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whose unconditional love allowed me to grow into the person I am.

Finally, I want to acknowledge Joana for the strength, motivation and joy that she constantly provides

and for making me strive to be a better person every day.

This work was supported by Fundação para a Ciência e a Tecnologia under project HelicalMETA,

UIDB/50008/2020. I also thank Instituto de Telecomunicações for hosting me from January 2021 up until

the conclusion of this dissertation.

iii



...para a minha avó Lurdes.
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Abstract

One of the main goals in Photonics is the efficient and robust manipulation of light. Topological Photonics

offers a path towards this objective by realising electromagnetic modes with protected propagation. In

recent years, and inspired by the success of topological materials, where electron propagation is robust

against a range of defects and disorder, there has been much interest in topological photonic modes.

In this thesis we study two topological photonic systems: a reciprocal chiral metamaterial consisting of

an array of metal wires in the shape of elliptical helices; and a magnetized plasma which is a naturally

existing continuous medium. Both of these structures display Weyl points which are topological band

degeneracies in 3 dimensions that arise at the linear crossing between longitudinal plasmonic modes

and transverse modes. First, we analyse how nonlocality, a phenomenon present in these materials,

affects the emergence of these three-dimensional linear degeneracies. Next, the topological properties

of the magnetized plasma are characterized by a first principles method. Specifically, a photonic Green’s

function formalism is used in order to study the influence of Weyl degeneracies on the topology in

3-dimensional wave vector space and we calculate their topological charge. We apply two different

regularization procedures in order to obtain well-defined topological invariants: introducing the effects

of charge diffusion due to electron-electron repulsive interactions; and the application of a full wave

vector cut-off. With our approach, we are able to compute the topological charge of Weyl points in

metamaterials with in a computationally efficient way.

Keywords

Metamaterials; Helical Metamaterial; Band Structures; Weyl Points; Chern Number; Topological Pho-

tonics.
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Resumo

Um dos principais objectivos da Fotónica é a manipulação eficiente e robusta da luz. A Fotónica

Topológica oferece um caminho na direcção deste objectivo ao realizar modos electromagnéticos com

propagação protegida. Recentemente, e inspirado pelo sucesso dos materiais topológicos, onde a

propagação de electrões é resistente contra uma variedade de defeitos e desordem, adveio bastante

interesse em modos fotónicos topológicos. Nesta tese, nós estudamos dois sistemas fotónicos: um

metamaterial quiral recı́cproco consistente duma matriz de fios metálicos com a forma de helicoidais

elı́pticas; e um plasma magnetizado que é um material contı́nuo existente na natureza. Ambas estas

estruturas exibem pontos Weyl que são degenerações topológicas de bandas em 3 dimensões e que

emergem no cruzamento linear entre modos plasmónicos longitudinais e modos transversos. Primeira-

mente, analisamos como a dispersão espacial, um fenómeno presente nestes materiais, afecta o

aparecimento destas degenerações lineares tridimensionais. Seguidamente, as propriedades topológicas

de um plasma magnetizado são caracterizadas por um método de primeiros princı́pios. Especifica-

mente, um formalismo que emprega a função de Green fotónica é utilizada para estudar a influência de

degenerações de Weyl na topologia dum espaço de vector de onda tridimensional e calculamos as suas

cargas topológicas. Aplicam-se duas regularizações diferentes para obter invariantes topológicos bem

definidos: introduz-se o efeito da difusão de cargas devido às interacções repulsivas entre electrões; e

aplica-se um corte completo do vector de onda. Com a nossa abordagem, somos capazes de calcular

a carga topológica de pontos Weyl em metamateriais duma maneira computacionalmente eficiente.

Palavras Chave

Metamateriais; Metamaterial Helicoidal; Estrutura de Bandas; Pontos Weyl; Número de Chern; Fotónica

Topológica.
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parameters used here were α = −0.1, γ = 0.71, ω′
p = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz = 1. . . 22

3.6 Dispersion along kz axis. The longitudinal mode is in green and the transverse modes are

in yellow and blue. The momentum axis’ values are normalized as Z = kzp/(2π). . . . . . 24

3.7 Dispersion in x̂ direction, from Weyl point. The momentum axis’ values are normalized as

X = kxa/(2π). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi
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1.1 Sate of the Art

Metamaterials are artificial structures and composite materials, not found in nature, that have tai-

lored responses to electromagnetic waves. They are composed of unit cells made up of “meta-atoms”,

periodically arranged in space and embedded in a host medium. They hold great potential because

of this flexibility for realizing desired responses, by varying parameters which depend on the geometry

and composition of the unit cell [1, 2]. If the meta-atoms’ size is much smaller than the wavelength of

the light propagating in such media, then the metamaterial can be approximated as a continuum and

its electromagnetic response can be described by effective parameters. The process that relates these

effective parameters with the structure of the metamaterial unit cell is called homogenization [3, 4]. A

very important example of what can be achieved with metamaterials is “double-negative” media (DNG)

which have both negative permittivity and permeability [5] and that are capable of exotic phenomena

such as negative refraction.

Figure 1.1: Example of a metamaterial made by a periodic arrangement of inclusions embedded in a host medium.
Picture taken from [1].

Topology is a branch of mathematics that studies the properties of objects that stay invariant under a

continuous transformation. When some property of a mathematical object is unaffected by a deformation

it is called a topological invariant. A most notable example is the number of holes on a surface which

does not change when you deform said surface continuously. This means that it is a global property

since it does not depend on the local aspects of the structure, and so it is indeed a topological invariant,

known as the genus g. Furthermore, two objects with the same topological invariants are defined as

being topologically equivalent. For instance, continuing with the classic example, that would mean a

doughnut is topologically equivalent to a coffee mug.
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Figure 1.2: Saddle surface with normal planes in directions of principal curvatures. Picture taken from https :
//en.wikipedia.org/wiki/Gaussian curvature (October 2022).

The Gaussian curvature K of a surface at any point is given by the product of the principal curvatures

k1 and k2 at that point. The principal curvatures measure how the surface bends by different amounts in

different directions. This can be related with the curvature radii R1 and R2 as so:

K = k1k2 =
1

R1R2
, (1.1)

which means for example that the Gaussian curvature of a sphere is given by the inverse squared radius

1/r2. This is related with the number of holes on a surface S through the ”Theorema Egregium” which

stands for remarkable theorem in Latin, also known as Gauss-Bonnet theorem:

1

4π

ˆ

S

K = (1− g) (1.2)

Surprisingly, the genus which is a discrete global property is linked with the Gaussian curvature which is

a locally defined property, after integrating it over the entire surface. It is implied then that the total cur-

vature is discretely quantized as an integer number multiplied by a factor of 4π. Consequently, a smooth

perturbation of the surface can dramatically change the local curvature and yet the total curvature re-

mains invariant. This special invariance of a structure’s properties in the face of smooth deformations

justifies the importance of studying topologically protected phenomena.
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Topological photonics has attracted much attention due to the prediction of topologically protected

edge states that propagate without backscattering, enabling the flow of light immune to disorder and

imperfections such as sharp bends or corners [6,7]. The study of this field began with photonic crystals,

in which propagation of light depends on global characteristics of the band structure [8, 9]. These are

also periodic structures but contrarily to metamaterials, their unit cell’s dimensions is on the order of the

wavelength.

The topological invariant of a 2D dispersion band is the Chern number:

Cn =
1

2π

ˆ

BZ

Fnd
2k, (1.3)

Fnk = i [⟨∂1Qnk|∂2Qnk⟩ − ⟨∂2Qnk|∂1Qnk⟩] , (1.4)

where BZ is a Brillouin zone, Fn is the Berry curvature of the n-th band and Qnk is the n-th eigenstate.

The gap Chern number is by definition given by the sum of the individual Chern numbers of each set

of bands below the specific band gap, and it predicts the number of chiral edge states that propagate

without backscattering [9]. Additionally, the bulk-edge correspondence principle [10,11] states that when

two topologically inequivalent photonic systems share a common band gap, the number of edge modes

supported at an interface between them is given by the difference of the gap Chern numbers.

Figure 1.3: Illustration of unidirectional edge modes (in green) emerging from a nonreciprocal magnetized material.
The ”C”s are the Chern numbers of each set of bands in grey. Picture taken from [12]
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The standard theory used to calculate these topological invariants requires the Berry curvature which

depends on the normal modes of the system as given in equation (1.4) [13]. However, the formalism that

will be adopted for this work makes explicit use of the photonic Green’s function which is also linked with

the Chern invariants [14,15]. Specifically, the gap Chern number is given by an integral of the photonic

Green’s function over a contour in the complex-frequency plane that links −∞ to +∞ and is contained

in the relevant band:

Cgap =
1

(2π)2

¨

BZ

d2k

ω′
gap+i∞ˆ

ω′
gap−i∞

dωTr{∂1G−1
k · Gk · ∂2G−1

k · ∂ωGk}, (1.5)

where Tr is the trace operator, ∂ω=∂/∂ω and ∂jG−1
k = ∂G−1

k /∂kj for j = {1, 2} with k1 = kx and k2 = ky.

As previously stated, the wave vector integral domain BZ is a Brillouin zone (BZ). Although the wave

vector integral might be performed over a different domain, the BZ is typically used because it is a closed

surface with no boundary. This is a necessary condition for integer Chern numbers. Naturally, periodic

structures which have an induced periodicity in the spectral domain are often used in studies regarding

topological photonic phenomena, yet it is not a requirement.

It is possible to topologically classify continuous media, with no intrinsic periodicity, i.e with an un-

derlying wave vector space that is an unbounded open region as was shown by M. G. Silveirinha [16].

One solution is to map each point into a unit radius sphere surface by stereographic projection. How-

ever, the condition of a wave vector space that is a closed surface with no boundary is not enough to

guarantee integer Chern numbers due to ill-defined topologies. This holds true even for periodic struc-

tures. In [17] it is shown that a dispersive photonic crystal may have an ill-defined gap Chern number

because of an infinite number of bands bellow the gap which might result in a divergent series. Another

potential reason is the band folding that causes an accumulation of branches at a resonance frequency,

due to the periodicity. Both problems are illustrated in figure 1.4. In order to overcome the problem of

an ill-defined topology, a physical regularization procedure must be applied to the material response.

A general solution to guarantee a well-defined topology of a continuous system is to apply a full wave

vector cut-off which acts by suppressing the nonreciprocal part of the material response, for large wave

vectors. Different regularization procedures can achieve two topologically inequivalent structures. This

can be illustrated with an example of a torus with a vanishing inner radius which has an ill-defined topol-

ogy, because it stands between two possible genera (0 or 1). A perturbation can be applied by opening

a hole, turning it into a torus with g = 1 or by separating the top and bottom sections and turning it into

a sphere with g = 0.

5



Figure 1.4: Illustration of a) infinite bands in frequency and b) accumulating branches due to band folding when
using a homogeneous medium as unit cell inclusions in a photonic crystal. Picture taken from [17].

The gap Chern number which relates to the existence of edge states along one-dimensional bound-

aries is defined over a 2-dimensional wave vector space. However, there exists a 3-dimensional gap-

less topological phase characterized by 0-dimensional Weyl degeneracies which are called Weyl points.

These physical entities are singular points that emerge as linear crossings between two topologically

inequivalent bands. They are monopoles of the Berry curvature and come in pairs in symmetric points

of momentum space with opposite charge. Initially studied in electronic systems, it is possible to find

them in classical wave systems such as electromagnetic and acoustic ones. They have been realised in

complex three-dimensional photonic systems, such as photonic crystals and metamaterials [18–23] and

more recently in simple magnetized plasmas [24, 25]. Importantly, they only emerge in systems with a

broken time-reversal symmetry, a broken inversion symmetry or both. Since they always come in pairs

with opposite charges, it is only possible to create or remove them by respectively generating the Weyl

point pair together or by annihilating each other. This leads to robust topological surface states between

a pair of Weyl points, often called photonic Fermi arcs [12].

There are two types of Weyl points. Type-I and type-II, both being topologically nontrivial, but ex-

hibiting different physical properties. The isofrequency surface around a type-I Weyl point is an ellip-

soid, hence these are also referred as elliptical Weyl points. In the case of the type-II Weyl point, the
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isofrequency surface is a hyperboloid, thus these are called hyperbolic Weyl points [20]. They are also

characterized by the density of states (DOS) or of modes at the frequency of the Weyl crossing. Type-I

is described by a vanishing DOS and type-II by a non-zero DOS as illustrated in figure 1.5. Because of

this categorical difference, the DOS related phenomena such as spontaneous emission and resonant

scattering exhibit very different behaviours in the two types of photonic Weyl systems [22].

