
Force Field Calculation for Biomolecules

Pedro José Pereira Elias

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Dr. Francisco Jorge Dias Oliveira Fernandes
Prof. João António Madeiras Pereira

Examination Committee

Chairperson: Prof. Manuel Fernando Cabido Peres Lopes
Supervisor: Dr. Francisco Jorge Dias Oliveira Fernandes

Member of the Committee: Prof. Abel J.P. Gomes

October 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to thank my parents and brother for their support, encouragement and caring over all

these years and for always being there when i needed. I would also like to thank my grandparents,

aunts, uncles and cousins for their understanding and support throughout all these years.

I would also like to acknowledge my dissertation supervisors Prof. João Madeiras Pereira and Prof.

Francisco Fernandes for their constant help, support and sharing of knowledge that has made this Thesis

possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were a

source of motivation during the good and difficult times. Thank you.

To each and every one of you – Thank you.

i

Abstract

Molecular Dynamics has been largely used in studies of biological ensembles such as proteins, amino

acids, etc. With the increase of dimension and complexity of the problems to solve, it is crucial to

constantly develop more optimized simulation algorithms to reduce computational costs and improve

performance. To efficiently represent those high quantities of atoms of proteins, spatial acceleration

data structures are required. In this work, it is proposed to perform a comparison analysis between

data structures, both in CPU, including BVH, p-k-d trees and nested hierarchy, and in GPU, with two

different BVH implementations. For the data structure comparison, an algorithm was used to calculate

the neighbourhood of the atoms of the protein, mainly by using the distance between the atoms and

an algorithm to traverse the data structure. This neighbourhood calculation allows a reduction in the

number of pairwise interactions to be calculated in a molecular system, leading to a faster estimation of

the total energy of the force field generated by the atoms.

Keywords

Molecular Dynamics, force fields, BVH, p-k-d trees, CPU, GPU

iii

Resumo

A dinâmica molecular tem sido amplamente utilizada em estudos de agregados biológicos como proteı́nas,

aminoácidos, etc. Com o aumento da dimensão e complexidade dos problemas a solucionar, é crucial o

constante desenvolvimento de algoritmos de simulação mais otimizados para reduzir custos computa-

cionais e melhorar o seu dempenho. Para representar eficientemente essas grandes quantidades de

átomos é necessário usar estruturas de dados de aceleração espacial. Este trabalho propõe realizar

uma análise comparativa entre estruturas de dados, tanto em CPU, incluindo BVH, árvores p-k-d e

”nested hierarchy”, e em GPU, com duas implementações de BVH diferentes. Para a comparação entre

estruturas de dados, foi usado um algoritmo para calcular a vizinhança dos átomos da proteı́na, que usa

principalmente a distância entre átomos, e um algoritmo que permite percorrer a estrutura de dados.

O cálculo da vizinhança permite uma redução no número de pares de interações a serem calculadas

num sistema molecular, o que leva a uma estimação mais rápida da energia total do campo de forças

gerado pelos átomos.

Palavras Chave

Dinâmica molecular; campos de forças, BVH, árvores p-k-d, CPU, GPU

v

Contents

1 Introduction 1

1.1 Objectives . 3

2 Related work 5

2.1 Molecular Dynamics . 7

2.2 Force Fields . 8

2.3 Simulation algorithms . 10

2.3.1 Particle Mesh Ewald (PME) . 10

2.3.2 Multilevel Summation Method (MSM) . 11

2.4 Spatial Acceleration Data Structures . 12

2.4.1 Grid . 12

2.4.2 Cell Lists . 12

2.4.3 K-d Tree . 13

2.4.4 P-k-d Tree . 14

2.4.5 Octree . 15

2.4.6 Bounding Volume Hierarchy (BVH) . 16

2.4.6.1 BVH construction . 16

2.4.6.2 Applications of BVHs to Ray tracing . 17

2.4.6.3 BVH improvements . 17

2.4.7 Nested hierarchy . 19

2.5 MD Simulation Tools . 19

2.5.1 HOOMD-blue . 20

2.5.2 LAMMPS . 20

2.5.3 NAMD . 21

2.5.4 AMBER . 21

2.5.5 GROMACS . 22

2.5.6 OPENMM . 22

2.5.7 ACEMD . 23

vii

2.5.8 Overview . 23

3 Implementation 25

3.1 Architecture . 27

3.2 PDB file parser . 28

3.3 3D scene creation . 28

3.4 Spatial acceleration data structures . 28

3.4.1 BVH . 28

3.4.1.1 BVH CPU . 28

3.4.1.2 BVH GPU . 29

3.4.1.3 BVH8 GPU . 29

3.4.2 P-k-d trees . 30

3.4.3 Nested hierarchy . 30

3.5 OpenMP parallel implementation . 31

3.6 Visualization of the protein . 31

3.6.1 Visualization of the bounding boxes of the nodes of the spatial acceleration structures 32

3.7 Neighbourhood calculation algorithm . 34

3.8 CUDA implementation . 34

4 Tests and results 37

4.1 Ray tracing tests . 39

4.2 Neighbourhood tests . 41

5 Conclusion 47

5.1 Conclusions . 49

5.2 System Limitations and Future Work . 49

Bibliography 51

A Results Tables 57

viii

List of Figures

2.1 Verlet algorithm pseudo-code [1] . 8

2.2 Visual representation of the different potential energy terms in a force field [2] 8

2.3 Verlet list, representing the potential cut-off (solid circle) and the list range (dashed circle) [1]. 10

2.4 Steps of the MSM algorithm [3]. 11

2.5 3D representation of a Grid. 12

2.6 Standard cell list. The cells that each particle must search is illustrated in the shaded areas. 13

2.7 Stenciled cell list. The cells included in the stencil are indicated by the solid outlines of

shaded areas. The area represented in a dashed line marks the cells in that stencil that

are within the radius. 13

2.8 Partitioning of objects using k-d tree in 2 dimensions and the resulting binary tree. [4] . . 14

2.9 3D representation of an Octree with 2 levels of depth. [5] 15

2.10 Tree representation of the nodes of an Octree. [5] . 15

2.11 2D representation of Bounding Volume Hierarchy. (a) Nearby particles are grouped into

successively larger bounding boxes. (b) Hierarchical view of the bounding volume struc-

ture in (a). [6] . 16

2.12 Example of a 2D Morton code ordering with the first two levels of the hierarchy [7]. 18

2.13 Illustration of a nested hierarchy structure, where each leaf node is a subset of the dataset.

The leaf nodes are using p-k-d trees as a data structure and the parents of the leaf node

are using BVH. 19

2.14 Neighbour list calculation based on a Hilbert curve. 22

3.1 Collapsing of a binary tree into the BVH8. 30

3.2 Visualization of a protein with 100 atoms. 32

3.3 Visualization of a protein with 100 atoms, including the bounding boxes of nodes using

BVH CPU. 33

3.4 Visualization of a protein with 100 atoms, including the bounding boxes of nodes using

p-k-d trees. 33

ix

3.5 Visualization of a protein with 100 atoms, including the bounding boxes of nodes using NH. 34

3.6 Visualization of a protein with 100 atoms, where each atom is represented with a sphere,

using the GPU path-tracer. 36

3.7 Visualization of a protein with 100 atoms, where each atom is represented with a triangle,

using the GPU path-tracer. 36

4.1 Average FPS per number of threads. 39

4.2 Comparison of FPS between a single threaded implementation and the paralleled version. 40

4.3 Comparison of FPS between data structures in the rendering 40

4.4 Time required to find neighbours for the number of atoms per leaf node. 41

4.5 Memory occupied for the number of atoms per leaf node. 41

4.6 Time required to find neighbours for different NH thresholds. 42

4.7 Memory occupied for different NH thresholds. 42

4.8 Time required to find the neighbours of all atoms of the scene for sphere radius using the

BVH GPU. 43

4.9 Time required to find the neighbours of all atoms of the scene in miliseconds (ms) by each

acceleration structure. 44

4.10 Comparison of performance between each acceleration structure and CPU BVH. 44

4.11 Memory required to find the neighbours of all atoms of the scene by each acceleration

structure. TH corresponds to the nested hierarchy threshold. 45

4.12 Comparison of efficiency between each acceleration structure and CPU BHV. TH corre-

sponds to the nested hierarchy threshold. 45

x

List of Tables

2.1 Applications of BVHs. 17

2.2 Molecular Dynamics simulations tools. 20

2.3 Molecular Dynamics simulations tools. 24

3.1 BVH CPU structure. 29

3.2 BVH GPU structure. 29

3.3 BVH8 GPU structure. 30

3.4 PKD structure. 30

3.5 NH structure. 31

A.1 Time required to find the neighbours of 1000 objects in milliseconds (ms) by each accel-

eration structure. 57

A.2 Comparison of performance between each acceleration structure and CPU BVH. 58

