
Implementation of Routing Protocols Using the P4
Language

João Rodrigues Felı́cio
joaofelicio98@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2022

Abstract

Software Defined Networking (SDN) is an exciting technology that changed the way operators configure
and manage networks bringing much more space for innovation through network programmability. In
2013, the first programmable chip was prototyped, enabling operators to change the data plane without
modifying the hardware. These new chips motivated the development of the P4 language to program
the data plane. These tools made it possible to implement new protocols in the data plane, running on
programmable hardware, instead of waiting for the long development cycles of chip manufacturing.

We are proposing a new improved version of the DSDV protocol[1]. DSDV is a distributed distance
vector protocol that came to address the looping issues of the RIP[2] protocol. Essentially, in DSDV,
each node maintains its routing table, which includes, for all reachable destinations, their length, next
hop, and sequence number. Each node updates its routing table by receiving advertisements from its
neighbours. Unfortunately, the DSDV update procedure leads to route fluctuation due to its criteria on
electing attributes. This means that, in some situations, a node may change routes back and forth between
different neighbours, even though there were no changes in the topology.

In this thesis we propose an extension to this protocol which we call “promise”. Its main novelty is
that each node will not only elect its preferred routes, but will also keep other fallback routes (“promise”
routes). A promise is a more recent route than the elected one, but with a worse metric (e.g., longer
path length). The promise can thus be thought as a backup route which will be elected when there are
changes in the topology.
Keywords: SDN; P4; Routing; Distance Vector; Promise

1. Introduction

Ideally, in a network, data packets are forwarded
across optimal paths. The development of rout-
ing protocols to this end is quite challenging since
this requirement must be guaranteed in conjunc-
tion with high-speed packet processing.

In this project, we leverage P4 and develop a
protocol extension that overcomes the main draw-
back of the DSDV protocol[1]. DSDV[1] is a dis-
tributed distance vector protocol that came to ad-
dress the poor looping properties of the RIP[2] pro-
tocol. In DSDV, each node keeps its routing ta-
ble, with all known destinations, and their corre-
sponding length, next hop, and sequence number.
The sequence number is what prevents nodes from
keeping outdated routes thus preventing the for-
mation of routing loops. Routes are always pre-
ferred if their sequence number is more recent,
with older routes being discarded. If two routes
have the same sequence number, the one with
the best metric is the preferred one. However, be-
cause of DSDV’s criteria on deciding the elected

route, some nodes may end up in a route fluctua-
tion state: changing routes from route A to route
B every time a new computation starts, even when
there are no changes in the topology. For example,
this may occur when the optimal path is not the first
one to be announced to a node.

In order to overcome the DSDV issue of route
fluctuation, we propose the introduction of the
promise route. Each node, besides keeping its
routing table with all the elected routes, will also
keep another table with all promise routes. A
promise is a route that is announced from a differ-
ent neighbour than the elected one, and is more
recent (higher sequence number). However, it
has a worse metric (longer path length) than the
elected route. This way, each node can keep as
a secondary route this promise without changing
its state whenever a new computation starts. The
promise is elected, for instance, when the node re-
alizes that the previously elected path got worse
(e.g., longer length), or the link that connects to
the elected route fails.

1



1.1. Main Contribution
The main contribution of this thesis is the proposal
of an extension to the DSDV protocol: the promise.
Our evaluation shows that the promise decreases
route updates in the network, consequently im-
proving its scalibility.

We implemented two versions in this thesis: one
version includes all the logic in the Control Plane,
and another in the Data Plane, with the Control
Plane responsible to populate the match action ta-
bles only.

2. Related Work
This section describes research related to the sub-
ject of this thesis. Section 2.1 describes the con-
cept of SDN. Section 2.2 introduces data plane
programmability, and the language used to pro-
gram the data plane, P4. Finally, section 2.3
discusses routing, by introducing the two main
classes of routing protocols, the DSDV protocol[1],
that is the subject of this thesis, and finally, some
recent implementations of routing protocols on pro-
grammable hardware.

