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Instituto Superior Técnico, Lisboa, Portugal

November 2022

Abstract

The advantages and tremendous potential of very large-scale complex networks of interconnected
systems are indisputable in a myriad of engineering fields, not only as business opportunities but also
as a natural change towards efficiency, reliability, and scalability. State-of-the-art networked control
solutions fail to meet the onerous implementation requirements befitting the very large-scale of these
applications. The goal of this work follows from the self-evident void in the state-of-the-art, aiming
to bring these endeavors to fruition. First, the control problem is formulated in a receding horizon
control framework alongside the severe large-scale feasibility constraints. Second, a convex relaxation
procedure is proposed and validated resorting to numeric and experimental results. Third, a novel
distributed and decentralized networked control solution is developed leveraging the proposed convex
relaxation, an approximation, and a scheduling procedure to comply with the feasibility constraints
on a very large-scale. Fourth, the potential of the proposed solution is illustrated for the cooperative
on-board orbit control of the Starlink mega-constellation yielding promising results.
Keywords: Decentralized Control, Distributed Robot Systems, Networked Control, Space Robotics,
Autonomous Agents, Mega-constellations

1. Introduction

The classical control solutions, which are developed
in a centralized framework, require: i) infrastruc-
ture for the centralized coordination; ii) the trans-
mission of a large amount of information between
every agent and the central node; and iii) serious
computational power for real-time processing in the
central node. Moreover, these strategies offer little
robustness to failure of the central processing node
or the communication infrastructure. For these rea-
sons, as the scale of the systems increases, the classi-
cal control solutions eventually become infeasible to
implement in practice. This challenge is well-known
for decades and many alternatives have been pro-
posed in a decentralized control framework. In fact,
decentralized solutions rely on local computations
and local communication. Thus, no central com-
puting unit is required and, at no moment in time,
any entity in the network has knowledge about the
global state of the network. A plethora of applica-
tions of decentralized control have been conceptu-
alized such as precision agriculture [1], fire-fighting,
surveillance, light shows, exploration and naviga-
tion on Mars [2], irrigation networks [3], traffic net-
works [4], and power distribution networks [5].

Despite the very compelling robustness, flexibil-

ity, and scalability properties of decentralized ar-
chitectures, most of the given examples are: i) yet
to transition from conceptualization to deployment;
ii) deployed only in very controlled environments as
a proof of concept; or iii) implemented in practice
in a very small scale with a small number of agents.
The reason is clear: there are inhibiting technical
challenges, especially regarding the feasibility and
economic viability of the implementation of state-
of-the-art algorithms to these very large-scale sys-
tems.

One remarkable exception is the development of
large-scale low Earth orbit (LEO) constellations.
However, although some prototypes have already
started being deployed on a large-scale, their eco-
nomical viability is doomed unless control algo-
rithms befitting the challenges of such large-scale
systems are developed. As pointed out in [6], the
tracking telemetry and command (TT&C) system
projected for these constellations does not differ
from the TT&C system architecture employed for a
single satellite. This system consists of a single cen-
tralized mission control center (MCC) with several
ground terminals scattered across the globe to al-
low for continuous monitoring of the whole constel-
lation, which is very challenging and expensive to
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implement because of the dimension of the network.
In a decentralized configuration, low level constel-
lation operations, such as orbit determination and
constellation control, are carried out cooperatively
resorting to local communication between satellites
via inter-satellite links (ISL). For these reasons, the
cost effectiveness of LEO mega-constellations would
greatly improve with the adoption of a decentralized
architecture.

Despite the large research effort in decentralized
control, it remains an open problem even for linear
time-invariant (LTI) systems due to its intractabil-
ity [7]. Even though a considerable fraction of real-
life systems can be modeled as LTI, there is a mul-
titude of engineering problems that either require
a time-varying model or can be approximated by a
time-varying system employing linearization tech-
niques. However, when it comes to the implementa-
tion of time-varying decentralized algorithms, more
challenges are brought to light in addition to the
intricacies of the decentralized problem. As a re-
sult, the inevitable change from large to very large-
scale networked control systems calls for a consis-
tent paradigm revolution from a control standpoint.
For these reasons, heavy constrains at the: i) topo-
logical, ii) communication, iii) synthesis, iv) com-
putational, and v) memory level must be enforced
to enable a seamless practical implementation.

1.1. State-of-the-art

Although plenty of work has been carried out in de-
centralized control of LTI systems, research on solu-
tions for linear time-varying (LTV) systems, which
is naturally more challenging, has been undergone
to a much lesser extent. One of the proposed
approaches for the design of a decentralized con-
troller for an arbitrary network of interconnected
LTI systems is to design an H2-optimal control pol-
icy, which is extended for LTV systems in [8] and
for time-varying network topologies in [9]. Another
promising approach is to relax the underlying opti-
mization problem so that it becomes convex, which
is applied to LTI systems in [10]. Furthermore, it
has been shown that the solution of the decentral-
ized design control problem is the result of a con-
vex optimization problem if and only if quadratic
invariance of the controller set is ensured [11, 12].
Solutions to systems that satisfy the quadratic in-
variance condition, such as [11], are very interest-
ing from a theoretical standpoint, but the limiting
assumptions on the control networked system, im-
posed to achieve tractability, are rarely encountered
in real-life applications. Another approach found in
the literature is to decouple the network of agents
into clusters of agents and consider the interactions
between distinct clusters as disturbances [13]. Un-
like the aforementioned approaches, the couplings

between clusters are not considered at the synthesis
level and, thus, are sub-optimal and require intra-
cluster all-to-all communication.

