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ABSTRACT
Gympass offers a different range of wellness products to its users:

gyms, classes, personal trainers, and apps. But the main product is

gyms. Users should be able to use the Gympass app to find recom-

mendations for gyms, according to their personal preferences. Thus,

we can pose the question: how to recommend gyms that are so dis-

tinct? Gympass is a subscription benefit that allows users to access

multiple gyms in their area, but, if users only go to the same gym,

they might unsubscribe Gympass. Therefore, we want to make sure

the recommendation system (RS) is good at recommending new

gyms so that they find the Gympass subscription useful. My M.Sc.

project addresses the development and evaluation of graph neural

network (GNN) approaches, specifically envisioning applications

in the recommendation of Gympass gyms. Taking inspiration from

previous work such as PinSage [14], GNN at Decathlon [4] and

LARS [10], I implemented a similar approach and evaluated it on

Gympass data. The results of our GNN RS seem promising for the

case of recommending users to new gyms that they are visiting for

the first time. The obtained results support the understanding that

a deep learning model can recommend new Gympass gyms to users.

The main contribution of this work relies on building and validating

a RS based on GNN that infers how to model Gympass complex

environment into a graph, using a GNN model architecture learns

users’ past behaviors and with the ranking function recommends

gyms to users.
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1 INTRODUCTION
Applications of RS increasingly rely on DL techniques to learn

meaningful low-dimensional embeddings of images, text, and even
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users [3, 12]. DL representations can replace or enhance more con-

ventional recommendation methods like collaborative filtering Sys-

tems (CF). Significant progress has been made in this area recently,

particularly with the creation of new DL techniques that can learn

from graph-structured data, which is essential for recommendation

applications (e.g., to exploit user-to-item interaction graphs) [14].

Gympass offers a different range of wellness products to its

users: gyms, classes, personal trainers, and apps. But the main

product is gyms. Users should be able to use the Gympass app to find

recommendations for gyms, according to their personal preferences.

Different gyms may contain different information regarding their

activities, description, location, and which is the minimum plan

for a user to check-in there. Thus, we can pose the question: how

to recommend gyms that are so distinct? Furthermore, Gympass

is a subscription benefit that allows users to access multiple gyms

in their area, but, if users only go to the same gym, they might

unsubscribe Gympass and pay the subscription only to the gym

they go to. In order to avoid this scenario, one of our concerns is

to evaluate if the RS is able to recommend not only gyms that the

users usually go to but also new gyms they haven’t tried before. In

other words, we want to make sure the RS is good at recommending

new gyms so that the users try new gyms, besides the ones they

already know, so that they find the Gympass subscription useful

and keep paying for it.

The Gympass variety of data and the links between them makes

a case for the use of graph techniques, more specifically GNN. Al-

though they were first proposed in the late 1990s [11] and early

2000s [7], GNNs are now extensively used for a variety of tasks,

including online and movie recommendations [17, 15]. Recent re-

search shows that highly scalable GNNs for recommendation are

possible [14]. The capacity of GNNs to represent non-Euclidean

data is one of the factors driving such attention [16].

GNNs can be defined as neural networks that operate on graph

data, in order to learn new embeddings for all graph features. These

representations can have several practical applications. For instance,

in the context of recommendation systems, these networks can be

grouped into two scenarios depending on their application: (1) Non-

structural scenarios where the relational structure is implicit or

absent and generally include images and text; (2) Structural scenar-

ios, where the data has an explicit relational structure. These second

scenarios, on the one hand, often emerge from scientific research,

such as graph mining, modeling physical systems, and chemical

systems. On the other hand, they can also rise from applications

such as knowledge graphs, traffic networks, and RS [18].

When considering efficient highly-scalable GNN algorithm to

recommend items to users, it is necessary to consider more com-

plex algorithms such as PinSage [14]. PinSage does not require

operating on the full Laplacian graph during training because it

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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uses many techniques such as batching. The batching technique is

used together with the re-indexing technique to create a sub-graph

containing nodes and their neighborhood, which otherwise would

not fit into memory. The task of generating embeddings outputs a

representation of a node that incorporates both information about

itself and its local graph neighborhood.

GNNs at Decathlon [4] builds upon the PinSage idea to recom-

mend users items with GNN. The authors build a graph with nodes

and edges, generate embeddings for each node and apply a max-

margin loss function with a set of training edges and a set of nodes

negatively sampled.

LARS [10] is a location-aware RS that uses location-based rat-

ings to produce recommendations. LARS produce recommendations

within reasonable travel distances by using travel penalty, a tech-

nique that penalizes the recommendation rank of items the further

in travel distance they are from a querying user.

GCN architecture applied to semi-supervised classification tasks

[9] shows the variety of tasks that GNN can solve, not only it can

solve recommendation tasks but also classification.

Knowledge Graph Attention Network [13] is a GNN architecture

that explicitly models the high-order connectivities in Knowledge

Graphs in an end-to-end fashion. It recursively propagates the em-

beddings from a node’s neighbors to refine the node’s embedding

and employs an attention mechanism to discriminate the impor-

tance of the neighbors.

Developing a GNN for a RS is currently still a challenging en-

deavor, as a balance between efficiency and accuracy needs to be

met. Graph Convolutional Networks (GCNs) have already been

proven to be efficient and highly scalable.