2.1. SDN: Software-Defined Networking
Conventional routers and switches run complex,
distributed control software that is typically closed.
Because such devices have their controller running
in a distributed way, in order to configure and op-
erate their networks, network administrators have
to use different configuration interfaces that vary
across vendors and even across different products
from the same vendor. Thus, to define a new proto-
col or feature, a new hardware had to be fabricated
to have this new functionality integrated. This in-
dustry was structured as a vertical market, result-
ing in a slow innovation process.

Software-Defined Networking (SDN) emerged
as an innovative approach that changes the way
operators run and configure networks enabling the
programmability of a logically centralized controller.
SDN offers an architecture that separates the con-
trol plane (routing decisions) from the data plane
(forwarding decisions).

Control Plane The Control Plane runs central-
ized with a network-wide view. The centralized
controller is the main responsible component for
managing a set of switches dealing with all packet
processing policies, determining the route pack-
ets should follow through the network. These
routing policies are conveyed to the switch (data
plane) through a southbound API (for example,
OpenFlow[3]).

Data Plane The Data Plane is responsible for
forwarding each packet according to the policies
received from the Control Plane, usually with ex-
tremely high performance requirements. In this
layer, several tables are maintained to allow for

lookup upon receiving a packet that executes the
corresponding action in case of a match.

2.2. Data Plane Programmability
The adoption of the SDN paradigm started with
Control Plane programmability, where, as stated
before, the operator establishes the packet pro-
cessing policies centrally. However, in the Data
Plane, the forwarding pipeline was still restricted
to match a fixed set of fields in the packet headers
and to perform a fixed set of actions.

RMT switching chips[4] enabled programmability
in the Data Plane. RMT was the first prototype of
a programmable switch, allowing the Data Plane to
be changed without modifying the hardware. With
this hardware, the programmer can now define new
header fields, new actions, and new ways to pro-
cess packets. The main language to express this
low level packet processing is P4.

2.2.1. P4
In 2014, a paper entitled “P4: Programming
Protocol-Independent Packet Processors”[5] intro-
duced the programming language P4 as a sugges-
tion for how OpenFlow “should evolve in the future.”
In 2016, a revision to the P4 language was an-
nounced, culminating in the language specification
for P4-16[6].

P4 is a language for describing how packets are
processed by the Data Plane of a programmable
switch. This language was motivated by the limita-
tions of OpenFlow, which only allowed a limited set
of header fields and actions, and by the advances
in the field of reconfigurable switches[4]. The Data
Plane is no longer fixed. It is defined by a P4 pro-
gram. In this paper, Bosshart et al. defined three
design goals for P4:

1. Reconfigurability in the field. Programmers
should be able to change the way switches
process packets once they are deployed.

2. Protocol independence. Switches should not
be tied to any specific network protocol. In-
stead, it should be possible to implement and
integrate new protocols’ formats whenever de-
sired.

3. Target independence. Programmers should
not be tied to the specifics of the underlying
hardware.

2.3. Routing
Now that we have a solid background on the archi-
tecture of programmable networks, which enable
innovation on new protocols, we will be focusing
on routing.

Whenever a data packet arrives at a switch, the
switch has to look at the packet’s header fields and
determine which port is better to forward the packet

2



to. This decision shall be reached according to the
routing rules. Routing is the process by which for-
warding tables are built (i.e., it is a Control Plane
process). On the other hand, forwarding consists
of looking up the received header parameters in
the table and forwarding the packet to the corre-
sponding port, a data plane process.

The primary goal of routing is to find out the op-
timal path between any two nodes. To achieve
this goal, two operations on attributes are needed:
election and extension. Attributes are the set
of metrics that a given protocol may consider.
Such metrics can be hop-count, capacity, available
bandwidth, delay, and so forth. The Election opera-
tion consists in ranking two attributes and deciding
which is the preferred one. Finally, “an extension
operation composes two attributes into a third one,
modeling how the attribute of a path is obtained
from the attributes of concatenated sub-paths”[7].
For example, lets consider a node receiving an an-
nounced attribute containing a delay. The exten-
sion operation in this case consists in getting the
maximum value of the received delay and the de-
lay in the link that connects the node and the neigh-
bour that announced this attribute. The operation
to execute depends on the metric in use.

