
INFRARED 1

InfraRED: A Visual and Flow-based Designer of
Smart IT Infrastructures

André Miguel Jesus Moura da Silva Moreira

Abstract—InfraRED is a proposal for software solution that can help users, either coders or non coders, to design and maintain visually,
their own logical system topologies, to run on top of generic hardware, either locally or on cloud environments, while providing a friendly
and accessible user interface, as InfraRED is based in the Low Code paradigm, which provides the user with a visual set of tools for
systems’ creation, management and analysis, not requiring detailed knowledge about the complexity of the intended infrastructures.
The visual based solution will work similarly to how Intent Based Networking (IBN) technologies work by using intents to create and
define a system’s topology based on an end goal, but where those intents will be visually represented by the design the user wishes
to achieve. An InfraRED solution will make possible for programmers and non programmers to provide system topologies for their
businesses since the complexities of network and systems design will be abstracted visually. Maintaining the created topologies will
also be made easier through InfraRED since the user will have a high-level overview of how the core elements interact with each other
and how data moves from one to another.

Index Terms—Low Code; Cloud Computing; Infrastructure as Code (IaC); Development and Operations (DevOps).

✦

1 INTRODUCTION

THE objective of InfraRED is to allow many people of
different backgrounds to deploy and manage their

own infrastructure with ease. There’s a necessity for easy
deployment of cloud resources and Low Code is a way to
have everyone capable of doing so.

To do this we are combining complex technologies
with easy front facing ones, the abstraction of complex
tasks will allow anyone to do what before could take
them a lot of time, both learning and configuring, but
with InfraRED all of that is done before for the com-
modity of the user and they simply have a non complex
way of drawing their designs.

1.1 Contextualization

Nowadays, creating and managing Information Tech-
nology (IT) infrastructures poses many challenges. The
growth in number of connected devices implies the need
for easier scalability, and for a more dynamic method to
re-design interconnected systems and logical topologies
in a cloud or on premises.

To combat this, abstraction in programming languages
allows for a more general audience to easily make and
create software solutions not locked-in to specific devices
or systems vendors, added to the fact that most network,
systems, services and functions are being virtualized
instead of existing as hardware on premises. On top of
this the Low Code paradigm has been the main option

• André Miguel Jesus Moura da Silva Moreira, nr. 87630,
E-mail: andre.moreira@tecnico.ulisboa.pt,
Instituto Superior Técnico, Universidade de Lisboa.

Manuscript received October 31, 201822

when it comes to allowing as many users as possible to
work in any coding field [1].

The user will work with abstracted versions of various
common network, compute and software/application
elements. InfraRED is tasked with presenting the user
with the necessary virtual Customer-Premises Equip-
ment (CPE) to build the desired infrastructure and also
with abstracted functions from adequate Application
Program Interfaces (APIs) to interact with external soft-
ware, hardware or cloud environments.

1.2 How to solve the Problem
Based on the contextualization it is possible to derive a
few goals for InfraRED:

Goal 1) Abstract computation, network and soft-
ware elements.
Goal 2) Provide easy access to those abstractions as
“nodes”.
Goal 3) Allow customization of the characteristics
and features of the “nodes” that the user wishes to
deploy.
Goal 4) Allow for the definition of the connections
between those “nodes” to represent how data or
state transactions should be performed.

Having these goals fulfilled InfraRED will be capable
of sustaining itself, nodes are created by users that are
more tech savvy and are then added to InfraRED. Other
users, with varying technological capabilities, then have
access to a library of nodes to use and construct their
desired design which should be as simple as possible.

1.3 Background
The development of the InfraRED solution took inspira-
tion from some previous works, that guided its devel-



2 INFRARED

opment method. Exploring those academic work about
cloud, Low Code and Internet of Things (IoT), allowed
InfraRED’s design choices to evolve in a concise way.

1.3.1 Low Code

Low Code is a coding paradigm that focuses on giv-
ing more people—especially ones without expert level
coding skills—the ability to construct solutions for their
projects by means of a visual tool that involves minimal
code writing in common high-level languages such as
Python, Java or C. With this coding model, programmers
or users normally have a visual drag-and-drop technol-
ogy of element blocks representing the intended logic,
and code is automatically built by generating it from the
interpretation of a visual design created by the user [2].

This functionality can be achieved by providing the
user with predefined processing elements (some with
even complex logic or functionality) or by giving space
for high level language writing in order to more precisely
cater to the users’ needs [1].

1.3.2 Cloud Infrastructure

A Cloud infrastructure is defined as the hardware and
software components that compose a system accessi-
ble over the Internet. These elements can typically be
servers, storage and networking [3]. One of the advan-
tageous aspects of the cloud concepts is that it offers
processing and storage power at large but then, on top
of said power, the users can apply logical connections
to derive desired functionalities. Cloud companies can
also provide costumers access to plans and/or services
where they sell said power on a pay-per-use basis.

