
Dual Critic Conditional Wasserstein GAN for Height-Map
Generation

Nuno Ramos

Instituto Superior Técnico

University of Lisbon

Lisbon, Portugal

nuno.m.ramos@tecnico.ulisboa.pt

ABSTRACT
Traditionally, video-game maps are either made by hand, which is a

very inefficient process requiring many man-hours, or made using

Procedural Content Generation (PCG) techniques, which rely on a

predetermined algorithm to generate every feature of the map. This

approach is flawed in a multitude of ways: creating the algorithm is

an arduous process, the results lack realism and it’s hard to create

more complex geographical structures, such as bays, peninsulas, or

diverse archipelagos. More recent studies have tried an approach

using Deep Learning algorithms, which have their own limitations.

Most importantly, these algorithms take away the creative freedom

of the designers. To circumvent this problem we propose a system

that transforms low fidelity sketches into realistic height-maps

through a Deep Learning model we call the Dual Critic Conditional

Wasserstein GAN (DCCWGAN), thus providing high visual quality

without removing control from the user.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Height-map, Deep Learning, Image-to-Image Translation, GAN,

Conditional GAN

1 MOTIVATION
Maps are a crucial part of most video-games: in exploration games

different areas can provide interesting challenges for the player,

in strategy games more defensible geography can be considered

a critical asset. If a video-game contains a map it is a reasonable

assumption that the quality of the player experience is somewhat

tied to the quality of this map.

In the video-game industry maps are made in one of two ways:

either by hand, which is a very time-consuming task, whose re-

sults depend both on the prowess of the designer, who designs

the challenges present in the map, and the artist, whose job is to

implement those ideas; the other method is to procedurally gener-

ate those maps, which involves designing an algorithm to create

a map from a set of parameters and random values; this approach

has it’s own problems, namely that it’s results have sub-par qual-

ity and take control away from the designer, who, for the most

part can no longer specify exactly which geographic formation

appears where. The disadvantages incurred by these procedural

content generation algorithms mean that they are used mostly for

tile-based maps, or maps that are, in practice, infinite, meaning that

it’s impossible for them to be hand-crafted. Recent studies [10] have

tried to overcome the limitations of traditional PCG techniques by

implementing machine learning algorithms, using real-world ge-

ographic information to train networks created for this specific

purpose. While this approach produces promising results it has a

fundamental flaw: similarly to PCG techniques, it removes control

from the developers. In order to create a level with a specific layout

a developer would have to sieve through a large number of images

generated by the network until the right one was found, and even

then it could differ from the initial vision.

There have been many recent breakthroughs in using machine

learning algorithms for image generation [2, 6, 9] and image-to-

image translation [5, 11–13], particularly in transforming low-level

images into realistic depictions of the same content. Coupled with

the fact that machine learning techniques themselves have also

been in a steady state of evolution we show that it is possible to

leverage this technology to develop a tool that allows developers

to draw a rough sketch of a map that will be transformed by deep

learning model into a realistic version of the terrain depicted in the

sketch, thus maintaining the visual quality while reducing effort

without having to sacrifice control.

2 BACKGROUND
2.1 Video-game maps
Video-game maps are made up of multiple different components,

or layers [7]. The more notable inclusions in this category are:

Figure 1: Height map created from PCG techniques. Image from [7].

• Height-map: contains the height of the terrain.

• Hydraulic map: contains the water in the terrain, rivers,

lakes, etc...

• Vegetation map: determines which areas have trees and

other vegetation.

• Biomemap: determines to which biome each region belongs

to.

1



Ramos et al.

The above is list is by no means comprehensive, different games

have different requirements and may use other types of maps to

satisfy those requirements. Of all the components listed above the

most complex is by far the height-map, this makes it the hardest to

recreate in a believable way, additionally, elevation tends to play a

large role in how the player interacts with the game - high ground

tends to be more valuable as it is easier to defend or rocky moun-

tains may provide a direction unlikely to be attacked through. This

creates a difficulty for the developers and designers of the game: on

one hand the mapmust appear realistic, on the other it must provide

interesting gameplay; a realistic map with no interesting features

will oversimplify the game, while a map with varied features but

that appears unrealistic will ruin the players’ immersions.

2.2 Generative Adversarial Networks
A Generative Adversarial Network (GAN) is an architecture for

machine learning that can create data similar to the input it is given.

A GAN contains two distinct networks, a Discriminator (D) and a

Generator (G), that function with opposite goals, hence the term

adversarial [4]. The Discriminator’s job is, for any given input, to

distinguish whether it came from the original data-set (ground-

truth), or if it has been fabricated. The Generator, on the other

hand creates random items to be evaluated by the Discriminator.

In essence, because these two networks learn off of each other’s

outputs each one’s improvements will force the other to improve.

It is worth noting that while the theoretical architecture uses two

separate networks this is not the case in practice, in which a stacked

model of the two networks is created for ease of training.