The main goal of routing protocols is to forward
packets across the optimal path between two given
nodes. The two main classes of routing protocols
are distance-vector and link state.

Distance-Vector Distance-vector protocols have
at their core the distributed Bellman Ford algorithm.
It begins with the assumption that every node only
knows how to reach its neighbours. Each node an-
nounces its subnet. Nodes extend the attributes
advertised by their out-neighbors for each desti-
nation with the attribute link that connects them to
their out-neighbor, resulting in candidate attributes.
Then, an attribute is elected from among the can-
didates and advertised to the in-neighbors. In the
end, each node ends up with a complete routing ta-
ble, reaching convergence. It is important to point
that each node only knows about the content of its
routing table. We can differentiate two sub-classes
of distance-vector protocols: non-restarting and
restarting[7]. In non-restarting vectoring protocols,
the destination only initiates one computation pro-
cess. On the other hand, in restarting vectoring
protocols, the destination repeatedly initiates inde-
pendent computation processes where the older
attributes are always discarded. DSDV[1] is a good
example of a restarting distance-vector protocol. In
this protocol, each routing table contains a destina-
tion and the number of hops to reach it. Also, each
entry of the routing table has a sequence number
attached. Nodes advertise their routing table peri-

odically to all neighbors and advertise whenever a
change in the network is detected (in that case, the
sequence number is updated). Finally, routes with
a more recent sequence number, compared to the
node’s stored information, are always preferred. If
a node receives a route with an older sequence
number, it discards it immediately. Moreover, if the
route has an equal sequence number, the one with
the smallest metric is used.

Link State The starting assumption for link-state
routing is pretty similar to the one from distance-
vector, every node knows the state of its neighbors
and the cost of the link to reach them. The idea
behind link state is that each node will forward all
the information it knows to all nodes in the network
(instead of just its neighbors like distance-vector).
This means that every node will have enough in-
formation to have a complete vision of the network
topology. The process that makes sure that the
link-state information gets to every node is reliable
flooding. The messages exchanged between all
nodes are called link-state packets (LSP). Once
a node receives the LSP from every node, it can
construct a complete map for the network’s topol-
ogy. Then, it typically runs the Dijkstra algorithm
to find all shortest paths. OSPF is one of the most
widely used link-state protocols. Besides the es-
sential characteristics of a link-state, OSPF also
has some more features, such as authentication
of routing messages, additional hierarchy, and load
balancing.

2.3.1. DSDV Protocol
As stated before, DSDV[1] is a distributed distance
vector protocol. It was developed to overcome the
looping issues that the RIP protocol[2] has when
running on dynamic topologies that constantly suf-
fer changes. The main contribution to address this
problem is the use of the sequence number, which
makes each node being able to label a route as
updated or outdated.

In DSDV, we have each node keeping its rout-
ing table which lists all the reachable destinations
and their corresponding lengths, next hops, and
sequence numbers. The way that the network con-
verges is by having each node receiving adver-
tisements from their neighbours and electing the
preferred advertised routes. The metric used to
evaluate a preferred path is the length, which is
the same as hop count. So, a computation starts
having a node advertising its subnet to its neigh-
bours with a value length of one, which means
that this node is one hop away from its neighbours.
As the following nodes elect the preferred path to
this node and advertise it to their neighbours, the
length is continuously incremented at every new

3



hop.
The criteria used in the DSDV protocol is as fol-

lows:

• First of all, the routes with more recent se-
quence number are always elected.

• If the sequence numbers are the same be-
tween multiple routes, the one with the lowest
length is preferred.