My M.Sc. project addresses the development and evaluation of

GNN approaches, specifically envisioning applications in the rec-

ommendation of Gympass gyms. Taking inspiration from previous

work such as PinSage [14], GNN at Decathlon [4] and LARS [10], I

implemented a similar approach and evaluated it on Gympass data.

2 RELATEDWORK
In this section, we will introduce the main related work regarding

the project.

PinSage [14] is a random-walk Graph Convolutional Network

that is highly scalable and capable of learning embeddings for nodes

in web-scale graphs containing billions of objects. In other words,

it can be said that PinSAGE greatly improved the scalability of

GCNs by utilizing some key insights. Unlike the existing GCN al-

gorithms that applied the form of multiplying the variable matrix

using the entire Laplacian graph, PinSAGE used the method of

sampling neighbors around the node and applying convolutions

to it. Furthermore, it uses the CPU-bound producer to efficiently

extract the neighbors around the node and prepare the variables

needed for convolution. While iterative operations are minimized,

the trained model can quickly generate embeddings for many nodes.

There was also an innovation in the learning where the sampling

of neighbors uses a small random walk technique where each node

has an importance score, which is used in the Pooling/Aggregation

stage. In the training, the PinSage method starts with simpler train-

ing sets but it provides more difficult training sets as the training

advances.

A new recommender system approach based on GNN [4] by the

Decathlon Research team to leverage all the available historical user

data as well as interactions with user-item. Combining multiple

data sources to build an efficient recommender system. The author

create a graph for the model. The model has nodes as users, items

and sports. Edges represent the interaction between a user and an

item and could be of type click or type purchase, user, practicing,

sport, in the way of a knowledge-graph enhanced graph. The basic

embedding generation consists of a message-passing technique

similar to the PinSage [14] algorithm, a spatial-based method. To

generate recommendations, the author proposes a link prediction

architecture, with models to predict the probability of an interaction

between a user and an item. Using the user and item embeddings,

the predicting function is a multilayer perceptron. To parametrize

the model, the author proposes a max-margin loss function with

negative sampling.

The authors investigate the utility of the knowledge graph (KG),

which breaks down the independent interaction assumption by

linking items with their attributes. The authors argue that in such a

hybrid structure of KG and user-item graphs, high-order relations -

which connect two items with one or multiple linked attributes -

are an essential factor for successful recommendation. The solution

foundwas KnowledgeGraphAttentionNetwork (KGAT) [13]which

explicitly models the high-order connectivities in KG in an end-

to-end fashion. It recursively propagates the embeddings from a

node’s neighbors (which can be users, items, or attributes) to refine

the node’s embedding, and employs an attention mechanism to

discriminate the importance of the neighbors.

LARS [10] is a location-aware recommender system that uses

location-based ratings to produce recommendations. Traditional

recommender systems do not consider spatial properties of users

nor items; LARS, on the other hand, supports a taxonomy of three

novel classes of location-based ratings, namely, spatial ratings for

non-spatial items, non-spatial ratings for spatial items, and spa-

tial ratings for spatial items. LARS exploits user rating locations

through user partitioning, a technique that influences recommen-

dations with ratings spatially close to querying users in a manner

that maximizes system scalability while not sacrificing recommen-

dation quality. LARS exploits item locations using travel penalty, a

technique that favors recommendation candidates closer in travel

distance to querying users in a way that avoids exhaustive access

to all spatial items. LARS can apply these techniques separately, or

together, depending on the type of location-based rating available.

Experimental evidence using large-scale real-world reveals that

LARS is efficient, scalable, and capable of producing recommenda-

tions twice as accurately compared to existing recommendation

approaches.

Semi-supervised learning on graph-structured data [9] that is

based on an efficient variant of convolutional neural networks

which operate directly on graphs. The authors motivate the choice

of convolutional architecture via a localized first-order approxima-

tion of spectral graph convolutions. The model scales linearly in the

number of graph edges and learns hidden layer representations that

encode both local graph structure and features of nodes. In a num-

ber of experiments on multiple datasets, the authors demonstrate

that their approach outperforms related methods by a significant

margin.
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3 RECOMMENDATION OF FITNESS VENUES
USING GRAPH NEURAL NETWORKS

In this section, we introduce the model proposed. We will ex-

plain how the graph was built, how we designed the algorithm,

how we trained the model, and handled the user location to give

recommendations.

3.1 Model
The developed model builds upon the previous models PinSage

[14] and GNN from Decathlon [4] by adapting them to the problem

at hand.

Firstly, we built a tripartite graph with gyms, users, and activities,

as we can see in Figure 1.

u1 u2 u3 u4

g1

Users

Gyms g2

Activities
a2

r1 r1 r1 r1

r1

Relations

r1: checks-in

r2: features 

r2
r2

r2 r2

a1 a3

Figure 1: Tripartite graph with users, gyms, and activities

A gym and user are connected if the user had checked-in at least

once in the gym. A gym and an activity are connected if the activity

can be practiced in the gym. In the end, we have the following

edges in the graph:

• user, checks-in, gym

• gym, checked-in-by, user

• activity, featured-by, gym

• gym, features, activity

We modeled the environment as a tripartite graph consisting

of nodes in three disjoint sets, namely 𝐺 (containing gyms), 𝑈

(containing users), and 𝐴 (containing activities). Consider 𝑉 to be

the node set of the full graph. The node features were the ones

described in Section 4.2.