Farhood et al. [8] reduce the finite-horizon regu-
lator problem of a network of interconnected LTV
systems into a sequence of linear matrix inequal-
ities. Since the computational and memory re-
quirements of this solution cannot be distributed
across the systems in the network, the computa-
tional, memory, and communication burden render
such solution unfeasible in practice for very large-
scale networks. To attain a distributed solution,
the problem is tackled oftentimes in a receding hori-
zon control (RHC) framework. Research into dis-
tributed control schemes, even for decoupled LTV
systems with a common control objective, is rather
limited and focuses mainly on particular control
problems. Nevertheless, some results for decoupled
nonlinear systems have already matured, such as
in [14] for leader-follower topologies and in [15] as-
suming a priori knowledge of the overall equilib-
rium. Moreover, decentralized orbit control has
already been given attention for constellations of
satellites, commonly employing the bounding-box
method [16].

1.2. Goals and Outline

Comparing the state-of-the-art with the technical
challenges that emerge with the envisioned very
large-scale applications, such as the LEO mega-
constellation venture, it is clear that they are not
addressed adequately. The goal of this work follows
from this self-evident void, with the aim of enabling
ground-braking applications with profound societal
impact that rely on very large-scale systems. This
work was published in international peer-reviewed
journals [17, 18] and it is also under peer-review in
an international journal [19].

This paper is organized as follows. In Section 2,
the decentralized RHC problem is formulated along-
side the communication, computational, and mem-
ory implementation feasibility constraints. In Sec-
tion 3, a convex relaxation procedure is derived and
validated. In Section 4, the proposed distributed
and decentralized RHC algorithm is derived. In
Section 5, the distributed and decentralized RHC
algorithm put forward in this work is applied to the
orbit control problem of LEO mega-constellations.
Finally, Section 6 presents the main conclusions of
this work.

1.3. Notation

The identity, null, and ones matrices, all of proper
dimensions, are denoted by I, 0, and 1, respec-
tively. Alternatively, In, 0n×m, and 1n×m are also
used to represent the n×n identity matrix and the
n×m null and ones matrices, respectively. The en-
try (i, j) of a matrix A is denoted by [A]ij . The
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i-th component of a vector v ∈ Rn is denoted by
[v]i and diag(v) denotes the n × n square diago-
nal matrix whose diagonal is v. The column-wise
concatenation of vectors x1, . . . ,xN is denoted by
col(x1, . . . ,xN ) and diag(A1, ...,AN ) denotes the
block diagonal matrix whose diagonal blocks are
given by matrices A1, ...,AN . The Kronecker delta
is denoted by δij . Given a symmetric matrix P,
P ≻ 0 and P ⪰ 0 are used to point out that P is
positive definite and positive semidefinite, respec-
tively. The Cartesian product of two sets A and
B is denoted by A × B. The modulo operation is
denoted by amod b, which returns the remainder of
the integer division of a∈N by b∈N. The greatest
integer less than or equal to x∈R is denoted by ⌊x⌋.

2. Problem Statement

Consider a network of N systems, Si with i =
1, . . . , N , each associated with one computational
unit, Ti. Each system is modeled by LTV dynam-
ics, which are coupled with a set of other systems
accoding to the directed graph Gd. Each system
has also an LTV tracking output, which is coupled
with another set of systems according to the di-
rected graph Go. For more details on the graph
representation and inherent notation see [20]. The
dynamics of system Si are modeled by the discrete-
time LTV system

xi(k+1)=
∑

j∈dD−
i

Ai,j(k)xj(k) +
∑

j∈dD−
i

Bi,j(k)uj(k)

zi(k)=
∑
j∈oD−

i
Hi,j(k)xj(k),

(1)

where xi(k) ∈ Rni is the state vector, ui(k) ∈ Rmi

is the input vector, and zi(t) ∈ Roi is the tracking

output vector, all of system Si;
dD−

i and
oD−

i are
the in-neighborhood of system Si in graphs Gd and

Go, respectively; matrices Ai,j(k) with j ∈ dD−
i ,

Bi,j(k) with j ∈ dD−
i , and Hi,j(k) with j ∈ oD−

i

are time-varying matrices that model the dynam-
ics of system Si and its tracking output couplings
with the other systems in its in-neighborhood. Note
that linearization techniques can be employed to ap-
proximate the dynamics of a nonlinear system with
a nonlinear tracking output as an LTV system of
the form of (1). The communication topology can
also be represented by a directed graph Gc. If Si
has access to the state of Sj via directed communi-
cation from Sj to Si, then it is represented by an
edge directed from vertex j towards vertex i in Gc.
Fig. 1 depicts a scheme of the dynamic, output, and
communication topologies. The control input of Si
is, thus, of the form

ui(k) = −
∑

j∈cD−
i

Ki,j(k)xj(k), (2)

where Ki,j(k) for j ∈ cD−
i are the controller gains

of Si.