This protocol has some drawbacks. For some
topologies, the fact that a node blindly elects a
route just because it has a more recent sequence
number, may lead to route fluctuation. That is,
for different reasons, the preferred route may not
be the first one to be announced at some nodes.
As a consequence, whenever a new computation
starts, these nodes change routes back and forth,
changing their states frequently. As a result, a flood
of broadcast messages is caused, increasing the
chance for packet reordering during transmission
of data packets. This limitation is the main motiva-
tion to our thesis.

3. Design and Implementation

This chapter will describe the details of the
Promise Extension of the DSDV Protocol we pro-
pose in this thesis. After presenting the key idea
in section3.1 and describe the development envi-
ronment in section 3.2, we give an overview of the
design in section 3.3.

3.1. The Promise Extension: key idea

As mentioned before, the DSDV protocol has one
limitation: route fluctuation. The fact that a node
will always prefer a most recent route, or a route
that has the same sequence number but a better
metric, may cause changing the same routes back
and forth every time a new computation is started.

In this chapter, we present a new solution to
this problem by introducing the use of the promise.
The idea is that instead of just electing the opti-
mal path, we will also elect a promise. A promise
can be thought of as a spare route, which will be
elected in case there are some changes in the net-
work that affect the optimal paths. For example,
suppose there was a failure in the port that the
elected path was announced from. In that case, the
node could immediately elect the promise, never
losing reachability to the announced destination. A
promise has a more recent sequence number than
the elected path but a worse metric. It also must
come from a different neighbour than the elected
one.

Figure 1: Example Network.

Let us consider the network from Figure 1. We
assume between S4 and S2 we have fourteen
nodes, and between S3 and S4, we have thirteen.
Node S4 advertises its network to its neighbours
for the second time (observe that the sequence
number in S1 routing table is 1). As is clear, the
best path from node S1 to reach S4 is to send data
packets to node S3, which has a length of fifteen
(smaller than routing via S2 with a hop length of
16). This information is kept in S1 routing table.

Suppose S1 receives first this second announce-
ment from node S2. In DSDV, we would have S1
electing this route. Thus, when the optimal route
arrives (through node S3), it would elect again this
better path. This behaviour would occur in every
single computation if the network conditions re-
mained the same. On the other hand, with our
Promise Extension, node S1 would treat the first
announcement that comes from S2 as a promise:
it is more recent than the path in the forwarding ta-
ble but has worse metric. Once the announcement
from S3 arrives, node S1 realizes that this is still
the best route to reach S4.

So, in this example, we can see that the Promise
Extension enabled S1 not to change the state of
the next hop. In DSDV, node S1 would first elect
the route that was announced by node S2, and
then, would change again to the optimal route an-
nounced by node S4. Besides avoiding these route
fluctuations, the promise can be used immediately
in case the connection to S3 fails, thus avoiding S4
from being unreachable. The only update was to
keep the promise as backup.

3.2. Development Environment
This section will describe all tools used to imple-
ment the Promise Extension to DSDV.

3.2.1. P4Runtime
P4Runtime[8] is an open source API developed to
enable the Control Plane software to control the
Data Plane. An important aspect of this tool is that
it is possible to control any Data Plane, from fixed-
function or programmable switch ASIC to software
switches running in a virtualized environment.

Regardless of what protocols or features the
Data Plane is running, the framework of the
P4Runtime remains unchanged, meaning that a

4



wide variety of controllers can use this API. When
programming the Data Plane by adding new proto-
cols and features to the P4 switch, the P4Runtime
API automatically updates, leaving no changes in
the Control Plane.

This framework may be used in remote con-
trollers and local controllers. Since our protocol
is distributed, we will have one local control plane
managing every P4 switch.

3.2.2. Behavioral Model (BMv2)
The Behavioral Model[9] is the refered P4 soft-
ware switch. There are two versions of the Simple
Switch that run different Control Plane interfaces:

• simple switch

• simple switch grpc

We use the simple switch grpc, which is the one
that is compatible with the P4Runtime controller.
P4C[10] is the compiler we use to compile P4 pro-
grams to this switch.