The task of generating an embedding 𝑧𝑢 for each node 𝑢, which

depends on the node’s input features and the graph structure around

this node is made through Algorithm .1.

The basic idea of Algorithm .1 is to transform the representations

𝑧𝑣 , ∀𝑣 ∈ N (𝑢) of 𝑢’s neighbors, by reducing those representations

into one by doing mean aggregation and multiply the result by a

learnable weight matrix (Line 1 of Algorithm .1). This aggregation

step provides a vector representation, 𝑛𝑢 , of 𝑢’s local neighbor-

hood,N(𝑢). Then, transform𝑢’s current representation 𝑧𝑢 through

a dense neural network layer, thereafter we sum the aggregated

neighborhood vector 𝑛𝑢 with the transformed 𝑢’s current represen-

tation and pass the sum through a ReLU activation function (Line 2

Algorithm .1: Embedding Generation Layer

Input :Current embedding 𝑧𝑢 for node 𝑢; set of neighbor

embeddings {𝑧𝑣 |𝑣 ∈ N (𝑢)}
Output :New embedding 𝑧𝑁𝐸𝑊

𝑢 for node 𝑢

1 n𝑢 ← Q ·𝑚𝑒𝑎𝑛(z𝑣 |𝑣 ∈ N (𝑢));
2 z𝑁𝐸𝑊

𝑢 ← ReLU(W · z𝑢 + n𝑢);
3 z𝑁𝐸𝑊

𝑢 ← z𝑁𝐸𝑊
𝑢 /| |z𝑁𝐸𝑊

𝑢 | |2

of Algorithm .1). The set of parameters of our model which we then

learn is: the weight parameters (𝑄 (𝑘 ) ,𝑊 (𝑘 ) , ∀𝑘 ∈ {1, · · · , 𝐾}). Fur-
thermore, the normalization in Line 3 makes training more stable,

and it is more efficient to perform an approximate nearest neighbor

search algorithm for normalized embeddings. The output of the al-

gorithm is a representation of 𝑢 that incorporates both information

about itself and its local graph neighborhood. Finally, we repeat the

algorithm for as many layers as wished. The result is the output of

the last layer.

The task’s unique characteristics include the vast volume of

data, which provides thousands of interactions for the model to

be trained on. Such a huge graph cannot be fit on GPU utilization;

batches are required. We require blocks that contain neighbors of

all the nodes for which we want to construct embeddings in order

to generate embeddings.

Our case includes data with thousands of interactions for the

model to be trained on. Since a graph of this dimension cannot

be fit on GPU utilization, batches are required. Batches include

blocks that contain neighbors of all the nodes for which we want

to construct embeddings.

Batching becomes more complicated as a result [4]. The model’s

layers go as deep as its building blocks. Each block layer contains

every node needed to calculate the embeddings of the nodes in

the layer below. Each batch of edges, therefore, contains blocks to

build embeddings for each node connected by the edges, as well

as a positive graph where the positive pairings are scored and a

negative graph where the negative pairs are scored.

Consider that L is a set of labeled pairs of user and gym and

(𝑢,𝑔) ∈ L, where 𝑢 is a user and 𝑔 is a gym that the user checked-

in, and thus corresponding to good recommendation candidate for

the user. The model is trained in a supervised fashion using the

max-margin loss function in Equation 1. The equation is based on

the loss function by GNN at Decathlon [4]

L =
∑︁
(𝑢,𝑣) ∈E

∑︁
𝑣𝑛∈P𝑛,𝑢

max

(
0,−𝑓 (𝑧𝑢 , 𝑧𝑣) + 𝑓 (𝑧𝑢 , 𝑧𝑣𝑛 ) + Δ

)
(1)

where E is the set of edges on which training is done, 𝑓 (·) is a
cosine similarity function and P𝑛,𝑢 is a set of nodes negatively

sampled from where 𝑣𝑛 is drawn. The size of P𝑛,𝑢 and Δ are tunable

hyperparameters.

The training process is intuitive in that we use positive pairs of

instances as our training signal. The intention is for these positive

pairs to receive higher scores from the model than the randomly

generated negative pairs.

The full training loop of the model is very similar to one by

the Decathlon team [4]. To summarize here is an overview of the
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full training loop of the multiple training components presented

throughout this section.

(1) Create the graph and divide the data into batches.

(2) For each batch, input the initial node features into the model.

(3) Each batch has its respective blocks. Each block corresponds

to a model layer that will compute the updated represen-

tations of all the nodes in that block. The updated repre-

sentations of the last layer are the final embeddings of all

nodes.

(4) With all the final embeddings of the nodes in the batch,

compute the loss.

(a) For all positive edges, compute the similarity score be-

tween the user node and the item node.

(b) For all negative edges, compute the similarity score be-

tween the user node and the item node.

(c) For all negative edges, compute the similarity score be-

tween the user node and the item node.

(d) The loss function is a max-margin loss. The positive score

needs to be higher than the negative score by a predefined

margin.