Figure 2: Generic structure of a GAN. Image from [3].

GAN’s are trained by creating a batch comprised equally of real

images from the data-set and of images created by the Generator.

The Discriminator then assigns it’s predictions to the given batch

and is trained through back-propagation based on how correct

each prediction was. After this step a second batch of images is

created, though this time comprised entirely on predictions from

the Generator. These predictions are then evaluated by the Discrim-

inator and back-propagation is used to train the Generator, based

on how close the images were to being classified as real images by

the Discriminator.

A key detail about the GAN architecture is that there is the Gen-

erator allows for an input, a random vector, usually labeled 𝑧. This

vector is necessary because there needs to be point of randomness

within the system, otherwise the Generator, which is a deterministic

system, would be able to create a single image.

2.3 Conditional GAN
While GAN’s are one of the best deep learning architectures for im-

age generation they lack a very important feature: it is impossible to

guide their output within the space of possible results. Conditional

GAN’s provide a way to remedy this limitation [8]. Traditional

GAN’s require a single noise vector input, but it is impossible to

predict the output of the network given only the noise vector, other

than performing the same calculations that will be performed by

the Generator of the GAN.

In order to guide the image generation both the Generator and

the Discriminator need to accept a new input, which is what will

be used during inference to guide the image generation process.

This additional information may be a class labeling, allowing, for

example, the generation of specific digits when using the MNIST

data-set. More relevant to our research is to use a smaller or simpler

image as this additional information, which is one of the most

commonly used methods of image-to-image translation.

To train a cGAN real samples are complemented with their re-

spective additional information, when inputted into the Discrimina-

tor, with the goal that it will learn this relationship. When training

with fake samples the Generator is given a noise vector, but also

this additional information. The output of the Generator is then

used to train the Discriminator, along with the information the

former used. The goal of the Discriminator is then, not only to

discriminate between real and fake samples, but also to ensure that

the image and the additional information display the same relation

that is observed in ground-truth samples.

2.4 Wasserstein GAN
The Wasserstein GAN, or simply WGAN is a model suggested

by Arjovsky et. al [1] to combat a problem very common when

training GAN’s: because it is easier to differentiate between real and

fake images than it is to create realistic looking images often the

Discriminator becomes proficient too fast, ceasing to provide useful

information to the Generator; one can imagine that a well-trained

Discriminator can not only label fake images as such, but also every

similar looking image, meaning that the Generator is unable to

improve. WGAN’s exist as a way to combat this issue: instead of

training a Discriminator it uses what is known as a Critic (C). The

Critic’s job is to always provide information to the Generator, with

the usefulness of this information increasing as the Critic is further

trained, something that is not true for regular Discriminators. This

is done by, instead of labeling images with either 1 or 0, the Critic

rates the realness of the image, known as the Wasserstein estimate.

In this model the loss functions are defined as such:

• Critic loss: (average critic score on real images) – (average

critic score on fake images)

• Generator loss: -(average critic score on fake images)

This definition for the Critic’s loss creates a function that doesn’t

saturate and converges to a linear function, providing cleaner gradi-

ents than a generic Discriminator. While this is the largest change

there are other subtleties to this model:

• The Critic is trained 𝑛 times more than the Generator. The

authors suggest a value of 5 batches of training for the Critic

for every batch the Generator is trained on. This is done as

a consequence of the fact that results always improve for a

2



Dual Critic Conditional Wasserstein GAN for Height-Map Generation

better trained Critic, which would not be the case with a

Discriminator.

• The weights on the Critic are clamped to a limited box

after every batch. The range suggested by the authors is

[−0.01, 0.01]. If the magnitude of this range is too high the

Critic will take too long to converge, while a value too low

will render the Critic unable to learn some features.

2.5 Map generation from GAN-based models
The work of Nunes et. al [10] focused on experimenting different

models of deep learning models to investigate which would perform

the task of creating maps for strategy games better. In total, four

different models were explored: Deep Convolutional GAN (DC-

GAN), Wasserstein GAN (WGAN), Progressively Growing GAN

(ProgGAN), and a VAE model with adversarial loss. Of the four

models tested, the DCGAN and VAE + GAN provided results infe-

rior in quality to the ProgGAN and WGAN. These last two models

provided results with great visual quality, with the ProgGAN being

more efficient to train than the WGAN.

Figure 3: Sample of results obtained by the researchers of [10].

3 SYSTEM OVERVIEW
Previous researchers [10] focused heavily on testing multiple Deep

Learning architectures and comparing their results. This research

used that knowledge and opted to build only upon one of the most

successful models showed, the Wasserstein GAN [1], iterating the

model based on results achieved. The WGAN was chosen over the

ProgGAN as, despite having a longer training period, it is more

simple and therefore, in our opinion, more likely to maintain good

results in spite of changes added.