Figure 1.5: Illustration of the dispersion for the two types of Weyl point. Picture taken from [12]

1.2 Objectives

The main objective for this work is to compute gap Chern numbers in photonic structures that possess

Weyl points and understand their influence on the Chern topological invariants.

For this purpose two structures are studied. The first one is a metamaterial composed by an array

of equally spaced metal wires, shaped like elliptical helices. The second one is a well known naturally

existing medium - magnetized plasma. We also analyse the conditions in which Weyl degeneracies

emerge in these two systems. We apply two different regularization procedures in order to prevent

ill-defined topologies in band structures.

The main computational tool employed in the work of this thesis is Wolfram Mathematica [26]. With

this software, we solved eigenvalue problems, computed and plotted 2-dimensional and 3-dimensional

dispersion bands and implemented the first principles Green’s function method numerically.

Finally, with this work, we aim at adapting a numerical implementation of the first principles Green’s

function method previously developed to study topological invariants of 2D photonic Chern insulators

[15,17,27], to a more general scenario, particularly Weyl points in a 3D magnetized plasma.
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1.3 Original Contributions

The outputs of this thesis comprise the developed Mathematica programs and a poster with the title

“First Principles Study of the Topological Charge of Weyl Points in a Magnetized Plasma” presented in

the 16th International Congress on Artificial Materials for Novel Wave Phenomena - Metamaterials’2022,

in Siena, Italy.

1.4 Structure of Dissertation

This thesis is organized as follows: Chapter 1 offers an overview of the main topics and concepts that

will be dealt with throughout this dissertation. In chapter 2, a description is given about the most impor-

tant methods that will be used to solve the problems presented in section 1.2. In chapter 3, the helical

metamaterial and the magnetized plasma are analysed, in terms of: dispersion relation and character-

istics of the bulk modes; how the Weyl points arise in these photonic systems; and most importantly, the

feasibility of the application of the Green’s function formalism, for the case of the magnetized plasma.

Chapter 4 is the most important on in this thesis. Two magnetized plasma models with different regular-

ized responses are topologically characterized with a numerical implementation of the Green’s function

formalism. In the last chapter (5), we present and summarize the main results and conclusions from

throughout this work.
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The methods used throughout this thesis are detailed in this chapter. They consist of the dispersion

relations that describe propagation within media and the Green’s function formalism that computes gap

Chern numbers.

2.1 Dispersion Relations

The main tool employed in this thesis to characterise the properties of the electromagnetic (EM)

modes supported by the media under study will be the dispersion relation. More specifically, it pro-

vides a connection between spatial frequency k and temporal frequency ω, depending on the direction

of propagation. Here we introduce a general method to derive dispersion relations of waves for a given

medium characterised by a set of constitutive parameters. To be as general as possible, a generic

bianisotropic [28] medium is considered, with the following material matrix:

M =

(
ϵ ξ

ζ µ

)
, (2.1)

where the matrix entries are 3 by 3 tensors: ϵ is the permittivity, µ is the permeability and the anti-

diagonal terms ξ and ζ are the cross-coupling or the magnetoelectric coupling terms. Their elements

are called the constitutive parameters. The starting point is to consider the macroscopic Maxwell’s

equations that define wave propagation:

∇×E = − ∂

∂t
B, (2.2)

∇×H =
∂

∂t
D+ J, (2.3)

∇ ·D = ρ, (2.4)

∇ ·B = 0, (2.5)

where E and H are the electric and the magnetic fields, D and B are the electric displacement and the

magnetic induction fields and the EM sources are described by the electric current density J and by the

electric charge density ρ. Following with the constitutive relations, which describe mathematically the

electromagnetic properties of media through the material matrix. This provides a link between (E,H)

and (D,B): (
D
B

)
=

(
ϵ ξ

ζ µ

)(
E
H

)
= M ·

(
E
H

)
(2.6)

Since the interest of this problem is to describe propagation within the medium, sources are nullified.

That means J = 0 and ρ = 0. However, current displacement and charge density contributions caused

by external fields in the system can be absorbed into D and therefore are not accounted for in equations
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(2.2)-(2.5). Then, plane wave solutions with harmonic spatial and time variation of the type eik·re−iωt are

considered. This mathematically simplifies the manipulation of Maxwell’s equations because one can

simply substitute the spatial and temporal derivatives as such: ∂
∂t ↔ −iω, ∂

∂j ↔ ikj , j = {x, y, z}. Under

these conditions, the represented EM vector fields are time-independent, described by an underlined

notation. Equations (2.2) and (2.3) are transformed to:

k×E = ω(ζ ·E+ µ ·H) (2.7)

k×H = −ω(ϵ ·E+ ξ ·H) (2.8)

The underline of the electromagnetic fields denotes that they are in the spectral domain. By defining an

operator k such that k ·A = k×A, for any vector A:

k ≡

 0 −kz ky
kz 0 −kx
−ky kx 0

 , (2.9)

it is then possible to rewrite equations (2.7)-(2.8) in the form of a matrix acting on the electric field.

(
ω2ϵ+

[
k + ωξ

]
· µ−1 ·

[
k − ωζ

])
·E = 0 (2.10)

The dispersion relation of plane waves in a generic bianisotropic medium is given by the determinant

of the matrix, once it is equal to zero. This gives the connection between the components of k and the

temporal frequency ω, as: ∣∣ω2ϵ+
[
k + ωξ

]
· µ−1 ·

[
k − ωζ

]∣∣ = 0 (2.11)

From equation 2.11, all of the particular cases that describe propagation in different kinds of media

can be derived such as (1 is the identity matrix):

• isotropic: ξ = 0, ζ = 0, ϵ = ϵ1 and µ = µ1;

• anisotropic: ξ = 0, ζ = 0 and the permittivity ϵ and the permeability µ tensors are matrices, each

formed by different components;

• biisotropic: material matrix entries are scalar and either ξ ̸= 0, or ζ ̸= 0 or both are non-zero.

• bianisotropic: material matrix entries are all matrices.

It is also easy to specify a particular direction of propagation for a simpler analysis. For example, plane

waves travelling in the ẑ direction (kx = ky = 0) or in the xoy plane (kz = 0).
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2.2 Topological Formalism

2.2.1 Numerical Green’s Function Formalism For A Continuum

The first principles Green’s function formalism which is described by equation (1.5) is a crucial com-

ponent for the work of this thesis and specifically for the execution of the main objective of computing

the topological charge of Weyl points in photonic systems. Due to the 3D nature of Weyl degeneracies,

which are crossings with linear dispersions along the 3 wave vector directions, we must consider the

dispersion in a wave vector space with 3 dimensions. Since even a continuous medium like the magne-

tized plasma can have complex dispersion relations, when we consider every wave vector component,

analytically computing the Green’s function for every mode is not a simple task. This is why we chose to

implement a numerical version of this method, in order to compute gap Chern numbers.

The photonic Green’s function is defined as:

Gk = i
(
L̂k − ω1

)−1

, (2.12)

where L̂k is a frequency-independent differential operator that effectively models the propagation in a

dispersive medium. Typically, this entails modeling the effects of the material dispersion with additional

variables that represent the internal degrees of freedom of the medium responsible for the dispersive

response. It is parameterized by the real wave vector k and its derivation is performed for a specific

medium in the next section [17].

The topological characterization of a photonic system is based on equation (1.5). If we apply the

substitutions ∂ωGk = −iG2
k and ∂jG−1

k = −i∂L̂k/∂kj , we get [15]:

Cgap =
i

(2π)2

¨

BZ

d2k

ω′
gap+i∞ˆ

ω′
gap−i∞

dωTr{∂1L̂k · Gk · ∂2L̂k · G2
k} (2.13)

Equation (2.13) shows that the gap Chern number is given by an integral along a line of the complex

frequency plane parallel to the imaginary axis. The line crosses the real frequency axis on a chosen

value ω′
gap and this value should be confined between the lower and upper limits of the respective band

gap in the real frequency axis as illustrated in figure 2.1. Here, ξ denotes the imaginary part of the

complex frequency and not a magnetoelectric coupling term. The same notation was chosen to be

consistent with the reference article.
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Figure 2.1: Illustration of the complex frequency integral path within a band gap of a nonreciprocal continuous
medium.

The numerical implementation of equation 2.13 for a 3-dimensional continuum is based on [15].

Contrarily to our case, in the referenced work, the topological study is done on a 2-dimensional photonic

crystal, which is a periodic structure. However, we adapted it for our case by changing some key aspects

which are explained below. First of all, we perform a change of variables in 2.13:

Cgap =

1/2ˆ

−1/2

1/2ˆ

−1/2

dβ1dβ2

∞̂

0

dξg (ξ, β1, β2) , (2.14)

where we use coordinates ω = ω′
gap + iξ and k = β1b1 + β2b2, where bj are the reciprocal lattice

primitive vectors of the photonic crystal and −1/2 < βj < 1/2 (j = {1, 2}) and the integrand function

g (ξ, β1, β2) is:

g (ξ, β1, β2) =
i

(2π)2
|b1 × b2|

[
Tr{∂1L̂k · Gk · ∂2L̂k · G2

k}|ω=ω′
gap+iξ,k=β1b1+β2b2

+Tr{∂1L̂k · Gk · ∂2L̂k · G2
k}|ω=ω′

gap−iξ,k=β1b1+β2b2

] (2.15)

For practical reasons, the upper-limit of the integral in ξ is truncated and so we change ∞ to ξmax.

Typically, g decays exponentially fast with ξ so ξmax is not required to have a large value, as we will see

in section 4.3. Finally, the numerical integrals in ξ, β1 and β2 are done using the trapezoidal rule or the

Simpson rule. The integration in βi is over Ni subintervals with i = {1, 2}, so the integral over the wave

vector space is done over N1 ×N2 subintervals. For simplicity we have N1 = N2 = N . The integration

over the complex frequencies is done over Nw subintervals.

The photonic crystal in the reference has a honeycomb lattice, with lattice constant a and its direct
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lattice primitive vectors are taken as:

a1 =
a

2

(
3x̂−

√
3ŷ
)
, a2 =

a

2

(
3x̂+

√
3ŷ
)
. (2.16)

The first modification comes from the fact that since we will be dealing with homogeneous media, the

integrals over the wave vector domain BZ do not require a specific direction, as is the case with an

inhomogeneous structure. Therefore, we changed these vectors to simply point along the x̂ and ŷ

directions.

a1 =
a

2
(x̂) , a2 =

a

2
(ŷ) (2.17)

The second modification was done to the constitutive parameters of the components in the unit cell.

The photonic crystal is formed by two sub-lattices of cylindrical rods embedded in a background of air.

We changed the constitutive parameters of each lattice and of the background itself by forcing them to

be the same, and by doing this we substituted the inhomogeneous unit cell with a homogeneous one.

With this alteration the medium is effectively a continuum.

Finally, in the article, a plane wave expansion was performed due to the periodic nature of the pho-

tonic crystal, and so the authors have an additional plane wave representation of the operator L̂k. We

have no need to perform this expansion since we will not topologically characterize a periodic structure.

As we will see chapter in 4, with this implementation, we can have numerical results with extremely small

absolute errors.
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2.2.2 Operator L̂k

Here we show an example of the derivation of the operator L̂ from which L̂k is obtained. In this thesis

we have characterized the topology of the magnetized plasma in 3D. This topological study includes

both local and non-local models for this medium, as will be shown in chapter 4. Thus, the L̂ operator will

only be derived for these models. Here we introduce a general method to derive this operator which is

described in [17] and we consider a local and lossless model of a magnetized plasma, as a first instance.

This medium will be studied in section 3.2, so we will not elaborate much on its properties in this section.

We start with Maxwell’s equations in time domain, for propagation in free space (∂t ≡ ∂
∂t

):

−i∇×E = iµ0∂tH,

i(∇×H− j) = iϵ0∂tE,
(2.18)

where µ0 and ϵ0 are the vacuum’s permeability and permittivity, respectively. We then consider the

continuity equation given by:

∂tρ+∇ · j = 0 (2.19)

The current j and charge ρ densities model the response of the dispersive electric gyrotropic material.

Making use of Newton’s second law of motion plus Lorentz’s Force law, one can derive the transport

equation for a free electron gas biased with a static magnetic field (B0 = B0ẑ):

∂tj = ϵω2
pE+

q

m
j×B0, (2.20)

where q = −e is the charge of an electron with opposite sign and m is its effective mass. Equations

(2.18)-(2.20) can be rewritten as a Schrödinger-type equation:

L̂ ·Q =
1

c
i∂tQ (2.21)

The state vector Q is given by Q =
[
Ex Ey Ez H̃x H̃y H̃z j̃x j̃y j̃z ρ̃

]T
, with “T” being

the transpose operator. We introduce the normalized magnetic field, current and charge density: H̃ =

η0H, j̃ = η0j, ρ̃ = η0cρ, with η0 being the vacuum wave impedance and c the speed of light.