3.2.3. Mininet
Mininet[11] is a network emulator designed to run
on Linux. It can be configured via a CLI or with
a Python API. The developer is free to customize
its network and design the topology. We can create
hosts, links, assign IPs to the interfaces, and define
link bandwitdh and delays to emulate any network.

Mininet is a powerful tool for testing and evaluat-
ing network protocols as ours. We can simulate
link failures and visualize how this action affects
the network by checking the reachability to every
node, for instance. We can create BMv2 switches
programmed with P4 and emulate them in a virtu-
alized network.

3.3. Promise Design
The Promise Protocol is a distributed distance vec-
tor protocol based on DSDV. Each switch has its
local P4Runtime control plane that applies all the
policy rules to the Data Plane. This means that the
network nodes do not have a complete view of the
network, and there is no centralized controller or-
chestrating these nodes. The only information they
keep is the hop length and the next hop to reach to
each destination. In addition, we also maintain the
promise.

When a new computation starts, we have each
switch1 announcing its subnet to its neighbours,
as Figure 2 suggests. Then, switches that receive
probes from their neighbours will evaluate whether
the probe is to elect or not, according to their pol-
icy. If they elect it, they will announce it to their
neighbours again (except the neighbour that sent

1We could also call it router as the P4 switch is performing
both routing and forwarding.

the newly elected probe). Finally, the protocol con-
verges when we have connectivity among every
node in the network.

Every forwarding rule must be populated in the
match-action table. Since it is only possible to
populate the match-action table from the Control
Plane, we use the controller when we intend to add
or update a new entry in the match-action table.

Every probe will always be firstly processed in
the Data Plane. If the switch elects a new probe
it sends it to the Control Plane to be further pro-
cessed and populated in the match-action table.

In addition, we maintain another table with the
promise, a backup route used only when the pri-
mary fails.

Figure 2: High-level Promise Protocol design.

4. Evaluation
In this chapter we present the evaluation of the
Promise Protocol. It is organized as follows: Sec-
tion 4.1 states the questions we aim to answer
in our evaluation; The following, Section 4.2 de-
scribes the methodology and setup. Finally, in sec-
tion 4.3, we present and discuss the results.

4.1. Objectives
We aim to answer the following questions:

• Does the Promise Extension improve the sta-
bility of the DSDV protocol?

• What is the performance gain of moving part
of the decision logic to the Data Plane?

As mentioned before, the Promise Protocol uses
the DSDV protocol as baseline to search for opti-
mal paths. So the difference to the DSDV Protocol
is just the use of the promise. As such, we will
evaluate four implementations:

• Promise Protocol with all its logic implemented
in the Control Plane.

• Promise Protocol with all the decision logic im-
plemented in the Data Plane.

• DSDV Protocol with all its logic implemented
in the Control Plane.

5



• DSDV Protocol with all the decision logic im-
plemented in the Data Plane.

In summary, our tests aim to achieve the follow-
ing goals:

• Check connectivity within the network, to
make sure the protocol is behaving correctly.

• Observe a smaller convergence time when the
decision logic is entirely implemented in the
Data Plane.

• Show that the Promise Protocol reduces route
instability by decreasing unnecessary state
changes.

• Show that the Promise Protocol is fault toler-
ant.

4.2. Methodology and experimental setup
We evaluated our protocol in real network topolo-
gies. For this purpose we averaged the Topology
Zoo[12], a source of real network topologies. We
selected three networks with different sizes:

• Abilene Network [13], this is the smallest net-
work, with eleven nodes:

Figure 3: Abilene Network[13].

• Bell South Network [14], a fifty one node net-
work:

Figure 4: Bell South Network[14].

• GTS CE Network. This is the largest network
with one hundred and forty nine nodes:

Figure 5: GTS CE Network[15].

We considered realistic link delays based on em-
pirical data [16].