There are a few business models for cloud providers,
with the most common being Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as
a Service (SaaS), offering, respectively, an increasing
number of more specialized and pre-built services.

1.3.3 Internet of Things (IoT)

The concept of IoT comes from connecting simple phys-
ical devices, such as sensors, controllers or actuators,
to the Internet, so that these can communicate and
exchange information to achieve a combined goal on a
complex system, which can range from a Smart Home
to an industrial manufacturing line [4].

This situation comes as a customer problem, as there
is lack of flexibility when it comes to building an IoT
network since the devices are only able to communicate
to their brand’s controller. When this communication
is possible, it is not done in an uniform way, as the
user has to interact with many different interfaces to
connect each device, and sometimes the full functionality
of each device is not available through a more flexible
connection [4].

1.3.4 Intent Based Networking (IBN)
IBN is used to achieve network administration and
creation without having to think about its components
(and their, sometimes complex, details) individually. The
IBN purpose is therefore to be able to define a network
and its functionalities by using the user’s desired end
configuration for the network. With this automated be-
havior comes error validation, and so the IBN software
is responsible for making sure the intents are viable
and possible to be translated to deployments within the
physical network, and if so, then launch the provisioning
of the desired topology [5].

1.4 State of the Art

To understand how InfraRED can fit into the current
cloud technology environment it is important to go
over the main ”competitors” and similar technologies to
InfraRED and observe what ideas are the foundation for
it.

1.4.1 Node-RED
Node-RED [6] is the main inspiration of InfraRED and
is the technology that started InfraRED with the idea
of using nodes for representing interconnected elements.
Node-RED is therefore a node-based Low Code program-
ming tool that provides a large library of node types
to interact with various types of systems. New nodes in
the library are created by users with higher technological
skills, since they need to be able to read documentation
and have programming skills to code. These users then
share the created node a the public library.

Node-RED’s main elements, as already mentioned,
are the nodes, which can be hardware devices, APIs
or online services. These nodes can be wired together
and through those connections they share messages with
each other creating flows.

The fundamental idea of Node-RED is that it is flow-
based, this means there are only three types of nodes in
any flow: input, output and transformation (intermedi-
ate) nodes.

1.4.2 TOSCA
The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [7] is a standard developed by
the Organization for the Advancement of Structured
Information Systems (OASIS), for creating and main-
taining cloud services. TOSCA’s goal is to have a cloud
service description that is independent of how the cloud
environment is implemented.

TOSCA describes a service at the topology level by
defining its components and the relationships between
them. To aid in the orchestration and for service main-
tenance, the description also states the plans for the
management of the service life cycle, such as creation
and modification of the service. A TOSCA template [7]
is called a service template (as in Figure 1) that includes a



MOREIRA 3

Figure 1. TOSCA Service Template Example. Source: [7]

topology description and also the plans for orchestrating
and managing that topology.

A topology template includes only two types of el-
ements, Nodes and Relationships. On these, TOSCA
assumes a number of pre-existent types so as to create
consistency throughout different users, as these would
be simple and common elements like a Compute, Network
or Database Node. As the language progresses, the com-
munity can define other base types that will then help
future users with more types to choose from, instead
of having to define a type as a more complex topology
composed of these starter base types..

1.4.3 Google’s Cloud Platform (GCP) and Amazon Web
Services (AWS)
A few companies offer solutions for creating cloud ser-
vices (introduced in Section 1.3.2) in which the users
have control of what infrastructure they wish to create
and modify but no control over “where”, physically,
the infrastructure is deployed. The major players in the
market that sell these IaaS and PaaS models are Google,
with its Google’s Cloud Platform (GCP), and Amazon
with its Amazon Web Services (AWS).

1.4.4 Metal as a Service (MaaS)
Metal as a Service (MaaS) [8] is a recent new service
model that makes possible to deploy any type of Oper-
ating System (OS) on any type of bare-metal server rack.

MaaS essentially expands on the idea of com-
mon cloud provider models, as typically those cloud
providers offer services based on the already described
three types of control, i.e., IaaS, PaaS and SaaS (as
depicted in ??), where in each level the user gives up
on control over a part of the system for the sake of com-
modity, also allowing to reduce on Capital Expenditure
(CAPEX), since the user does not need to purchase and
set up the infrastructure. This leaves the on-premises
solution option as the more “archaic” option for users, as
these would have to buy all the servers, and networking

devices, set up the needed electrical power, the racks,
cabling, network connectivity, etc., and install the desired
OS and software in each system.

MaaS is also often used in conjunction with Juju, a
cloud foundation solution, as described in the following
Section 1.4.5.

1.4.5 Juju Charms
Juju Charms or JaaS! (JaaS!) [9] is a Charmed Operator
Framework, it is used to deploy cloud infrastructures
and applications on bare-metal systems, being also re-
sponsible for many aspects of a service’s lifecycle, its
installation, upgrading and maintenance.