(5) Using the loss, parameterize the model. Compute the eval-

uation test metrics and use early stopping if MRR stops

increasing for 10 successive epochs.

3.2 Scoring Function
Scoring is possible following the generation of the embeddings.

The embedding of the edge’s origin node, the user 𝑢, and the desti-

nation node, the gym 𝑔 are inputs for the scoring function. The two

embeddings are then compared using cosine similarity, represented

as 𝑃 (𝑢,𝑔), yielding a score between 0 and 1.

When the model finishes the embedding generation, we first

filter for each user the closest 100 gyms to their check-in and apply

the ranking function which combines the user-gym embedding

similarity and the euclidean distance between the user location and

the gym location.

The ranking algorithm starts by running a 100-nearest-neighbor

algorithm based on k-d tree [2] and euclidean distance between

the user location at least 2 hours before the check-in and the gym

location to populate the list 𝑅 with 100 gyms with lowest euclidean

distance.

With the 100 closest gyms, it computes the cosine similarity

between them and the user. After that, it ranks each spatial item

𝑔 for a querying user 𝑢 based on 𝑅𝑒𝑐𝑆𝑐𝑜𝑟𝑒 (𝑢,𝑔), inspired from the

work of Location-Aware Recommender System [10], computed as:

𝑅𝑒𝑐𝑆𝑐𝑜𝑟𝑒 (𝑢,𝑔) = 𝑃 (𝑢,𝑔) −𝑇𝑟𝑎𝑣𝑒𝑙𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢,𝑔), (2)

𝑃 (𝑢,𝑔) is the GNN recommendation model final embeddings cosine

similarity of gym𝑔with user𝑢.𝑇𝑟𝑎𝑣𝑒𝑙𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢,𝑔) is the euclidean
distance between 𝑢 and 𝑖 normalized to the same value range as

𝑃 (𝑢,𝑔).
Since themodel failed to learn that recommending closer gyms

to the other gyms a user has been are good recommendations, as

we can see in Figure 2, and due to the user behavior, we decided to

use the TravelPenalty algorithm [10] to solve the location problem.

Figure 2: 10 recommendations for a user that went to the
same gym in the training set and in the test set, using the
RS without TravelPenalty. The RS recommendations are rep-
resented in blue, the gyms that the user checked-in in the
training set are represented in brown, and the gyms that the
user checked-in next, in the test set, are represented in green.
The training gym check-in dot and the test gym check-in dot
coincide.

The first version of the RS didn’t include a ranking function that

combined both cosine similarity and distance between the user and

the gym as we have at the moment in the final version. The initial

ranking function only included the cosine similarity between the

user and the gym because we expected that the model was able to

learn that recommending gyms closer to others that the user has

been to would be good recommendations. As we can see in Figure

2, a user that just checked-ins in at a gym in San Antonio, Texas

(green dot) would be recommended gyms very far away in Seattle

and New York both at more than 2,500 kms from San Antonio.

Furthermore, since Gympass was interested in exploring recom-

mendations for users that go to new gyms, we analyzed the data,

as we can see in Figure 3, and we noticed that more than 70% of

users that went to a different gym from the training set in test set

traveled more than 5kms from their average check-in gym location.

Considering all the users, we found that less than 20% of users trav-

eled more than 5kms to check-in to a gym, we can see a significant

difference between the traveled distance between all the users and

the users that checked-in to different gyms in the test set where

the latter tend to travel farther.

The TravelPenalty algorithm [10] applied in the re-ranking phase

was the chosen method to solve the location problem. Since the

TravelPenalty algorithm needs the user location, we used the user

app location at least 2h before the check-in. We used the user loca-

tion at least 2h before the check-in because, if the user location was

very close in time to the check-in, the user location would match

the gym location that the user was checking-in. Therefore if we

used the user location at most 2h before the check-in we would be

giving an unfair advantage to the recommendation system because

it would only need to recommend the closest gym to maximize the

offline metrics. Besides that, Gympass was interested in exploring

the scenario where the user is just exploring the app searching

for gyms nearby some hours before checking-in at a gym which

supported using the user location 2h before the check-in.
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(a) All users.
(b) Users that checked-in to a dif-
ferent gym in the test set.

Figure 3: Both charts show the mean users traveled distance between the average gyms location they checked-in in the training
set and the gyms’ location they checked-in in the test set. Left: Bar chart comparing the users that traveled less than 5 kms and
more than 5kms to check-in to a gym. Right: Bar chart comparing the users that traveled less than 5 kms and more than 5kms
to check-in to a different gym from training.

4 EXPERIMENTAL EVALUATION
This section describes the methods to train and evaluate the

proposed model and describes the data and the data preprocessing

applied to it.

4.1 Methodology
The initial stage of this thesis project focused on laying a good

theoretical foundation that could support the reasoning for our

proposed model. To this end, a survey of current state-of-the-art

methods in the fields of GNN and RS was conducted. Special focus

was given to work on products and sports since these were the

main issues we attempt to address in Gympass.

Having understood what challenges GNN models faced, we set

out to develop a RS based on GNN that is location aware in an

attempt to ease some of the challenges affecting user query location

and gyms’ locations.