Since we are interested in the 3-dimensional case of the continuous magnetized plasma, we assume

a spatial and time variation of the state vector of the type eik·re−iωt, with wave vector k = kxx̂+ky ŷ+kz ẑ.

We are also interested in analysing the dispersion of all light modes in this medium, thus we assume the

propagating superposition of every polarization possible: E = Exx̂+Ey ŷ+Ez ẑ, H = Hxx̂+Hy ŷ+Hz ẑ

and j = jxx̂+ jy ŷ + jz ẑ which justifies the dimension of the state vector written above.

By applying the curl operator to the electric and magnetic fields described above, we get (∂i ≡ ∂
∂i
, i =
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{x, y, z}):

∇×E = (∂yEz − ∂zEy)x̂− (∂xEz − ∂zEx)ŷ + (∂xEy − ∂yEx)ẑ

∇×H = (∂yHz − ∂zHy)x̂− (∂xHz − ∂zHx)ŷ + (∂xHy − ∂yHx)ẑ
(2.22)

Additionally, the cross product between the current density vector and the bias magnetic field renders:

j×B0 = jyB0x̂− jxB0ŷ (2.23)

By manipulating equations (2.18)-(2.20), inserting the previous results, taking into account that cµ0 =

η0 and that the cyclotron frequency is defined as ωc = −qB0/m, we get:

−i

∂yEz − ∂zEy

∂zEx − ∂xEz

∂xEy − ∂yEx

 = i
1

c
η0∂t

Hx

Hy

Hz


η0i

∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx

−

jxjy
jz

 = i
1

c
∂t

Ex

Ey

Ez


−iη0(∂xjx + ∂yjy + ∂zjz) = i

1

c
cη0∂tρ

i
ω2
p

c2

Ex

Ey

Ez

+ iη0
ωc

c

−jy
jx
0

 = i
1

c
η0∂t

jxjy
jz



(2.24)

Now, we only need to associate the rows of the operator with the state vector components present

on the right side of the system of equations in (2.24) and its columns with the components present on

the left side. The entries are simply the leftover factors multiplied with the state vector components so as

to maintain the same structure of equation (2.21). Following this algorithm, we acquire the L̂ operator:

L̂(−i∇) =



0 0 0 0 −i∂z i∂y −i 0 0 0
0 0 0 i∂z 0 −i∂x 0 −i 0 0
0 0 0 −i∂y i∂x 0 0 0 −i 0
0 i∂z −i∂y 0 0 0 0 0 0 0

−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −iωc

c 0 0

0 i
ω2

p

c2 0 0 0 0 iωc

c 0 0 0

0 0 i
ω2

p

c2 0 0 0 0 0 0 0
0 0 0 0 0 0 −i∂x −i∂y −i∂z 0


(2.25)

The operator L̂k from equation 2.12 can be obtained by substituting the spatial derivatives in 2.25 with

the corresponding wave vector components ∂
∂j ↔ ikj , j = {x, y, z}.
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In this chapter, we will analyse the dispersion relations of the two main photonic systems under

study which are the helical metamaterial and the magnetized plasma. In addition, we will present how

the Weyl points emerge and what are the physical properties they possess.

3.1 Helical Metamaterial

The first structure under study is a metamaterial consisting of an array of infinitely long wires shaped

like elliptical helices, made from perfectly electrical conductors (PEC) and embedded in air. Its physical

realization exhibits type-II Weyl points due to its nonlocal response, as it will be shown. Its geometry

can be visualized in figure 3.1, where a is the lattice constant of the square unit cell where one helix is

positioned, az = |p| is the pitch of the helix (we consider that all helices have the same handedness), ρx

and ρy are the semi-major axes lengths in the x̂ and ŷ directions, respectively, and finally rw is the wire

radius.

Figure 3.1: Helical metamaterial - geometry and orientation. Picture taken from [4]

Metamaterials can be regarded as continuous media if the inclusions that constitute the unit cell are

electrically small, i.e. their dimension is much smaller than the wavelength of the electromagnetic wave

in the specific direction of propagation. Take our structure for example. If a wave is travelling along the

ẑ direction, then its lattice constant az given by the pitch of the helix should be considerably smaller

than the wavelength. In this situation they can be described by effective constitutive parameters which

correspond to a homogenized model.

Before we analyse the dispersion of electromagnetic waves in a possible physical realization of this

metamaterial, we will focus on the class of materials where the homogenized model of the helical meta-

material belongs to.
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3.1.1 Bianisotropic Model

We start with a bianisotropic homogeneous medium that possesses no spatial dispersion. The bian-

isotropy is due to chiral coupling (γ) between electric and magnetic fields and because the components

of the permittivity and permeability tensors are all different. This type of media is anisotropic and chiral

and it is described by the following constitutive relations:

(
D
B

)
=

(
ϵ i

√
ϵ0µ0γ

−i
√
ϵ0µ0γ µ

)(
E
H

)
(3.1)

where the only nonvanishing component of γ is γzz = γ and the permittivity and permeability tensors

are as follows [20]:

ϵ

ϵ0
=

ϵx 0 0
0 ϵy 0
0 0 ϵz

 (3.2)

ϵz = 1−
ω2
p

ω2
(3.3)

µ

µ0
=

µt 0 0
0 µt 0
0 0 µz

 (3.4)

As a first approximation, we consider ϵz to be the only dispersive constitutive parameter. It is charac-

terized by Drude’s dispersion and ωp is a resonance frequency, also known as plasma frequency. This

parameter is related to the geometry of the metamaterial as will be shown.

By applying the method described in section 2.1, the complete dispersion relation for this class of

media is derived:

det


ϵx
(
ω
c

)2 − k2
y

µz
− k2

z

µt

kxky

µz

kxkz

µt
+ i

kyγzz

µz

(
ω
c

)
kxky

µz
ϵy
(
ω
c

)2 − k2
x

µz
− k2

z

µt

kykz

µt
− ikxγzz

µz

(
ω
c

)
kxkz

µt
− i

kyγzz

µz

(
ω
c

) kykz

µt
+ ikxγzz

µz

(
ω
c

) (
ϵz − γ2

zz

µz

) (
ω
c

)2 − k2
x+k2

y

µt

 = 0 (3.5)

As we will see, the Weyl points arise along the kz axis in the wave vector space, so we will focus mainly

on propagation along the ẑ direction. The system supports three propagating modes, two of them

transverse and one longitudinal. The transverse modes’ dispersion relations are given by

ω = ±ckz/
√
µtϵx, ω = ±ckz/

√
µtϵy, (3.6)

and so they are only degenerate when ϵx = ϵy. The longitudinal mode’s dispersion relation is given by

the solution to the equation ϵz − γ2/µz = 0. It is a flat mode whose frequency is fixed at

ω = ±ωp/

√
1− γ2

µz
= ±ω′

p, (3.7)
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independently of kz.

The Weyl points in this system arise as crossings between this flat longitudinal mode and the trans-

verse modes. They have been shown to be indeed Weyl crossings [20], because they are twofold

degenerate (not three) due to the anisotropy of the permittivity in the x̂ and ŷ directions, and because

they are linear in all directions due to the chiral coupling. Without the chiral coupling, the dispersion in

the ŷ direction is quadratic.

1 2 3 4
ckz

0.5

1.0

1.5

ω/ω'p

Figure 3.2: Dispersion along the kz axis. Crossings between longitudinal mode (green) and transverse modes (blue
and yellow) are Weyl points. The parameters used here were ωp = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz =
1, γ = 0.8.

The Weyl points displayed in figure 3.2 are at the boundary separating type-I and type-II. To achieve

either one, nonlocality must be introduced. Nonlocality or spatial dispersion occurs when a medium’s

constitutive parameters depend on the wave vector component of the propagating electromagnetic wave.

Wire metamaterials are known to exhibit this nonlocal effect [29], hence we will now consider a different

ϵz [20] that models spatial dispersion:

ϵz = 1−
ω′2
p

ω2
+

γ2

µz
+ αk2z (3.8)

The nonlocality affects the longitudinal mode’s dispersion by introducing a curvature or concavity that

either tilts it up or down. The alpha parameter controls this tilt and thus the type of Weyl point generated

in the crossing. Recalling that this mode’s dispersion is the solution to the equation ϵz − γ2/µz = 0:

ω = ±
ω′
p√

1 + αk2z
(3.9)

By analysing the second derivative of equation (3.9) with respect to the wave vector, it can be seen that it

is positive for α < 0 and negative for α > 0, which means that with the first condition we have an upwards

concavity and a downward concavity for the second one. Additionally, for α < 0, the magnitude of this

parameter cannot be too large due to the possibility of the longitudinal mode diverging thus precluding
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a crossing:

αk2z > −1 ⇔ k2z > −1/α ⇒ −
√

−1/α < kz <
√

−1/α (3.10)
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Figure 3.3: Dispersion along the kz axis with a nonlocal ϵz. The parameters used on both plots were ω′
p = 1, ϵx =

2, ϵy = 1.7, µt = 1, µz = 1. For the plot on the left: α = 0.5, γ = 1 and for the plot on the right:
α = −0.1, γ = 0.71.

Figure 3.3 shows the effect of a positive and a negative alpha parameter on the concavity of the

longitudinal mode. Since in the plots of this figure there are two degeneracies, we need to distinguish

them. We will denominate the crossing between the yellow transverse mode and the green longitudinal

mode as the first or inner Weyl point and the one between the blue and green modes as the second

or outer Weyl point. By plotting the dispersion curves around one of the Weyl crossings, for example

the second one, the conclusion can be derived that for α > 0, the equifrequency curves are elliptical,

signifying that it is type-I. On the other hand, for α < 0, the equifrequency curves become hyperbolic,

hence it becomes type-II. It is to be noted that the plots of the dispersion surfaces in figures 3.4 and 3.5

always display elliptical isofrequency curves, for the pair of wave vector components kx and ky, since

there is no shift in kz.

21



a) b)

Figure 3.4: Dispersion around second Weyl point with α > 0: a) in x̂ and ŷ; b) in ẑ and ŷ. The parameters used
here were α = 0.5, γ = 1, ω′

p = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz = 1.

a) b)

Figure 3.5: Dispersion around second Weyl point with α < 0: a) in x̂ and ŷ; b) in ẑ and ŷ. The parameters used
here were α = −0.1, γ = 0.71, ω′

p = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz = 1.

As we will see in the next section, for a physical realization of this metamaterial, it is only possible to

obtain type-II Weyl points.
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3.1.2 Weyl Crossings in the Homogenization Limit

In this section, we will provide the link between the nonlocal bianisotropic model described previously

and the effective medium theory of this metamaterial that is described in [4] and expanded in [20] to

include ellipticity. This homogenization provides significant information about the physical realization

of this metamaterial, specifically about its geometry. For example, the fact that the constituent of this

metamaterial’s unit cell is an elliptical helix is the reason the values for ϵx and ϵy differ and consequently

originate two non-degenerate transverse modes, for propagation along the kz axis. There is also an

effective chirality due to lack of inversion symmetry of the helix (broken inversion symmetry). Moreover,

in the previous section we studied a simplified model where only ϵz was dispersive, but the effective

parameters µz and γ of the helical metamaterial are also dispersive. Because of this, we cannot obtain

analytical formulas for the modes. We can only calculate them numerically. From the effective parameter

formulae, we have:

ϵx = 1 +
(πρx)

2

VcellC11
, (3.11)

ϵy = 1 +
(πρy)

2

VcellC̃11

, (3.12)

ϵz = 1− 1

β2/β2
p1 − k2z/β

2
p2

+
γ2

µz
, (3.13)

µz =

(
1 +

β2A2

β2/β2
p1 − k2z/β

2
p2

)−1

, (3.14)

µ−1
z γ =

βA

2
(
β2/β2

p1 − k2z/β
2
p2

) , (3.15)

where β = ω/c is frequency normalized to speed of light in the vacuum, A = πρxρy/p, Vcell is the volume

of the unit cell, C11, C̃11, βp1 and βp2 are positive real-valued frequency independent parameters that

depend only on the unit cell’s geometry and lattice constant. We approximate the middle term of ϵz as:

1
β2

β2
p1

− k2
z

β2
p2

=
1

β2

β2
p1

(
1− β2

p1

β2

k2
z

β2
p2

) ≈
1

β2/β2
p1

(
1 +

β2
p1

β2

k2z
β2
p2

)
,

βp1

βp2

∣∣∣∣kzβ
∣∣∣∣≪ 1 (3.16)

This corresponds to expanding the same term in a geometric series, while only keeping the first two

orders:
1

1− x2
=

∞∑
k=0

x2k, |x| < 1, (3.17)

We can now link the γzz = γ component of the chirality tensor in equation (3.1) with the effective chiral

component in (3.15) and µz in equation (3.4) with the effective permeability in (3.14). The nonlocal

permittivity model in equation (3.8) is the effective permittivity ϵz in (3.13) with γ and µz given as well by
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equations (3.15) and (3.14), respectively. The leftover constants ω′
p and α are given by:

ω′
p = cβp1

α = −
β4
p1

β2
p2β

4

(3.18)

With this, we show that the alpha parameter is indeed negative (and in this case also dispersive), and

so we conclude that this metamaterial possesses hyperbolic or type-II Weyl points.