Communication

Dynamics

Tracking 
objective

Figure 1: Scheme of the dynamics, tracking output,
and communication topologies.

The global dynamics of the network can, then, be
modeled by the discrete-time LTV system{

x(k + 1) = A(k)x(k) +B(k)u(k)

z(k) = H(k)x(k),

where x(k):=col(x1(k), . . . ,xN (k))∈Rn is the global
state vector; u(k):=col(u1(k), . . . ,uN (k))∈Rm is the
global input vector; z(k) := col(z1(k), . . . , zN (k))∈
Ro is the global tracking output vector; A(k) is a
block matrix whose block of indices (i, j) is Ai,j(k),

if j ∈ dD−
i , and 0ni×nj otherwise; B(k) is a block

matrix whose block of indices (i, j) is Bi,j(k), if

j ∈ dD−
i , and 0ni×mj

otherwise; andH(k) is a block
matrix whose block of indices (i, j) is Hi,j(k), if

j ∈ oD−
i , and 0oi×nj otherwise. The global control

input is given by

u(k) = −K(k)x(k), (3)

where K(k) is the global gain matrix. Note that
the global control law (3) is equivalent to the con-
catenation of the local control laws (2) if and only
if K(k) follows the sparsity pattern of block matrix
EGc

, whose block of indices (i, j) is given by

EGc i,j =

{
1mi×nj , j ∈ cD−

i

0mi×nj
, j /∈ cD−

i .

This sparsity condition is denoted as K(k) ∈
Sparse(EGc), with

Sparse(E) :=
{
[K]ij ∈ Rm×n : [E]ij = 0 =⇒
[K]ij = 0; i = 1, ...,m, j = 1, ..., n} .
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The goal is to minimize an infinite-horizon per-
formance cost

J∞ :=

N∑
i=1

∞∑
τ=0

(
zTi (τ)Qi(τ)zi(τ)+uTi (τ)Ri(τ)ui(τ)

)
,

where Qi(τ) ⪰ 0 and Ri(τ) ≻ 0 are known time-
varying matrices of appropriate dimensions that
weigh the local tracking output and input of each
system Si, respectively. The proposed method con-
sists of an approximation to the solution of the
infinite-horizon problem above, considering multi-
ple global finite-horizon problems with an associ-
ated cost of the form

J(k) :=

N∑
i=1

(
zTi (k +H)Qi(k +H)zi(k +H)

+

k+H−1∑
τ=k

(
zTi (τ)Qi(τ)zi(τ)+uTi (τ)Ri(τ)ui(τ)

))
,

where H ∈ N denotes the length of the finite win-
dow. The extension of this problem to an infinite-
horizon is achieved by making use of the RHC
scheme. At each discrete time instant k, one consid-
ers a finite window {k, ..., k +H}. Then, the gains
that minimize J(k) are computed for the appropri-
ate window and only the first is actually used to
compute the control action for that time instant,
discarding the remaining gains. At the next time
instant, k + 1, a new finite window is considered
and a new sequence of gains is computed to mini-
mize J(k + 1), and so forth. To reduce the compu-
tational load, d ∈ N gains may be used, instead of
just one, defining a new window and computing the
gains associated with it every d time steps.
One aims to optimally compute a sequence of

gains that follow the sparsity pattern required for
a fully decentralized configuration. For a finite-
horizon, solve the optimization problem

minimize
K(τ)∈Rm×n

τ∈{k,...,k+H−1}

J(k)

subject to K(τ) ∈ Sparse(EGc),

u(τ) = −K(τ)x(τ),

x(τ+1) = A(τ)x(τ)+B(τ)u(τ),

τ = k, . . . , k +H − 1.

(4)

It is of the utmost importance to remark that
the solution devised for (4) must be feasible to im-
plement in real-time in a decentralized configura-
tion. In particular, the procedure to compute each
gain Ki,j(k), with j ∈ cD−

i , in Ti must abide by
several constraints regarding communication, com-
putational, and memory requirements. For more
details see [20]. In short, the control solution must
satisfy the following constraints.

Constraint 1. Hard real-time transmissions are
not allowed for the synthesis of controller gains.

Constraint 2. The communication complexity of
each system ought to grow with O(1) with N .

Constraint 3. The data storage complexity of
each unit ought to grow with O(1) with N .

Constraint 4. The computational complexity of
each unit ought grow with O(1) with N .