Figure 4: Data flow for the system, user creates low-level sketches
(left) and the system outputs Realistic Height-maps (right).

The data flow for our system (illustrated on Figure 4) begins with

the low-level sketch, which is created by the user and exists only

during inference. While we illustrate a specific type of sketch it is

important to stress that the system is very easily adapted to use a

different tool to create sketches. The low-level sketch is then used

as input to a translation algorithm, which transforms it into what

we call the Intermediate Map Representation (IMR) format.

For our system to function there needs to be a format that will

be used as input by the user, but is also able to be created from

the ground-truth data-set, so as to compare if the content matches

during training, this format is the Intermediate Map Representation

(IMR).While it would be possible for a user to createmaps directly in

the IMR format, we opted to create it from an existing map-creating

tool, using a simple, deterministic algorithm. Users wanting to use

a different map-creating tool need only to create this translation

algorithm. The IMR format exposes the average height of each cell

in a hexagonal grid. The IMR outputted by the translation algorithm

is then used as input to our deep learning model, the Dual Critic

Conditional Wasserstein GAN (DCCWGAN), both during inference

and training, resulting in the height-map.

3.1 DCCWGAN
In order to choose an architecture for our deep learning model we

started by dividing the problem into two distinct learning processes:

• Create realistic maps.

• Create maps whose content corresponds to the given input.

Given this division we opted for an architecture with a Generator,

but two distinct critics, one for each of the necessary learning pro-

cesses. The first of these Critics evaluates only the visual qualities

of the images generated, and forces the Generator to create more

and more realistic images; for this reason we call this the Realism

Critic. The second critic is responsible for evaluating how well the

contents of the generated maps correspond to the input used in

their generation; this critic is called the Conversion Critic. Training

is done using one Critic at a time, depending on the current loss.

The decision of which Critic to use is explained in further detail in

Section 3.6.

3.2 Generator
The Generator is the network responsible for generating images. It

accepts two separate inputs: the IMR and a noise vector. The IMR

controls the general layout of the final result, while the noise vector,

similarly to other GAN’s, provides a source of entropy, adding a

layer of randomness to the output and allowing the same IMR input

to generate multiple different results.

Figure 5: Structure of the Generator.

Figure 5 represents the complete structure of the Generator. All

deconvolutional layers use kernel size of 3 and stride of 1, except

for the layer following the IMR input, which uses a kernel size of 3

and dilation rate of 2, and the final convolutional layer, which uses

a filter size of 5.

3



Ramos et al.

There are a few details worth pointing out about the architec-

ture of our Generator: first, we start by increasing the number of

channels on the IMR branch before it is concatenated with the noise

branch. The justification for this is that when concatenating these

two branches the weight given to the noise branch is greatly re-

duced, as it is now responsible for only 1 of the 129 channels. While

this is not critical, and the network is able to learn to give less im-

portance to the noise, we found that this simple change positively

affected the final results. Another decision that may appear counter-

intuitive is the number of channels across the network, starting

at 129 on the main branch, then decreasing to 64 only to expand

gradually to 256 before again decreasing gradually to 1. While we

tested different configurations, including removing the intermedi-

ate layers such that the model goes directly from 129 channels to

256, we found this configuration to yield optimal results.

3.3 Conversion Critic
The Conversion Critic, unlike a generic WGAN critic, receives a

paired input: a real or fake image and an IMR. The IMR given

is either generated from the real data-set or, in the case of fake

images, the IMR used as input for the Generator. The purpose of

this network is to discriminate whether the general content of the

image matches that of the IMR given. In the case of real images

the pair should match since the IMR is created from the image

itself; in the case of fake images the network attempts to correct

the generator to force this content matching.

The data flow for training the Conversion Critic can be observed

in Figure 6. The left side of the image refers to training with fake

images, while the right side of the figure refers to training with real

images. In essence, the goal of the Conversion Critic is to learn the

opposite of connection A, in other words, how to generate a map

given only it’s IMR representation.

Figure 6: Training of the Conversion Critic.

Figure 7: Structure of the Conversion Critic.

Figure 7 represents the complete structure of the Conversion

Critic. All convolutional layers use a filter size of 4, except for the

layer following the IMR input, which uses a kernel size of 3 and

dilation rate of 2, and the final convolutional layer, which uses a

filter size of 5. When image width and height decreases this is done

using a convolutional layer of stride 2.

The Conversion Critic has a much simpler task than that of the

Realism Critic, therefore requiring less parameters and less total

memory to train. This network has two separate inputs that then

concatenate channel-wise. It is worth noting that the Image Branch

of this network downsamples very rapidly, this is because, due to

the way in which we defined the IMR format, it is much easier to

confirm that the two branches have similar geographical content

at a lower resolution.

3.4 Realism Critic
This critic functions exactly as a critic in any generic WGAN. It

takes as input either a real or fake image and outputs a score of

the realness of the image received. Unlike the content critic, this

critic does not receive the IMR, and therefore judges only the visual

quality of the image, and not its accuracy.