Finally, we obtain the dispersion bands of a physical realization of this metamaterial with the geomet-

ric parameters: p = 0.2a, ρx = 0.2a ρy = 0.1a. This simulation is executed with the effective medium

theory. Firstly, in figure 3.6, the band structure along the kz axis is presented, where we can see the

two Weyl crossings. Since the longitudinal mode (in green) tilts up, as expected due to the sign of the α

parameter, the crossings are type-II Weyl points. The crossing between the green and yellow modes is

the first Weyl point, and the crossing between the green and blue modes is the second one. Following,

in figures 3.7, 3.8 and 3.9 we have the dispersion in the x̂, ŷ and diagonal directions from the second

Weyl point. The dispersion in these three directions are linear, close to the crossing.
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Figure 3.6: Dispersion along kz axis. The longitudinal mode is in green and the transverse modes are in yellow and
blue. The momentum axis’ values are normalized as Z = kzp/(2π).
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Figure 3.7: Dispersion in x̂ direction, from Weyl point. The momentum axis’ values are normalized as X =
kxa/(2π).
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Figure 3.8: Dispersion in ŷ direction, from Weyl point. The momentum axis’ values are normalized as Y =
kya/(2π).
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Figure 3.9: Dispersion in the diagonal direction formed between kx and ky, from Weyl point. The momentum axis’
values are normalized as M = Ma/(2π) with M2 = k2

x + k2
y (for kx = ky).
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3.2 Magnetized Plasma

In this section we derive and analyse the dispersion relation for a magnetized plasma which is a contin-

uous medium. This medium represents a naturally occurring plasma medium (metal or semiconductor)

subjected to a magnetic field.

3.2.1 Local Model

We will derive the transport equation for a free electron medium, such as a metal. In a first instance,

we consider the force of an electromagnetic field acting on a single electron. Starting with the Lorentz

Force Law and Newton’s Law (second law of motion), we have:

m
dv

dt
= q(E+ v ×B), (3.19)

where m is the effective mass of an electron, v is the instantaneous velocity vector, q = −e = 1.6 ×

10−19C is the charge of an electron with opposite sign, E is the electric field and B is the magnetic

induction field. If v = ∥v∥ is much smaller than the speed of light c, then we can neglect the contribution

of B. Secondly, we average the equation over the whole set of electrons with volume density N . The

collision frequency between these particles and the lattice will be neglected. This is acceptable when

the wave frequency is much greater than the frequency of these collisions, so we are effectively dealing

with a lossless medium. Taking into account that the electric current density of the ensemble is defined

as j = Nqv, we get
dj

dt
= ϵ0ω

2
pE, (3.20)

where ϵ0 is the vacuum permittivity and ωp is the plasma frequency which is defined as

ωp =

√
Nq2

mϵ0
. (3.21)

One can easily find the permittivity of this medium. If we consider monochromatic plane waves with

time harmonic variation and take into account the relation between j and the polarizability vector j = ∂tP,

then we just need to solve equation (3.20) with respect to j and substitute in the constitutive equation

D = ϵ0E+P = ϵ ·E. Thus, we derive the isotropic permittivity expression for an electron plasma, which

has Drude’s dispersion:

ϵp(ω) = ϵ0

[
1−

ω2
p

ω2

]
(3.22)

The solutions for a plane wave propagating in a plasma medium show that for ω < ωp, the wave vector k

is purely imaginary, hence being an evanescent wave, and for ω > ωp, the wave vector is real [28]. That
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means that lossless plasmas are entirely reflective for electromagnetic waves with frequency less than

the plasma frequency, and entirely transmissive for frequencies above it [30].

When an external direct current (DC) or static magnetic field B0 is applied to the plasma medium,

it becomes anisotropic. The field’s effect is represented in the permittivity tensor through the cyclotron

frequency. This is the angular frequency with which a free electron describes a circular cyclotron orbit,

when it is under the influence of the magnetic field and is defined as:

ωc = −qB0/m (3.23)

Throughout this work, the application of B0 is assumed to be in the ẑ direction with positive orientation.

To derive the permittivity tensor for a magnetized plasma, we follow the same process as before, but

now we consider B in (3.19) to be the sum of a harmonic magnetic field and the applied static field. The

same approximation for v ≪ c is taken, but because B0 is constant and can have a large magnitude, the

electrons are still significantly affected by this component. Hence, the transport equation that describes

the dynamics of an electron mass biased with a static magnetic field is [17,28]:

dj

dt
= ϵ0ω

2
pE+

q

m
j×B0 (3.24)

The permittivity tensor is an antisymmetric matrix with a gyrotropic structure [2]:

ϵ =

 ϵt −iϵg 0
iϵg ϵt 0
0 0 ϵz

 , (3.25)

where each entry is

ϵt = ϵ0

[
1−

ω2
p

ω2 − ω2
c

]
, (3.26)

ϵg = ϵ0

[
−ωcω

2
p

ω(ω2 − ω2
c )

]
, (3.27)

ϵz = ϵ0

[
1−

ω2
p

ω2

]
. (3.28)

Since (3.25) is not symmetric ϵ ̸= ϵT , this medium has a nonreciprocal response. The application of the

bias field also breaks time reversal symmetry. Because we are considering a lossless case, these two

notions are equivalent [16]. Furthermore, we will consider a nonmagnetic response µ = 1 and trivial

magnetoelectric coupling ξ = ζ = 0. Since the system’s material matrix does not depend on the wave

vector then this is a local model. The L̂ operator that describes wave propagation in this medium is the

one in equation (2.25) derived in section 2.2.2.

27



Our next objective is to obtain the dispersion characteristics of the bulk modes. This is possible by

simply deriving the wave equation from Maxwell’s equations (without a source), assuming a harmonic

variation of the type ei(k·r−ωt):

k× (k×E) +
ω2

c2
ϵ ·E = 0 (3.29)

The wave vector of the solution for the equation above satisfies the dispersion relation [31]

(
ϵ2t − ϵ2g

)
ϵz
ω4

c4
−
([
ϵt (ϵt + ϵz)− ϵ2g

]
k2t + 2ϵtϵzk

2
z

) ω2

c2
+
(
ϵtk

2
t + ϵzk

2
z

) (
k2t + k2z

)
= 0, (3.30)

where kt = ∥kt∥ = ∥kxx̂+ kyŷ∥, with subscript t representing wave vector components that are orthog-

onal to the static magnetic field.

As previously stated, the magnetized plasma presents photonic Weyl degeneracies, otherwise known

as Weyl points. Due to the direction of B0, these appear along the kz axis, i.e. only for wave vectors

k = (0, 0, kz). Along this axis there are straight horizontal bands at ω = ±ωp which are longitudinal

bulk plasmon modes that occur for ϵz = 0. The Weyl points arise as crossings between this plasmon

mode and transverse modes and the location of these linear degeneracies in wave vector space is given

by [24]:

kWeyl
z = ±ωp

c

√
ωc

ωc ± ωp
(3.31)

By fixing the plasma frequency ωp and varying the cyclotron frequency ωc which corresponds to varying

the magnitude of the static bias magnetic field, we vary the number of Weyl crossings:

• ωc < ωp: 1 pair of Weyl points in momentum space;

• ωc > ωp: 2 pairs of Weyl points in momentum space;
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Figure 3.10: Dispersion characteristics in the kz axis for ωc = 0.8ωp on the left, ωc = 1.2ωp on the right and
ωp = 0.5c in both plots. The longitudinal mode is highlighted in red.
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We will consider these two different regimes throughout this section. The dispersion diagrams for modes

propagating in the direction of the applied static magnetic field are shown in figure 3.10, for both regimes.

We can observe that the number of crossings between the longitudinal (in red) and the transverse (in

blue) modes is indeed different between the two cases: while there are 4 crossings in the left panel, the

right one shows 8. When ωc = ωp the outer Weyl points go to infinity and for ωc < ωp they are purely

imaginary and so, in these conditions, only the inner Weyl points appear.

To visualize the point-like crossings properly, three-dimensional dispersion characteristics are shown

in figures 3.11-3.12:

Figure 3.11: Three-dimensional dispersion showcasing two crossings. Parameters used here were for ωc = 0.8ωp

and ωp = 0.5c

Figure 3.12: Three-dimensional dispersion showcasing four crossings. Parameters used here were for ωc = 1.2ωp

and ωp = 0.5c

29



For propagation in the xoy plane, hence for a wave vector k = (kx, ky, 0), the plane waves supported

by the medium decouple into transverse electric (TE) waves (Ez ̸= 0 and Hz = 0) and transverse

magnetic (TM) waves (Hz ̸= 0 and Ez = 0). The dispersion relations for these photonic modes are,

respectively:

k2 = ϵz

(ω
c

)2
, TE modes, (3.32)

k2 = ϵef

(ω
c

)2
⇔ k2 =

ϵ2t − ϵ2g
ϵt

(ω
c

)2
, TM modes. (3.33)

By examining the dispersion relation of the whole system in (3.30), one can see that the dispersion

characteristics have rotational symmetry for planes in wave vector space which are orthogonal to the kz

axis (xoy plane). This is why there is no difference in choosing ky or kx for dispersion analysis. In figure

3.13, one can see the TM modes’ dispersion for the propagation in this plane for the two regimes:
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Figure 3.13: TM modes’ dispersion in the xoy plane for ωc = 0.8ωp on the left, ωc = 1.2ωp on the right and ωp = 0.5c
in both plots.

Since we are interested in computing gap Chern numbers, here follows a study of the existence of a

full band gap between the low and high-frequency bands, situated in the positive frequency half-plane.

Having a closer look at the dispersion relation for the TM modes and using the explicit expressions of

the constitutive parameters, the following equation and solutions are derived:

k2 =
1

c2
ω4 + ω4

p − ω2(ω2
c + 2ω2

p)

ω2 − ω2
c − ω2

p

(3.34)

ωTM = ±

√√√√c2k2 + ω2
c + 2ω2

p ±
√
c4k4 − 2c2k2ω2

c + ω4
c + 4ω2

cω
2
p

2
(3.35)

Four solutions are derived, one for each observed branch in the plots of figure 3.13. Let us define
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ωgap,1 = ωH −ωL as the function that measures the amplitude of the band gap under study. Expressions

for ωH and ωL are given below:

ωH = lim
k→0

√√√√c2k2 + ω2
c + 2ω2

p +
√
c4k4 − 2c2k2ω2

c + ω4
c + 4ω2

cω
2
p

2
=

ωc

2
+

√(ωc

2

)2
+ ω2

p (3.36)

ωL = lim
k→∞

√√√√c2k2 + ω2
c + 2ω2

p −
√
c4k4 − 2c2k2ω2

c + ω4
c + 4ω2

cω
2
p

2
=
√
ω2
c + ω2

p (3.37)

Finally, solving the inequality ωgap,1 > 0, the conclusion is that for any positive real values of ωc and ωp,

the band gap is always open. If we now consider the existence of a band gap between the low-frequency

mode and the zero frequency ω = 0, defining the amplitude as the solution to the inequality ωgap,2 > 0,

with

ωgap,2 = lim
k→0

√√√√c2k2 + ω2
c + 2ω2

p −
√

c4k4 − 2c2k2ω2
c + ω4

c + 4ω2
cω

2
p

2

=

√√√√ω2
c + 2ω2

p −
√
+ω4

c + 4ω2
cω

2
p

2
,

(3.38)

we derive the same conclusion. The results stand for the negative frequency branches since the solu-

tions of equation (3.33) have reflection symmetry over both axes.