3. Decentralized linear quadratic control
In this work, a divide-and-conquer approach is fol-
lowed. In this section, the decentralized RHC prob-
lem stated in Section 2 is addressed disregarding the
computational, memory, and communication feasi-
bility constraints. These results are then leveraged,
in Section 4, to devise a distributed synthesis pro-
cedure that abides by them, for the particular case
of dynamically decoupled systems. In this section,
for simplicity, we consider time-invariant topologies,
but the results in Section 4 are extended to consider
time-varying topologies.

The optimization problem (4) is nonconvex.
Thus, to use standard optimization techniques, con-
vex relaxation is performed. In this work, the pro-
posed convex relaxation procedure, designated one-
step relaxation, is derived from an analysis of the
necessary conditions of a constrained minimum of
(4). Nevertheless, to compute the solution to those
conditions, the state at the beginning of the win-
dow, i.e, x(k), would have to be known, which is
impossible to achieve without all-to-all communica-
tion. The intuition behind the proposed one-step
relaxation is to achieve a decentralized gain synthe-
sis procedure that does not depend on the initial
state of each finite window, arriving at the condi-
tions{[
S(τ)K(τ)−BT (τ)P(τ+1)A(τ)

]
ji
=0, [EGc

]ji ̸=0

[K(τ)]ji = 0, [EGc
]ji=0,

(5)
for τ = k, . . . , k+H−1, where P(τ) is a symmetric
positive semidefinite matrix given by recurrently

P(τ)=H(τ)TQ(τ)H(τ) +KT (τ)R(τ)K(τ)+

(A(τ)−B(τ)K(τ))
T
P(τ+1)(A(τ)−B(τ)K(τ)),

(6)

for τ = k, . . . , k +H − 1,

P(k +H) = HT (k +H)Q(k +H)H(k +H), (7)

and

S(τ) := BT (τ)P(τ + 1)B(τ) +R(τ), (8)

for τ = k, . . . , k + H − 1. For more details on the
principles behind the one-step relaxation see [20].
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Theorem 3.1. Let lj denote a column vector whose
entries are all set to zero except for the j-th one,
which is set to 1, and Lj := diag(lj). Define a
vector mj ∈ Rm to encode the non-zero entries in
the j-th column of K(τ) as{

[mj ]i = 0, [EGc ]ij = 0

[mj ]i = 1, [EGc
]ij ̸= 0

, i = 1, ...,m ,

and let Mj := diag(mj). Then, the gain of the
one-step sub-optimal solution to (4) is given by

K(τ) =

n∑
j=1

(I−Mj +MjS(τ)Mj)
−1

MjB
T (τ)P(τ + 1)A(τ)Lj ,

(9)

τ = k, . . . , k +H − 1.

It is important to remark that the sequence of
gains that arises in Theorem 3.1 can only be com-
puted backward in time. It is solved sequentially
starting at τ = k+H − 1 with P(k+H) known by
the boundary condition in (7). Then, the one-step
solution is found by taking turns computing K(τ)
with (9) and P(τ) with (6).
Note that the problem is formulated globally,

thus, the local decentralized controller gains can
then be extracted from the globally synthesized
sparse gain matrices, which allows for its decen-
tralized implementation according to (2), leveraging
local communication exclusively. It is very impor-
tant to remark that the computation of the one-
step solution according to Theorem 3.1, makes use
of global matrices. For that reason, it follows that
all-to-all communication for the one-step gain syn-
thesis procedure can only be avoided if the global
computations are replicated in each computational
unit. In this architecture, the global optimization
problem (4) would have to be solved approximately
in each computational unit at each time instant to
extract the local gain corresponding to that system.
Thus, according to published work by the author
[21], the computational and memory complexity in
each computational unit would grow with O(N3)
with the dimension of the network. These require-
ments are not in line with the computational and
memory feasibility constraints set forth in Section 2.
More often than not, one is interested in track-

ing a reference signal, r(k), with the output of the
system, z(k), instead of driving the output of the
system to zero. On one hand, if the reference signal
is feasible, in the sense that there exists a sequence
of inputs that drive the output along the desired
trajectory, the tracking problem degenerates into a
regulation problem [22, Chapter 4]. In fact, in these
conditions, it easy to define the tracking error dy-
namics and apply the one-step regulator solution.

On the other hand, if the trajectory is not feasi-
ble, the extension is not as straightforward. In [20],
a tracker suitable both for centralized and decen-
tralized configurations is designed building on the
one-step regulator.

In [20], the one-step regulator and tracker meth-
ods are numerically applied to a network of N = 40
interconnected tanks, which corresponds to the gen-
eralization of the quadruple-tank network intro-
duced in [23]. It is also validated resorting to ex-
perimental results in a network of four tanks, which
is a particularization of the N tanks network for
N = 4. The experimental setup is proposed and
thoroughly analyzed in published work by the au-
thor [18]. First, it was possible to validate the
convex relaxation approach and to show the scal-
ability of the proposed methods. Second, it was
concluded that the synthesized decentralized con-
trol law is able to successfully track a time-varying
reference signal and to reject impulsive and con-
stant disturbances.