Figure 8: Structure of the Realism Critic.

Figure 8 represents the complete structure of the Realism Critic.

All convolutional layers in this critic use a stride value of 1 and filter

size of 4. While on a surface level this network appears smaller, as

it contains less layers, it contains over 7 times more parameters.

This is because while the Conversion Critic only guides the broader

strokes of the image, the Realism Critic is responsible for the finer

detail, which is a more difficult task that will be held to a higher

standard by the end user.

A different approach to the architecture of this network would

be to have more channels and more groups of Convolutional, Batch

Normalization and LeakyReLU activation layers, but intertwined

with some downsampling layers, so as to reduce the required mem-

ory. We tested variations of this architecture and found the results

to be inferior.

3.5 The data-sets
As a starting point wewere graciously given the data-set used by the

researchers of GAN-Based Content Generation of Maps for Strategy

Games [10], which is itself a filtered and augmented version of the

Shuttle Radar Topography Missions (SRTM)
1
data-set, created by

NASA. This data-set is used as the ground-truth for this research,

but it requires a pair to be used as input of the model.

The pair to the ground-truth data-set is the Intermediate Map

Representation (IMR), and is used both in training the Deep Learn-

ing model and is what the user will create as input to the final

system. This format is a simple grid of values corresponding to the

average elevation value in that area. It is important to note that

1
https://www2.jpl.nasa.gov/srtm/

4



Dual Critic Conditional Wasserstein GAN for Height-Map Generation

these values belong to a limited number of options, the amount of

which was carefully chosen: a number of classes too low will make

the ground-truth data-set not match the IMR format as closely,

giving an unpredictable output while simultaneously limiting user

freedom; a number of classes too high will, in turn, difficult training

as some values may become too rare in the ground-truth data-set.

The number of values existent in the IMR format is five. While

these class values do not have definitive real-world equivalents we

can still infer what they represent most commonly, note that the

values present in the IMR format are in the range [0, 1], the same

range used by the height-maps during training. The classes present

in the IMR format are the following:

• 0.0: Ocean, this is the only class whose real-world coun-

terpart is well defined.

• 0.1: Coastlines, river deltas, swamps and other landmasses

that tend to be partially submerged. While this class has the

lowest absolute frequency it is very important as it is the

lowest non-zero value and, as such, serves to distinguish

landmasses regardless of how low they are.

• 0.2: Plains, forests, deserts and other types of land of

mid-low altitude.

• 0.3: Plateaus, hills and other terrain of mid-high eleva-

tion.

• 0.5: Mountainous terrain. It is worth noting that any suf-

ficiently tall mountain on the ground-truth data-set will

map to this value, regardless of its elevation, as such, it is

impossible for the user to specify the height of a mountain.

We consider this limitation to not be too detrimental to the

end result, and the existence of classes with even higher

values is difficulted by the fact that it would not have a

sufficiently significant sample size for the model to train

with.

To create the IMR format, we analyze each image in the ground-

truth data-set and obtain the average elevation of all pixels that

correspond to each hex cell. Each of these averages is then compared

to the list of possible values for the IMR format and is attributed

one of the two closest values randomly based on how close it is to

either, according to Algorithm 1.

Algorithm 1:Mapping of area elevation to IMR class.

for hex do
diff = highest_lower_IMR_class -

lowest_higher_IMR_class

r = random[0, 1] * diff

if r + highest_lower_IMR_class < hex then
class = lowest_higher_IMR_class

else
class = highest_lower_IMR_class

It is important to note that we do not simply map the area’s

elevation to the closest IMR class, but instead introduce some ran-

domness to this conversion. This randomness makes the paired

data-set less homogeneous, removing examples where the whole

image would be a single class, a common occurrence with river

deltas or plains. River deltas are particularly problematic as they

could become the ocean class (zero elevation) despite containing

land, which in turn would make the model generate similar land

masses where only ocean was intended. In Figure 9 we can observe

an example of this phenomenon: despite there being two separate

landmasses, were the conversion to happen using only the closest

class the top-most landmass would not be translated into the IMR,

in turn the Generator may learn that ocean could occur with this

type of landmass, which is not desirable.

Figure 9: Left: Original image fromground-truth data-set (brightness
has been increased for ease of readability); middle: IMR
with no randomness; right: IMR using randomness.

An important detail to note is that the topology of the IMR format

is different to that of an image by the simple fact that it is based

on hexagons, therefore having six neighbouring cells instead of

the four present in a square grid. This presents a problem when

implementing the system as convolutional operations are, usually

if not always, only available for square grids. To circumvent this

issue, whenever the IMR format is used in a network, we build a

square grid where each cell is a 2x2 square, offset vertically by a

single pixel every other row, thus maintaining the topology of the

original hexagonal grid. Note that all depictions of the IMR format

are using this offset square grid. As a consequence of having the this

format as input the first convolutional layer must have a dilation

rate of 2, as otherwise it would only be able to evaluate the current

cell and two of it’s neighbours; having a dilation rate of 2 allows

the cell and four of it’s neighbours to be evaluated. Note that this

means that each original hex cell is evaluated 4 times, with the top

and bottom cells being present in all evaluations and each pair of

left/right cells only once.