The story is different when the existence of both the TM and TE modes is considered, as one can

perceive by looking at their dispersion characteristics simultaneously, in figure 3.14:
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Figure 3.14: Dispersion of the TM modes in blue and TE modes in red in the xoy plane for ωc = 0.8ωp on the left,
ωc = 1.2ωp on the right and ωp = 0.5c in both plots.
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The problem is now understanding if there could be a full band gap between the low-frequency TM

band and the TE band (blue and red in figure 3.14, respectively). A similar analysis is conducted for this

purpose, by firstly solving the dispersion equation (3.32) for the TE modes:

k2 =
ω2 − ω2

p

c2
(3.39)

ωTE = ±
√
c2k2 + ω2

p (3.40)

If we define the new function for the amplitude of the “gap” in question as ω̃gap,1 = ω̃H − ωL, with ωL

staying the same (3.37) and ω̃H as

ω̃H = lim
k→0

√
c2k2 + ω2

p =
√
ω2
p = ωp, (3.41)

we can then solve the inequality ω̃1
gap > 0 to see if it is possible to get a full band gap.

ω̃gap,1 > 0 ⇔
√
ω2
p >

√
ω2
c + ω2

p ⇒ ω2
p > ω2

c + ω2
p ⇔ ω2

c < 0 (3.42)

There is no real valued ωc that satisfies the inequality, thus there is no band gap between these two

bands. This is a very relevant result for this work, since we can only apply the Green’s function formalism

to compute the gap Chern number for the low-frequency gap. It is to be noted that the TE modes also

present reflection symmetry over both axes, and so there is no high-frequency band gap in the negative

branches.

Weyl points are monopoles of Berry curvature and they always come in pairs, located at symmetric

positions in momentum space, with opposite charges. This means that for each pair, there is always

one source from which the field lines of the Berry curvature diverge and one sink to which the field lines

converges. Since in this system these crossings arise along the kz axis, we are aiming to “capture”

this pseudo vector field, by selecting cross sections of the 3-dimensional dispersion characteristic that

are orthogonal to this axis. Although our formalism does not consider the Berry curvature directly, it is

equivalent to the traditional formalism in the sense that by calculating gap Chern numbers in band gaps

situated in these cross sections, we compute the influence of the Berry flux. Furthermore, since the

topological charge of the Weyl crossings is determined by the jump in the Berry flux along a straight line

that joins the pair [7], by computing gap Chern numbers in orthogonal cross sections before and after one

of these degeneracies, the difference of the gap Chern numbers quantifies this jump, and consequently

its topological charge. This problem will be better illustrated in chapter 4, but now we know that we must

analyse cross sections that are orthogonal to the kz axis and investigate the existence of band gaps in

the same ones.

In the xoy plane case, we have seen it is impossible to have a full band gap between the low-
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frequency TM mode and the TE mode. Now we will take cross sections (figures 3.15-3.16) of the

dispersion along the kz axis to see the behaviour of the bands graphically, in order to check if we can

apply the Green’s function formalism before and after the Weyl points. We consider the regime ωc > ωp

so both Weyl pairs are originated.
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Figure 3.15: Varying kz shows that there is no high-frequency band gap before the 1st Weyl point. From left to right:
kz = 0, kz = 3

4
W1 and kz = W1, with W1 being the location of the 1st Weyl point in momentum space.

The low-frequency band gap is present. The yellow arrows point in the orientation of increasing values
in kz. Parameters used here were ωc = 1.2ωp and ωp = 0.5c
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Figure 3.16: A full high-frequency band gap is observable only for a high value of kz, after the 1st Weyl point. From
left to right: kz = 5

4
W1, kz = W2 and kz = 5

4
W2, with W1 and W2 being the location of the 1st and

2nd Weyl points in momentum space. The low-frequency band gap is present before and after the
2nd Weyl point. The yellow arrows point in the orientation of increasing values in kz. Parameters used
here were ωc = 1.2ωp and ωp = 0.5c

Regarding the first or inner Weyl point, we see that the bands that originate this crossing only possess

a full band gap for a high enough kz value, after the crossing itself. Before it, the bands display the same

behaviour as in the xoy plane, the reason why there is no band gap. The case is different for the second

or outer Weyl point. The bands that originate this crossing possess full band gaps at all cross sections

situated before and after it.
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To work around the issue of an absent band gap before the first Weyl point, we studied other models

for the permittivity. A solution was achieved when shifting the plasma frequency as seen by the EM

plane waves solely in the ẑ direction, and so we only change ϵz:

ϵz
ϵ0

= 1−
ω′2
p

ω2
, (3.43)

where ω′
p =

√
Kωp and K is a scalar. Considering that the only modes affected by this permittivity tensor

component are the TE (3.32), for propagation in the xoy plane, we derive a new set of solutions for the

dispersion characteristic:

k2 =
ω2 − ω′2

p

c2
(3.44)

ωTE = ±
√

c2k2 + ω′2
p (3.45)

We study the possibility of a full band gap between this mode and the low-frequency TM mode, by

redefining ω̃1
gap = ω̃H,K − ωL, with ω̃H,K as

ω̃H,K = lim
k→0

√
c2k2 + ω′2

p = ω′
p, (3.46)

and so we need to find K that satisfies ω̃1
gap > 0.

ω̃gap > 0 ⇔
√
Kω2

p >
√

ω2
c + ω2

p ⇒ Kω2
p > ω2

c + ω2
p ⇔ K >

ω2
c

ω2
p

+ 1 (3.47)

The value of ω̃H,K must also be smaller than ωH . This is because the longitudinal mode appearing

along the kz axis also suffers a shift with this new model. In fact, this flat mode’s frequency is given by

ω = ω′
p and so it intersects the xoy plane’s TE mode at its lowest point, in the wave vector space origin

k = (0, 0, 0). If the longitudinal mode intersects the higher frequency transverse mode, specifically at

ωH , it could potentially alter the topology of the medium, meaning that different Weyl crossings may be

achieved, which is not our objective.

√
Kω2

p <
ωc

2
+

√(ωc

2

)2
+ ω2

p ⇒ K <
ω2
c

2ω2
p

+
ωc

ω2
p

√(ωc

2

)2
+ ω2

p + 1 (3.48)

The constant must then be within an interval that depends only on the constitutive parameters ωc and

ωp:
ω2
c

ω2
p

+ 1 < K <
ω2
c

2ω2
p

+
ωc

ω2
p

√(ωc

2

)2
+ ω2

p + 1 (3.49)

For example, if ωc = 0.8ωp, it is possible to guarantee a band gap between the TE mode and the low-

frequency TM mode if K is in the range [1.64, 2.18]. If ωc = 1.2ωp, it must be in the range [2.44, 3.11]. The

achieved band gaps are observable in figure 3.17:
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Figure 3.17: Dispersion in xoy plane (kz = 0) with new ϵz. TM modes are in blue and TE mode is in red. Parameters
used on the left were ωc = 0.8ωp ω′

p =
√
2ωp, ωc = 1.2ωp ω′

p =
√
2.8ωp on the right and ωp = 0.5c in

both plots.

We can see that by shifting the TE band upwards it intersects the high-frequency TM band. This

does not constitute a problem because the TE mode was shown to be topologically trivial [31]. This

means that the Chern number of the high-frequency TM band before the intersection is equal to the

Chern number of the set formed by the same band plus the intersecting TE band. However one crucial

effect is noticed when looking at the dispersion in the kz axis. For the regime ωc < ωp, the number of

Weyl points is the same as with the original model, but in the regime ωc > ωp the outer Weyl points no

longer emerge in this system. This can be explained by analysing the low-frequency transverse modes

propagating in the ẑ direction. When kz → ∞, the frequency of these modes will tend to a value ω → ωc

which, due to the plasma frequency shift, it is always smaller than ω′
p.
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Figure 3.18: Dispersion in ẑ direction with new ϵz. The longitudinal mode is in red. Parameters used on the left
were ωc = 0.8ωp ω′

p =
√
2ωp, ωc = 1.2ωp ω′

p =
√
2.8ωp on the right and ωp = 0.5c in both plots.
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Thus, this model only possesses one Weyl pair. Their location in momentum space is given by:

kWeyl
z = ±i

√
ω′
p(ω

2
p − ωcω

′
p − ω′2

p )

c2(ωc + ω′
p)

(3.50)

The 3-dimensional dispersion can be observed in figure 3.19:

Figure 3.19: 3-dimensional dispersion with shifted plasma frequency in the ẑ direction. The parameters used here
were ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

The L̂ operator that describes this slightly different model is obtained by simply changing ωp to ω′
p in

the (9,3) component in the matrix of equation 2.25

L̂(−i∇) =



0 0 0 0 −i∂z i∂y −i 0 0 0
0 0 0 i∂z 0 −i∂x 0 −i 0 0
0 0 0 −i∂y i∂x 0 0 0 −i 0
0 i∂z −i∂y 0 0 0 0 0 0 0

−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −iωc

c 0 0

0 i
ω2

p

c2 0 0 0 0 iωc

c 0 0 0

0 0 i
ω′2

p

c2 0 0 0 0 0 0 0
0 0 0 0 0 0 −i∂x −i∂y −i∂z 0


(3.51)

It turns out that, as shown in the next chapter, this model does not always have well-defined topolo-

gies, i.e. the bands don’t always have integer Chern numbers. In order to ensure well-defined topologies,

we need to apply a regularization procedure which suppresses the nonreciprocal response of the mate-

rial matrix for large wavelengths. For this purpose two solutions were explored and they are discussed

in the following sections 3.2.2 and 3.2.3.

36



3.2.2 Hydrodynamic Model

The hydrodynamic or drift-diffusion model of a magnetized plasma is an extension of the system

described in section 3.2.1, where the repulsive interactions between electrons are accounted for. To

attain this model, one must include a factor on the right-hand side of equation 3.24 that describes the

diffusion-type force contribution. That term is −β2∇ρ, where ρ is the charge density and β2 = ⟨v2⟩ = 3
5v

2
F

determines the strength of the diffusion, with vF being the Fermi-velocity of the electrons. The minus

sign indicates that the electrons feel a force “pushing” them away from the directions of high charge

concentrated areas. Thus, the transport equation of the hydrodynamic model of a magnetized plasma

is [2,17]
dj

dt
= ϵ0ω

2
pE+

q

m
j×B0 − β2∇ρ, (3.52)

and if we wish to retrieve the local model, we just set β as zero.

By employing the method described in section 2.2.2, one can acquire the L̂ operator that effectively

models the propagation in this medium. Instead of using the transport equation (2.20) for this purpose,

we substitute it with (3.52). We obtain:

L̂(−i∇) =



0 0 0 0 −i∂z i∂y −i 0 0 0
0 0 0 i∂z 0 −i∂x 0 −i 0 0
0 0 0 −i∂y i∂x 0 0 0 −i 0
0 i∂z −i∂y 0 0 0 0 0 0 0

−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −iωc

c 0 −iβ
2

c2 ∂x

0 i
ω2

p

c2 0 0 0 0 iωc

c 0 0 −iβ
2

c2 ∂y

0 0 i
ω2

p

c2 0 0 0 0 0 0 −iβ
2

c2 ∂z
0 0 0 0 0 0 −i∂x −i∂y −i∂z 0


(3.53)

To get the dispersion relations for this model, we can either solve equation (3.52) with respect to j,

obtain the polarizability and electric displacement vectors and with it derive the permittivity tensor, just

like in section 3.2.1, or we can solve the equivalent eigenvalue problem with the help of the L̂ operator.

The permittivity tensor of this model for kz = 0 is:

ϵhydro
ϵ0

(ω,k) = 1 −
ω2
p

ω2

(
∆

∆+ ω2
c

1t + ẑ⊗ ẑ− β2k⊗ k

∆+ ω2
c

)
+

1

ω

iωcω
2
p

∆+ ω2
c

ẑ× 1, (3.54)

where ∆ = β2k2 − ω2, k2 = k · k and ⊗ is the tensor product.

This model introduces spatial dispersion or nonlocality since the electric displacement and the elec-

tric fields are linked by differential operators, or in other words, the permittivity tensor depends on the

wave vector D = ϵ(ω,k) · E, with k = −i∇ (in the harmonic regime). The nonlocality only affects the

longitudinal modes [2, 16] and this is well observed in figures 3.20-3.21. For xoy propagation, the low
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frequency TM mode bends upward, so it no longer has the limit from equation (3.37), but now ω → ∞

as k → ∞. In the direction orthogonal to this plane, in the kz axis, it is the longitudinal mode that gets

curved, no longer staying flat and ω → ∞ as k → ∞.
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Figure 3.20: Dispersion in xoy plane (kz = 0) - varying with β: from left to right, β = 0.05c, β = 0.1c, β = 0.3c.
The TM modes are displayed in blue and the TE modes are displayed in red. All of the plots have the
parameters ωc = 0.8ωp, ωp = 0.5c.
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Figure 3.21: Dispersion in the kz axis - varying with β: from left to right, β = 0.05c, β = 0.1c, β = 0.3c. The
longitudinal mode is displayed in red and the transverse modes are displayed in blue. All of the plots
have the parameters ωc = 0.8ωp, ωp = 0.5c.