A Charm is responsible for managing a specific ser-
vice’s lifecycle. Charms can be coded by other users and
added onto a public library, the CharmHub. Charms are
written in Python and extend a CharmBase and a Status
library which is needed in order to function as a correctly
coded Charm.

Once a Charm is created, users can add it onto their
Juju system and, on deployment, Juju handles the cre-
ation of the service defined in the Charm and manages
any requirements of the service, creating them too.

1.4.6 Sagitech Software Studio (S3)
Arora et al. [10] make emphasis on the standardization of
rules in a Low Code system, a clear separation between
the code design and the code generation, helping the
system to migrate to new technologies, thus making
upgrading the system easier and more accessible. For
the user this can mean that the code generation is made
more effective since the separations allows for generated
code to be more modular, reducing the amount of du-
plicated code created per deployment.

2 DESIGN
To design InfraRED, inspiration was taken from sec-
tion 1.4.2 so as to establish a structure that is compatible
with cloud infrastructure topologies since that is the
goal of both the TOSCA project and InfraRED. TOSCA
project will be mostly represented on a front facing and
user interaction level, on the way a topology is laid
out constituted of Nodes and Relationships which are
concepts also used in InfraRED.

2.1 Architecture
InfraRED’s structure is a combination of three sections,
the representation of infrastructure which we define as
Nodes, the Server side which handles the deployment
and the Client side which the user interacts with to create
and design.

The Server is the brains of the operation, this is the
piece that controls all functionality of InfraRED and
holds information about all the Nodes, which are the
individual components that make InfraRED. The Client
side is the front facing view of the system where the
user can manipulate the Nodes to create designs and
then deploy them.



4 INFRARED

2.1.1 Server
The Server handles all interactions with the Nodes, as
such it is tasked with deploying them, terminating them
and saving them as a group, which is called a Node
Pattern explained in section 2.2.1.

To have Nodes available at the Server there will be
files that it will load and boot up, the Server is then
responsible for sending them to the Client for the user
to see. The Server communicates with the Client via
a Representational State Transfer (REST) API that it
exposes.

To preserve Nodes across deployments and instances
of InfraRED, the Server is responsible for saving Node
Patterns so that it is possible for the user to have some
persistence in InfraRED, this also aims to provide easier
usability when the user wishes to deploy the same
system across different times or in different locations.

2.1.2 Client
The Client side is structured to have a User Interface
(UI) handling side and a functionality side. The UI side
has the layout shown in Figure 2, the design canvas of
InfraRED is the only frontal piece of software that the
user will interact with. The current layout was chosen to
be made similar to how IDEs are structured, placing the
resources and menus on the side and top of the screen,
having the main interaction with the system happening
at the center and placing status updates at the bottom.

Figure 2. Canvas Layout

In Figure 2 the green area, the Resource Bar, is where
the user has access to multiple types of Nodes, these are
shown in their normal form, grouped into categories that
can be toggled via the red area, the Category Bar.

The users can then drag the Nodes onto the orange
area, which is called the Canvas, to compose the desired
topology by making use of these Nodes that came from
the green area.

The blue area, the Menu Bar, has buttons that allow
the user to interact with the design they are building,
most important actions being to deploy the design in
the Canvas or to save a Node Pattern.

Upon clicking on a Node, introduced in section 2.2.1,
that is present on the canvas a menu will open to allow
the user to interact with the properties of the clicked
Node.

At the bottom, the Status Bar represented in yellow,
will show status details about the current Canvas, such

as information about resource usage and Node counts in
the Canvas, so that through this bar the user can observe
if the system is functioning correctly and according to
predicted values of resource usage.

The functionality side is responsible for handling the
connections’ logic and saving information about the
current design being made in the canvas area. InfraRED
holds information about all the Nodes that were loaded
by the Server at the Client side.

2.2 Infrastructures

With InfraRED the aim is to build infrastructure on top
of a cloud or local environment. To do so the system
gives the user access to many Nodes which are a repre-
sentation of infrastructure, services or pieces of software
to be deployed on said environments.

2.2.1 Nodes

Nodes in InfraRED, which represent the infrastructure
the user wishes to create, are a composition of three
ideas, which are: the Node itself, its Connectables and
the Relationships between them, this composition is
detailed in TOSCA’s idea of a topology, exemplified by
Figure 1, and in InfraRED a simplified overview was
derived to include the most necessary components that
allow a cloud system to function.

For visual representation, Nodes will have a box like
format and be structured to have their type shown at
the top so it is possible to distinguish different Nodes
and will expose the Connectables under the type, with
Capabilities and Requirements having different colors,
as shown by Figure 3.