3.6 Training
The training of our system, for each GAN, is identical to the algo-

rithm used to train any genericWGAN, as presented in Algorithm 2,

the only difference from this algorithm is that our system uses not

one, but two separate GAN’s, and as such, it is necessary to decide

which GAN to train at any given point, which is done through

Algorithm 3.

The tasks required of each of the Critics are of different scales

of difficulty, with the Conversion Critic having a simpler task. The-

oretically it is possible to lower this latter Critic’s learning rate

and train both GAN’s every epoch, however, this is neither easy

to accomplish, nor is it optimal; a better strategy is to evaluate the

current loss and choose a GAN to train accordingly. This approach

has several advantages: it doesn’t require a lower learning rate on

the Conversion Critic since it won’t be trained every epoch; it is

flexible and adapts quickly to sudden changes in the loss function.

It is important to note two aspects of how Algorithm 3 works: it de-

pends entirely on the loss of the fake images, and not in the critic’s

evaluation of the real images, this is because, in theory, the loss of

5



Ramos et al.

Algorithm 2: WGAN training algorithm with 𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 = 2

and 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 64

Normalize 𝑝_𝑑𝑎𝑡𝑎 between −1 and 1;

for 𝑒𝑝𝑜𝑐ℎ𝑠 do
shuffle 𝑝_𝑑𝑎𝑡𝑎;

ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ =
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

2
;

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
number of images of 𝑝_𝑑𝑎𝑡𝑎

ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ
;

for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
Choose 𝐺𝐴𝑁 to train according to algorithm 3;

for 𝑛𝑐𝑟𝑖𝑡𝑖𝑐 do
𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ samples from N(`, 𝜎2);
𝑟𝑒𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ images from 𝑝_𝑑𝑎𝑡𝑎;

𝑓 𝑎𝑘𝑒_𝑖𝑚𝑎𝑔𝑒𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ samples from

𝐺 (𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠);
𝑦_𝑟𝑒𝑎𝑙 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value −1;
𝑦_𝑓 𝑎𝑘𝑒 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value 1;

Train 𝐶 with 𝑟𝑒𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 labelled as 𝑦_𝑟𝑒𝑎𝑙

using gradient descent with Wasserstein

estimate;

Train 𝐶 with 𝑓 𝑎𝑘𝑒_𝑖𝑚𝑎𝑔𝑒𝑠 labelled as 𝑦_𝑓 𝑎𝑘𝑒

using gradient descent with Wasserstein

estimate;

𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 samples from N(`, 𝜎2);
𝑦_𝑔𝑒𝑛 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value −1;
Train 𝐺 with 𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 and 𝑦_𝑔𝑒𝑛 labels using

gradient descent with Wasserstein estimate;

Algorithm 3: Choice of GAN to be trained

for iterations do
if last_conversion_fake_loss×2 >last_realism_fake_loss
then

gan = conversion_gan

else
gan = realism_gan;

the real images will continuously increase, therefore becoming a

function of howmuch the network has been trained; the loss for the

fake images of either network, on the other hand, is affected by the

training of the other, thus, if the training of a network negatively

impacts the loss function of the other, this will be corrected by

changing which network is being trained. The second important as-

pect of how this decision is made is that it allows for a weight to be

assigned, in the example shown, and the final value used is to give

twice as much importance to the Realism GAN over the Conversion

GAN, the reasoning being that the task of the Conversion GAN is

less critical as the user will not notice if the content doesn’t fully

align, and the looser this restriction is, the more freedom allowed

for the Realism GAN to improve the aesthetic aspect.

3.7 Architecture Variations
In this section we will go over several of the most important deci-

sions made regarding the architecture chosen, describing in detail

the possible options, outcomes tested and possible reasoning for the

final result. The three decisions to be discussed are the following:

• Bilinear interpolation: use bilinear interpolation in the Gen-

erator in an attempt to overcome possible limitations of the

IMR format.

• Forced Conversion Critic Scheduling: schedule which GAN

to train in such a way that no GAN is left untrained for too

many consecutive epochs.

• Per-epoch scheduling: schedule which GAN to train on a

per-epoch basis.

3.7.1 Bilinear Upscaling of IMR. One possible improvement to the

system would be to use bilinear upscaling in the Generator. Recall

from the structure of the Generator (Figure 5) that it uses upsam-

pling layers to go from the resolution of the IMR format to the

resolution of the final height-maps. The upsampling layers in the

final model use nearest neighbour interpolation, however, there

is a theoretical justification for using bilinear upsampling: such

an upsampling method would make for smoother features, some-

thing already more aligned with the features present in nature than

the rougher changes in altitude created by the nearest neighbour

interpolation method.