A.3 Memory required to find the neighbours of all atoms of the scene by each acceleration

structure. N is the number of atoms of the scene and TH corresponds to the nested

hierarchy threshold. 58

A.4 Comparison of efficiency between each acceleration structure and CPU BHV. N is the

number of atoms of the scene and TH corresponds to the nested hierarchy threshold. . . 58

xi

xii

Acronyms

BVH Bounding Volume Hierarchy

k-d trees k-dimensional tree

p-k-d tree particle k-dimensional tree

NH Nested hierarchy

CPU Central Process Unit

GPU Graphics Processing Unit

PDB Protein Data Bank

PME Particle Mesh Ewald

MSM Multilevel Summation Method

CUDA Compute Unified Device Architecture

FPS frames per second

SVO sparse voxel octree

xiii

xiv

1
Introduction

Contents

1.1 Objectives . 3

1

2

Proteins have a very important role in human life. Proteins like hemoglobin perform the transporta-

tion of oxygen through our body, and immunoglobulins, also known as antibodies, help us neutralise

foreign entities such as viruses. All proteins are made of amino acids, and by combining amino acids

in different ways, it is possible to obtain different proteins. Each amino acid is composed of atoms, and

these atoms generate forces of attraction and repulsion between each other that behave like a force field

and lead to a stable state of the protein. Researchers need to find out more about those interactions

and about the composition of those proteins, but this is an expensive process to be done in a labora-

tory. By using simulations of particles in a 3D space that can be applied in many fields, from molecular

dynamics to astrophysics, it is possible to calculate the interactions between atoms in a more affordable

way. The data regarding the constitution of the biomolecules necessary to build the simulations can be

obtained through the Protein Data Bank (PDB) [8]. PDB is a database that supports scientific research

and education by providing free access to information about three-dimensional structures of macro-

molecules, such as proteins and nucleic acids. Molecular simulations are powerful tools commonly

used in the biomolecular community that have become substantially more popular and visible in recent

years. These simulations allow us to get information about the structure and dynamics of materials at

the atomic level and to find promising structures or properties. However, these simulations can involve

millions of particles, requiring many calculations and raising the need to speed up the process to make

them faster but at the same time without using too much memory. To reduce this computational cost,

the data is usually stored in a spatial data structure like grids, Bounding Volume Hierarchies (BVHs),

octrees, k-dimensional tree (k-d trees), or a hybrid of them. It is also possible to reduce the time it takes

to calculate the forces between particles, by using an efficient simulation algorithm like Particle Mesh

Ewald (PME) or Multilevel Summation Method (MSM).

1.1 Objectives

The objective of this work is to use different acceleration structures, including BVHs, particle k-dimensional

trees (p-k-d trees) and the Nested hierarchy (NH) that will be described later, which is a hybrid between

the last two, that can be used to accelerate the heavy computation of the interactions of a force field that

contains many atoms that compose a protein. More specifically, the goal is to accelerate the process of

the calculation of the neighbourhood of atoms based on distances between each of those atoms and an

algorithm that allows efficient traverse of the data structure.

3

4

2
Related work

Contents

2.1 Molecular Dynamics . 7

2.2 Force Fields . 8

2.3 Simulation algorithms . 10

2.4 Spatial Acceleration Data Structures . 12

2.5 MD Simulation Tools . 19

5

6

In this section, more details on Molecular Dynamics (2.1), are presented, including the methods to

calculate the energy components associated with the force field (2.2) by using the distance between

particles. Also, it is explained how each of the simulation algorithms (2.3) and the data structures (2.4)

work to speed up the calculation of the distance between atoms. Finally, there is a description of some of

the simulation tools (2.5) including the improvements over the previous simulation algorithms, and some

overview tables are presented which contain more detailed information about the studied approaches.

2.1 Molecular Dynamics

The molecular dynamics’ classical approach algorithm [9] usually uses Newton’s equations of motion.

Considering a system with N particles, where mi is the mass of the particle with index i, and fi the force

acting on it:

mi
−̈→ri = −∂Upot

∂−→ri
=

−→
fi (2.1)

The potential is Upot, where rij is the distance between the particles i and j:

Upot =

N−1∑
i=1

N∑
j>i

U (−→rij) ,−→rij = −→ri −−→rj (2.2)

Furthermore, the energy, or hamiltonian, can be expressed as a sum of kinetic and potential terms:

E = Ekin + Upot =

N∑
i=1

1

2
mi

−̇→ri
2
+ Upot (2.3)

Since the calculation of these forces is expensive, the objective is to perform them as infrequently

as possible. To ensure it is fast enough, it must increase the timestep without jeopardising energy

conservation. One solution would be to use the Verlet algorithm [1], which may be may be expressed by

the following equations:

pi

(
t+

1

2
δt

)
= pi (t) +

1

2
δtfi (t) (2.4)

ri (t+ δt) = ri (t) + δtpi

(
t+

1

2
δt

)
/mi (2.5)

pi (t+ δt) = pi

(
t+

1

2
δt

)
+

1

2
δtfi (t+ δt) (2.6)

The Verlet algorithm is time reversible, permits long timesteps, and just requires one force evaluation

per step. The procedure is illustrated in the pseudo-code in fig 2.1.

7

Figure 2.1: Verlet algorithm pseudo-code [1]

2.2 Force Fields

In computer simulations, it is usually adopted the practice of not representing intramolecular bonds

as terms in the potential energy function, and instead assume that the bonds are constrained to a

fixed length. To calculate the energy of the system of a force field, by using the Born–Oppenheimer

approximation, it is possible to separate the nuclear and electron cloud motions of the molecules and

then discard the electronic part and only consider the nuclear coordinates of the particles. This way, in

the calculation of the distance between particles, a particle can be represented by its position only.

Figure 2.2: Visual representation of the different potential energy terms in a force field [2]

For energy calculation, most classical force fields [10] consider the potential energy terms associated

with the sum of the following terms:

8

• deformation of bonds 2.7: ∑
bounds

kd
2
(d− d0)

2 (2.7)

• angle geometry 2.8 ∑
angles

kΘ
2
(Θ−Θ0)

2 (2.8)

• rotation about certain dihedral angles 2.9 and 2.10

∑
dihedrals

kΦ
2
(1 + cos(nΦ− Φ0)) (2.9)

∑
impropers

kΨ
2
(Ψ−Ψ0)

2 (2.10)

• van der Waals forces 2.11

∑
non−bounded pairs(i,j)

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(2.11)

• electrostatic interactions 2.12 ∑
non−bounded pairs(i,j)

qiqj
4Πε0rij

(2.12)

For simplification, some works only consider the deformation of the bonds (eq. 2.7) and the non-

bonded terms, van der Waals forces (eq. 2.11) and electrostatic interactions (eq. 2.12) for the energy

calculation.

In eq. 2.7, kd represents the constant force of the bond, d0 represents the reference bond length,

that is the equilibrium length when all other terms in the potential energy function are zero.

The van der Waals forces (eq. 2.11), are also known as Lennard-Jones potential (LJ), where rij is

the distance between the particles i and j, ϵ is the depth of the potential well, and σ is the distance at

which the particle-particle potential energy is zero. It is used between long distance particles according

to the van der Waals component of the potential. This expression describes both attractive and repulsive

forces.

The Coulombic electrostatic potential (eq. 2.12) is calculated based on the atomic nuclear charges.

In the computation of the non-bonded contribution of the forces in a simulation, there is a large

number of pairwise calculations, as for each atom it is calculated the distance to each one of the other

atoms. A way to improve the results is by using neighbour lists. Those lists store all the nearby atoms

of a particular atom. One example that uses this approach is the Verlet list [1] that defines a sphere

radius rcut around an atom to represent the potential cut-off and another larger sphere radius rlist as

9

shown in the fig 2.3. The elements within the cut-off range are the ones considered, corresponding to

the neighbours that are in the interaction range. The list that contains the elements inside the sphere

with radius rlist needs to be constantly updated to avoid that unlisted pairs get in the interaction range.

Figure 2.3: Verlet list, representing the potential cut-off (solid circle) and the list range (dashed circle) [1].

Some similar force field implementations like Amber [11], CHARMM [12], GROMOS [13], and OPLS-

AA [14] have been proposed, although there are some differences. In the bonded components, the

CHARMM and GROMOS force fields have the term for improper dihedral energy (eq. 2.10), but imple-

mentations such as Amber and OPLS-AA do not have a separate term. CHARMM also provides an

additional angle term that handles the two terminal atoms in an angle, by adding a quadratic term that

depends on the distance between the atoms. Regarding the non-bonded interactions, in the determi-

nation of the LJ parameters εij and σij , OPLS-AA and GROMOS force fields use geometric combining

rules for both parameters, while CHARMM and Amber use the geometric mean for calculating εij , but

use the arithmetic mean for σij .

2.3 Simulation algorithms

In this section, it is explained in more detail how each of the simulation algorithms work to make the

computation more efficient, including the Particle Mesh Ewald and the Multilevel Summation Method.

2.3.1 Particle Mesh Ewald (PME)

PME [15] is a simulation method used to speed up the computation of long-range electrostatic forces in

molecular dynamics simulations. To calculate those forces, there are two main contributions:

• Direct sum and neighbour list:

10

- The atoms are sorted spatially into boxes using the Hilbert curve, which is a continuous curve

that fills the space and allows to improve space locality.

• Reciprocal sum:

- Charge spreading onto a charge grid Q

- 3D Fast Fourier Transform (FFT) [16] of Q from real to complex

- Energy computation in reciprocal space

- 3D Fast Fourier Transform (FFT) of the convolution from complex to real

- Force computation per atom in real space

The Smooth Particle Mesh Ewald (SPME) [17] improves the efficiency of the algorithm by making an

approximation of the long-range forces.

