had to check in the platform.
The rest of the users did not know the answer.
Regarding the SUS survey, the users felt that the

platform was easy to use and it was not unnecessar-
ily complex, which resulted in a score of 83.9, which
is above average, and corresponds to an A.

5.2 Tests with Experts

The second phase of testing focused on the
DARGMINTS project’s requirements and if the fea-
tures of the platforms were fulfilling them. This
phase counted with five experts and used the method
”think aloud”, where the users say what they are
thinking and doing while performing the tasks.
Although the experts had less difficulties, they ex-

plained they understood how a non-expert could be
lost in this platform due to the complexity of the
concepts related to argumentation. Due to this, they
suggested the platform could have a form of tutorial
in the beginning explaining what the components
were conveying.
For these users, the platform felt easy to use and

its functionalities seemed well integrated. However,
they encountered the same problems seen in the first
testing phase. This resulted in a SUS score of 66,
which corresponds to a C.
Regarding the ScrollyTeller, the difficulties they

faced were also seen in the first stage of testing, with
non-experts, such as the ones related to inconsisten-
cies in the writing of the story.
Another aspect these users discussed was the fact

of getting frustrated by having to scroll up and down
to see a certain part of the story. To address this,
they suggested having a form of index that could
accompany them through the story and allow them
to jump from part to part. Consequently, an index
could make ScrollyTeller be seen as a consultation
platform instead of a website article that they only

Figure 23: ScrollyTeller Task 6 answers

visit once.
Concerning the last task, as seen in Fig.23, 40%

of the users knew that there was a higher percent-
age of rejected initiatives in legislature X than the
remaining ones, while 20% were not sure about and
had to check this information in the platform. The
rest of the users did not know the answer.

The users agreed the platform was easy to use
and its functionalities were well integrated, with-
out many inconsistencies, besides the writing ones.
They stated this platform was more accessible to
other people, since it did not address complex con-
cepts related to argumentation. The SUS result for
the ScrollyTeller in this phase was 88.5, which cor-
responds to A+, which is the highest grade.

5.3 Discussion

Comparing the first and second phase of testing,
it is possible to observe the platforms had similar
results, according to the difficulties the users faced
when navigating through them.

Regarding the Dashboard, the biggest difficulties
were related to the lack of captions that would aid in
associating the colors, sliders and highlights to the
entities they are conveying. This platform already
portrays complex concepts about argumentation, so
captions are important.

Contrary to this, the ScrollyTeller, was seen as
a more accessible and easy platform, both by non-
experts and experts, since it does not require previ-
ous knowledge of complex concepts about argumen-
tation. Although many users complained about the
writing of the story, the majority of the users, in
both testing phases, understood the story, and its
conclusion.

This evaluation was able to prove how versatile
the VA Framework is, since it was possible to create
two completely distinct platforms that had different
impacts and opinions from users.

5.4 Improvements

To answer to the comments received on both test-
ing phases concerning the Dashboard, captions were
created in the platform indicating the information
that certain aspects, such as the color, were convey-
ing. This would help in certain parts of the Dash-

9



board such as the buttons for the annotators, the
colors for the ADUs and relations and the highlights
for the heatmap. Pop-up text boxes were created
to explain each component and the slider was also
changed, according to the received feedback, which
made it more intuitive. This demonstrator also re-
ceived multiple aesthetic changes, to make the plat-
form more pleasing. The final version of the Dash-
board can be found in the following link: https:

//web.ist.utl.pt/ist189407/DARGMINTS/

Concerning the ScrollyTeller, the writing of the
story was the most commented aspect. To im-
prove this, the story was rewritten and the text was
edited with bold and colored excerpts to highlighted
important statements or titles. Regarding the vi-
sual components, a tooltip was added to the line
chart component that allowed to see all the values
shown, by hovering over each point. About the ex-
ploratory area, when a title is searched, a list of
suggested titles, compatible with the searched one,
appears. When the user searches one title, the fil-
tered nodes appear with a black border so they are
more noticeable than before. The final version of
the ScrollyTeller can be found in the following link:
https://scrollyteller.herokuapp.com/.