With this model, the number of Weyl points one can get is now dependent on one more parameter.

Moreover, the maximum number of Weyl pairs (in momentum space) that emerge in this system is now

three. This means that with a specific combination of parameters (ωp, ωc, β), it is possible to satisfy the

different cases where there is only one, two or three pairs of Weyl crossings. See figure 3.22 for the

three cases. Specifically, in the regime ωc < ωp there is only one Weyl pair, but for the regime ωc > ωp it

is possible to have up to three, as observed in figure 3.22.
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Figure 3.22: Showcasing the three possible cases of Weyl crossings in the kz axis - varying with β: from left to
right, β = 0.1c, β ≈ 0.189c, β = 0.3c. The longitudinal mode is displayed in red and the transverse
modes are displayed in blue. All of the plots have the parameters ωc = 1.3ωp, ωp = 0.5c.

Similarly with the helical metamaterial case discussed in section 3.1, the type of Weyl point changes

with the introduction of the nonlocality. The crossings between the longitudinal mode and the transverse

modes have isofrequency surfaces around it which are hyperboloids. This means that we are dealing

with a type-II Weyl point, as one can observe in figure 3.23. If we compare figures 3.21 and 3.8, this

is the case of a negative α, and so we have a crossing between a longitudinal mode and a transverse

mode, both with group velocities vg = ∂ω
∂k with the same sign. The isofrequency curves are always

circular when looking in the x̂ and ŷ directions, due to the rotational symmetry. Therefore to observe

the hyperbolicity one needs to check necessarily the ẑ direction plus either x̂ or ŷ, both being equivalent

because of the rotational symmetry.

a) b)

Figure 3.23: Dispersion surfaces and isofrequency curves around Weyl point in a) x̂ and ŷ directions and in b) ẑ
and x̂ directions. The parameters used here were β = 0.6c, ωc = 0.2ωp and ωp = 0.5c.
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With respect to the topological characterization of this model, there is one crucial effect that arises

with this specific regularization procedure. The effect of the nonlocality on the low-frequency TM mode

(figure 3.20) prohibits the possibility of a high-frequency full band gap, even with a plasma frequency

shift in the ẑ direction. Hence only the low-frequency band gap can be topologically characterized with

our formalism.

3.2.3 Full Cut-Off Model

The full cut-off model implements a high-frequency spatial cut-off to the material response of a system,

as:

Mreg (ω,k) = M∞ +
1

1 + k2/k2max

(M (ω)−M∞) , (3.55)

where M (ω) is the material matrix of the system that represents its electromagnetic response, M∞ =

limω→∞M (ω), k = k · k and kmax is the high-frequency wave vector cut-off. The consequence of this

model is that when k → ∞, then Mreg → M∞, with M∞ usually set as the vacuum response. In other

words, for large values of k, when k ≫ kmax, the material response is suppressed. When k ≪ kmax,

so for small wavelengths comparatively to the cut-off spatial frequency, the regularized material matrix

is approximately the original Mreg ≈ M (ω). This model has a physical justification. When dealing

with realistic materials, fields with very fast spatial variation cannot effectively polarize the microscopic

constituents of the medium, therefore its response is effectively suppressed when k → ∞ and it should

reduce to that of the vacuum [2]. For crystalline materials, this cut-off may be estimated as kmax ∼ 1/a,

with a the lattice constant. Furthermore, it has been theoretically and experimentally shown that a thin

layer of air in-between two materials may effectively imitate this cut-off effect. Let us say a magnetized

plasma is separated from a regular plasma by a layer of air with thickness d. If they both share a band

gap at the interface, for large wavelengths |kd| ≪ 1, the cut-off can be approximated as kmax ≈ 1/d

and an edge state can flow in this interface [16]. Conversely, for |kd| ≫ 1, the air gap is ineffective

because the wavelength is much larger than its thickness and so the topology is ill-defined, violating

the bulk-edge correspondence. In theses cases, the energy flow can be halted, creating a topological

energy sink [32,33].

In the case of the magnetized plasma, since it has no magnetoelectric coupling (ξ = ζ = 0) and

a trivial magnetic response µ = µ01, the application of the full cut-off is performed on the permittivity

tensor as follows:

ϵcut−off (ω,k) = ϵ01 +
1

1 + k2/k2max

(ϵloc − ϵ01) , (3.56)

where ϵloc is the permittivity tensor of a local magnetized plasma, given in equation (3.25). Just like the

hydrodynamic model, the cut-off model of a magnetized plasma is spatially dispersive. However, the

high-frequency material response is that of the vacuum and it is independent of the wave vector, i.e.
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local. Importantly, it becomes reciprocal because ϵ = ϵT .

Unlike the hydrodynamic one, this full cut-off model for a magnetized plasma affects all of the disper-

sion bands. In the xoy plane, the low frequency TM mode is the most affected, again no longer having

the limit in 3.37 but now ω → ωc as k → ∞.
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Figure 3.24: Dispersion in xoy plane - varying with kmax: from left to right, kmax = 100ωp/c, kmax = 10ωp/c,
kmax = 2ωp/c. The TM modes are displayed in blue and the TE modes are displayed in red. All of the
plots have the parameters ωc = 0.8ωp, ωp = 0.5c.
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Figure 3.25: Dispersion in the kz axis - varying with kmax: from left to right, kmax = 100ωp/c, kmax = 10ωp/c,
kmax = 2ωp/c. The longitudinal mode is displayed in red and the transverse modes are displayed in
blue. All of the plots have the parameters ωc = 0.8ωp, ωp = 0.5c.

The most significant effect is that the longitudinal mode in kz axis bends downward, contrarily to the

hydrodynamic model, and instead of being a flat mode its limit is set by ω → 0 as kz → ∞, for any real

value of kmax. Although this is not noticeable in the first plot of figure 3.25, if we increase the range of the

wave vector axis, we can see that this is always the case. The immediate consequence is that for this

model there are always two pairs of Weyl points in the kz axis, because the longitudinal mode crosses

two transverse modes. This will be an important detail for the topological characterization in chapter 4.

The nonlocality also changes the type of Weyl point, but this time the isofrequency surfaces that

surround the crossing are ellipsoids. Thus this model originates type-I Weyl degeneracies. Comparing
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figures 3.25 and 3.8, we conclude that this is analogous to the case of a positive α parameter in the

helical metamaterial (see figure 3.3). In these conditions, the group velocities of the longitudinal and

transverse modes have different signs.

a) b)

Figure 3.26: Dispersion surfaces and isofrequency curves around Weyl point in a) x̂ and ŷ directions and in b) ẑ
and x̂ directions. The parameters used here were kmax = ωp/c, ωc = 1.2ωp and ωp = 0.5c.

With this model, it is now possible to achieve a high-frequency band gap between the TE mode and

low-frequency TM mode, by applying the plasma frequency shift only in the ẑ direction. This corresponds

again to altering ϵz which is the zz component of ϵloc in 3.56, substituting it with 3.43. The band gaps in

the xoy plane are displayed in figure 3.27.
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Figure 3.27: Dispersion in xoy plane with new ϵz. TM modes are in blue and TE mode is in red. Parameters used
on the left were: ωc = 0.8ωp ω′

p =
√
2ωp. On the right: ωc = 1.2ωp ω′

p =
√
2.8ωp. On both plots were:

ωp = 0.5c and kmax = ωp/c.

Importantly, the number of Weyl crossings is the same with a cut-off model with and without the
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plasma frequency shift. We can now topologically characterize both the low-frequency and the high-

frequency band gaps in cross sections. More will be explained in chapter 4.

Lastly, following the same procedure in section 2.2.2, the L̂ operator that describes the cut-off model

of a magnetized plasma is quickly obtainable. The full cut-off model can be enforced in the system by

changing the current density vector j in Maxwell’s equations (2.18), replacing it with (−k−2
max∇2 + 1)−1j.

To include the plasma frequency shift, we must again alter component (9,3) of the matrix to include ω′
p.

The derived operator is thus:

L̂(−i∇) =

=



0 0 0 0 −i∂z i∂y
−i

(−k−2
max∇2+1)

0 0 0

0 0 0 i∂z 0 −i∂x 0 −i
(−k−2

max∇2+1)
0 0

0 0 0 −i∂y i∂x 0 0 0 −i
(−k−2

max∇2+1)
0

0 i∂z −i∂y 0 0 0 0 0 0 0
−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −iωc

c 0 0

0 i
ω2

p

c2 0 0 0 0 iωc

c 0 0 0

0 0 i
ω′2

p

c2 0 0 0 0 0 0 0
0 0 0 0 0 0 −i∂x −i∂y −i∂z 0



(3.57)
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This chapter contains the main results of the work of this thesis. By applying the Green’s function

formalism to compute gap Chern numbers, we were able to topologically characterize two different

nonlocal models of magnetized plasma with regularized electromagnetic responses. The regularization

procedure was required because the local model of magnetized plasma has an ill-defined topology.

4.1 Ill-Defined Topology of Local Model

Here we introduce the approach we undertook to quantify the topological charge of Weyl points in a

magnetized plasma. We will only topologically characterize this medium as it is very well studied in the

literature and its electrodynamics are much simpler than that of the helical metamaterial. For example, in

the magnetized plasma case, the planes in wave vector space which are orthogonal to the kz axis have

dispersion characteristics with rotational invariance. This is not true for the other structure. Nevertheless,

our methods could be extended to the effective medium model of the helical metamaterial.

The task to obtain the charge of the Weyl points with the Green’s function formalism is a complex

one, considering both the facts that we are dealing with 3-dimensional band degeneracies and that the

procedure we utilize characterizes the Chern number of full band gaps. The standard problem of Chern

number characterization in a rotationally invariant 2D magnetized plasma is illustrated in figure 4.1. In

the example, the medium has the permittivity tensor in equation (3.25) and we only consider the TM

modes propagating in the xoy plane which is orthogonal to the direction of the applied magnetic field.

The problem only contemplates two dimensions in wave vector space, but due to rotational symmetry, we

can observe the dispersion in one direction (for instance in the kx axis) and the same will be observed in

other directions in the plane. Now we simply compute the gap Chern numbers of the band gaps between

the TM modes or between the low-frequency TM mode and the zero frequency ω = 0.
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Figure 4.1: Dispersion in the kx axis of the TM modes of a local magnetized plasma with parameters ωc = 1.2ωp

and ωp = 0.5c. The band gaps are highlighted in grey.
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This case has been studied extensively in the literature [14, 16, 31]. With appropriate regularization,

this band structure has topological band gaps such that a finite medium hosts protected edge modes.

The Weyl points arise in the kz axis, for the case of a magnetized plasma with a bias static magnetic

field in the ẑ direction. Our approach will add this wave vector component as an extra dimension for

the problem of topological characterization. We then select a cross section in wave vector space that

is orthogonal to this axis by fixing a kz value. Due to the rotational symmetry we just need to choose

one direction in this plane to plot the dispersion and observe the band gaps that emerge. For simplicity

we always choose the x̂ direction. If we were able to measure a change in the gap Chern number of

band gaps situated in cross sections before and after the Weyl crossing, we could quantify its topological

charge, by taking the difference. Of course, the band gaps must be between bands that intersect at the

Weyl point.

The first object of this study will be the local magnetized plasma with a shifted plasma frequency ω′
p in

the ẑ direction, henceforth referred to as the “local model”, introduced in section 3.2. As it was explained

there, this model only originates the inner pair of Weyl points, so if we take a look at the positive part

of the 3-dimensional dispersion characteristic, we can only observe one Weyl crossing, as displayed in

figure 4.2.