2.3.2 Multilevel Summation Method (MSM)

The multilevel summation method [3] offers an efficient algorithm to calculate long-range forces in molec-

ular dynamics simulations.

MSM approximates the Coulombic potential energy by separating the interactions into short-range

and long-range. The short-range part evaluates all particle pair interactions within a determined dis-

tance. The long-range becomes more efficient by using different grid spacings in the interpolation when

calculating the grid point intermediate charge and potential.

Figure 2.4: Steps of the MSM algorithm [3].

11

In fig 2.4, the gridded charges are calculated for each level moving up, and the gridded potentials are

calculated moving down. The horizontal arrows represent the calculation of the short-range part and the

grid cutoff calculations for each grid level.

2.4 Spatial Acceleration Data Structures

2.4.1 Grid

The idea of this spatial data structure is to subdivide the space into cells of the same size. The size of

each cell for that specific dimension depends on the number of cells, N, and the size of the space, S,

where the size of each cell = S / N. Grids are especially effective when the objects are uniformly spread

through all the cells, in other words, when there are not empty cells, neither cells with too many objects.

In simulations with too many particles that are not spread uniformly, this regular partitioning might have

a large memory requirement. To solve this, a hash function is usually implemented to generate a 1D

hashed table. If the implementation is efficient enough, it can reach a search time for finding an object

of O(1).

Figure 2.5: 3D representation of a Grid.

2.4.2 Cell Lists

A standard cell list consists of subdividing the space into uniform cells. The distance calculation only

requires checking the adjacent cells, reducing the computation to O(Nm), where N is the number of

particles and m is the average number of particles in a cell.

12

Figure 2.6: Standard cell list. The cells that each particle must search is illustrated in the shaded areas.

A stenciled cell list [18] is an extension of the standard cell list, where each type of particle has a

maximum cutoff radius, and a stencil is computed based on the neighbouring cells.

Figure 2.7: Stenciled cell list. The cells included in the stencil are indicated by the solid outlines of shaded areas.
The area represented in a dashed line marks the cells in that stencil that are within the radius.

2.4.3 K-d Tree

A k-d tree is a space-partitioning data structure for organising points in a k-dimensional space. The k-d

tree is a binary tree in which every non-leaf node generates an axis-aligned hyperplane that divides the

space into two parts. It uses the medium cut recursively, often starting by the x-coordinate, then the

13

y-coordinate, then the z-coordinate, and then back to the x-coordinate and so on. The maximum depth

is determined when the leaf nodes only contain a specific number of objects or when the threshold of

the depth is reached. The easiest way to find the splitting plane is by sorting the objects and finding the

median object. To find the neighbours of an object in a k-d tree implementation, it only requires O(logN)

inspections on average, where N represents the number of nodes. This happens since the tree needs

to be traversed until it reaches the leaf node.

Figure 2.8: Partitioning of objects using k-d tree in 2 dimensions and the resulting binary tree. [4]

2.4.4 P-k-d Tree

A p-k-d tree [19] is a k-d tree adapted to particles where the dividing plane is encoded using the coordi-

nate position of a particle. This means that no extra information is needed to store the splitting planes,

and thus there is no memory overhead.

The construction algorithm generates a binary tree. This allows storing the information of the tree

14

in an array where the children of a node with index i have the indexes 2i + 1 and 2i + 2. In the first

iteration of the algorithm, the pivot element that is chosen to separate the left and the right of the tree

is the element that will be considered the root of the tree and will get the first position of the array. The

algorithm continues recursively with the children of the pivot until the array is fully ordered.

2.4.5 Octree

An octree is a tree data structure that uses an axis-aligned hierarchical partitioning of a three-dimensional

space. Each non-leaf/internal node in the octree has eight children, each child corresponding to an oc-

tant of the parent node. The main approach makes a new subdivision every time there is more than

one point in a region. The octree generally uses less memory when compared to the grid in cases

where there is a non-uniform distribution of the particles. However, it requires more search time when

compared to the grid.

Figure 2.9: 3D representation of an Octree with 2 levels of depth. [5]

Figure 2.10: Tree representation of the nodes of an Octree. [5]

15

2.4.6 Bounding Volume Hierarchy (BVH)

Considering S as the set of N geometric objects, a bounding volume hierarchy (in this paper they call it

a BV-tree) [20] is a tree data structure where each node, v, corresponds to a subset Sv ⊂ S, where the

root node contains the whole set S. Each internal node (non-leaf node) contains two or more children.

The number of nodes is at most 2N – 1.

In other words, all objects are wrapped in bounding volumes and each object is located in one of the

leaf nodes of the tree. These leaf nodes are constantly getting agglomerated by combining two smaller

nodes into a larger bounding volume until it reaches the top of the tree that contains all objects. This

approach is faster than k-d trees and easier to implement, but has a higher memory cost.

Figure 2.11: 2D representation of Bounding Volume Hierarchy. (a) Nearby particles are grouped into successively
larger bounding boxes. (b) Hierarchical view of the bounding volume structure in (a). [6]

2.4.6.1 BVH construction

There are several ways to construct a BVH, including top-down and bottom-up approaches. The con-

struction of a linear BVH [21] consists of the following steps:

• Construct AABBs: compute the bounding boxes for each of the objects.

• Calculate the scene bounding box that contains all objects.

• Assign Morton codes for each AABB.

• Sort the bounding boxes using Morton code.

• Generate the bounding volume hierarchy.

• Calculate internal nodes bounding boxes by traversing the tree bottom-up.

16

Morton codes, also known as Z-order codes, allow one to map data from multiple dimensions into a

single dimension without losing spatial locality, as shown in fig 2.12.

The generation of the bounding volume is done in a recursive partitioning so that each internal node

in the BVH tree corresponds to an interval of Morton codes. The recursion ends when it only contains

one object. The partition is determined by a split that does the division of the interval on the place that

it has the highest differing bits of Morton codes.

2.4.6.2 Applications of BVHs to Ray tracing

One common application of the bounding volume hierarchies is in ray tracing. In ray tracing, since it

is necessary to test a lot of interceptions with all the objects to determine the colour of the pixel, it is

required to have an acceleration structure to help it reduce the number of interceptions, making BVH

one of the best options.

Table 2.1: Applications of BVHs.

Reference Architecture Ray Tracing Improvements
CPU GPU Construction Structure

[Lauterbach09] • • •
[Pantaleoni10] • • •
[Kopta12] • • • •
[Karras12] • •
[Karras13] • • •
[Domingues15] • • •
[Kim16] • • • •
[Vinkler16] • •
[Vinkler17] • • •
[Hendrich17] • • •
[Pérard-Gayot17] • • •
[Chitalu18] • •
[Gralka20] • • • •

2.4.6.3 BVH improvements

[Lauterbach09] [7] proposes a linear bounding volume hierarchy (LBVH) implementation that uses a

high parallel algorithm where the particles are ordered along a Z-order curve. This allows the closer

objects to be sorted near each other so that they are represented in a single fixed sequence with the

length of the number of objects. The tree can be constructed by splitting intervals recursively to create

new nodes, as it is illustrated in fig 2.12.

There are several implementations of BVH in GPU related to ray tracing, like [Karras13] [22] that

proposed an improvement to the parallel construction of BVHs in [Karras12] [21] that focus on improving

the quality of the existing BVH by looking to local neighbourhoods of nodes and restructuring the tree

to achieve the optimal structure, as well as doing an improved parallel splitting of triangles prior to the

construction of the tree.

17

Figure 2.12: Example of a 2D Morton code ordering with the first two levels of the hierarchy [7].

Other study did a performance comparison between BVH and k-d trees [Vinkler16] [23] and an

extended implementation of Morton Codes [Vinkler17] [24] that can encode the size of objects, has

adaptive ordering of the codes, and can use variable bit counts for different dimensions.

[Pantaleoni10] [25] proposes a Hierarchical Linear Bounding Volume Hierarchy (HLBVH) that ex-

pands the LBVH [Lauterbach09] [7], by observing that the values assumed by the Morton code repre-

sent a voxel of a regular grid that includes the same objects of the corresponding bounding box and that

higher bits represent the parent voxels as illustrated in 2.12. In the HLBVH implementation, it splits the

original LBVH algorithm into a two-level hierarchy, where in the first level a sorting of the objects of the

grid is performed only considering some of the higher bits and in the second level the remaining bits are

used to do a sorting within each voxel.

In [Pérard-Gayot17] [26] it is used an approach with irregular grids, in [Kopta12] [27] the aim is to

improve the efficiency of animated scenes and [Hendrich17] [28] proposes a new algorithm for construct-

ing the BVH using CPU that uses a top-down approach with a progressively refined cut of an existing

auxiliary BVH.

Some of these approaches, as well as recent GPU research, are beginning to use highly optimised

ray tracing engines like OptiX to create interactive visualizations.

18

2.4.7 Nested hierarchy

In the work of [Gralka20] [29], it is proposed a ”nested hierarchy”, a hybrid acceleration data structure

that is a composition of both BVH and p-k-d trees, where the nodes closer to the root use the BVH

acceleration structure, but as we get closer to the leaf nodes, we switch to a p-k-d tree data structure.