Figure 10: Comparison between original IMR and upscaled with bi-
linear interpolation.

3.7.2 Forced Conversion Critic Scheduling. The method for choos-

ing which GAN to train, established in Algorithm 2 has a seemingly

large drawback: it is not unreasonable to think that not training

a network for various epochs would bring adverse results, given

that the results of the Generator will be vastly different from the

last time it was trained. While this is not necessarily implicit in the

algorithm it is also not prevented, and through empirical experi-

mentation we discovered that, for the optimal learning rates, it was

common for the Conversion GAN to go hundreds of epochs without

being trained once. To combat this issue we tested a maximum limit

of consecutive epochs trained per GAN, therefore forcing the less

trained GAN not to go too many epochs without training.

3.7.3 Per-epoch Scheduling. The algorithm for scheduling which

GAN to train doesn’t need to be run once per epoch: it may be run

once for any arbitrary number of epochs, or, conversely, to any

fraction of an epoch, down to a singular batch. We theorise that

making this decision on a per-epoch basis or per-batch basis may

have significant effects in the final results, as, the more granular

this decision is made, the less each GAN may go without being

trained, which may impact results positively. On the other hand,

scheduling the training on a finer scale than a whole epoch may

6



Dual Critic Conditional Wasserstein GAN for Height-Map Generation

cause each GAN to train on a fraction of the data-set, theoretically

making each GAN train on non-overlapping halves of the data-set,

though this extreme case is statistically impossible.

4 RESULTS
In this section we will discuss the most relevant experiments done

and the results achieved. All tests were done on a server using

a Intel(R) Xeon(R) W-2223 CPU with 98 GB’s of RAM and two

GeForce RTX 3090 GPU’s, however, only one was ever used at a

time.

All the experiments described are compiled with the RMSProp

optimizer, with a learning rate of 0.00025 for the Conversion GAN

and 0.0005 for the Realism GAN. Following the results of the re-

searchers of [10] we attempted to train for 5000 epochs, however,

some experiments were cut short to save time, in case their inter-

mediate results were proving to be unsatisfactory.

4.1 Conversion Evaluation
In this section we will evaluate our model based on how well the

content of the final height-map matches the content of the input

from which it was generated. After acquiring results we determined

that a simple empirical observation was enough to ascertain how

closely these contents match. The reasoning behind this decision

is that we believe that tools such as ours, that cater to human

perception, are best evaluate by it.

Figure 11: Examples of images generated from our final model.

In Figure 11 we can observe some maps generated from our final

model. We believe these results to be of high quality, reproducing

the given content successfully, with little artifacts or added noise.

We can observe that the model maintains the general profile of

the terrain while adding some texture. It should be noted that the

contour of the coastline is kept identical to the IMR used, while the

elevation within land differs slightly, fluctuating depending on the

noise vector given, Section 4.1.1 shows in further detail the effect

of this noise.

4.1.1 Effect of the Noise Vector. As described in Section 3.2 the

Generator allows a random input vector, this vector requires a

careful balancing of the model as, if the vector is not given enough

importance, then there will be little randomness in the images, in

the extreme case each IMR input can only generate a single output

map. On the other hand, if the noise vector is given too much

importance then the IMR input will not be respected and the output

map will not represent the given input.

Figure 12: Influence of the noise vector on map generation. Left-
most image is the IMR input fromwhich the other images
in the same row are generated.

From Figure 12 it can be seen that the noise vector has a signifi-

cant impact in the topology of the maps created, while at the same

time maintaining a the general content present in the supplied IMR

file. This is a crucial feature of the system as some of the maps may

have undesired features, in spite of their semblance to the given

input. The existence, and correct functioning of the noise vector

allows the user to maintain most features but receive a different

result, with the noise vector acting as a style guide.

4.1.2 Validation data-set. In order to test how well the model cre-

ates any type of terrain, and to ensure it wasn’t overfitting, we

created a separate data-set, comprised of 32 hexagonal maps, that

were subsequently translated into the IMR format.

Figure 13: Examples of maps generated from the custom IMR data-
set. For each set: Left: Original hex map. Center: IMR.
Right: Resulting height-map.

Figure 13 represents some of the results obtained from the model

when given IMR representations not present in the training data.

This data is problematic to the model, not only because it was never

observed, but also because it can express terrain that would be

completely unrealistic. The quality of these results is lower than

that of the observed data, as would be expected, however, when

generating multiple samples of the same input some have quality

on par with the previously observed results, further demonstrating

the importance of the noise vector.

7



Ramos et al.