Figure 3. Node Structure

The main gist and goal of InfraRED comes from
abstracting common cloud and local systems into Nodes,
which are created via files of a standardized format
that are then loaded by the Server, which is capable of
using them as functional pieces. Each individual file is
responsible for exposing a service, which has individual
functionalities and can connect itself to other services
to acquire necessary exterior functionality. Nodes have
their own properties that can be altered during design
creation to change Node specific properties that affect
and alter their behaviour during and after deployment.
To exemplify, there could exist a computation Node with
a property for the number of Central Processing Unit
(CPU) cores it possesses or for the location where it
should send its logs.



MOREIRA 5

The Nodes are stored next to the Server, explained in
section 2.1.1, as files that get loaded when the server
starts and then made available to the user via the Client
on the layout location for Nodes to be placed at which
will also be organized by categories.

Additionally during user interaction, Nodes can be
combined together for the sake of practicality as Node
Patterns, this removes the need to individually set up
groups of Nodes that are repeating and only needing
to manage a singular Node that encompasses multiple
Nodes and their Relationships, making it simple to create
duplicates of complex structures.

2.2.2 Capabilities and Requirements

Nodes have Capabilities and Requirements, called Con-
nectables, exclusively these are the pieces of a Node
that allow it to connect to other Nodes, this connection
however can only go from a Capability to a Requirement
or from a Requirement to a Capability to be considered
valid, since these connections represent a hierarchy of
dependency where a Node with a Requirement must
await a Node with a Capability if there is a connection
between them. Connectables have their own properties
that allow users to customize the connection that can be
built between them.

A Capability is the ability of a Node to offer a piece
of functionality. This can be, for example, a database for
holding tables or processing power for a certain task.

A Requirement is the capacity of a Node to consume
a piece of functionality that if active is a necessary req-
uisite for the Node. Conversely, a tables Node requires
a Node with a database Capability and a task Node
requires a Node with processing power Capability.

2.2.3 Relationships

Relationships are what connects Nodes together, these
do not hold or transpose any data from one Node to
another. These Relationships are built in between the
Connectables of the Nodes. The user can create these
Relationships by joining Connectables of different Nodes
together.

Visually these will be represented by lines going from
one Node to another and the lines will have their end-
points at the respective Connectables.

Their function is to show the system the hierarchy
of the Nodes that are currently in play allowing it to
understand the order of deployment for the Nodes in a
design, explained in detail in section 4.

3 IMPLEMENTATION

This chapter will go through how the design is im-
plemented and what algorithms are in place, making
reference to what technologies are being used.

3.1 Technology Stack

The entirety of InfraRED will make use of the JavaScript1

language. This choice of language comes from wanting
to maintain similarity between how the Server and the
Nodes function. JavaScript is the standard as a scripting
language for web pages and since NodeJS2 was the
choice for server functionality, maintaining the client
fully scripted with JavaScript felt like the most natural
choice. ExpressJS3 will be used to serve InfraRED’s entry
point and handle requests coming from the client, since
there is not a need for a complex server side.

3.1.1 Server
The Server exposes a REST API, this way the entry points
to the Server’s functionality are properly exposed to the
Client and data is transferred uniformly in JavaScript
Object Notation (JSON) format between Server and
Client. This implementation should allow for a different
Client side to be developed as long as it conforms to the
data transfer structure in which Nodes are represented.

3.1.2 Client
The Client side implements a standard HyperText
Markup Language (HTML), Cascading Style Sheets
(CSS) and JavaScript combination to create and display
a web page to the user that allows them to interact with
InfraRED with buttons and drag-and-drop.

For the drag-and-drop functionality, InfraRED makes
use of JavaScript’s JQuery4 library. For CSS, Syntactically
Awesome Style Sheets (SASS) is used so it is possible to
have better control over the site CSS with variables and
file structure. On the canvas SVG.js 3.05 is used to do
any type of Scalable Vector Graphics (SVG) drawing.

3.2 UI of the Client Side

This section will go over how each individual piece of
the UI functions and what layout choices were made to
achieve a tool that is easy to use.

The UI side makes use of both HTML elements and
SVG elements, this decision was made since a complete
HTML based web page would not be capable of han-
dling many of the drawing decisions that were made to
correctly represent the design in the Canvas. To tackle
said decisions the SVG.js 3.0 tool was used in order to
implement SVG elements into InfraRED, mainly on the
Canvas area.

The rest of the layout is composed with HTML and
CSS and only the Canvas makes use of SVG. For this
to happen it was necessary to implement a translation
from HTML to SVG that happens when a Node comes
from the Resource Bar and is dropped into the Canvas.

1. https://www.javascript.com/
2. https://nodejs.org/
3. https://expressjs.com/
4. https://jquery.com/
5. https://svgjs.dev/docs/3.0/

https://www.javascript.com/
https://nodejs.org/
https://expressjs.com/
https://jquery.com/
https://svgjs.dev/docs/3.0/


6 INFRARED

A zoomed in example of the layout that the user
interacts with can be seen on Figure 4, this layout follows
the structure that was proposed at section 2.1.2. On
the sections below, the implementations of the various
layout parts will be discussed.