This approach in terms of memory, when compared to BVH, requires about 10 times less of the size

of the raw data during the build and then stabilises to about 3,5 times less of the raw data size. In terms

of performance, the quantity of frames lost is not that significant when compared to BVH and has a

significant gain in performance when compared to a p-k-d tree approach.

In terms of limitations, when applied to ray casting, it is known that it is only applicable to systems

that are in some way limited by memory, otherwise using the BVH is a better choice since it has better

performance.

Figure 2.13: Illustration of a nested hierarchy structure, where each leaf node is a subset of the dataset. The leaf
nodes are using p-k-d trees as a data structure and the parents of the leaf node are using BVH.

2.5 MD Simulation Tools

In this section, it is listed the main molecular dynamics simulation tools, such as HOOMD-blue, LAMMPS,

NAMD, AMBER, GROMACS, OPENMM and ACEMD. In the following table, there is an overview of the

tools, and in the subsections, there is more detailed information about each.

19

Table 2.2: Molecular Dynamics simulations tools.

Name Source code (download link) Programming
Language

Documentation

HOOMD-
blue

https://github.com/glotzerlab/hoomd-
blue

Python, C++,
Cuda

https://hoomd-blue.readthedocs.io/en/latest/

LAMMPS https://github.com/lammps/lammps C++ https://docs.lammps.org/Manual.html
NAMD https://www.ks.uiuc.edu/Development/

Download/down-
load.cgi?PackageName=NAMD

C https://www.ks.uiuc.edu/Research/namd/cvs/ug/

AMBER https://github.com/Amber-MD C++, Python https://ambermd.org/Manuals.php
GROMACS https://manual.gromacs.org/current/

download.html
C++ https://manual.gromacs.org/current/index.html

OPENMM https://github.com/openmm/openmm C++, Python http://docs.openmm.org/latest/userguide/

2.5.1 HOOMD-blue

In the work of [Anderson20] [30], they used the particle simulation engine called HOOMD-blue, a Python

package for high-performance molecular dynamics. The current version already had many optimizations,

including multiple threads per particle with warp-level reductions, atomic operations to build cell lists

and many others. In this paper, based on [Anderson16] [31], it was added support for improved intra-

node scaling to many GPUs and it was used a simulation algorithm called Hard Particle Monte Carlo

(HPMC) [32] that consists of selecting a particle at random, generating a random move for that particle,

checking for overlaps between the future configuration and all the other particles of the system, and then

rejecting the move in case of no overlaps and accepting it otherwise.

HOOMD-blue has a BVH implementation that allows the creation of neighbour lists, which is two

times faster than using the cell list.

They optimised all core functionalities so that it is possible to run these simulations as fast as possible,

either on CPU or GPU depending on which one is best suited to the problem. All of this knowing that it

is required to constantly refactor and rewrite to obtain the best performance on the latest hardware.

[Howard16] [33] presented efficient algorithms for molecular simulations for computing neighbour

lists, one based on LBVHs and the other based on a stenciled cell list, and then compared the results

with an implementation of a standard cell list.

The results showed that both the stenciled cell list and the LBVH algorithms outperform the standard

cell list. They also demonstrated that LBVH has better performance when compared to the stenciled cell

list.

2.5.2 LAMMPS

Previous implementations of particle–particle particle-mesh (P 3M) in LAMMPS consisted of three steps:

• charge assignment: each processor maps the charge on particles it owns to its 3D sub-section of

the grid;

20

• field solve: performs 3d FFTs in parallel;

• interpolation: interpolation of electric field vectors to each of a processor’s particles.

In the work of [Brown11] [34], algorithms for accelerating neighbour list builds and short-range force

calculation were presented, while in [Brown12] [35] they focused on improving the first and third steps

of the P 3M algorithm described above by improving the efficiency.

[Sirk13] [36] provides information about how to compute long-range electrostatic contributions. It

proposes 2 different approaches:

• Extended Ewald summation method

• Extended particle-particle particle-mesh (P 3M) method

In the extended Ewald summation method, the potential energy calculation is based on the sum of

two formulas, one similar to the eq. 2.12, and the other expressed with a Fourier series. The cost of this

method is O(N3/2). The P 3M does an interpolation of charges from atoms to a 3D grid. Then it applies

a fast Fourier transformation (FFT) that makes the energy calculation possible. This method has cost of

O(Nlog(N)) and scales better when compared to the Ewald summation.

2.5.3 NAMD

[Phillips20] [37] describes an implementation based on a Smooth Particle-Mesh Ewald [Essmann95] [17]

that increases the speed by using an approximation on a grid to be used in the FFT. In the [Stone16] [38]

implementation, all the PME computation moved to the GPU and changes were introduced in the way

the charge spreading and force gathering were performed.

NAMD records some information from the PME energy calculation, which allows to speed up the

calculation of expensive functions during the simulation. With this paper’s approach, PME can calculate

the spread of charge from atoms to grid points and from the grid forces to atoms. This GPU acceleration

can yield better results than CPU versions by doubling the grid spacing and increasing the order of

interpolation from 4 to 8, which does not impact the accuracy and reduces the communication bandwidth

by a factor of 8. The complexity of Ewald sum for more distant atoms is O(NlogN), instead of the O(N2)

of a Naı̈ve approach.

2.5.4 AMBER

In the work of [Salomon-Ferrer13] [16], there is a PME implementation that involves 2 main contributions:

• Direct sum and neighbour list, that combines 2 sorting algorithms:

21

- The atoms are sorted spatially into boxes. Each box is stored in the highest order bits of the

sorting key.

- The other bits are used to encode the Hilbert curve to improve space locality.

• Reciprocal sum:

- Charge spreading onto a charge grid Q

- 3D Fast Fourier Transform (FFT) [16] of Q from real to complex

- Energy computation in reciprocal space

- 3D Fast Fourier Transform (FFT) of the convolution from complex to real

- Force computation per atom in real space

Figure 2.14: Neighbour list calculation based on a Hilbert curve.

2.5.5 GROMACS

In the work of [Páll15] [39], they developed a new approach where a fixed number of particles were

grouped into spatial clusters. First, they placed the particles in a grid and then binned them in the z

dimension. This allows to group the particles that are closer to each other in space, and to generate

a list of clusters, each containing the same number of particles. A list was then constructed of all

those cluster pairs containing particles that may be close enough to interact. In [Wennberg13] [40]

and [Wennberg15] [41] some improvements regarding the Particle Mesh Ewald were provided, more

specifically in the long-ranged Lennard-Jones interactions.

2.5.6 OPENMM

[Eastman10] [42] introduced the algorithm Constant Constraint Matrix Approximation (CCMA), based

on the observation that the Jacobian matrix changes very little over the course of a simulation. That

22

reduces the computation by constraining the bond lengths in molecular simulations from a step size 1

fs, that is the case of standard molecular force fields with no constraints, to a step size up to 4 fs.

2.5.7 ACEMD

[Harvey09] provided an implementation of the Smooth Particle Mesh Ewald Method on GPU, which is

similar to the reciprocal sum present in [Salomon-Ferrer13] [16] and added parallelism to distribute the

work through threads.

2.5.8 Overview

Apart from the main references that have already been discussed, there are also other important refer-

ences present in table 2.3, as [Lebrun-Grandie20] [43] that introduced a library that uses a BVH imple-

mentation to search for geometric objects that are close in a space or [Robinson17] [44] that includes a

library for implementing particle-based methods such as neighbourhood searches and fast summation

algorithms.

[Guntury12] [45] used the grid for ray tracing of scenes and the works of [Ogarko12] [46] and [Kri-

jgsman14] [47] provide a fast implementation of contact detection in particle systems using multi-level

grids, also called hierarchical grids.

[Bautembach11] [48] describes sparse voxel octrees (SVOs) and provides a solution to animate them

whereas the studies of [Madoš20] [49] and [Madoš21] [50] suggest solutions to improve the efficiency

of the SVOs.

23

Table 2.3: Molecular Dynamics simulations tools.

Reference Name of the tool Architecture Acceleration structure Simulation algorithm
CPU GPU List Grid SVO BVH PME MSM Other

[Harvey09] ACEMD • • •
[Salomon-Ferrer13] AMBER • Neighbour • •
[Wennberg13] GROMACS • • • LJ-PME
[Páll14] GROMACS • • •
[Wennberg15] GROMACS • • • LJ-PME
[Howard16] HOOMD-blue • Stenciled •
[Anderson16] HOOMD-blue • Cell LBVH • HPMC
[Anderson20] HOOMD-blue • LBVH HPMC
[Brown11] LAMMPS • • Neighbour •
[Brown12] LAMMPS • • Neighbour • •
[Sirk13] LAMMPS • • •
[Hardy15] NAMD • • • •
[Stone16] NAMD • • •
[Phillips20] NAMD • • • • •
[Eastman10] OPENMM • • CCMA
[Robinson17] Aboria • •
[Lebrun-Grandie20] ArborX • • •
[Bautembach11] • •
[Guntury11] • •
[Ogarko12] • Hierarchical
[Krijgsman14] • Hierarchical
[Madoš20] • •
[Madoš21] • •

24

3
Implementation

Contents

3.1 Architecture . 27

3.2 PDB file parser . 28

3.3 3D scene creation . 28

3.4 Spatial acceleration data structures . 28

3.5 OpenMP parallel implementation . 31

3.6 Visualization of the protein . 31

3.7 Neighbourhood calculation algorithm . 34

3.8 CUDA implementation . 34

25

26

3.1 Architecture

This work explores the use of different spatial acceleration data structures, more specifically the BVH,

p-k-d tree and the nested hierarchy, to contain the information required to represent molecules, as well

as organise them in a way facilitates computation. More specifically, the spatial data structures are

applied to accelerate the computation of two different topics: (i) the visualization of the protein in a 3D

scene that uses ray-tracing to render the scene and (ii) the calculation of the neighbourhood of the

atoms, which is a crucial step in the calculation of the interactions between the atoms of the protein that

simulate a force field.