Figure 4.2: Local model - dispersion in kz and kx. The propagating modes along kz are showcased on the
foreground. The Weyl crossing is represented by the blue circle. The parameters used here were
ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

We will focus on two regions highlighted in different colours, one in blue and one in orange, as

illustrated in figure 4.3. On the left plot of this figure, we can observe the dispersion along the kz axis
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and the regions that will be topologically characterized. On the right plot, we can see the dispersion

in the x̂ direction situated in the cross section with kz = 0. There, two full band gaps are displayed:

the high-frequency band gap that appears between the low-frequency TM mode and the lowest point

of the TE mode, highlighted in blue because it is in the blue region; and the low-frequency band gap

that appears between the zero frequency ω = 0 and the lowest point of the low-frequency TM mode,

highlighted in orange because it appears in the orange region. Our aim is to then calculate the Chern

invariant of each band gap, and we repeat this procedure in various cross sections, for different values

of kz.
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Figure 4.3: Dispersion in the kz axis on the left exhibits the two regions of interest, in blue and orange. On the right
is a cross section of the 3-dimensional dispersion (fig. 4.2), for kz = 0, where the high-frequency band
gap is highlighted in blue and the low-frequency one is in orange. The Weyl crossing is represented by
the blue circle. The parameters used here were ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

We now apply the Green’s function method to compute the gap Chern numbers Cgap. C1
gap is relative

to the blue band gap and C2
gap is relative to the orange band gap, and the numerical results were

C1
gap = 0.999377 and C2

gap = −0.7635322. The first result is close to +1 and the second result is far from

being close to an integer number. To explain these results we will examine the analytical solutions for

these gap Chern numbers.

Firstly, it has been shown in [31] that the TE modes propagating in the xoy plane of a local magnetized

plasma are topologically trivial. This means that this band’s Chern number is zero, so even if this mode

is shifted up due to the influence of ω′
p, intersecting the high-frequency TM mode, the Chern number

of the group formed by these two bands is equal to the Chern number of just the TM mode. This also

means that this mode has a null contribution for the gap Chern numbers, ergo the high-frequency band

gap of the right plot in figure 4.3 is topologically equivalent to the band gap just between the TM modes.

The latter is the high-frequency band gap observed in figure 4.1. The analytical results of the gap Chern
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numbers, for the band gaps depicted in this figure are presented in [14,16,31]. The gap Chern number

of the high-frequency band gap is C1
gap∗ = +1 and the low-frequency band gap has a gap Chern number

C2
gap∗ = −1/

√
1 + ω2

p/ω
2
c ≈ −0.768221, for the constitutive parameters ωc = 1.2ωp and ωp = 0.5c. If we

compare these with the numerical results we have a relative error of 0.06% and 0.61%, respectively.

The reason why the second gap Chern number is not an integer number is because the topology

of the low-frequency TM mode is ill-defined, consequently having a non-integer Chern number. This

is the only mode in this situation whose topology is ill-defined and to understand why, we will start by

explaining why the other two branches have a well-defined topology. Both the TE and the high-frequency

TM modes’ limits when k → ∞ are such that ω → ∞, and as a consequence the material response for

these bands approach that of the vacuum (where ϵ → ϵ0) in k → ∞. Thus, it is always possible to have

integer Chern numbers for these branches [16]. This is not the case with the low-frequency TM mode

since it has a constant asymptotic behaviour. These asymptotes are of the form ω → ωn,∞ = const.

as k → ∞ and so, the material response for these modes as k → ∞ is ϵ → ϵ (ωn,∞), which may be

different from the material matrix of a reciprocal medium and is usually complex-valued. In the case of

this branch whose asymptote is given by ωn,∞ =
√

ω2
c + ω2

p, it can be seen that its material response

when k → ∞ is not reciprocal, just by analysing the limits of the components ϵt and ϵg of the permittivity

tensor:

lim
k→∞

ϵt (ωn,∞) = lim
k→∞

ϵ0

[
1−

ω2
p

ω2
n,∞ − ω2

c

]
= 0 (4.1)

lim
k→∞

ϵg (ωn,∞) = lim
k→∞

ϵ0

[
−ωcω

2
p

ωn,∞(ω2
n,∞ − ω2

c )

]
= ϵ0

 −ωc√
ω2
c + ω2

p

 (4.2)

Because we’re dealing with a local model, hence since there is no spatial dispersion in the permittivity

tensor, the material response of this mode (i.e. the limits above) persists even for fast spatial variations

of the electromagnetic fields, which is unrealistic. Furthermore, the result of equation 4.1 is also not

physically realistic.

Hence, an extra step is required. Since we are dealing with a continuous medium some cut-off

should be included to the material response, so as to ensure that its nonreciprocal components are

suppressed for large wave vectors. For this purpose, the two models described in sections 3.2.1 and

3.2.2 were implemented. They will be topologically characterized in the next section with the same

approach described in this one.

Additionally, this is the reason why in the example of reference [17], the band folding caused by the

accumulation of bands in a single frequency (see (b) of figure 1.4) causes an ill-defined topology in a

dispersive photonic crystal whose unit cell includes a magnetized plasma. Initially, the periodicity of the

crystal was thought to act as a cut-off to solve this issue of the local model, but it was not enough, and

so the problems of ill-defined topologies in a photonic crystal are connected to those in the continuum.
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Specifically, the mode with non-zero constant asymptote in the local model is the problem.

It should be noted that due to symmetry, the gap Chern numbers of symmetric band gaps (in fre-

quency) are equal and the same result is observed for band gaps in symmetric cross sections, i.e. for

symmetric values of kz. However, frequency-symmetric bands have symmetric Chern numbers as it can

be seen in figure 4.4, for kz = 0. The positive and negative low-frequency band gaps seem to form one

completely joint band gap, but this is not true since there are flat (dark) modes at ω = 0 which are not

topologically trivial [31]. Nonetheless, they are inconsequential in the topological characterization of the

band gaps because these flat modes have symmetric Chern numbers, and so they cancel out.

The band gaps with the same colour have thus the same gap Chern number: C1
gap = +1 for the blue

band gaps and C2
gap = −1/

√
1 + ω2

p/ω
2
c for the orange band gaps. In figure 4.4, we can observe the

importance of the negative frequency modes for the computation of the gap Chern number. The gap

Chern number C1
gap of the negative high-frequency blue band gap is the sum of the Chern numbers of

the negative TE and high-frequency TM modes: C1
gap = +1 + 0 = +1. In turn, the gap Chern number

of the orange band gap C2
gap is the sum of C1

gap and the Chern number of the negative low-frequency

TM mode: C2
gap = +1 − 1 − 1/

√
1 + ω2

p/ω
2
c = −1/

√
1 + ω2

p/ω
2
c . The reason why the high-frequency

blue band gap has a well-defined topology meaning it is an integer number and it is not affected by

the ill-defined topologies is because the Chern numbers of the negative and positive low-frequency TM

modes cancel out: C1
gap = 1 + 1/

√
1 + ω2

p/ω
2
c − 1− 1/

√
1 + ω2

p/ω
2
c + 1 + 0 = +1.

C2gap = -1  1+ωp
2 ωc

2

C1gap = +1

C1gap = +1

C = 1 + 1 1 +
ωp
2

ωc
2

C = -1 - 1 1 +
ωp
2

ωc
2

C = 0

C = +1

C = -1 C = 0
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Figure 4.4: kx dispersion showcasing the positive and negative frequencies for kz = 0. High-frequency band gaps
are highlighted in blue and the low-frequency one in orange. Parameters used here were ωc = 1.2ωp,
ω′
p =

√
3ωp and ωp = 0.5c.
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4.2 Topological Study of Models With Regularized Responses

The first solution that we tried as a means to regularize the response of a magnetized plasma is

the hydrodynamic model. For this study, we chose a set of constitutive parameters with which there is

only one pair of Weyl points, and their location in momentum space will be referred to as kz = ±W

(plus sign for the one at a positive wave vector value and vice-versa). Furthermore, as it can be seen in

figures 4.5-4.7, there is a region in the 3-dimensional dispersion where a low frequency band gap exists

regardless of the direction of propagation. We can see another crucial consequence of this model in

figure 4.7, this time an universal one, no matter the parameters chosen. The low-frequency TM mode in

the kx axis (for kz = 0, left panel of the figure) and the longitudinal mode in the kz axis (fig. 4.6) lifts up,

for any positive value of diffusion velocity β. This results in the nonexistence of a full band gap between

the positive frequency modes, in any cross section at any kz value. This makes it impossible to quantify

the charge of the Weyl point with our proposed approach, or more specifically we cannot topologically

characterize the blue region in figure 4.6. However, important results can be drawn from the topological

study of the orange region.

Figure 4.5: Hydrodynamic model - dispersion in kz and kx. The propagating modes along kz are showcased on
the foreground. The Weyl crossing is represented by the green circle. The parameters used here were
β = 0.6c, ωc = 0.2ωp, ω′

p = ωp and ωp = 0.5c.
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Figure 4.6: Dispersion in the kz axis exhibiting the two regions of interest in blue and orange. The Weyl crossing is
highlighted with the green circle. The parameters used here were β = 0.6c, ωc = 0.2ωp, ω′

p = ωp and
ωp = 0.5c.

The two regions of interest are highlighted in blue and orange in figure 4.6, but as stated our approach

can only topologically characterize the orange region. This region is not influenced by any Weyl point,

in the sense that it is not confined between two bands that intersect at a Weyl crossing. Three cross

sections were chosen with distinct kz values: kz = 0, kz = W , kz = 3
2W , corresponding to a location in

momentum space which is before, at and after the Weyl point, respectively. The band gaps that will be

characterized are shown in figure 4.7. Again, it is to be noted that there is a flat mode at ω = 0 for kz = 0

which can be seen rising in the other cross sections.
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Figure 4.7: Cross sections of the 3-dimensional dispersion (fig. 4.5) for different values of kz. From left to right,
kz = 0, kz = W and kz = 3

2
W . The band gaps are highlighted in orange and the Weyl point with the

green circle. The parameters used here were β = 0.6c, ωc = 0.2ωp, ω′
p = ωp and ωp = 0.5c.

The gap Chern numbers computed for the three cases were the same: Cgap = 0 which means that

the three gaps are topologically trivial. This is expected for a combination of reasons. First of all, the

orange region exhibits a full band gap in any cross section and for the interval kz ∈]−∞,+∞[, only the

band gaps’ amplitude varies and in a smooth way. This means that, since there is no discontinuity, the
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gaps’ topological invariants (in each cross section) should always be the same. Furthermore, as a result

of the regularization, the material’s nonreciprocal response to the low-frequency TM mode in the xoy

plane is suppressed for large wave vectors, and specifically for k → ∞ the medium is reciprocal which

justifies the trivial topology.

The second solution to regularize the topology of a magnetized plasma is the implementation of a

full spatial cut-off. With this model, two Weyl points always arise in the positive part of the dispersion

characteristic, as observed in figure 4.8. The first or inner Weyl crossing appears for the wave vector

value kz = W1 and the second or outer one appears for kz = W2. This solution is quite different from the

hydrodynamic model, in the sense that we no longer have full band gaps in every cross section situated

in the orange region. Specifically, the only values where a full band gap cannot be observed in the cross

section are the outer Weyl points, kz = ±W2. Additionally, with this model we can observe full band

gaps in cross sections situated in the blue region as well. Again, the only values where no band gap is

observed are the inner Weyl crossings, kz = ±W1. As a consequence, we can topologically characterize

two regions that are directly influenced by each Weyl point, by computing gap Chern numbers in cross

sections before and after these crossings. The regions of interest are illustrated in figure 4.9.

Figure 4.8: Full cut-off model - dispersion in kz and kx. The propagating modes along kz are showcased on the
foreground. The inner Weyl crossing is represented by the red circle and the outer one is represented by
the red square. The parameters used here were kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.
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Figure 4.9: Dispersion in the kz axis exhibiting the two regions of interest in blue and orange. The parameters used
here were kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

This time, various cross sections were considered in order to fully characterize both regions. Six

wave vector values in total: kz = 0, kz = 3
4W1, kz = W1, kz = 5

4W1, kz = W2 and kz = 5
4W2. If we look at

figures 4.10-4.11, we can see the high-frequency band gaps in blue are present except at the first Weyl

crossing and the low-frequency band gaps in orange are present except at the second Weyl crossing.