4. Distributed and Decentralized RHC
In this section, the one-step relaxation is leveraged
to design a decentralized control solution that ap-
proximates the solution to optimization problem (4)
subject to the communication, computational, and
memory restrictions in Constraints 1–4 put forward
in Section 2, which are critical for a feasible imple-
mentation to very large-scale systems. The particu-
lar case of dynamically decoupled systems is consid-
ered. The solution is presented, in a first instance,
for a time-invariant network topology and then it is
extended to a time-varying topology.

Before proceeding with the derivation, it is con-
venient to make a few considerations to lighten
the notation employed henceforth. Dynamically
decoupled systems are considered, thus, A :=
diag (A1, . . . ,AN ) and B := diag (B1, . . . ,BN ),
where Ai and Bi denote, for simplicity, matrices
Ai,i and Bi,i, respectively, for i ∈ {1, . . . , N}. Fur-
thermore, local state feedback via directed commu-
nication is allowed according to graph Gc, which, for
the sake of simplicity, is selected to be equal to the
tracking output coupling graph Go. These graphs
are henceforth denoted by G = Go = Gc.
Define a block decomposition of P(τ) and S(τ),

whose blocks of indices (i, j) are denoted by
Pi,j(τ) ∈ Rni×nj and Si,j(τ) ∈ Rmi×mj , respec-
tively. Making use of this block decomposition, one
can also express the blocks of S(τ) as a function of
the blocks of P(τ + 1) as

Si,j(τ) = BT
i (τ)Pi,j(τ + 1)Bj(τ) + δijRj(τ),

which follows immediately from (8).
Moreover, leveraging the aforementioned block

decomposition, the relaxed conditions (5) of the
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feedback gains of the form Kj,i(τ) can also be writ-
ten in a decoupled manner, for each i ∈ {1, . . . , N},
as
∑
p∈D+

i
Sj,p(τ)Kp,i(τ)

−BT
j (τ)Pj,i(τ + 1)Ai(τ) = 0, j ∈ D+

i

Kj,i(τ) = 0, j /∈ D+
i.

(10)

For each set D+
i , let D+

i =
{
pi1, . . . , p

i
|D+

i |

}
.

Then, concatenating the feedback gains of the form
Kj,i(τ), with j ∈ D+

i , and combining the corre-
sponding decoupled relaxed conditions of the first
member of (10), it follows that

K̃i(τ) = S̃i(τ)
−1P̃i(τ + 1), (11)

where

K̃i(τ) :=


Kpi1,i

...
Kpi

|D+
i

|
,i

 ,

S̃i(τ) :=


Spi1,pi1 . . . Spi1,pi|D+

i
|

...
. . .

...
Spi

|D+
i

|
,pi1

. . . Spi
|D+

i
|
,pi

|D+
i

|

 ,
and

P̃i(τ+1):=


BT
pi1
(τ)Ppi1,i

(τ + 1)Ai(τ)

...
BT
pi
|D+

i
|

(τ)Ppi
|D+

i
|
,i(τ + 1)Ai(τ)

.
The propagation of P(τ), according to (6), is re-

quired for the computation of the decoupled gains
according to (11) but it cannot be decoupled. Nev-
ertheless, that can be achieved under a reasonable
approximation.

Approximation 4.1. Consider Pp,q(τ), with p ∈
D+
i and q ∈ D+

i for some i, and Pr,s(τ + 1), with
r ∈ D+

p and s ∈ D+
q . In the decentralized algorithm

put forward in this work, Pr,s(τ + 1) is considered
to be null in the computation of Pp,q(τ) in the com-
putational unit Ti if (r, s) /∈ ψi, where

ψi =
⋃
j∈D+

i

ϕj ,

with

ϕi := D+
i ×D+

i = {(p, q) ∈ N2 : p ∈ D+
i ∧ q ∈ D+

i }.

The main result of this chapter is supported by
Approximation 4.1. Next, it is argued that this ap-
proximation makes sense in the context of RHC of
a large-scale network. Note that Pr,s(τ) is a mea-
sure of the contribution of the correlation between

the states of systems Sr and Ss to the global cost.
Consider Fig. 2, which represents the topology of
Approximation 4.1 in a graph. Intuitively, it is ex-
pected that the influence of Pr,s(τ+1) is more dom-
inant in the computation of Kp,i(k) for p ∈ D+

i if
both the states of Sr and Ss are coupled with the
output of a system Sk that is coupled with the out-
put of Si. Having this in mind, to decouple the
gain synthesis of each local controller, each com-
putational unit Ti keeps and updates each Pp,q(τ)
with (p, q) ∈ ϕi. Henceforth, the approximation
of matrix Pp,q(τ) that stored and updated in Ti is
denoted by Pi,(p,q)(τ).

Figure 2: Graphic illustration of Approxima-
tion 4.1.