This work is also divided into two implementations: one running in Central Process Unit (CPU) and

the other one in Graphics Processing Unit (GPU) using Compute Unified Device Architecture (CUDA).

CUDA consists of running a sequential host program that can initiate parallel kernels on the GPU device.

Each kernel executes a single program across many threads that execute in parallel.

In the CPU implementation, the 3D rendering of the protein was performed using the information of a

PDB file, based on a CPU ray-tracing implementation running in Open-GL using BVH as an acceleration

structure. Then this solution was extended to allow other acceleration structures as p-k-d tree and NH.

Later, to improve the performance of the calculations and increase the frame rate, an OpenMP parallel

implementation was done to distribute the work by a number of CPU threads. For a better understanding

of the data structures, it was also made a visualization of the bounding boxes of some nodes of the

structure in use. Regarding the interactions between atoms, an algorithm was developed to find all

neighbours of a specific atom by traversing the data structure.

In the GPU implementation, a GPU path-tracer implementation running in CUDA and using BVHs as

acceleration data structures was used as a base. The objective was to not only visualize the protein in

the scene but also to calculate the neighbourhood of the atoms and to analyze the performance when

compared to the CPU.

In brief, the features implemented in this work are the following:

1. Parse the PDB file to gather the protein information.

2. Create a 3D scene with the parsed information.

3. Implement the acceleration structures.

4. Implement parallelism using OpenMP.

5. Visualize the protein using a ray-tracing render for each acceleration structure.

6. Visualize the bounding boxes of the nodes of the spatial acceleration structures of a specific object.

7. Create an algorithm to find the neighbours in the proximity of an atom for each data structure.

27

8. Implement in CUDA the steps 1, 5 and 7.

3.2 PDB file parser

Protein information is usually stored in PDB files with a ”.pdb” extension. Those files contain many

sections regarding different aspects of the protein, but the lines that are important for this work are the

ones that start with ”ATOM”. Each of those records has the information of the sequential number, the

atom name, the name and number of the residue it belongs to, the letter that specifies the chain, the x, y,

and z coordinates, the occupancy, and the temperature factor. Although all of that information is useful

for many studies, the most relevant for this work are the coordinates and the elements of the atoms. The

coordinates are needed to map the atoms in 3D space, and the element of the atom is required for the

visual representation of the protein.

3.3 3D scene creation

To have a visualization of the protein, it is required not only to parse the information from the PDB file

but also to have 3D objects that are able to be rendered. Therefore, each atom was represented as a

sphere with a center on the coordinates of the atom and a radius according to the respective element of

the atom. Hence, a protein could be represented by a list of spheres.

3.4 Spatial acceleration data structures

In this section, it will be explained in more detail how each of the spatial acceleration data structures are

implemented, both in the CPU, using the BVH CPU, the p-k-d tree and the nested hierarchy, and in the

GPU, using the BVH GPU and the BVH8 GPU.

3.4.1 BVH

3.4.1.1 BVH CPU

The most relevant information in the class BVH is the list of the objects in the scene and the list of BVH

nodes. Each BVH node contains a bounding box where all the objects of that specific node are in, a

boolean to indicate if it is a leaf node or not, the number of objects it contains, the index to the left child if

it is a non-leaf node, or the index to the next intersectable object in the objects vector if it is a leaf node,

as shown in table 3.1.

28

Table 3.1: BVH CPU structure.

BVH
objects vector<Object*>
nodes vector<BVH::BVHNode*>
threshold int

BVHNode
bounding box AABB
leaf bool
n objs unsigned int
index left child unsigned int
index next obj unsigned int

In the construction of the BVH, the algorithm starts by determining the world bounding box that

contains all objects in the scene. Then it builds recursively until it reaches the threshold that makes the

recursion stop by having insufficient objects in each node. In each step of the recursion, it checks the

dimension with greater width, orders the objects according to that dimension, and determines the ”split

index”. The so-called ”split index” is the index that splits the objects for each child node according to

the mid point of the dimension with the higher width. It then creates the child nodes and the process

repeats.

3.4.1.2 BVH GPU

As shown in the table 3.2, the information required to represent the structure is similar to the BVH CPU

implementation. For the construction of the BVH, this approach uses a standard surface area heuristic

(SAH) algorithm that is particularly efficient for ray-tracing, although it should not affect negatively the

results in the neighbourhood tests since the construction phase time is not considered.

Table 3.2: BVH GPU structure.

BVH
nodes BVH2Node*

BVH2Node
bounding box AABB
n objs unsigned int
left child int
index next obj int

3.4.1.3 BVH8 GPU

The BVH8 GPU implementation is a compressed 8-wide BVH, which is constructed by collapsing a

binary BVH, as represented in fig 3.1. This data structure stores a list of BVH8Nodes where each node

contains 5 float4 elements that equals to 80 bytes per BVH8Node. This approach allows a reduction of

memory traffic when applied for ray casting. This data structure works in a way that each parent node

has 8 child nodes and all the required information to traverse it, including bounding boxes, indexes, etc,

is encoded in the bits of the floats from node 0 to node 4 according to [51].

29

Figure 3.1: Collapsing of a binary tree into the BVH8.

Table 3.3: BVH8 GPU structure.

BVH8
nodes BVH8Node*

BVH8Node
node 0 float4
node 1 float4
node 2 float4
node 3 float4
node 4 float4

3.4.2 P-k-d trees

The information contained in the PKD class is similar to the BVH class, the only addition being an

integer ”split index” that represents the index in the list of objects responsible for the split in child nodes,

as represented in the table 3.4.

Table 3.4: PKD structure.

PKD
objects vector<Object*>
nodes vector<PKD::PKDNode*>
threshold int

PKDNode
bounding box AABB
leaf bool
n objs unsigned int
index left child unsigned int
index next obj unsigned int
split index int

The construction of the p-k-d tree has many aspects in common with the construction of the BVH.

The parts where it is different are enumerated below. When selecting the dimension of the split, it

is chosen first using x, then y, and then z, and so on. The other different aspect is that the object

represented by the ”split index” no longer belongs to the child nodes and will be exclusively represented

in the parent node.

3.4.3 Nested hierarchy

The nested hierarchy class has the same information as the p-k-d tree class and has the advantage

of being able to behave as both a BVH node and a PKD node depending on the number of objects it

contains. It behaves as a BVH when the number of objects is higher than the NH threshold established

30

and as a p-k-d tree if it is lower. As shown in the table 3.5, the variable NH threshold is exclusive to this

implementation, and no other information is required to be added to this implementation in order for its

proper execution.

Table 3.5: NH structure.

NH
objects vector<Object*>
nodes vector<NH::NHNode*>
threshold int
NH threshold float

NHNode
bounding box AABB
leaf bool
n objs unsigned int
index left child unsigned int
index next obj unsigned int
split index int

The construction of the nested hierarchy is done by checking if it should be applied a BVH node or

a p-k-d tree node to each of the nodes and then by reusing the parts of the code according to the data

structure in use.

3.5 OpenMP parallel implementation

The objective of the OpenMP parallel implementation is to speed up the process of the ray tracer in order

to reduce the time it requires to render each frame, which leads to an increase in the frame rate. This

approach is based on the fact that for the rendering of a single frame, different threads may be used to

divide the workload, more specifically, each thread can be responsible for a partition of the total number

of pixels. The parallelism can be achieved by replacing the for loop that allows the program to access

each pixel with a parallel for loop.

3.6 Visualization of the protein

In this section, it is shown the results after applying the ray-tracing algorithm to a scene that contains the

information required to represent the protein. Independently of the data structure in use, the color of the

pixels generated is the same since both the scene objects and the camera position are the same and

the only goal of using different data structures is for the performance increase. Fig 3.2 show a protein

representation according to the standard conventions, using a sphere with different radius values and

colors based on the atom element where it is represented Hydrogen in white, Carbon in grey, Nitrogen

in blue, Oxygen in red, Phosphorus in orange and Sulfur in yellow.

31

Figure 3.2: Visualization of a protein with 100 atoms.

3.6.1 Visualization of the bounding boxes of the nodes of the spatial accelera-

tion structures

To visually understand more about the data structures, it was opted to implement the display of the

bounding boxes of the nodes, more specifically the hierarchy of nodes that goes from the root node to

the smallest node that contains a certain chosen atom. This was done by adding 12 objects to the scene

for each bounding box to represent each of the edges and then rebuilding the data structure in use. For

color choice, the BVH used a red-to-yellow gradient (fig 3.3), the p-k-d tree used a dark-to-light green

gradient (fig 3.4), and the NH used the colors according to the data structure behaviour of each node

(fig 3.5).

32

Figure 3.3: Visualization of a protein with 100 atoms, including the bounding boxes of nodes using BVH CPU.