The gap Chern number C1
gap is relative to the blue region’s band gaps and C2

gap is relative to the orange

region’s band gaps. For |kz| < W1, C1
gap = +1 and for |kz| > W1, C1

gap = 0, so we can clearly see an

influence from the Weyl point. Specifically, the blue band gaps in cross sections between the negative

and positive inner Weyl points are topologically non-trivial, and the blue band gaps beyond these values

are topologically trivial. A similar result is observed for the low-frequency band gaps. For |kz| < W2,

C2
gap = −1, hence the orange band gaps in cross sections between the positive and negative outer Weyl

points are topologically non-trivial, and they are trivial C2
gap = 0 for |kz| > W2.
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Figure 4.10: First set of cross sections of the 3-dimensional dispersion (fig. 4.8) for different kz values. From left
to right, kz = 0, kz = 3

4
W1 and kz = W1. The high-frequency band gaps are highlighted in blue, the

low-frequency ones in orange and the inner Weyl point with the red circle. The parameters used here
were kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.
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Figure 4.11: Second set of cross sections of the 3-dimensional dispersion (fig. 4.8) for different kz values. From
left to right, kz = 5

4
W1, kz = W2 and kz = 5

4
W2. The high-frequency band gaps are highlighted in

blue, the low-frequency ones in orange and the outer Weyl point with the red square. The parameters
used here were kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

This corroborates the fact that the Weyl points are indeed sources and drains of Berry curvature,

and so it is consistent with the emergence of the non-trivial topological properties in a magnetized

plasma [24], because the cross section’s band gaps in the regions confined between each pair were

shown to be topologically non-trivial. It also explains why the orange band gaps of the hydrodynamic

model are in turn trivial, since they are not confined between any pair of Weyl points.

Finally, to complete this study and to conclude the main objective of this thesis, we will quantify the

Weyl points’ monopole charge. As previously explained, this is obtained by computing the difference of

the gap Chern numbers in cross sections situated before and after the crossing, in a momentum space

path across it. Specifically, the magnitude of the topological charge is given by the absolute difference

of the gap chern numbers. The sign can only be attributed by defining the order in which the difference

is computed. We will assume the negative orientation of the kz axis as a convention to determine the

order of the difference, which means that the minuend will be the gap Chern number in a cross section

with a higher kz than that of the subtrahend. The topological charge of the inner Weyl point with positive

momentum is 0 − 1 = −1 since before the crossing, the gap Chern number is C1
gap = +1 and after it is

C1
gap = 0. This is because the band gaps in the cross sections after the crossing are trivial, so the sum

between C1
gap before the crossing and the topological charge of the Weyl degeneracy should be zero.

The outer Weyl point in the positive wave vector space has a topological charge of 0− (−1) = +1, since

before the crossing the gap Chern number is C2
gap = −1 and after it is C2

gap = 0, by the same logic.

The topological charge of the Weyl points that arise in the negative wave vector space have symmetric

values to those in positive wave vector space. This is congruent with the fact that a pair of Weyl points

constitute one source and one sink of Berry flux. The results are summarized in picture 4.12.
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Figure 4.12: The plot on top is the kz axis dispersion of the hydrodynamic model with the Weyl pair as green
circles. The plot on the bottom is the kz axis dispersion of the cut-off model with the inner Weyl pair
as red circles and the outer pair as red squares. The numbers in white circles represent the gap
Chern numbers obtained in each region. Near the Weyl points of the cut-off model you can see the
number that represents their topological charge. The parameters used for the hydrodynamic model
were β = 0.6c, ωc = 0.2ωp, ω′

p = ωp and ωp = 0.5c and the ones used for the full cut-off model were
kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.
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4.3 Convergence Study

Since the program that computes gap Chern numbers is a numerical implementation of the Green’s

function formalism (2.13), one is concerned about the convergence of the numerical method. This is

because the result of a numerical method can usually only give an approximation of the analytical result,

up to a certain error. Regarding numerical integration, a better convergence is equivalent to a lower

absolute error which for our case is measured between the result of the program and the actual integer

value of the gap Chern number. The parameters that influence the convergence of this program can

be divided into two groups: model parameters that combine the constitutive parameters and momentum

space value kz that is fixed and from where the cross sections are taken; and the program parameters

that are simply the ones used in the implemented numerical method like ξmax, N and Nw, described in

section 2.2.1. The fact that the constitutive parameters are important variables is not surprising because

they control many aspects of the system, from the amplitude of band gaps to the case of having or not

a well-defined topology.

The model that will be used to illustrate the influence of such variables on the numerical convergence

is the magnetized plasma with a full cut-off having kmax = ωp/c, ωc = 1.2ωp, ω′
p =

√
3ωp and ωp = 0.5c.

Firstly, we will focus on the topologically non-trivial blue subregion between the inner pair of Weyl points.

Specifically, the high-frequency band gap on the left plot of figure 4.10 in the kz = 0 cross section, with

a gap Chern C1
gap = 1.

Firstly, we will see the effect of the program parameters ξmax, N and Nw. As the value of these

parameters increase, we observe convergence to the integer gap Chern number. This can be graphically

observed in figures 4.13 and 4.14.

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

N

Cgap

90 92 94 96 98 100
0.9996
0.9997
0.9998
0.9999
1.0000
1.0001
1.0002
1.0003
1.0004

N

Figure 4.13: Convergence study of the numerical gap Chern number of the high-frequency band gap in kz = 0 as
a function of N , for a full cut-off model with the parameters above. The parameters used here were
Nw = 150, ξmax = 3 and ω′

gap = 0.7.
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Figure 4.14: Convergence study of the numerical gap Chern number of the high-frequency band gap in kz = 0 as
a function of Nw and ξmax, for a full cut-off model with the parameters above. The parameters used
on the right plot were N = 50, ξmax = 3 and ω′

gap = 0.7 and on the left plot Nw = 150, N = 50 and
ω′
gap = 0.7.

The parameters N and Nw have a greater impact, as opposed to ξmax which can be small and still

guarantee a good convergence.

Momentum space location has a very big influence in the convergence of program results. Explicitly,

in the context of our problem, this location is the value in the kz axis from which the cross sections are

taken. Generally speaking, the more we increase kz, the better the convergence. This is true except

in one very important case. When the topological characterization is executed in cross sections with

kz values that are small deviations from the Weyl crossing, the numerical gap Chern number diverges

when using the same program parameters (except for ω′
gap since of course it needs to be adapted to be

confined within the different band gaps in each cross section). This divergence in the proximity of the

frontier between two topologically inequivalent regions is due to the extremely narrow band gaps around

the crossing. This is better understood graphically in figure 4.15 that showcases the numerical gap

Chern number of the band gaps situated in the blue region (fig. 4.9) from cross sections with different

kz values.

To further exemplify the influence of momentum space location in the convergence we will take two

different kz values after the positive inner Weyl point kz = W1, in the topologically trivial blue subregion.

For kz = 3
2W1, the numerical gap Chern number is C1

gap = −0.001411 and for a really large value

(kz ≫ W1) like kz = 50W1, we get C1
gap = −5.44789 × 10−10, for the same program parameters. This

seems to be congruent with the effect of the limit kz → ∞, where the material response becomes

reciprocal, and so the numerical gap Chern number converges significantly faster to 0.
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Figure 4.15: Convergence study of the numerical gap Chern number for band gaps in the blue region of figure
4.9 in different cross sections, for a full cut-off model with the same constitutive parameters. The red
line represents the frontier between the two topologically inequivalent subregions at the wave vector
location of the Weyl crossing. The program parameters used here were N = 50, Nw = 100, ξmax = 3
and ω′

gap takes a different value for cross section.

Another important parameter is ω′
gap, the real-valued frequency of the contour for the integration in

frequency, which should be positioned in the middle of the band gap, since the numerical result may

diverge if this value is too close to a dispersion band.
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Conclusion
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We studied two photonic structures that were shown to possess Weyl points. The first one was a

helical metamaterial which is reciprocal and the second one was an electron plasma biased with a static

magnetic field which is nonreciprocal.

To acquire Weyl points, it is necessary to break either time-reversal symmetry or inversion symmetry.

The helical metamaterial has no inversion symmetry precisely because of the helical geometry, but this

alone does not guarantee the twofold point-like degeneracies in the system. The permittivity components

in the x̂ and ŷ directions (for a helix oriented along the ẑ direction) must also be different, or in other

terms, the system’s response must be anisotropic in planes that are orthogonal to the helix orientation.

This is the reason why the unit cell has an elliptical helix.

In the case of the magnetized plasma, time-reversal symmetry is broken by the applied magnetic

field. This is the reason why it is nonreciprocal which is a necessary property to obtain non-trivial topo-

logical invariants in this system [14], such as the gap Chern numbers. The existence of Weyl crossings

in this medium is thus inherently connected with its nonreciprocity since they have been shown to be

responsible for the non-trivial topological properties of the magnetized plasma [24]. This is corroborated

by the results in section 4.2 of this dissertation.

The emergence of these Weyl degeneracies in both systems is similar, in the sense that the point-

like band crossings occur along a single direction of propagation k, between one longitudinal mode and

transverse modes. Such direction is determined differently for each medium. It is given by the helices’

principal axis for the helical metamaterial, and in the case of the magnetized plasma it is given by the

direction of the static bias magnetic field.

The Weyl point generated by the crossing between a flat longitudinal mode and a transverse mode

rests at the boundary between type-I and type-II. A type-I Weyl system possesses isofrequency surfaces

surrounding the Weyl point’s frequency which are ellipsoids and a type-II system possesses isofrequency

surfaces which are hyperboloids. To acquire either type, nonlocality must be introduced into the system.

If the nonlocality acts on the longitudinal mode by bending it upward (second derivative with respect to

the wave vector is positive), the isofrequency curves around the crossing turn hyperbolic, thus it changes

into a type-II Weyl point. If it bends downward (negative second derivative), the isofrequency curves turn

into closed ellipses, thus changing it to a type-I Weyl point.

The introduction of spatial dispersion is a consequence of the regularization procedure for the local

magnetized plasma due to its ill-defined topology. It was possible to replicate the two different types of

Weyl crossings with the two solutions explored in sections 3.2.2-3.2.3. On the other hand, the helical

metamaterial possesses intrinsic strong spatial dispersion for any frequency and even in the very large

wavelength limit [29]. By analysing the effective medium theory in [4], we showed that this nonlocality

can only originate the second type.

We concluded that nonlocality is necessary to ensure that the topology of a 3-dimensional magne-
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tized plasma is well-defined, in order to obtain integer gap Chern numbers, which may be non-trivial.

A wave vector cut-off is required to regularize the topology of an electromagnetic continuum in a way

that its nonreciprocal response is suppressed for large wave vectors. In section 4.2 we observed that

after this regularization, the gap Chern numbers indeed converged to integers (some non-trivial), with

spatially dispersive models.

The most important and novel conclusions were derived in section 4.2, after the topological charac-

terization of the band structures of two nonlocal models of a magnetized plasma. Taking into account

the geometry of the problem described in this chapter (4), it was numerically shown that topologically

non-trivial band gaps exist in specific regions of the 3-dimensional dispersion. These regions are con-

fined between each Weyl point pair in momentum space. By taking cross sections of the dispersion

in orthogonal directions (kx,y) relatively to the axis that connects the pair (kz) and if we can guarantee

the existence of full band gaps in these cuts that are situated in the region of interest, we can compute

their gap Chern number. Our results show that these band gaps are non-trivial. In fact, the gap Chern

number remains constant for any cross section in this region. This is expected since the band gaps are

all connected if we are looking along the kz axis and they only change in amplitude in an adiabatic way.

The situation is completely different if we consider cross sections immediately before and after the Weyl

crossing. As it was seen best in figure 4.12, the gap Chern numbers are different in each situation, be-

coming trivial in cross sections beyond the interval in wave vector space that directly connects the pair.

This is also expected since the gaps in these cross sections are all connected even when kz → ∞, con-

sequently the gap Chern number must be constant, and since in this limit the electromagnetic response

is reciprocal, it should be indeed zero.

The previous arguments explain why the gap Chern numbers are trivial in cross sections situated in

a region that is not bounded by any Weyl points, as is the case of the low-frequency (orange) region of

the hydrodynamic model that was characterized in section 4.2. Equivalently, since there are no Weyl

crossings in this region, there is no Berry curvature flux being captured in the respective band gaps of

the cross sections with our Green’s function method.

The difference of the gap Chern numbers before and after the crossing is the magnitude of the

topological charge of the Weyl point. However, the sign can only be attributed by defining the order in

which the difference is computed. Such order is given by a trajectory with positive or negative orientation

in the direction of the axis that unites the Weyl pair. This trajectory is defined before-hand as a convention

and maintained for the computation of topological charges for all Weyl crossings. As we conclude in

section 4.2, for each pair with opposite wave vector values, there is one with a positive sign and another

with a negative sign, representing the existence of a source and a drain of Berry flux. Our method can

then quantify the magnitude of the topological charge and the relative signs between pairs (figure 4.12),

but cannot distinguish which Weyl point has the positive or the negative charge out of each pair.
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In conclusion, we have applied a first principles method to the calculation of topological charge of

Weyl points in continuous media. Unlike standard methods based on the direct computation of the Berry

curvature, this approach does not require the calculation of the eigenvectors at each value of the wave

vector and is thus more computationally efficient. Future work may include analysing the topology of the

helical metamaterial and study protected edge modes in these systems.
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