To have statistical confidence in our results, we
run our test, for each topology a thousand times.
In each trial, we retrieve the time to converge, we
send a random link down to emulate link failure,
and retrieve the convergence time after the link fail-
ure.

To run the GTSCE Network, we had to create a
Virtual Machine on a server to be able to have a
better computational power than a personal com-
puter has. Our Virtual Machine has 8 cores and a
RAM with 20GB.

4.3. Results
In a networking environment, performance is ev-
erything. Therefore it is important, for a routing
protocol, to assure that it converges in the small-
est time possible.

In this section we present and discuss results
on the stability of the Promise Protocol, in terms
of routing changes, and performance, in terms of
convergence time.

4.3.1. Stability
In this section we ask if the Promise Protocol im-
proves the stability of the network compared with
the DSDV protocol. To this goal, we measure how
much each protocol change their routes states. We
thus count the number of changed states, that is,
the total number of times that every switch in the
network had to change its forwarding table.

We compare the Promise Protocol with the base-
line DSDV protocol.

Figure 6: Comparison of the routing stability between the
Promise Protocol and the DSDV baseline in Abilene Network.

6



Figure 7: Comparison of the routing stability between the
Promise Protocol and the DSDV baseline in Bell South Network.

Figure 8: Comparison of the routing stability between the
Promise Protocol and the DSDV baseline in GTSCE Network.

Figures 6-8 show the results on the number of
changes without link failures. We can observe that
the Promise Protocol is more stable. However, the
difference between the baseline and the Promise
Protocol is not significant for small networks. For
smaller networks, the probes do not traverse many
nodes, so there will not be too much delay. For that
reason the optimal path is commonly the first path
to be announced to the nodes for most of the times.
For larger networks, like GTSCE, we can see that
the difference is much higher and protocol stability
becomes more relevant.

The second test includes failing a random link,
and check the convergence time again. In Figures
9-11 we present, for each network, the number of
changed states, after link failure.

Figure 9: Comparison of the routing stability after one link fail-
ure in Abilene Network.

Figure 10: Comparison of the routing stability after one link
failure in Bell South Network.

Figure 11: Comparison of the routing stability after one link
failure in GTSCE Network.

In the Abilene network we observe a reduction
of around 10% of the number of changed states
when using the Promise Extension. For the Bell
South network we got approximately a 22% reduc-
tion, and finally for the GTSCE network we got a
40% reduction.

4.3.2. Impact on merging the decision logic into the
Data Plane

In this section, our main goal is to understand the
performance gain of moving packet processing to
the Data Plane.

As mentioned before, the Control Plane versions
need to forward every probe to the Control Plane
to be further processed. On the other side, the
Data Plane versions have their decision logic of-
floaded to the Data Plane, which means that the
switch is able to act on the received probes without
accessing the Control Plane. Thus, the Data Plane
versions will only forward the elected probes to the
Control Plane, if there are changes to be done on
the forwarding table.

In figures 12-17 we present the results as a box
plot showing the median and the first and third
quartiles.

7



Figure 12: Convergence time of both Promise Protocol’s ver-
sions in Abilene Network.

Figure 13: Convergence time of both DSDV Protocol’s versions
in Abilene Network.

Figure 14: Convergence time of both Promise Protocol’s ver-
sions in Bell South Network.

Figure 15: Convergence time of both DSDV Protocol’s versions
in Bell South Network.

Figure 16: Convergence time of both Promise Protocol’s ver-
sions in GTSCE Network.

Figure 17: Convergence time of both DSDV Protocol’s versions
in GTSCE Network.

The main conclusion is that by offloading part of
the protocol computation to the switch data plane

we clearly improve convergence time. In addition, if
the target is a hardware switch, we also save CPU
cycles.

Also note that our evaluations were made on a
software switch running in the CPU of a server. If
it were made to run on real hardware (e.g., Intel
Tofino[17]), the performance and scalability gains
would be orders of magnitude higher. However, it is
not clear whether we would need to take additional
adaptations to the protocol to fit its capabilities to a
real hardware pipeline.