Figure 4. InfraRED Dashboard

3.2.1 Node
A Node is constructed to show its type at the top or
a custom name if the user sets up one via the modal
box explained in section 3.2.7. Then the Connectables are
displayed, with Capabilities having a green color and the
Requirements having a orange color. These Connectables
also display their type name, as proposed in Figure 3

The box like format allows InfraRED to provide a rep-
resentation that gives the necessary information without
cluttering the screen with extra information that is not
essential for making the design process comprehensible.

To move the Nodes, both from the Resource Bar to
the Canvas and to move them in the Canvas the user
simply has to hold the left click button and the cursor
will change from a selecting cursor to a grabbing cursor
and the border of the Node change from grey to blue
to signify the Node is being held, then the user just has
to lift the left click and the Node will stop moving, if
the Node is coming from the Resource Bar then the user
must drop the Node in the Canvas or else the Node will
not be placed, this functionality satisfies the drag and
drop functionality that was proposed and is one of the
foundations of any Low Code tool.

3.2.2 Canvas
To draw the Canvas the choice was made to give the user
a spacious area that they could use, which is achieved in
InfraRED through the use of a scroll able environment.
The implemented size of a 2000 by 2000 pixels Canvas
area was chosen arbitrarily and it can be easily changed
but the value is similar to what a tool like Node-RED [6]
uses.

3.2.3 Status Bar
The Status Bar is capable of showing the user text mes-
sages in order to do so. Current implementation of the

Status Bar has minimal uses, being capable of reacting
to system changes like deployments and Pattern Node
saves or displaying text information about the current
Nodes in the Canvas.

3.2.4 Category Bar
The Category Bar is built during the loading of Nodes,
and from there InfraRED is able to extract two pieces
of information: the category name and its icon. It then
builds a icon based selector for the user then the user can
click on any other category icon to then view Nodes from
that category and stop seeing Nodes from the previous
one.

After loading every category, InfraRED will create
a special category exclusively for Pattern Nodes, the
last category shown at Figure 5. From the figure, the
Vagrant category can be seen selected and the respective
Resource Bar group is being shown.

Figure 5. Categories Example

3.2.5 Resource Bar
The Resource Bar contains all the Node groups that were
loaded into InfraRED but only shows one group at a time
based on category selection. The Nodes that are shown
here can be dragged to the Canvas to build the desired
design. If the number of Nodes in any category exceeds
the screen size the Resource Bar will have a scroll bar
for the user to view all Nodes.

When the user drags a Node from the Resource Bar,
the Node is not removed from the Bar but instead a copy
is created, which shows the user that multiple copies of
the same Node can be used at the same time and it is
not limited by number.

3.2.6 Menu Bar
The Menu Bar is the layout location that contains buttons
that allow the user to interact with the design they are
making.

Currently there are three buttons for functionality that
the menu is responsible for, these are saving, deploying
and destroying.

All the buttons in the Menu Bar emit an event, sec-
tion 3.3.3, that is then handled by the corresponding
logic section. This way the Menu Bar has no algorithmic
logic and is only responsible for emitting events when
a button click happens in any of the buttons that it
contains.



MOREIRA 7

3.2.7 Node Modal
By double clicking on the Node, a modal box opens
which allows the user to modify the properties of the
Node or delete the Node from the Canvas. To exit the
modal box the user simply has to click outside the
modal box, noting that this discards any changes that
were made. To actually save any changes made to the
properties of the Node the user has to click the green
save button.

Changes that are made on this modal box are then
reflected on the Client’s memory so there is persistence
of data for the user session, which is explored in detail
in section 3.3.2.

3.2.8 Relationship Lines
A Relationship line is a blue line between Connectables
connected by the user. To create a connection the user
clicks any connectable that is in the canvas, that con-
nectable then turns into a red color that signifies the
selection and an arrow is drawn from there. To complete
the connection the user clicks another connectable that
is of the same type and is the opposing mode, that is a
Capability can only connect to a Requirement and vice
versa.

3.3 Logic at the Client Side
Logic wise, InfraRED’s Client side has files to handle
interaction with and between Nodes and sending in-
formation to the Server. The Client is also responsible
for holding, in local memory, information about the
Nodes that were loaded at the Server after it finishes
its initialization.

3.3.1 Nodes and Relationships
For handling the main logical elements of InfraRED,
there are three JavaScript classes: Node, Connectable
and Relationship. These classes are capable of generat-
ing their respective HTML and SVG elements onto the
canvas and hold the information that gets sent to the
Server for deployment and for saving a Pattern Node.

3.3.2 Node Database Memory
The Client holds in memory two lists that contain infor-
mation about the Nodes that the user can interact with,
the first list in memory is a Node Resource list that gets
built from the information about the Nodes coming from
the Server and represents visual information about all
the Nodes loaded in InfraRED, the other list is the Node
Canvas list that stores the Nodes that get placed into the
Canvas.