After downloading the Gympass dataset with US data which

includes gym features, user-gym interactions, gym-activities edges,

plans, and user locations, we cleaned and replaced text features

with its BERT[5] text embeddings. Using temporal markers, the

data is split into train and test sets. For all of the available check-ins,

a defined period, i.e. from March 2021 to February 2022, is used for

training, and the next month’s time, i.e. from March 2022, is used

for testing. We have two test sets, the test set and the test set only

new check-ins where the test set only new check-in is a subset of

the test set with only new check-ins between users and gyms to

evaluate the model ability to recommend new gyms to users.

We build three baselines: one that only recommends the closest

gyms based on the inferred user location, one which is a simpler

model based on our proposed model, and another using only pre-

processed embeddings to give recommendations.

The model is trained by first building the graph with edges and

input node features and dividing the graph into batches of sam-

pled graphs due to the large dimension of the full graph. For each

batch, the embedding generation is done through message passing.

With the final embedding layer, we compute the loss function to

parameterize the model.

We evaluated this work with recommendation system metrics

such as 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ,𝑀𝑅𝑅@𝑘 , and 𝑁𝐷𝐶𝐺@𝑘 at the cutoff point 𝑘 .

The recommendation systemswere implemented using the Python

programming language, given that it allows for the quick and easy

creation of different experiments, as well as the considerable ma-

chine learning and deep learning support it offers. Specifically, we

took advantage of several libraries such as Pytorch
1
, Deep Graph

Library
2
, PySpark

3
, and MLFlow

4
.

4.2 Data
We are using user US data to build the GNN model. The dataset

includes gym features, user-gym interactions, gym-activities edges,

plans, and user locations which are described in this section. In

Table 1 we can see some statistics about the training and test data.

Since most users check-in often in at the same gyms, it is interesting

to evaluate how the RS performs when recommending gyms only

to users who checked-in in at a different gym. For all of this, we

extracted a subset of the test set with only new check-ins (i.e. check-

ins that were not in the training set) to evaluate exactly that.

Table 1: Sets statistics

Statistic\Set Train set Test set Test set only new check-ins

#users 12,865 877 217

#gyms 2,639 545 179

#activities 258 - -

#check-ins 16,913 986 227

#gym-activities 14,854 - -

Average user check-ins 1.315 1.124 1.024

Average gym check-ins 0.205 1.809 1.179

Average activities per gym 5.629 - -

Average gyms per activity 57.574 - -

#check-ins in non-train gyms - 227 (23.02%) 227 (100%)

#users that checked-in in non-train gyms - 217 (24.74%) 217 (100%)

4.2.1 Gym features. The gym features include two text fields: title

and description, as we can see in Table 2. The title feature is the gym

name, the description feature is a text written by the gym owner.

1
https://pytorch.org/

2
https://docs.dgl.ai/

3
https://spark.apache.org/python/

4
https://mlflow.org
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We also have coordinate features such as latitude and longitude

which mark the gym location. There are 2,639 gyms from different

locations in the US. An example of gym textual features anonymized

data is available in Table 2.

Table 2: Gym textual features

id title description

0 Crunch Fitness... Why users love this gym?\nMembers love our gym...

1 Broadway Boxing Gym What makes this place unique? \nWe have been a...

2 Lloyd Athletic Club

3 Pilates Plus San Diego Why users love this gym?\nWe provide unique in...

4.2.2 User-gym interactions. A user-gym interaction is when a user

checks in at a gym at a given timestamp. This data is used to create

edges between gyms and users. All check-ins made from March

7 2021 to March 3 2022 are fetched. Those interactions involve

2,639 different gyms and 12,865 users. An example of user-item

interaction anonymized data is available in Table 3.

4.2.3 Gym-activities edges. A gym-activities edge is when a gym

has an activity. This data is used to create edges between gyms

and activities. Those edges involve 2,639 different gyms and 258

activities.

4.2.4 Plans. Each user and gym is associated with a value (max

value and value, respectively) that corresponds to a plan. For exam-

ple, if user 𝑢 has a $69.99 max value then he is in the plan Basic, as

we can see from Table 4, and can only go to gyms inside plan Basic

or below that plan. The same applies for the gyms but with the

value. For example, if a gym 𝑔 has a $69.99 value then only users

with plan Basic or higher, as we can see from Table 4, can check-in.

Users max value. The data is used to create engineered features.

The dataset has 12,865 different users and their max value is associ-

ated with a certain starting and end date of that max value because

users’ plan value can change over time. A description of the user

max value is available in Table 6.

Gyms value. The data is used to create engineered features. The

dataset has 2,639 different gyms and their median value. A descrip-

tion of the gym value is available in Table 5.

4.2.5 Users’ locations. The features include coordinate features
which are latitude and longitude and a timestamp. There are 12,865

users. A description of the users’ locations are available in Table 6.