4.1.3 Artifacts and Shortcomings of the GeneratedMaps. Mostmaps

generated do not contain significant artifacts or other structures

that may giveaway the fact that these images are generated, how-

ever, some images do contain such structures, with the most com-

mon being a small islet, as present in Figure 14. While this type

of terrain exists on Earth (and in the SRTM data-set, where the

model learned this structure) it is not as common as it is in images

generated from our model. The other main limitation of our model’s

results comes from the types of structures it is not able to reproduce,

with the most flagrant omission being rivers. We believe that rivers

are notoriously difficult for networks to reproduce faithfully, as

they exist not only as local information (i.e. their shape), but they

also present a more global logic - they flow from higher elevation

positions to the ocean - and this logic may be harder for the model

to learn. While some rivers are present in the results generated,

they tend to remain in the same location, rather than from the

source to the ocean, however, the more common result is that the

network simply neglects the creation of rivers.

Figure 14: Formations generated along the coastline.

Figure 15: Left: Rivers as present in the SRTM data-set. Right: Rivers
generated by our model.

4.2 Realism Evaluation
In this section we will explain our methodology for evaluating

the results obtained on a visual basis, which we chose to evaluate

through a short questionnaire, with the goal of confirming whether

or not users can distinguish maps generated by our system from

those present on Earth.

4.2.1 Test Overview. In order to evaluate our results on the goal of

generating realistic images we conducted a user test where partici-

pants were shown 20 height-maps and corresponding 3D-renders,

10 of which from the NASA SRTM data-set, and 10 generated by

our system. Participants were then asked to evaluate the origin

of each map, using the sentence “This map represents geographic

information from the Earth" and asking participants how much

they agree with the sentence, in a Likert scale of 1 to 7; an example

question can be seen in Figure 16. We considered the definition of

“realistic" to be “representing things in a way that is accurate and

true to life", therefore, our experiment is more successful the closer

the user evaluations are, across both sets of data (ground-truth and

system generated).

Figure 16: Example of a question from the user test. The remaining
questions follow this format, changing only the image.

4.2.2 Result Analysis. We obtained a total of 79 participants in

the study, which we consider an acceptable value. We started by

analysing the Chronbach alpha of the evaluations of all ground-

truth maps and all maps generated by our system, obtaining a value

of 0.889 and 0.898, respectively. These values of Chronbach alpha

fall within the category of “good" internal consistency, nearing the

threshold of “excellent", for which a value of 0.9 is required. The

consequence of this result is that we can aggregate both categories

of maps, Earth’s and ours, using their mean value, which is graphed

in Figure 17.

Figure 17: User perception of realism ofmaps generated with Earth’s
geographical data, vs. generated by our system.

We then performed the Shapiro-Wilk normality test on themeans

obtained, resulting in p-values of 0.032 and 0.013, for ground-truth

and system generated means respectively, indicating that our data

does not follow a normal distribution.

8



Dual Critic Conditional Wasserstein GAN for Height-Map Generation

Because our data is non-parametric, we chose to evaluate the

populations using the Wilcoxon’s paired rank test, from which we

determined that there was no statistical difference between the two

populations, in other words, participants were unable to distinguish

between ground-truth maps and maps generated using our system

(𝑍 = −0.399, 𝑝 = 0.69).

4.3 Results of Architecture Variations
In this section we will discuss the results obtained from the three

architecture variations explained in Section 3.7, both in terms of

their visual quality, and how well they translate the content of

their input. Please note that each of these variations was tested

separately, resulting in a total of three different experiments, not

counting the final results, which serves as a baseline.

Figure 18: Results from bilinear interpolation experiment.

4.3.1 Bilinear Upscaling of IMR. After analysing the results of this
experiment, from which Figure 18 is a subset, we concluded that the

use of bilinear interpolation in the upsampling layers contributes

negatively to the visual quality of the images generated. We be-

lieve that this decrease in quality is caused by an increase in the

amount of values expressed by the IMR as a result of the smoother

interpolation, which in turn may difficult learning.

Another observation of note is that this alteration creates pat-

terns, which are especially evident in large, high altitude areas. One

possible explanation for this fact is that this form of interpolation

reduces the amount of times this type of areas are present, as some-

times they are interpolated to a lower altitude as a result of the

neighbouring terrain, in turn, this may cause the model to learn

the representation of this terrain from areas exhibiting a similar

pattern.

4.3.2 Forced Conversion Critic training. In this experiment we

tested a forced schedule that didn’t allow either GAN to train for

more than 10 epochs consecutively, which consequently means

that each GAN is trained at least once every 10 epochs. We verified

that the results declined in visual quality, which we believe to come

from the fact that the Conversion GAN is not apt to maintain visual

quality, and while the results may be more aligned to the content

of the IMR, this is not particularly noticeable after a certain point,

Figure 19: Results from forced conversion training experiment.

and serves only to limit the freedom of the Generator to create

consistent and visually appealing images.

9



Ramos et al.