3.3.3 Events
The events module is used to map synchronous function
callers to string constants. This means that in the Client
side it is possible to add one or more function calls under
a single event. This is a more human readable method

than calling the functions from many different logic or
UI files. With this module it is possible to append a
JavaScript function to a certain event_name, afterwards
it is possible to invoke these functions by emitting said
event_name which will make a call to all the functions
under that name with the arguments given after.

3.3.4 Loading the Nodes
The loader module at the Client is tasked with making a
GET call to the /listNodes endpoint, which contains
no arguments. The Server responds with a list of objects
representative of all the Nodes it loaded so that the
Client can populate its local memory. From this, both
the Category and the Resource Bar can populate their
lists with the results from the loader which must happen
before the user can interact with InfraRED.

3.3.5 Initiating the Deployment
The deployer module at the Client handles making a
POST call to the /deploy endpoint with POST data
about all the Nodes that are currently present in the
Canvas. This piece of data must be modified because
in order to send data through JSON the object cannot
contain circular references and those are present due to
the SVG.js 3.0 library, so these references are removed.

The module is also responsible for saving Pattern
Nodes since the previously mentioned problem is also
present when saving. For the saving functionality, the
module makes a POST call to the /save endpoint
sending a Pattern name, that is acquired by prompting
the user to insert a name in a text box, and the current
Nodes present in the Canvas.

3.4 Logic at the Server Side
After receiving the API calls from the Client, the Server
side starts its functionalities, which are deploying a
topology of Nodes, saving Pattern Nodes and destroy-
ing a topology. These calls function asynchronously,
explained at section 3.4.4, to allow for the actions to be
more efficient, allowing us to remove the need to wait
for Nodes’ actions individually and sequentially, each
Node can activate its processes simultaneously as long
as there are no requirements for that deployment.

3.4.1 Node Files
The Nodes’ files must conform to a specific structure
and set of rules in order to be accepted and used by
InfraRED’s system.

The data properties that a Node must have are: cat-
egory (name and icon), properties (any amount) and
respective Capabilities and Requirements, each with its
own properties.

An instance of a Node needs to expose a deploy()
and a clean() method, the deploy() method is re-
sponsible for initializing the instance and the clean()
method is responsible for destroying the instance after
it has been initialized.



8 INFRARED

A Node file exposes a create() method from where
the Server can get an instance of the Node and a load()
method, which is responsible for any pre-deployment
environment set up that the Nodes of this type require.

3.4.2 Receiving a Deployment Request
The deployer module at the Server is responsible for
handling all deployment related functionalities which
includes ordering the Nodes by their levels and then
proceeding to deploy each Node. The entry point for a
deployment action is constituted by four steps.

Firstly if there is already a running deployment, the
Server does a cleanup. This action will proceed to call the
clean() method of each Node that was deployed and
is active, doing so in the inverse order of its deployment.

After verifying that the previous deployment was
cleaned the Server starts ordering the Nodes that the
user wishes to deploy, which is achieved by verifying
the Relationships between these Nodes and creates each
level as a map list. The max level of the deployment list is
also established, which aids in the cleanup process. With
the level list built, the Server starts creating instances of
each Node.

With all the instances positioned at the appropriate
levels, the Server goes through the level list and calls
the deploy() method of each instance, while respecting
the levels by waiting for a full level to be completely
deployed before deploying the next and iterates through
this process until all levels are deployed.

3.4.3 Deploying Pattern Nodes
While creating the Node instances and a Pattern Node
is detected, its internal memory is parsed, which will
contain data about the Nodes and Relationships that it
has inside. The process then recursively parses from that
data calling the deploy() based on the level lists inside
the Pattern Node.

Note that the created design can be perceived as a
Pattern Node too, which was decided in order to main-
tain consistency on how a design is deployed and how a
Pattern Node inside the design is deployed, which with
this implementation keeps these two situations equal.

3.4.4 Asynchronous Behaviour for the Server
When it comes to providing asynchronous behaviour to
InfraRED the Server makes use of JavaScript’s Promises,
a Promise is simply an object that checks the success or
failure of an asynchronous task. In InfraRED it is used
to call the deploy() and the clean() methods of the
Nodes so it is possible for each Node to launch these
processes without having to sequentially wait for each
other. We do this by using the allSettled() method
from the Promises library which awaits the completion
of all tasks inside the list provided as an argument. In the
case of InfraRED this list will contain, for example, all the
deploy tasks of Nodes in a given level, so it is possible
for the next level to only start when all the Nodes in the
previous level finish successfully.

4 DEPLOYMENT METHODS AND USE CASE

This section will go over how a deployment is handled
at the Server and also describes a possible and simple
Use Case for InfraRED.

Logic-wise, the deployment is very simple, since the
Nodes are dependent on one another if they contain
Relationships between each other. A Node that contains
any amount of Requirements must wait for the Node or
Nodes with the respective Capabilities to be deployed
and only then can this Node be deployed if all its
Requirements are fulfilled by the previously deployed
Nodes.