Having understood the data being used, I will explain the data

preparation and feature engineering applied to the data. Two main

data preprocessing were applied: data preprocessing that uses the

Table 3: User-gyms check-ins

date user_id gym_id

2021-11-17 00:32:21.613 11307 1161

2022-02-04 13:05:30.946 6503 1161

2022-01-15 17:14:20.695 1931 1161

2021-12-17 13:03:26.346 10209 1161

Table 4: Plans’ highest value

Order Plan Highest value/$

0 Starter 40

1 Basic 70

2 Bronze 100

3 Silver 150

4 Gold 250

5 Platinum 350

6 Diamond 450

7 Custom 1e+99

Table 5: Gyms features description

feature name type min max % nulls

latitude float 19.644419 71.290174 0

longitude float -166.8080556 -68.7627325 0

value float 9.99 449.99 0

Table 6: Users features description

feature name type min max % nulls

max_value float 6.99 1999.0 0

valid_start_date timestamp 2015-03-29 21:00:00 2022-07-20 01:00:00 0

valid_end_date timestamp 2015-04-30 20:59:59 2022-08-22 00:59:59 0

latitude float 25.7505585484564 47.74450538388441 0

longitude float -122.48305966157697 -70.9429543797924 0

timestamp timestamp 2022-02-10 10:46:56.100 2022-03-09 23:57:32.690 0

activities embeddings and data preprocessing that uses the gym

description.

4.3 Data Preprocessing That Uses the Gym
Description

In this treatment, only the user and gym features are changed

from the dataset described in Section 4.2. We start with the gym

features, as we can see in Table 2. We keep all the other gym fea-

tures but replace the text description with its text embedding, the

embedding generation process is explained in more detail in Section

4.3.1. On the other hand, the user features are initiated with the

average of the gym description embeddings that they checked-in

at least once.

4.3.1 Text embedding. First, we applied multiple regex patterns

to clean the text description field of gyms, we can see the rules in

Table 7. Since we had some cases where the text description was left

empty after the regex cleaning, in case the cleaned text description

field was empty, we replaced it with the gym title. Afterwards,

Table 7: Regex rules for text description field

Rule Example text Cleaned text

HTML tags <p style="color:red;">important</p> important

HTML chars Crossfit &#8594 rarr taekwondo &#x2192 Crossfit taekwondo

Only white spaces \n \n

Quotations “One of the best gyms in LA” One of the best gyms in LA

Ats We are open @ the studio! We are open the studio!

Hashtags We are team #fitplus #gym4life We are team

Repeated punctuation One experimental class for free!!!! One experimental class for free!
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we generated text embeddings on the final gyms text description

field using a BERT model [6] generating 768 floating point number

vector.

4.4 Data Preprocessing That Uses the Activities
Embeddings

After analyzing the gym text description, we found out that

they were mostly marketing messages to attract customers into

gyms which made them unhelpful because they missed essential

useful information about the gyms that could help the model learn.

To solve this issue, it was decided to replace the gym description

embeddings with the average of their activities embeddings.

4.4.1 Text embedding. We generated text embeddings on the ac-

tivities title field using a BERT model generating 768 floating point

number vectors which replaced the activity title text field. The activ-

ity embeddings were reused to generate embeddings for the gyms.

The gym embeddings were the average of activities embeddings

associated with it.

4.4.2 Plans. So that the model could output embeddings that also

took into account the plan information of the gym and user it was

added new features to both.

Feature engineering. First we joined the gyms value and users

max value, which are fields important to infer the user and gym

plan, to generate the following new features. We applied an ordinal

encoding with Gympass plan values, as we can see in Table 8,

which generated a new field called plan_num. Then we created

equal frequency bins with these values.

Table 8: Gympass user plans

Plan_num Plan Unlimited

0 Starter 40

1 Basic 70

2 Bronze 100

3 Silver 150

4 Gold 250

5 Platinum 350

6 Diamond 450

7 Custom 1e+99

4.5 Evaluation Metrics
Recommender systems are often assessed from either an online

or an offline standpoint. Although offline approaches are the most

common methods for evaluating recommender systems, online

evaluation does offer often a true measure of the effectiveness of

the system, mostly due to their viability and reproducibility in

varied settings [1]. Precision and recall are common measurements.

The only user preferences that are recorded in a recommenda-

tion task with implicit data are those that are positive. Non-positive

interactions don’t always mean the user isn’t interested; they might

have just never seen the item before. The precision meter focuses

on the accuracy of recommendations, which may include intriguing

but rarely encountered items, whereas the recall metric concen-

trates on the positive interactions that really occurred. Therefore,

recall should be utilized rather than precision.

Other popular metrics used in the literature are called rank-

ing metrics such as Mean Reciprocal Rank (MRR) and Normalized

Discounted Cumulative Gain (nDCG), which take the exponential

decay of utility into account and suggest that "users are only inter-

ested in top-ranked items, and they do not pay much attention to

lower-ranked items." [1]

The set of recommended items is denoted by S and let G rep-

resent the true set of relevant items (ground-truth positives) that

are consumed by the user. The recall is computed according to the

following equation:

𝑅𝑒𝑐𝑎𝑙𝑙 =
|S ∩ G|
|S| . (3)

We also evaluate the system using the Mean Reciprocal Rank

(MRR), which takes into account the rank of the item 𝑗 among

recommended items for query 𝑢:

𝑀𝑅𝑅 =
1

𝑚

∑︁
(𝑢,𝑗 ) ∈𝐿

1

𝑅𝑢,𝑗
, (4)

where 𝑅𝑢,𝑗 is the rank of item 𝑗 among recommended items for

query 𝑢, and𝑚 is the total number of labeled item pairs.