6 Conclusion

Despite the fact argumentation is an important
aspect in our daily lives, analysing argumentative
text is not a simple task, due to the complexity
and density of arguments. This thesis, aligned with
the DARGMINTS project, presented the objective
of creating a solution that would allow both experts
and non-experts from the linguistics field to easily
understand and explore this type of text.
To achieve this, two web platforms would be cre-

ated, using different structures, demonstrating the
versatility of a framework used for argumentative
text. To create the two demonstrators, a search for
visual representations to show the structure of ar-
guments started. The most common are argument
maps, which are essentially concept maps, but the
nodes are connected by logical links. Since the visu-
alizations surrounding argumentation are scarce, re-
search turned to text visualizations, which are more
insightful. A type of text visualization is called sto-
rytelling visualization, which tells a story using vi-
sual components.
After noticing some crucial elements that needed

to be included in the VA Framework, it was possi-
ble to establish the requirements for both demon-
strators. From there, the framework started to be
altered and the demonstrators started to be devel-
oped, using various approaches. During the develop-
ment process, the DARGMINTS project team pro-
vided feedback about the platforms during weekly
meetings, which helped guide the solution to its best
outcome.
In order to evaluate the web platforms, there was

a two-phased testing, which consisted in testing the

demonstrators with experts and non-experts in the
linguists field. Overall, the Dashboard was perceived
has a more complex platform than the ScrollyTeller
because of the usage of argumentation concepts in
the first demonstrator.

The Dashboard was altered mainly to be more in-
tuitive, especially to non-experts, whilst the Scrol-
lyTeller received changes related to the writing style
to make the story more understandable and precise.

With the information collected from the tests, it
was possible to pinpoint some interactions or fea-
tures that the users would like to see in both plat-
forms and could be assigned as future work.

Concerning the Dashboard, the users would like to
be able to rearrange the various components to their
liking. It would be interesting to create this feature
in this platform to make it more personalized. Other
interactions were missed by the users, such as a way
to select an ADU and show it in the text component.
Furthermore, a new mode of selecting documents
could be explored, so it is not necessary to go to
the opened tab after selecting a document. Having
a way of selecting a document while staying in the
global tab would be beneficial.

Regarding the ScrollyTeller, as suggested by the
experts, an index would be a great addiction to this
platform, since it would allow the user to go back
and forth in the story without having to scroll to
the parts that interest them.

References

[1] Pashler, H. Encyclopedia of the Mind. SAGE,
2013, pp. 50–52.

[2] Gelder, T. van. “Argument Mapping with Rea-
son!Able”. In: The American Philosophical As-
sociation Newsletter on Philosophy and Com-
puters 2 (2002).

[3] Gelder, T. van. “The rationale for Rationale™”.
In: Law, Probability and Risk 6.1-4 (2007),
pp. 23–42. issn: 1470-8396. doi: 10.1093/lpr/
mgm032. url: https://doi.org/10.1093/
lpr/mgm032.

[4] Sung, C.-Y., Huang, X.-Y., Shen, Y., Cherng,
F.-Y., Lin, W.-C., and Wang, H.-C. “ToPIN:
A Visual Analysis Tool for Time-Anchored
Comments in Online Educational Videos”. In:
Proceedings of the 2016 CHI Conference Ex-
tended Abstracts on Human Factors in Com-
puting Systems. CHI EA ’16. San Jose, Cali-
fornia, USA: Association for Computing Ma-
chinery, 2016, 2185–2191. isbn: 9781450340823.
doi: 10.1145/2851581.2892327. url: https:
//doi.org/10.1145/2851581.2892327.

[5] Segel, E. and Heer, J. “Narrative visualization:
Telling stories with data”. In: IEEE transac-
tions on visualization and computer graphics
16.6 (2010), pp. 1139–1148.

10

https://web.ist.utl.pt/ist189407/DARGMINTS/
https://web.ist.utl.pt/ist189407/DARGMINTS/
https://scrollyteller.herokuapp.com/
https://doi.org/10.1093/lpr/mgm032
https://doi.org/10.1093/lpr/mgm032
https://doi.org/10.1093/lpr/mgm032
https://doi.org/10.1093/lpr/mgm032
https://doi.org/10.1145/2851581.2892327
https://doi.org/10.1145/2851581.2892327
https://doi.org/10.1145/2851581.2892327

	Introduction
	State of the Art
	Visual Argument Framework
	Architecture
	List Component
	Filter Component
	Text Component
	Argument Map Component
	Network Graph Component
	Distribution Component
	MapOverview Component
	BarChart Component
	StackedBarChart Component
	PositionChart Component
	LineChart Component

	Visual Argument Platforms
	Dashboard
	Problems in the implementation

	ScrollyTeller
	Problems in the Implementation


	Evaluation
	Tests with Non-Experts
	Tests with Experts
	Discussion
	Improvements

	Conclusion