Figure 3.4: Visualization of a protein with 100 atoms, including the bounding boxes of nodes using p-k-d trees.

33

Figure 3.5: Visualization of a protein with 100 atoms, including the bounding boxes of nodes using NH.

3.7 Neighbourhood calculation algorithm

The neighbourhood calculation algorithm is responsible for the traversal of the spatial acceleration data

structure in use and can be applied to both the BVHs, the p-k-d trees and the NH. The algorithm starts

by picking an atom to calculate the neighbourhood that serves as the center of the proximity sphere.

Then, starting from the root node, overlap checks of the sphere of proximity of the picked atom with the

bounding box of that root node are performed. If it hits the root, it will do the same overlap check with

each of the child nodes. For each child node intercepted, (i) if it is a leaf node, it checks if the atoms of

that node are in the proximity of the sphere, adding the neighbours to a list; (ii) if it is a non-leaf node, it

recursively checks its child nodes.

3.8 CUDA implementation

In this section, the development process regarding the CUDA implementation is described in more

detail. The main approach was to find an implementation that uses BVH as data structure in GPU

and then adapt it to do the neighbourhood tests similarly to the ones already implemented in CPU.

It was discovered an implementation in CUDA that was using different variations of BVHs applied to

34

an interactive path-tracer algorithm [52] and it was decided to use this as the base code to the GPU

implementation. Since there were many types of BVHs implemented, it was decided to work with only

the most relevant ones, including a SAH-based BVH and a Compressed Wide BVH (BVH8) [51] that is

constructed by collapsing a binary BVH, where each parent node contains up to 8 child nodes and each

node takes up to 80 bytes.

At the start, the objective was to load the PDB file information to be able to initialize the data structure

and create the scene. However, this implementation was using as input a file with the extention ”.obj”.

To solve this problem, it was required to convert the PDB file to an ”.obj” file. This was done by using

the tool Blender, which was able to create a scene based on the PDB file and then export it as a ”.obj”.

Also by default, Blender would load the PDB files as spheres for each atom, as shown in fig 3.6, which

would generate many triangles in the ”.obj” file, which was sufficient for the rendering of the scene but

not convenient for making the neighbourhood tests. To solve this particular problem, a script was done

to change the ”.obj” that for each sphere would remove all triangles except the first triangle of that atom,

which generated a scene like the fig 3.7. This allows to have an ”.obj” file where each triangle represents

an atom. However, this file conversion generated more problems, since the distance between atoms in

the ”.obj” file was changed and was no longer in the unit of Angstroms. By comparing the distances

between the same atoms in each file, it was possible to obtain a correlation between the files and to

estimate the distances in Angstroms. Since the goal was to not only visualize the protein but also do the

neighbourhood calculation, this approach was adapted to, instead of considering an atom as a triangle,

representing the atom as a coordinate in the space given by the first vertex of the triangle. Then, the

traversal of each of the data structures was changed to do the neighbourhood calculation according to

the algorithm in the section 3.7.

35

Figure 3.6: Visualization of a protein with 100 atoms, where each atom is represented with a sphere, using the
GPU path-tracer.

Figure 3.7: Visualization of a protein with 100 atoms, where each atom is represented with a triangle, using the
GPU path-tracer.

36

4
Tests and results

Contents

4.1 Ray tracing tests . 39

4.2 Neighbourhood tests . 41

37

38

In this section, all the used spatial acceleration data structures were tested in order to have a deeper

understanding of them. This includes tests that evaluate the efficiency of the data structures, including

the time and memory required to execute a certain task. Those tests can be divided into tests regarding

ray tracing and tests to find atoms and their neighbours. For all tests, on both CPU and GPU, we used the

same set of proteins. All tests were performed on machine with an Intel Core i7-9750H CPU 2.60GHz,

8 GB of RAM, and an NVIDIA GeForce GTX 1660 Ti GPU.

4.1 Ray tracing tests

Ray tracing tests evaluate the efficiency of each of the spatial acceleration data structures to render

scenes with different numbers of atoms using a ray tracer algorithm that determines the color of the

pixel according to the color of the first object intersected by a ray that was cast from the camera.

Before the comparison between each of the data structures, some other relevant tests were made.

One of them uses the parallel OpenMP implementation using BVH with a scene with just a few objects

that shows the relation between the number of threads and the average frames per second (FPS) of the

scene (fig 4.1). In this case, the FPS increases until around 25 threads, then it remains approximately

constant.

Figure 4.1: Average FPS per number of threads.

Another test (fig 4.2), compares the CPU implementation with the paralleled OpenMP implementation

using BVH as data structure. The results show that the paralleled version outperforms the standard

CPU implementation in most cases, more specifically in the ones where the scene has more atoms.

The parallel approach can achieve a frame rate increase of up to around 40%.

Also, using the OpenMP implementation, it was done a test (fig 4.3), to compare the efficiency of

each data structure in the rendering of the scene. The results do not show a significant change between

39

Figure 4.2: Comparison of FPS between a single threaded implementation and the paralleled version.

data structures, although there is usually a slight advantage when using the BVH. Since these tests

were not conclusive, it was decided to probe with different tests.

Figure 4.3: Comparison of FPS between data structures in the rendering

40

4.2 Neighbourhood tests

Neighbourhood tests are used to calculate all neighbours within a certain radius of an atom. That

proximity area is determined by the sphere of radius r. In the following tests, the radius used for proximity

was 3 Angstroms.

There were many tests involving the calculation of the neighbours where it was gathered the time

taken by the task and memory used by the system. Those tests involve either comparing different data

structures or changing some variables or thresholds in a specific data structure.

One of the tests involves using the BVH as a data structure and changing the number of atoms that

the leaf node would contain, as shown in fig 4.4 and fig 4.5. Results show that, when using a protein with

10000 atoms, the optimal number of atoms per leaf node is around 50 to 100, and in terms of memory,

it uses less and less memory as the number of atoms per leaf node increases. This is explained by the

fact that this increase leads to a smaller number of total nodes in the data structure, which consequently

leads to a decrease in memory use.

Figure 4.4: Time required to find neighbours for the number of atoms per leaf node.

Figure 4.5: Memory occupied for the number of atoms per leaf node.

41

Other tests involve using the NH as a data structure and changing the value of the threshold, which

determines which data structure behavior it will have for each node, as shown in fig 4.6 and fig 4.7.

Results show that, using a protein with 10000 atoms, the ideal threshold for both time and memory

efficiency is a value in between 500 and 1000. For future tests that do not specify the threshold used in

the NH, the value used is a tenth of the number of atoms of the protein.

Figure 4.6: Time required to find neighbours for different NH thresholds.

Figure 4.7: Memory occupied for different NH thresholds.

It was also tested, using the BVH GPU implementation and a protein with 10000 atoms, how different

sphere radiuses measured in Angstroms would affect the time taken to calculate all the neighbours of

the atoms in the scene. As shown in fig 4.8, as the sphere radius is increased, time grows exponentially,

as in the first steps the increases are small and later the increases are more significant.

42

Figure 4.8: Time required to find the neighbours of all atoms of the scene for sphere radius using the BVH GPU.

In the next tests, the comparison between all the spatial acceleration data structures takes place. In

fig 4.9 and in more detail in table A.1, it is described the time it takes for each of the data structures to

calculate the neighbours of all atoms for each scene. Results show that without using a data structure,

column ”NONE”, the time taken grows exponentially as long as the number of atoms in the scene

increases. It is also possible to conclude that the best results are, by a long margin, achieved when

using the GPU implementations due to the high efficiency of running code. More specifically the BVH

GPU is the one with better performance when the number of atoms in the scene is higher than 1000

atoms, and the GPU BVH8 is slightly better than the BVH GPU when the number of atoms is 500 or

less. Regarding the implementations in CPU, for both BVH, p-k-d tree and NH, the execution time is in

the same order of magnitude, although by analyzing the fig 4.10 and table A.2 it is possible to see that

both p-k-d tree and NH can be 6% to 18% faster when compared to BVH. In this case, just one value is

used for the nested hierarchy threshold since the results did not differ much.

In fig 4.11 and table A.3, it is shown the memory occupied for each of the data structures for each

scene. It is calculated based on the multiplication of the number of nodes in the data structure for the

size of each node. Results show that usually the BVH is the one that occupies more memory, followed

by a NH with a low value threshold, a NH with a high value threshold, the p-k-d tree, the GPU BVH8 and

finally, with the least memory consumption, the BVH GPU implementation.

In fig 4.12 and table A.4, it is shown the percentage increase in efficiency when compared to the

CPU BVH, described by a positive percentage, and the decrease in efficiency, described by a negative

percentage.

43

Figure 4.9: Time required to find the neighbours of all atoms of the scene in miliseconds (ms) by each acceleration
structure.

Figure 4.10: Comparison of performance between each acceleration structure and CPU BVH.

44

Figure 4.11: Memory required to find the neighbours of all atoms of the scene by each acceleration structure. TH
corresponds to the nested hierarchy threshold.

Figure 4.12: Comparison of efficiency between each acceleration structure and CPU BHV. TH corresponds to the
nested hierarchy threshold.