Making use of Approximation 4.1, one can rewrite
(6) in a decoupled manner for each of the blocks
of P(τ) as a function of the local dynamics and
tracking output matrices as

Pp,q(k+H)=
∑

r∈D+
p ∩D+

q

HT
r,i(k+H)Qr(k+H)Hr,j(k+H)

and

Pi,(p,q)(τ) =
∑

r∈D+
p ∩D+

q

HT
r,i(τ)Qr(τ)Hr,j(τ)

+
∑

r∈D+
p ∩D+

q

KT
r,i(τ)Rr(τ)Kr,j(τ)

+
∑
r∈D+

p

∑
s∈D+

q

(r,s)∈ψi

(Ap(τ)δpr−Br(τ)Kr,p(τ))
T

PD+
i ,(r,s)

(τ+1) (Aq(τ)δqs−Bs(τ)Ks,q(τ)),

(12)

where the subscript D+
i inPD+

i ,(r,s)
(τ+1) indicates,

by abuse of notation, that PD+
i ,(r,s)

(τ + 1) is com-

puted in Tk with k ∈ D+
i . Note that, with Approx-

imation 4.1, the propagation of P(τ) in (12) can be
computed in a distributed manner. It is important
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to remark that PD+
i ,(r,s)

(τ + 1), inside the summa-

tion in (12), is not necessarily computed in Ti, since
only Pi,(p,q)(k|k), with (p, q) ∈ ϕi, are updated
in Ti. Therefore, Si has to receive Pk,(r,s)(τ + 1)
through communication from a system Sk, with
k ∈ D+

i .

After introducing Approximation 4.1, which al-
lows for the decoupling of the gain synthesis pro-
cedure, it is possible to state the proposed RHC
algorithm, which is suppressed due to space con-
straints. This algorithm allows for distributing the
global computation across the computational units
of the systems that make up the network. Never-
theless, recall that, as put forward in Section 2, for
the application of this framework to the infinite-
horizon problem, a new window of gains of length
H has to be computed every d time steps, of which
only d gains are used to compute the control in-
put according to (2). Furthermore, the decoupled
gain computation is carried out backward in time.
Thus, at the time instant that corresponds to the
beginning of each window, all RHC gains over that
window must have already been computed. Since
these computations involve several communication
instances, they have to be properly scheduled in
each local unit. A scheduling procedure that abides
by the very large-scale implementation communi-
cation, memory, and computational feasibility con-
straints detailed in Section 2 is presented in [20].

Oftentimes, the tracking output couplings be-
tween systems vary with time due to: i) the fail-
ure of systems of the network; ii) the introduction
of new systems in the network; or iii) switching
tracking configurations. In [20], the distributed and
decentralized control solution is extended to allow
for a time-varying tracking output coupling topol-
ogy. Even though the extension to a time-varying
topology is quite straightforward as far as distribut-
ing the gain synthesis across of the systems is con-
cerned, that is not the case for the scheduling of the
computations over time.

5. Application to on-board orbit control of
LEO mega-constellations

In this section, the distributed decentralized RHC
algorithm developed in Section 4 is applied to the
cooperative orbit control problem of LEO mega-
constellations. The scheme presented in this section
is novel and it is developed aiming for efficiency and
fuel saving in a distributed and decentralized frame-
work.

Consider a constellation with a total of T satel-
lites. The satellites are evenly distributed over P
orbital planes at a nominal inclination ī and with
a nominal relative phasing between adjacent planes
of β̄ = 2πF/T , where F is the phasing parameter.
Such a configuration is designated as a Walker con-

stellation and it is denoted by ī : T/P/F . The nom-
inal orbits are circular and have a semi-major axis
of ā. This constellation can be modeled as a net-
work of coupled systems, Sj , each associated with
a computational unit Tj , with j = 1, ..., T . Each
satellite Si is equipped with Hall effect thrusters,
aligned according to the local TNW frame (x axis
along the velocity vector, z axis along the orbit’s
angular momentum vector, and y axis completes
the right-handed coordinate system) that generate
a force ui ∈ R3 expressed in the TNW local frame.
Each thruster has a maximum thrust, Ct1.

In this application, for control law synthesis pur-
poses, the parameterization of the orbits of each
satellite of the constellation is achieved by the set of
non-singular mean orbital elements for near-circular
inclined orbits (a, u, ex, ey, i,Ω), respectively semi-
major axis, mean argument of latitude, two eccen-
tricity vector components, inclination, and longi-
tude of ascending node. Denote the state of a
satellite Si, made up of the aforementioned six
non-singular mean orbital elements, by xi(t) =

[ai(t)ui(t) exi(t) eyi(t) ii(t) Ωi(t)]
T
.