4.4. Summary
With these tests, we have shown that the Promise
Extension solves the issue of the DSDV Protocol:
route fluctuation. As Figures 9-11 suggest, the
Promise Protocol is more scalable than the DSDV
Protocol. We keep observing a bigger reduction on
the changed states as we use larger networks.

We can also conclude that processing packets in
the Data Plane reduces the convergence time, no
matter what the size of the network.

5. Conclusions
5.1. Summary
Data Plane programmability has brought us the
freedom to innovate and create new routing pro-
tocols. Thanks to these advances, we are able to
create new protocols that run in high rate in real
networks.

In this paper, we have shown that the use of the
promise makes network protocols more stable, im-
proving the scalibility of large networks. Protocols
like DSDV, that can cause route fluctuation, can
thus benefit with the use of the Promise Extension.
Since the nodes will not change routes so often, we
will notice a decrease on broadcast traffic flooding
through the network, leaving more free bandwidth
to actually use it to send user data. Also, it can pre-
vent packet reordering, so the users will get better
network experience.

5.2. Future Work
For future research, we plan to integrate the
Promise Extension on DSDV and on other dis-
tributed vectoring protocols. We also plan to eval-
uate their solution in real hardware.

References
[1] C. E. Perkins and P. Bhagwat, “Highly dy-

namic destination-sequenced distance-vector
routing (dsdv) for mobile computers,” SIG-
COMM Comput. Commun. Rev., vol. 24,
no. 4, Oct. 1994. [Online]. Available:
https://doi.org/10.1145/190809.190336

[2] G. Malkin, “Rip version 2,” 1998.

[3] N. McKeown, T. Anderson, H. Balakrish-
nan, G. Parulkar, L. Peterson, J. Rex-

8



ford, S. Shenker, and J. Turner, “Open-
flow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, Mar. 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz, “Forwarding metamor-
phosis: Fast programmable match-action
processing in hardware for sdn,” SIG-
COMM Comput. Commun. Rev., vol. 43,
no. 4, Aug. 2013. [Online]. Available:
https://doi.org/10.1145/2534169.2486011

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Vargh-
ese, and D. Walker, “P4: Program-
ming protocol-independent packet proces-
sors,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 3, Jul. 2014. [Online]. Available:
https://doi.org/10.1145/2656877.2656890

[6] P4-16 language specification. [Online].
Available: https://p4.org/p4-spec/docs/P4-16-
v1.0.0-spec.pdf

[7] J. L. Sobrinho, “Fundamental differences
among vectoring routing protocols on non-
isotonic metrics,” IEEE Networking Letters,
vol. 1, no. 3, 2019.

[8] P4runtime specification. [On-
line]. Available: https://p4.org/p4-
spec/p4runtime/v1.0.0/P4Runtime-Spec.pdf

[9] Behavioral model (bmv2) li-
brary. [Online]. Available:
https://github.com/p4lang/behavioral-model

[10] P4 compiler. [Online]. Available:
https://github.com/p4lang/p4c

[11] Mininet. [Online]. Available: http://mininet.org/

[12] Topology zoo. [Online]. Available:
http://www.topology-zoo.org/index.html

[13] Abilene network. [Online]. Available:
http://www.topology-zoo.org/files/Abilene.gml

[14] Bell south network. [Online].
Available: http://www.topology-
zoo.org/files/Bellsouth.gml

[15] Gtsce network. [Online]. Available:
http://www.topology-zoo.org/files/GtsCe.gml

[16] B. Zhang, T. S. E. Ng, A. Nandi,
R. Riedi, P. Druschel, and G. Wang,

“Measurement based analysis, model-
ing, and synthesis of the internet de-
lay space,” 2006. [Online]. Available:
https://doi.org/10.1145/1177080.1177091

[17] Barefoot tofino: world’s
fastest p4-programmable ethernet
switch asics. [Online]. Available:
https://barefootnetworks.com/products/brief-
tofino/

9