45

46

5
Conclusion

Contents

5.1 Conclusions . 49

5.2 System Limitations and Future Work . 49

47

48

In this section, a brief summary of the overall work is reported, focusing some of the most relevant

findings. It also mentions possible future work as continuation of this study.

5.1 Conclusions

The aim of this research was to compare the performance of different acceleration structures. First, it

was applied to ray tracing of a scene and then to the neighbourhood calculation of atoms of proteins,

mainly by using the distance between particles and the algorithm to traverse the data structure described

earlier. This neighbourhood calculation allowed a reduction in the number of pairwise interactions to be

calculated in a molecular system, leading to a faster calculation of the total energy of the force field

generated by the atoms. In this document, it was explained how this energy calculation is done, as

well as the main motivations and limitations for the implementation of acceleration structures. It was

explained how some of the other implementations work to speed up this heavy computation, including

the NH solution, a hybrid between the BVH and the p-k-d tree.

Regarding ray tracing in CPU, results show that the parallel OpenMP implementation can achieve

a 40% increase in frame rate when compared to the sequential implementation. When using the NH

implementation, in our case, the optimal NH threshold is around a tenth of the number of atoms of the

protein. Regarding the neighbourhood calculation in the CPU, both the p-k-d tree and the NH outper-

form the BVH and require less memory. The GPU implementations are more efficient and require less

memory than all the CPU implementations, where the GPU BVH is the one that, in general, performs

better for the neighbourhood calculation.

5.2 System Limitations and Future Work

In the GPU implementations, we used a top-down approach in the construction of the BVH. Although

the LBVH uses a bottom-up approach using Morton codes that, according to Karras [21], allows more

parallelism, due to time constraints, it was chosen to use a top-down approach since it was the same

construction algorithm as our CPU implementation, so it was possible to use the same algorithm to tra-

verse the data structure. This allows a better comparison between the CPU and GPU implementations.

In the future, it would be interesting to continue this work by implementing this proposed nested hier-

archy on the GPU, either by using CUDA, OpenMP, or OpenACC, and do a comparative analysis with the

GPU BVH of both efficiency and memory consumption. Additionally, this nested hierarchy implementa-

tion in GPU could be integrated in a molecular dynamics simulation tool like the ones aforementioned,

which calculate the interactions between atoms such as the calculation of the energy of the system by

applying the equations referred in the section 2.2. This would also allow a comparison between this

49

new methodology and the approaches that these tools are using. It would be particularly relevant to do

the comparison with the LBVH implementation [33] present in the simulation tool HOOMD-blue, which

is based on Karras’s construction algorithm [21].

50

Bibliography

[1] M. P. Allen, “Introduction to molecular dynamics simulation introduction,” Computational Soft Matter:

From Synthetic Polymers to Proteins, Lecture Notes, vol. 23, 2004.

[2] C.-e. A. Chang, Y.-m. M. Huang, L. J. Mueller, and W. You, “Investigation of structural dynamics of

enzymes and protonation states of substrates using computational tools,” Catalysts, vol. 6, no. 6,

2016. [Online]. Available: https://www.mdpi.com/2073-4344/6/6/82

[3] D. J. Hardy, Z. Wu, J. C. Phillips, J. E. Stone, R. D. Skeel, and K. Schulten, “Multilevel summation

method for electrostatic force evaluation,” Journal of Chemical Theory and Computation, vol. 11,

pp. 766–779, 2 2015.

[4] B. Li, “A comparative analysis of spatial partitioning methods for large-scale , real-time crowd sim-

ulation,” 2014.

[5] S. Raschdorf and M. Kolonko, “A comparison of data structures for the simulation of polydisperse

particle packings,” International Journal for Numerical Methods in Engineering, vol. 85, pp. 625–

639, 2 2011.

[6] M. P. Howard, A. Statt, F. Madutsa, T. M. Truskett, and A. Z. Panagiotopoulos, “Quantized bounding

volume hierarchies for neighbor search in molecular simulations on graphics processing units,”

Computational Materials Science, vol. 164, pp. 139–146, 6 2019.

[7] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, “Fast bvh construction on

gpus,” 2009.

[8] H. M. Berman, “The protein data bank,” Nucleic Acids Research, vol. 28, pp. 235–242, 1 2000.

[9] K. Binder, J. Horbach, W. Kob, P. Wolfgang, and V. Fathollah, “Molecular dynamics simulations,”

Journal of Physics Condensed Matter, vol. 16, 2 2004.

[10] L. Monticelli and D. P. Tieleman, “Force fields for classical molecular dynamics,” pp. 197–213, 2013.

51

https://www.mdpi.com/2073-4344/6/6/82

[11] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer,

T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of

proteins, nucleic acids, and organic molecules,” Journal of the American Chemical Society, vol.

118, pp. 2309–2309, 1 1996.

[12] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer,

J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Mich-

nick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote,

J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, “All-atom empirical poten-

tial for molecular modeling and dynamics studies of proteins,” The Journal of Physical Chemistry B,

vol. 102, pp. 3586–3616, 4 1998.

[13] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. V. Gunsteren, “A biomolecular force field based

on the free enthalpy of hydration and solvation: The gromos force-field parameter sets 53a5 and

53a6,” Journal of Computational Chemistry, vol. 25, pp. 1656–1676, 10 2004.

[14] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the opls all-atom

force field on conformational energetics and properties of organic liquids,” Journal of the American

Chemical Society, vol. 118, pp. 11 225–11 236, 11 1996.

[15] T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An n log (n) method for ewald sums in

large systems,” The Journal of Chemical Physics, vol. 98, pp. 10 089–10 092, 6 1993.

[16] R. Salomon-Ferrer, A. W. Götz, D. Poole, S. L. Grand, and R. C. Walker, “Routine microsecond

molecular dynamics simulations with amber on gpus. 2. explicit solvent particle mesh ewald,” Jour-

nal of Chemical Theory and Computation, vol. 9, pp. 3878–3888, 9 2013.

[17] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle

mesh ewald method,” The Journal of Chemical Physics, vol. 103, pp. 8577–8593, 1995.

[18] P. J. in ’t Veld, S. J. Plimpton, and G. S. Grest, “Accurate and efficient methods for modeling colloidal

mixtures in an explicit solvent using molecular dynamics,” Computer Physics Communications, vol.

179, pp. 320–329, 9 2008.

[19] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka, “Cpu ray tracing large

particle data with balanced p-k-d trees.” IEEE, 10 2015, pp. 57–64.

[20] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient collision detection using

bounding volume hierarchies of k-dops,” IEEE Transactions on Visualization and Computer Graph-

ics, vol. 4, pp. 21–36, 1998.

52

[21] T. Karras, “Maximizing parallelism in the construction of bvhs, octrees, and k-d trees,” 2012, pp.

33–37.

[22] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding volume hierarchies.” ACM

Press, 2013, p. 89.

[23] M. Vinkler, V. Havran, and J. Bittner, “Performance comparison of bounding volume hierarchies and

kd-trees for gpu ray tracing,” Computer Graphics Forum, vol. 35, pp. 68–79, 12 2016.

[24] M. Vinkler, J. Bittner, and V. Havran, “Extended morton codes for high performance bounding vol-

ume hierarchy construction.” Association for Computing Machinery, Inc, 7 2017.

[25] J. Pantaleoni and D. Luebke, “Hlbvh: Hierarchical lbvh construction for real-time ray tracing of

dynamic geometry,” 2010. [Online]. Available: http://code.google.

[26] A. Pérard-Gayot, J. Kalojanov, and P. Slusallek, “Gpu ray tracing using irregular grids,” Computer

Graphics Forum, vol. 36, pp. 477–486, 5 2017.

[27] D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and A. Kensler, “Fast, effective bvh updates for

animated scenes.” ACM Press, 2012, p. 197.

[28] J. Hendrich, D. Meister, and J. Bittner, “Parallel bvh construction using progressive hierarchical

refinement,” 2017.

[29] P. Gralka, I. Wald, S. Geringer, G. Reina, and T. Ertl, “Spatial partitioning strategies for memory-

efficient ray tracing of particles.” Institute of Electrical and Electronics Engineers Inc., 10 2020, pp.

42–52.

[30] J. A. Anderson, J. Glaser, and S. C. Glotzer, “Hoomd-blue: A python package for high-performance

molecular dynamics and hard particle monte carlo simulations,” Computational Materials Science,

vol. 173, 2 2020.

[31] J. A. Anderson, M. E. Irrgang, and S. C. Glotzer, “Scalable metropolis monte carlo for simulation of

hard shapes,” Computer Physics Communications, vol. 204, pp. 21–30, 7 2016.

[32] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. El-

sevier, 2001, vol. 1.

[33] M. P. Howard, J. A. Anderson, A. Nikoubashman, S. C. Glotzer, and A. Z. Panagiotopoulos, “Efficient

neighbor list calculation for molecular simulation of colloidal systems using graphics processing

units,” Computer Physics Communications, vol. 203, pp. 45–52, 6 2016.

53

http://code.google.

[34] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynamics

on hybrid high performance computers - short range forces,” Computer Physics Communications,

vol. 182, pp. 898–911, 4 2011.

[35] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dy-

namics on hybrid high performance computers - particle-particle particle-mesh,” Computer Physics

Communications, vol. 183, pp. 449–459, 3 2012.