The satellite orbital mechanics are nonlinear and,
thus, have to be linearized to employ the distributed
and decentralized method put forward in this work.
The linearization of the dynamics of each satel-
lite is carried out about a nominal orbit. These
are defined such that the set of nominal orbits of
all satellites makes up a consistent nominal con-
stellation, in the sense that the nominal separa-
tions: i) along-track; ii) inter-plane; and iii) in
relative phasing between adjacent planes are en-
forced. It is very important to remark that this
nominal constellation is used for linearization pur-
poses only – it is not employed for bounding-box
tracking of each individual satellite at any point.
The nominal state of Si at time instant t, x̄i(t) =[
āi(t) ūi(t) ēxi(t) ēyi(t) īi(t) Ω̄i(t)

]T
, is defined by

āi(t) = ā

ūi(t) = ūt0 + ((i− 1) mod T/P ) 2πP/T

+⌊(i−1)P/T ⌋2πF/T + (Ṁ + ω̇)(t− t0)

ēx,i(t) = 0

ēy,i(t) = 0

īi(t) = ī

Ω̄i(t) = Ω̄t0 + ⌊(i−1)P/T ⌋2π/P + Ω̇(t− t0),

(13)

where Ṁ , ω̇, and Ω̇ are the secular rates, including
the effect of J2, on the mean anomaly, argument
of perigee, and longitude of ascending node, respec-
tively, which are given in [24, Chapter 8]. Note that
the nominal orbits of all satellites in (13) depend
on three constellation-wise parameters (t0, ūt0 , Ω̄t0),
whose physical meaning is that the nominal orbit of
S1 has mean argument of latitude ūt0 and longitude
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of ascending node Ω̄t0 at time instant t0. These
three parameters are designed herein as the anchor
of the nominal constellation. There are a few as-
pects worth pointing out regarding the anchor of the
nominal constellation: i) all satellites must agree
on an anchor for the nominal constellation at any
time instant; ii) to minimize linearization errors,
the anchor should be selected such that the nomi-
nal position of each satellite is as close as possible
to their actual position according to a selected met-
ric; iii) the evolution of the nominal states takes the
effect of the Earth’s oblateness into account, which
significantly decreases the frequency with which the
anchor has to be updated; iv) given that the anchor
is computed very sporadically, it can either be com-
puted in a centralized node and then the solution
broadcast to the network or solved distributively
over a period of time making use of distributed gra-
dient methods with asymptotic consensus guaran-
tees.

The evolution of the state of Si is linearized about
the aforementioned nominal orbits, defining a rela-
tive position δxi(t) based the set of orbital elements
δxi(t) := [ai(t) δui(t) δex,i(t) δey,i(t) δii(t) δΩi(t)],
introduced in [25], which is defined as

δxi(t) :=


ai(t)/āi(t)− 1

ui(t)−ūi(t) +
(
Ωi(t)−Ω̄i(t)

)
cos īi(t)

ex,i(t)− ēx,i(t)
ey,i(t)− ēy,i(t)
ii(t)− īi(t)(

Ωi(t)− Ω̄i(t)
)
sin īi(t)

.

This set parameterizes the position of the satellite,
xi(t), in relation to its nominal position, x̄i(t). In
[26], the satellite orbital dynamics, taking the effect
of J2 into account but neglecting the remaining per-
turbations, are linearized about near-circular nom-
inal orbits. Making use of Floquet theory, system
transition and convolution matrices are derived to
write the discrete-time LTV system

δxi((k + 1)Tc) = Ai(k)δxi(kTc) +Bi(k)
ui(kTc)

mi(kTc)

with a sampling time Tc and assuming that ui(t)
and mi(t) remain constant over each interval
[kTc; (k + 1)Tc[. The state transition matrix Ai(k)
and the convolution matrix Bi(k) are given in [26].

In this work, in an attempt to reduce fuel con-
sumption and to follow the communication, com-
putational, and memory constraints detailed in
Section 2, a control scheme is devised such that
the satellites control their position relative to each
other. On one hand, the semi-major axis, eccen-
tricity, and inclination of the orbit of each satellite
may be controlled in a decoupled fashion, thus an

inertial tracking output component given by

zi,in(k) =


ai(k)− āi(k)
ex,i(k)− ēx,i(k)
ey,i(k)− ēy,i(k)
ii(k)− īi(k)

 =


āi(k)δai(k)
δex,i(k)
δey,i(k)
δii(k)


is considered for each satellite Si, which is not cou-
pled with any other satellites. On the other hand,
to maintain the shape of the constellation, δui(k)
and δΩi(k) ought to be controlled in relation to
other satellites. It is considered that two satellites
are coupled if they are within a tracking range R of
each other, i.e., ||pi−pj || ≤ R, up to a maximum of
|D−|max satellites in D−

i . If more than |D−|max − 1
satellites other than Si are within a tracking range
of Si, only the |D−|max − 1 closest are considered.

Let D−
i \{i} =

{
ji1, . . . , j

i
|D−

i |−1

}
. Then the relative

tracking output component is given by

zi,rel(k) := col

(
zref
i,ji1

(k), . . . , zref
i,ji

|D−
i

|−1

(k)

)
,

with

zrefi,j (k) :=

[
ui(k)− uj(k)− (ūi(k)− ūj(k))
Ωi(k)− Ωj(k)−

(
Ω̄i(k)− Ω̄j(k)

)] .
Defining the tracking output of Si as zi(k) :=
col(zi,rel(k), zi,in(k)), it can be written as

zi(k) =
∑
p∈D−

i

Hi,p(k)δxp(k).