We also use the NDCGwhich is computedwith the discounted cu-

mulative gain where the discount factor of item 𝑗 is set to log
2
(𝑣 𝑗 +

1), and 𝑣 𝑗 is the rank of item 𝑗 in the test set 𝐼𝑢 . Then, the discounted

cumulative gain is defined as follows:

𝐷𝐶𝐺 =
1

𝑚

𝑚∑︁
𝑢=1

∑︁
𝑗∈𝐼𝑢

𝑔𝑢 𝑗

log
2
(𝑣 𝑗 + 1)

. (5)

In this case, the utility (or gain) of the user 𝑢 in consuming

item 𝑗 is represented by 𝑔𝑢 𝑗 . Typically, an exponential function of

relevance (such as non-negative ratings or user hit rates) is specified

as the value of 𝑔𝑢 𝑗 :

𝑔𝑢 𝑗 = 2
𝑟𝑒𝑙𝑢𝑗 − 1. (6)

Here, 𝑟𝑒𝑙𝑢 𝑗 is the ground-truth relevance of item 𝑗 for user 𝑢,

which is computed as a heuristic function of the ratings or hits.

Then, the normalized discounted cumulative gain (NDCG) is defined

as the ratio of the discounted cumulative gain to its ideal value,

which is also referred to as the ideal discounted cumulative gain

(IDCG).

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
. (7)

Repeating the calculation for DCG, but using the ground-truth

rankings instead, yields the ideal discounted cumulative gain.

In the ranking segment, the resulting space is handled as an

ordered set with a specific cut-off point 𝑘 defined for each metric,

comparing the top 𝑘 ranked candidates of the RS with the top 𝑘

ranked items.

In this work, we made use of several metrics to automatically

evaluate the capability of the RS. Analyzing recommendations was

performed through the computation of commonly used metrics in

the recommendation systems domain, such as 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ,𝑀𝑅𝑅@𝑘 ,

and 𝑁𝐷𝐶𝐺@𝑘 at the cutoff point 𝑘 . These metrics are calculated

in the exact same manner as the previous equations, but only con-

sidering the top 𝑘 retrieved candidates.
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4.6 Results
To evaluate the model, we built 3 baselines: closest gym to user,

only initial embeddings and bipartite model.

The baseline closest gym to user for each user outputs a recom-

mendation list ordered by how far each gym is to the user starting

from the closest to the farthest. The baseline was created due to

the fact that US Gympass users have a preference for gyms close to

them as we discovered that 75% of users travel less than 5kms to a

gym, as we can in Figure 3.

The baseline only initial embeddings uses the initial user and

gym features described in the data preprocessing described in Sec-

tion 4.3 and for each user and gym, the cosine similarity ranking

function is applied so that given a query user 𝑢, returns a gyms list

whose embeddings are most similar to the query user’s embedding.

The list is ordered by how similar the item embedding is to the

query 𝑢. The baseline was created because Gympass recommenda-

tion systems using only embeddings were successfully built and

deployed with high evaluation metrics.

The baseline bipartite model is based on the model built in Sec-

tion 3.1. We built a simple graph that consisted of a bipartite graph

with gyms and users connected if the user had checked-in at least

once in the gym. In the end, we have the following graph edges:

• user, checks-in, gym

• gym, checked-in-by, user

We modeled the environment as a bipartite graph consisting of

nodes in two disjoint sets, namely 𝐺 (containing gyms) and 𝑈

(containing users). Consider 𝑉 to be the node set of the full graph.

The node features were the ones described in the data preprocessing

that uses the gym description, as described in Section 4.3. Since the

model needs to have the same feature size for gyms and features,

the data preprocessing that uses the activities can not be used. After

the model generates the users and gyms embeddings, the cosine

similarity ranking function is applied so that given a query user

𝑢, returns a gyms list whose embeddings are most similar to the

query user’s embedding. The list is ordered by how similar the

item embedding is to the query 𝑢. We applied an efficient similarity

search library called Faiss [8]. Faiss contains algorithms that search

in sets of vectors of any size, up to ones that possibly do not fit in

RAM.

Table 9 presents the effects of the different proposed preprocess-

ing techniques and recommendation systems on the recommenda-

tion task for the different test sets.

When it comes to recommending users with gyms in only new
check-ins in test set, it seems that the tripartite model improves every

metric very significantly by at least 2.95 times over the second best

baseline metrics.

Since the RS closest gyms to user only uses the coordinates fea-

tures from both users and gyms which do not change in both data

preprocessing, the RS will have the same values on the metrics for

both data preprocessing, as we can see in Table 9. The RS closest
gyms to user seems to be the best in terms of recall for both data

preprocessing using the normal test set but has the lowest metrics

in MRR and NDCG. This could mean that the RS closest gyms to user
could be interesting in scenarios where we are recommending to all

users that it is more important to just retrieve relevant gyms than

it is to have the most relevant gyms right on top of the recommen-

dations. The RS closest gyms to user seems to have relatively low

metrics when being evaluated against the only new check-ins test
set having the lowest MRR and NDCG. The RS closest gyms to user
relatively low recall value seems to be explained by the majority of

check-ins not being in the first 10 closest gyms from the inferred

user location. This could mean that these users usually go beyond

just the first 10 gyms near them.