[36] T. W. Sirk, S. Moore, and E. F. Brown, “Characteristics of thermal conductivity in classical water

models,” Journal of Chemical Physics, vol. 138, 2 2013.

[37] J. C. Phillips, D. J. Hardy, J. D. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin,

J. Hénin, W. Jiang, R. McGreevy, M. C. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang,

B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kalé, K. Schulten, C. Chipot, and E. Tajkhor-

shid, “Scalable molecular dynamics on cpu and gpu architectures with namd,” Journal of Chemical

Physics, vol. 153, 7 2020.

[38] J. E. Stone, A.-P. Hynninen, J. C. Phillips, and K. Schulten, “Early experiences porting the namd

and vmd molecular simulation and analysis software to gpu-accelerated openpower platforms,” pp.

188–206, 2016.

[39] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, “Tackling exascale software challenges

in molecular dynamics simulations with gromacs,” pp. 3–27, 2015.

[40] C. L. Wennberg, T. Murtola, B. Hess, and E. Lindahl, “Lennard-jones lattice summation in bilayer

simulations has critical effects on surface tension and lipid properties,” Journal of Chemical Theory

and Computation, vol. 9, pp. 3527–3537, 8 2013.

[41] C. L. Wennberg, T. Murtola, S. Páll, M. J. Abraham, B. Hess, and E. Lindahl, “Direct-space correc-

tions enable fast and accurate lorentz-berthelot combination rule lennard-jones lattice summation,”

Journal of Chemical Theory and Computation, vol. 11, pp. 5737–5746, 11 2015.

[42] P. Eastman and V. S. Pande, “Constant constraint matrix approximation: A robust, parallelizable

constraint method for molecular simulations,” Journal of Chemical Theory and Computation, vol. 6,

pp. 434–437, 2 2010.

[43] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery, “Arborx: A performance portable

geometric search library,” ACM Transactions on Mathematical Software, vol. 47, 1 2021.

[44] M. Robinson and M. Bruna, “Particle-based and meshless methods with aboria,” SoftwareX, vol. 6,

pp. 172–178, 2017.

54

[45] S. Guntury and P. J. Narayanan, “Raytracing dynamic scenes on the gpu using grids,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 18, pp. 5–16, 2012.

[46] V. Ogarko and S. Luding, “A fast multilevel algorithm for contact detection of arbitrarily polydisperse

objects,” Computer Physics Communications, vol. 183, pp. 931–936, 4 2012.

[47] D. Krijgsman, V. Ogarko, and S. Luding, “Optimal parameters for a hierarchical grid data structure

for contact detection in arbitrarily polydisperse particle systems,” Computational Particle Mechanics,

vol. 1, pp. 357–372, 9 2014.

[48] D. Bautembach, “Animated sparse voxel octrees,” Bachelors Thesis, Univeristy Of Hamburg, 2011.

[49] B. Mados, E. Chovancova, and M. Hasin, “Evaluation of pointerless sparse voxel octrees encoding

schemes using huffman encoding for dense volume datasets storage.” Institute of Electrical and

Electronics Engineers Inc., 11 2020, pp. 424–430.

[50] B. Mados, N. Adam, and M. Stancel, “Representation of dense volume datasets using pointerless

sparse voxel octrees with variable and fixed-length encoding.” Institute of Electrical and Electronics

Engineers Inc., 1 2021, pp. 343–348.

[51] H. Ylitie, T. Karras, and S. Laine, “Efficient incoherent ray traversal on gpus through compressed

wide bvhs,” in Proceedings of High Performance Graphics, 2017, pp. 1–13.

[52] J. Bergen, “Gpu-raytracer,” https://github.com/jan-van-bergen/GPU-Raytracer, 2022, accessed 31

July, 2022.

55

https://github.com/jan-van-bergen/GPU-Raytracer

56

A
Results Tables

Table A.1: Time required to find the neighbours of 1000 objects in milliseconds (ms) by each acceleration structure.

Number of atoms NONE BVH PKD tree NH GPU BVH GPU BVH8
100 0,2 0,5 0,4 0,5 0,16 0,14
200 0,9 1,4 1,1 1,1 0,16 0,15
500 3,0 3,3 2,9 3,0 0,17 0,16

1000 11,5 7,1 6,4 6,2 0,17 0,28
1500 26,1 10,6 9,3 9,3 0,19 0,31
2000 48,5 16,0 13,9 14,1 0,17 0,33
4000 199,4 37,2 34,4 33,4 0,16 0,36
5000 305,6 44,6 40,5 40,5 0,19 0,36
8000 787,0 74,7 66,1 69,3 0,20 0,36

10000 1230,7 90,1 81,5 80,6 0,20 0,36

57

Table A.2: Comparison of performance between each acceleration structure and CPU BVH.

Number of atoms None PKD tree NH GPU BVH GPU BVH8
100 63,3% 16,3% 6,1% 67,3% 71,4%
200 35,5% 17,4% 18,1% 88,4% 89,1%
500 9,7% 12,1% 10,3% 94,9% 95,2%

1000 -61,0% 10,5% 12,8% 97,6% 96,1%
1500 -146,9% 11,8% 12,2% 98,2% 97,1%
2000 -203,6% 12,8% 12,0% 98,9% 97,9%
4000 -436,4% 7,6% 10,2% 99,6% 99,0%
5000 -585,9% 9,1% 9,0% 99,6% 99,2%
8000 -953,9% 11,5% 7,2% 99,7% 99,5%

10000 -1265,6% 9,5% 10,6% 99,8% 99,6%

Table A.3: Memory required to find the neighbours of all atoms of the scene by each acceleration structure. N is
the number of atoms of the scene and TH corresponds to the nested hierarchy threshold.

N BVH NH (TH = N/20) NH (TH = N/10) NH (TH = N/5) PKD tree GPU BVH GPU BVH8
100 5808 6664 5880 5432 5096 1728 2560
200 12048 11368 10472 10360 9576 3200 4960
500 30000 26376 26152 25928 25144 7872 11040
1000 59952 51912 51576 51240 50904 15936 25680
1500 90192 76552 75768 76216 76104 24064 35600
2000 120528 101416 102424 100856 100408 32384 44480
4000 241200 203672 203336 201320 200200 64832 95920
5000 300144 253960 250824 250264 251608 80960 124720
8000 482160 404376 402696 402472 404824 127328 201520

10000 606288 502600 502264 505064 506184 159936 242320

Table A.4: Comparison of efficiency between each acceleration structure and CPU BHV. N is the number of atoms
of the scene and TH corresponds to the nested hierarchy threshold.

N NH (TH = N/20) NH (TH = N/10) NH (TH = N/5) PKD tree GPU BVH GPU BVH8
100 -14,7% -1,2% 6,5% 12,3% 70,2% 55,92%
200 5,6% 13,1% 14,0% 20,5% 73,4% 58,83%
500 12,1% 12,8% 13,6% 16,2% 73,8% 63,20%

1000 13,4% 14,0% 14,5% 15,1% 73,4% 57,17%
1500 15,1% 16,0% 15,5% 15,6% 73,3% 60,53%
2000 15,9% 15,0% 16,3% 16,7% 73,1% 63,10%
4000 15,6% 15,7% 16,5% 17,0% 73,1% 60,23%
5000 15,4% 16,4% 16,6% 16,2% 73,0% 58,45%
8000 16,1% 16,5% 16,5% 16,0% 73,6% 58,20%

10000 17,1% 17,2% 16,7% 16,5% 73,6% 60,03%

58

59

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Objectives

	2 Related work
	2.1 Molecular Dynamics
	2.2 Force Fields
	2.3 Simulation algorithms
	2.3.1 Particle Mesh Ewald (PME)
	2.3.2 Multilevel Summation Method (MSM)

	2.4 Spatial Acceleration Data Structures
	2.4.1 Grid
	2.4.2 Cell Lists
	2.4.3 K-d Tree
	2.4.4 P-k-d Tree
	2.4.5 Octree
	2.4.6 Bounding Volume Hierarchy (BVH)
	2.4.6.1 BVH construction
	2.4.6.2 Applications of BVHs to Ray tracing
	2.4.6.3 BVH improvements

	2.4.7 Nested hierarchy

	2.5 MD Simulation Tools
	2.5.1 HOOMD-blue
	2.5.2 LAMMPS
	2.5.3 NAMD
	2.5.4 AMBER
	2.5.5 GROMACS
	2.5.6 OPENMM
	2.5.7 ACEMD
	2.5.8 Overview

	3 Implementation
	3.1 Architecture
	3.2 PDB file parser
	3.3 3D scene creation
	3.4 Spatial acceleration data structures
	3.4.1 BVH
	3.4.1.1 BVH CPU
	3.4.1.2 BVH GPU
	3.4.1.3 BVH8 GPU

	3.4.2 P-k-d trees
	3.4.3 Nested hierarchy

	3.5 OpenMP parallel implementation
	3.6 Visualization of the protein
	3.6.1 Visualization of the bounding boxes of the nodes of the spatial acceleration structures

	3.7 Neighbourhood calculation algorithm
	3.8 CUDA implementation

	4 Tests and results
	4.1 Ray tracing tests
	4.2 Neighbourhood tests

	5 Conclusion
	5.1 Conclusions
	5.2 System Limitations and Future Work
	Bibliography
	Bibliography
	Appendix A
	Appendix B

	A Results Tables