5.1. Simulation results
The illustrative mega-constellation, inspired in the
first shell of the Starlink constellation, is cho-
sen to assess the performance of the method de-
vised in this work. The constellation is a Walker
53.0 deg : 1584/72/17. The parameters that char-
acterize the illustrative constellation are presented
in [20]. The maximum in-neighborhood cardinality
is set to |D−|max = 6. In Fig. 3, a snapshot of the
position of each satellite of the constellation over
the Earth’s spheroid, as well as the tracking output
couplings at 0 Dynamical Barycentric Time (TDB)
seconds since J2000, are shown. The parameters
H = 100 and d = 25 were chosen. For more de-
tails on the tuning of the parameters of the RHC
methods see [20].

A realistic nonlinear numerical simulation was
performed making use of the high-fidelity TU Delft
Astrodynamic Toolbox (TUDAT) [27]. The or-
bit propagation of the satellites of the constella-
tion accounts for several perturbations: i) Earth’s
gravity field EGM96 spherical harmonic expansion
up to degree and order 24; ii) atmospheric drag
NRLMSISE-00 model; iii) cannon ball solar radi-
ation pressure; and iv) third-body perturbations of
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Figure 3: Simulated constellation and tracking out-
put couplings over the Earth at 0 TDB seconds
since J2000.

the Sun, Moon, Venus, Mars, and Jupiter. A sim-
ulation of the mega-constellation during 12 orbital
periods is carried out. An anchor for the nominal
constellation is computed at 0 TDB seconds since
J2000 and it is not updated during the simulation.
The evolution of the mean absolute error (MAE) in
the semi-major axis is depicted in Fig. 4(a), where
n̄ :=

√
µ/ā3 and µ is the standard gravitational pa-

rameter of the Earth. To evaluate the performance
of the relative tracking between the satellites, the
mean argument of latitude error, eui(k), and lon-
gitude of ascending node error, eΩi

(k), are defined
for each satellite i. Consider an instantaneous hy-
pothetical anchor computed at each time instant k.
These errors are defined as eui

(k) := ui(k) − ūi(k)
and eΩi(k) := Ωi(k)− Ω̄i(k), where ūi(k) and Ω̄i(k)
are computed according to (13) making use of the
aforementioned instantaneous hypothetical anchor
for time instant k. It is important to remark that
these anchors are only employed for performance as-
sessment purposes in a post-processing step - they
are not involved in the control law in any way. The
evolution of the MAE of the mean argument of lat-
itude and longitude of ascending node is depicted
in Fig. 4(b). The steady-state MAE, obtained by
averaging the MAE of the last three orbital periods
of the simulation, is depicted in Table 1.

Table 1: Steady-state MAE.

a− ā (m) āeui
(m) āeΩi

(m)

MAE 2.887 4.253 3.582

First, it is visible that the satellites of the constel-
lation are successfully driven to their nominal semi-
major axis and relative separations, despite the
large initial errors. Second, although the method

0 2 4 6 8 10 12

0

200

400

600

800

1000

1200

1400

1600

1800

8 9 10 11 12

0

2

4

6

(a) Semi-major axis.

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

8 8.5 9 9.5 10 10.5 11 11.5 12

0

0.5

1

1.5

10
-6

(b) Mean argument of latitude and longitude of ascending
node.

Figure 4: Evolution of the MAE.

proposed in this work is designed for LTV systems
under very strict communication, computational,
and memory limitations, it is able to perform well
in a network of systems with nonlinear dynamics.
Third, it is visible in Table 1 that this solution
reaches meter-level accuracy, not only for the semi-
major axis, but also for the relative tracking com-
ponents.

6. Conclusion

Comparing the state-of-the-art solutions with the
requirements befitting the very large-scale of emerg-
ing tasks, it is clear that the there is a void that
needs to be addressed to enable these ground-
breaking innovations. First, it was possible to for-
mulate the decentralized control problem in a RHC
framework, alongside the implementation feasibil-
ity constraints on a very large-scale. Second, a
convex relaxation procedure is proposed to approx-
imate the optimal solution of the synthesis problem
without full knowledge of the state of the network,
which is validated resorting to a large-scale numeric
simulation and experimental results. Third, a dis-
tributed and decentralized control solution was suc-
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cessfully devised for the particular case of decou-
pled dynamics, building on the proposed convex
relaxation procedure. Its requirements are in line
with the large-scale implementation feasibility con-
straints. Fourth, the distributed decentralized con-
trol solution is applied to the orbit control problem
of LEO mega-constellations. The control problem
is formulated relying on a set of relative orbital ele-
ments, which allowed write the shape-keeping task
as a coupled sparse tracking output regulation prob-
lem. The proposed method shows promising perfor-
mance for the orbit control problem of a shell of the
Starlink mega-constellation.
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