When the deployment process starts, Nodes that are
in play get put on a deployment list. The Deployment is
separated by levels, where each level is constituted by
Nodes that have no deployment dependencies in Nodes
of previous levels and may or may not have dependen-
cies in Nodes of future levels. To create Level 1, InfraRED
cycles the deployment list looking for Nodes that have
no Requirements and therefore are not dependent on any
other Nodes’ deployment. Once all the Nodes are cycled,
InfraRED will have Level 1 complete. Level 1 Nodes are
then taken out of the deployment list and put on Level
1 list. For Level N InfraRED cycles the deployment list
searching for the remaining Nodes. This time, InfraRED
checks to see if the level lists less than Level N fulfil
all the connections that the current Node that InfraRED
is looking at needs. If they are fulfilled, that Node gets
added to Level N and removed from the deployment list,
and if not it stays in the deployment list to be added to
a level after N. At the end of the algorithm a set of lists
in the format of Figure 6 is built.

4.1 Deployment Example

Figure 6. Deployment Sequence per Level

4.2 System Initialization
To begin the initialization process, the Server searches
for all the available Node files, by traversing a directory
that contains all Nodes, then validates the composition
of the Node file to see if it is created correctly and
subsequently invokes the load() method of each one.
All the successful loads get put into a runtime variable
and the rejected ones get discarded.

The process of Node loading has another important
piece of functionality which is the process of creating
the front end representation of a Node.



MOREIRA 9

The Server then sends properties of the Nodes it
loaded to the Client for it to build the Node list in
the Resource Bar and their respective categories in the
Category Bar. During these two actions the user cannot
interact with the Client side and experiences a loading
time.

4.3 User Interaction

Once the Server and Client are fully booted up, the users
can start interacting with Nodes from the Resource Bar
and on the Canvas to build the design they wish to
deploy. The user’s possible actions can then be listed
and summed up as follows:

Adding a Node to the Canvas: To add Nodes
into play in order to compose a design, the user
must drag them from the list of resources containing
all the Nodes present in the system, and onto the
Canvas as illustrated in Figure 7, the place where
the user is designing their topology.

Figure 7. Adding a Node to the Canvas

Establishing Connections: Nodes have Require-
ments and Capabilities and if the user clicks on them
they can connect them to other Nodes’ Connectables
establishing a Relationship between the Nodes (Fig-
ure 8).

Figure 8. Establishing Relationships between Nodes

Interact with Node Properties: By double clicking
on a Node, the user is met with a modal box
(Figure 9) that exposes the Nodes’ properties and
shows additional information about the Node and
contains buttons to interact with it (Figure 10).
Delete Nodes: On the modal box of each Node there
is a delete button, illustrated by Figure 11, at the top
left that removes the Node from play. Additionally,
for saved Pattern Nodes on the Resource Bar, it is
possible to delete Saved Patterns from the Resource

Figure 9. Interacting with Node Properties

Figure 10. Saving Node properties

Bar, in case the user does not wish to use them
anymore (Figure 12).
Save a Pattern Node: It is also possible to save the
Nodes in play as a Saved Pattern Node, meaning
that the design is condensed into a single Node that
contains all the connections and properties the user
made previously. Saved Pattern Nodes themselves
are unable to contain other Saved Pattern Nodes,
so, if a user tries to create a Saved Pattern it fails if
there is a Saved Pattern Node present in the design
(Figure 13).
Deploy: At any moment the user can press the de-
ploy button on the Menu bar to start the deployment
process. This sends data about the current Nodes
in play (present in the Canvas) to the Server from
the Client. The Server has an algorithm to decide
which Nodes get deployed first based on how they
are connected to each other (Figure 14).

5 DEVELOPMENT

The code for this project is available on a public repos-
itory on Github, allowing readers to match the imple-
mentations described in this chapter. The repository is
available at [11].

Figure 11. Deleting a Node from the Canvas

Figure 12. Deleting a Pattern Node



10 INFRARED

Figure 13. Saving a Pattern Node

Figure 14. Deploying a design

6 EVALUATION

There are many similarities between InfraRED, Juju
Charms [9] and Node-RED [6] so the three systems will
be evaluated to see how they compare to each other. The
evaluation will not have a performance focus since the
goal for InfraRED is to propose a system capable of com-
bining Low Code and the TOSCA standard interpretation
of cloud infrastructure and orchestration.

For InfraRED and Node-RED there is no user setup
requirement after installation, upon boot up the user is
presented with a fully functioning system that is ready
to use at any moment. However, Juju requires that the
user sets up an environment to deploy the system via
the command line, either by adding a cloud provider or
a MaaS environment.

As a complete end user, on all systems you can simply
be redirected to the web page that controls the system
and that would require no installation or set up from the
user, this means that some other user is responsible for
setting up the main system.