The RS only initial bipartite model embeddings and bipartite model
do not have metrics for the data processing that uses the activities

because that data preprocessing has users and gyms features with

different dimensions and, since this recommendation systems have

the limitation of only accepting the same dimension of features for

gyms and users, they can not generate embeddings of the features

with the data preprocessing that uses the activities. However, since

in the data preprocessing that uses the gym description both users

and gyms have the same feature dimension, the RS can compute

metrics. For the data preprocessing that uses the gym description

and normal test set the RS only initial bipartite model embeddings
seems to have the highest metrics in terms of MRR and NDCG and

the second best recall metric. However, for the only new check-ins
test set it seems to have one of the lowest metrics. The difference

in values between the normal test set and only new check-ins test
set could be explained by the RS using user embeddings initialized

with the average of the gyms they checked-in on the training set.

Since most users repeat gyms in the training set on the test set, it

might allow the RS to have high metrics in normal test set. However,
since in the only new check-ins test set we only have check-ins of

users to new gyms they didn’t go to in the training set, it fails to

generalize to these new check-ins.

The RS bipartite model in the data preprocessing that uses the

gym description and normal test set seems to have the second best

metrics in terms of MRR and NDCG and in the only new check-ins
test set seems to have the second highest overall metrics but by a

very significant difference. Since the RS bipartite model is initialized
with the same embeddings used in the RS only initial bipartite model
embeddings, might start with a tendency to recommend gyms in

training. This behavior might be aggravated by the fact that the

bipartite model architecture shares the same GCN layer and their

parameters for both the check-in and checked-in-by edge which

makes the model overfit the training data leading to poor metrics

when trying to recommend new gyms to users, as we can see in

Table 9.

The RS tripartitemodel using the data preprocessing that uses the

activities seems to have the highest MRR and NDCG for the normal
test set by more than 2.1 times. Using the same data preprocessing

but with the only new check-ins test set the tripartite model seems

to have the highest metrics by at least more than 2.74 times over

the second best. Using the data preprocessing that uses the gym

description and normal test set, the RS seems to have significantly

lower metrics than the two RS with the highest metrics. Using the

only new check-ins test set and the same data preprocessing, it seems

that the tripartite model improves every metric very significantly

by at least 2.95 times over the second best metrics. The fact that

the tripartite model seems to have the best metrics might show

how well the model is able to generalize training data to new gyms

that the user didn’t go yet. The tripartite model is able to leverage
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Table 9: Recall, MRR, and NDCG for data preprocessing that uses the activities and embeddings and data preprocessing that
uses the gym description for the normal test set and the only new check-ins test set.

Data preprocessing Data preprocessing that uses the activities Data preprocessing that uses the gym description

Recommendation system\Test set Normal test set Only new check-ins test set Normal test set Only new check-ins test set

Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10

Closest gyms to user 0.782 0.129 0.269 0.170 0.032 0.061 0.782 0.129 0.269 0.170 0.032 0.061

Only initial bipartite model embeddings - - - - - - 0.657 0.417 0.471 0.119 0.049 0.063

Bipartite model - - - - - - 0.599 0.346 0.403 0.119 0.057 0.069

Tripartite model 0.711 0.538 0.565 0.467 0.198 0.257 0.591 0.299 0.361 0.502 0.234 0.294

both the content information of the gyms, users, and activities, and

the relations between each other to generate embeddings for both

users and gyms. The metrics seem to show that the embedding of a

user, that is going to a new gym, is similar to the embedding of the

new gym going next which might lead the gym to rank higher on

the user recommendations and increase the RS metrics.

The hyperparameters combination that had the highest overall

evaluation metrics was the following for the Tripartite Model:

• learning rate: [0.0001, 0.0008]
• delta: [0.26, 0.30]
• hidden embeddings dimension: 2

7

• output embeddings dimension: 2
7

• number of layers: 3

• negative sample size: [1200, 1500]

5 CONCLUSIONS AND FUTUREWORK
My M.Sc. project aimed to understand if a GNN model can rec-

ommend new Gympass gyms to users.

The results of our GNN RS seem promising for the case of rec-

ommending users to new gyms that they are visiting for the first

time. They seem to show that a RS based on DL can predict which

new gym a user will go to next better than only location based

recommendation systems or simpler GNN models.

The obtained results support the understanding that a DL model

can recommend new Gympass gyms to users. The main contri-

bution of this work relies on building and validating a RS based

on GNN that infers how to model Gympass complex environment

into a graph, using a GNN model architecture learns users’ past be-

haviors and with the ranking function recommends gyms to users.

This thesis provides a GNN recommendation system with a trained

model showing promising results compared to the baselines.

For future work, it could be interesting to extend the experiments

reported in this dissertation to also other Gympass products such

as classes and apps. It would also be interesting to add more data

about the gyms to the gym features.

Besides BERT embeddings, there are other text embedding pre-

trained models that could be used in this thesis for comparison since

BERT only supports English but Gympass has gym descriptions

available in multiple languages.

Gympass gyms also have pictures that could be used in the RS

so that it takes into account the quality of the gym pictures when

recommending them to users.
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