Figure 20: Results from the Epoch-based Scheduling experiment.

4.3.3 Epoch-based Scheduling. In this experiment we schedule

whichGAN to train at the start of each epoch, and train that GAN for

the whole epoch.While this seems like the most obvious approach it

has both upsides and downsides when compared to scheduling each

batch. After conducting the experiment and observing the results

acquired (Figure 20) we observe that often throughout training the

content of the IMR and the resulting output stop matching, more

specifically, the content matches with the opposite type of terrain:

oceans become mountains, and vice-versa. We believe this is caused

by an excessively high learning-rate of the Conversion GAN, which,

over the course of an epoch flips the sign of some neurons, thereby

causing the observed mismatch. For the final results we opted to

schedule training on a per-batch basis, as opposed to lowering the

learning rate, as we observed this former approach did not exhibit

any of the problems theorised in Section 3.7.3.

5 CONCLUSION
Our goal for this thesis was to provide an alternative to current

ways of generating height-maps for video-games. We needed a

system that would create realistic and visually appealing results,

while not requiring too much work or knowledge from the part of

user, but at the same time allowing the user to specify exactly which

geographical features should be present in the end result, and where.

In order to accomplish this goal we designed and implemented a

system that would take a very generic format, able to be converted

to from a wide variety of existing tools, and generates a realistic

height-map that contains the same features present in the supplied

sketch. This generation is done using our proposed model, the

Dual Critic Conditional Wasserstein GAN (DCCWGAN), a new

type of conditional WGAN using two critics: The first Critic to

evaluate the content of the input matches that of the generated

map, while the second Critic guides the results to be more and

more realistic. We then evaluated our system, determining through

empirical observation that the content of the outputtedmaps closely

match those of the supplied input. We also conducted user tests,

from which we were then able to prove that users are unable to

distinguish between maps we generated and maps created from

geographical information of the Earth, which was the standard we

set for realism. Overall, we consider that, while there is room for

improvement, we achieved the goals we set out for, and contributed

to existing knowledge by implementing a system that performs a

form of image-to-image translation using multiple critics.

5.1 System Limitations and Future Work
While we consider the results achieved suitable, these are not with-

out their limitations. The first great limitation comes from the

resolution of the maps generated, which is merely a 128 × 128 im-

age. While the system should theoretically work on larger images,

this would require more memory, which in turn would increase the

time required to train.

Another large limitation is the amount of control given to the

user, who currently can only change the height themap.While some

features such as vegetation would be simple to implement through

a post-processing phase using PCG techniques, other features such

as rivers should be included in the IMR, to be used by the networks

themselves, this would, however, require a more complex algorithm

to translate the ground-truth data-set into the IMR format as our

approach is unable to detect rivers due to their relatively small

effect on the elevation of that area.

REFERENCES
[1] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan, 2017.

[2] Brock, A., Donahue, J., and Simonyan, K. Large scale GAN training for high

fidelity natural image synthesis. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019), OpenRe-
view.net.

[3] Feng, J., Feng, X., Chen, J., Cao, X., Zhang, X., Jiao, L., and Yu, T. Generative

adversarial networks based on collaborative learning and attention mechanism

for hyperspectral image classification. Remote Sensing 12, 7 (2020).
[4] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT Press, 2017.

[5] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2017), pp. 1125–1134.

[6] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T.

Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June
2020).

[7] Millington, I. Artificial intelligence for games. CRC Press, 2019.

[8] Mirza, M., and Osindero, S. Conditional generative adversarial nets. CoRR
abs/1411.1784 (2014).

[9] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization

for generative adversarial networks. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (2018), OpenReview.net.

[10] Nunes, V., Dias, J., and Santos, P. Gan-based content generation of maps for

strategy games. In GAME-ON 2022 (2022).
[11] Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. Gaugan: Semantic image

synthesis with spatially adaptive normalization. In ACM SIGGRAPH 2019 Real-
Time Live! (NewYork, NY, USA, 2019), SIGGRAPH ’19, Association for Computing

Machinery.

[12] Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S.,

and Cohen-Or, D. Encoding in style: A stylegan encoder for image-to-image

translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2021), pp. 2287–2296.

[13] Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and Catanzaro, B. High-

resolution image synthesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2018).

10


	Abstract
	1 Motivation
	2 Background
	2.1 Video-game maps
	2.2 Generative Adversarial Networks
	2.3 Conditional GAN
	2.4 Wasserstein GAN
	2.5 Map generation from GAN-based models

	3 System Overview
	3.1 DCCWGAN
	3.2 Generator
	3.3 Conversion Critic
	3.4 Realism Critic
	3.5 The data-sets
	3.6 Training
	3.7 Architecture Variations

	4 Results
	4.1 Conversion Evaluation
	4.2 Realism Evaluation
	4.3 Results of Architecture Variations

	5 Conclusion
	5.1 System Limitations and Future Work

	References