All three dashboards are very similar, in that they offer
the elements to compose an infrastructure design on a
bar to the side and the user can add any amount from
there to a canvas. Connections can be made between
these elements on all systems and the properties of the
elements can be changed by selecting the elements and
making the necessary modifications.

7 CONCLUSION

Current InfraRED allowed us to understand more about
how an application could be in charge of deploying
cloud infrastructure and what was set up gave an
overview of what systems need to be in place and
our implementation tried to show how to tackle those
challenges.

While InfraRED’s goal is to provide ease of deploy-
ment of cloud infrastructure and other devices, like the
present tools, it needs a great backing of capable coders

since the Nodes need to be created and managed by
skilled individuals who have proficiency with a specific
service and proficiency with the tool. There needs to be
a team of skilled coders or an incentive for other users
to add Nodes to a public library, which is often tackled
as an open source.

As it stands, it can be said that InfraRED achieved all
its goals, however only at surface level since InfraRED as
it is can not be considered a full encompassing solution.
InfraRED hopes to be an expansion on the currently
present Juju Charms since our design aligns with theirs
while potentially adding more types of Nodes and func-
tionality.

ACKNOWLEDGMENTS

I would like to thank my girlfriend for motivating me
through this work and my mom for her dedication to my
success. I would also like to acknowledge my disserta-
tion supervisors Prof. Rui Cruz and Prof. José Delgado
for their insight, support and sharing of knowledge.

REFERENCES
[1] A. Al Alamin, S. Malakar, Uddin, Gias, Afroz, Sadia, Bin Haider,

Tameem, and Iqbal, Anindya, “An Empirical Study of Developer
Discussions on Low-Code Software Development Challenges.”
arXiv: Software Engineering, 2021.

[2] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio,
“Supporting the Understanding and Comparison of Low-Code
Development Platforms,” in 2020 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2020, pp.
171–178.

[3] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck, “A Col-
lection of Patterns for Cloud Types, Cloud Service Models, and
Cloud-Based Application Architectures,” Institute of Architecture
of Application Systems (IAAS), Daimler AG, Tech. Rep., May
2011.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technolo-
gies, Protocols, and Applications,” IEEE Communications Surveys
Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[5] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani, “A Survey
on Intent-Driven Networks,” IEEE Access, 2020.

[6] “Node-RED,” https://nodered.org/.
[7] OASIS, “TOSCA Simple Profile in YAML Version 1.3,” OASIS

Standard, 2020.
[8] Canonical, “Metal as a Service,” https://maas.io/, 2022.
[9] “JAAS - Juju as a Service — Juju,” https://jaas.ai/.
[10] R. Arora, N. Ghosh, and T. Mondal, “Sagitec Software Studio

(S3) - A Low Code Application Development Platform,” in 2020
International Conference on Industry 4.0 Technology (I4Tech), 2020,
pp. 13–17.

[11] A. Moreira, “Fixenet/infraRED,” https://github.com/Fixenet/infraRED,
2022.


	1 Introduction
	1.1 Contextualization
	1.2 How to solve the Problem
	1.3 Background
	1.3.1 Low Code
	1.3.2 Cloud Infrastructure
	1.3.3 Internet of Things (IoT)
	1.3.4 Intent Based Networking (IBN)

	1.4 State of the Art
	1.4.1 Node-RED
	1.4.2 TOSCA
	1.4.3 Google Cloud Platform (GCP) and Amazon Web Services (AWS)
	1.4.4 Metal as a Service (MaaS)
	1.4.5 Juju Charms
	1.4.6 Sagitech Software Studio (S3)


	2 Design
	2.1 Architecture
	2.1.1 Server
	2.1.2 Client

	2.2 Infrastructures
	2.2.1 Nodes
	2.2.2 Capabilities and Requirements
	2.2.3 Relationships


	3 Implementation
	3.1 Technology Stack
	3.1.1 Server
	3.1.2 Client

	3.2 UI of the Client Side
	3.2.1 Node
	3.2.2 Canvas
	3.2.3 Status Bar
	3.2.4 Category Bar
	3.2.5 Resource Bar
	3.2.6 Menu Bar
	3.2.7 Node Modal
	3.2.8 Relationship Lines

	3.3 Logic at the Client Side
	3.3.1 Nodes and Relationships
	3.3.2 Node Database Memory
	3.3.3 Events
	3.3.4 Loading the Nodes
	3.3.5 Initiating the Deployment

	3.4 Logic at the Server Side
	3.4.1 Node Files
	3.4.2 Receiving a Deployment Request
	3.4.3 Deploying Pattern Nodes
	3.4.4 Asynchronous Behaviour for the Server


	4 Deployment Methods and Use Case
	4.1 Deployment Example
	4.2 System Initialization
	4.3 User Interaction

	5 Development
	6 Evaluation
	7 Conclusion
	References

