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 Abstract—Point clouds represent 3D visual data in a very 

immersive and realistic way, offering to the users a large 

degree of navigation and interaction. For some key use cases, 

point clouds are potentially lighter and easier to acquire than 

other 3D representation models, thus offering an alternative 

with lower computational cost. To offer visual realistic and 

immersive experiences, notably the illusion of well-formed 

surfaces, point clouds typically require a large number of 

points. To make its storage and transmission feasible, efficient 

point cloud coding is essential. Recently, deep learning-based 

point cloud coding solutions have proven to be competitive in 

compression performance, excelling in distinct scenarios, 

although struggling to achieve similar results for sparser point 

clouds and lower coding rates. To tackle these limitations, this 

paper proposes a double-deep learning-based approach for 

point cloud coding by integrating a super-resolution tool. The 

main idea consists on converting sparser point clouds into 

denser ones via a down-sampling step performed before 

coding. Since this is a lossy process, a super-resolution step is 

included after decoding to mitigate the point losses and 

bringing the point cloud to the initial resolution. Furthermore, 

the sampling factor can be adaptively selected, thus offering 

additional flexibility to the point cloud characteristics. The 

proposed double-deep coding and super-resolution solution 

outperforms both the G-PCC Octree and V-PCC Intra point 

cloud coding standards achieving, respectively, 81.9% and 

22.3% rate reduction measured as BD-Rate for the PSNR D1 

metric. 

 
Index Terms—Deep learning, point cloud coding, point cloud 

super-resolution  

 

I. INTRODUCTION 

T is well recognized that visual data-based applications 

are spreading over all human activity domains, with 

realism and immersion becoming key requirements for 

these visual experiences. Point Clouds (PCs) are recognized 

as one of the most versatile 3D visual representation models. 

While providing a large degree of realism, immersion, 

interaction, and navigation freedom to the user, PCs 

standout from other representation models for being lighter 

(e.g., compared to meshes) as they only contain information 

regarding the point positions and not their connectivity, and 

easier to capture (e.g., compared to light fields). A PC can 

be defined as an unstructured set of 3D points defining the 

surface of a 3D object or scene, thus providing information 

regarding its shape, the so-called PC geometry. However, 

since this data might not be enough to offer realistic and 
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immersive experiences, PCs often include additional 

information, notably color/texture, and surface normals. 

These are the so-called PC attributes, which sit on top of the 

PC geometry. PCs may show rather different characteristics, 

namely regarding their point density. A PC can be 

characterized as dense if, for a fixed precision, the average 

distance between points is small, or as sparse, if otherwise. 

Independently of the PC characteristics, the large number of 

points required to create the illusion of well-formed and 

dense surfaces critically asks for compression efficient 

coding solutions, notably to make transmission and storage 

of PCs feasible in practice.  

Point Cloud Coding (PCC) has been an area of intense 

research in recent years. Acknowledging the need for 

interoperability, the MPEG standardization group has 

recently issued two PCC standards [1]: the Geometry-based 

PCC (G-PCC) and the Video-based PCC (V-PCC) 

standards. More recently, several Deep Learning (DL) based 

PC coding solutions have been proposed, achieving 

competitive performance. This led the JPEG standardization 

group to launch a Call for Proposals on JPEG Pleno Point 

Cloud Coding with the goal to develop a learning-based PC 

coding standard [2]. Despite the promising results, DL-

based PCC solutions for geometry fail to achieve the same 

level of compression performance for all types of PCs, 

commonly offering poorer performance for the sparser ones. 

To overcome this problem, PC grid/precision down-

sampling prior to coding became an interesting approach 

targeting to offer to the codec denser PCs. However, this 

naturally requires performing the corresponding grid up-

sampling step after decoding, to recover the original PC 

precision.  

In the literature, PC sampling comes in many flavors. In 

this paper, PC sampling is broadly defined as the set of 

operations able to change the PC resolution/precision or/and 

point density. In this context, two types of sampling 

operations deserve to be more precisely defined: grid 

sampling refers to the operations where the PC’s 

resolution/precision is modified by changing the voxel size; 

and set sampling refers to the operations over the number of 

points, i.e. point set cardinality. Despite being distinct, these 

operations are often performed together, notably when up-

sampling both the precision and the number of points, the 

so-called super-resolution. Naturally, these sampling 

operations may be more or less sophisticated, allowing to 

reach better quality at a complexity cost. 

In this context, this paper proposes a double DL-based PC 

geometry coding solution with adaptive super-resolution 

(2DL-PCC-ASR), capable of exploiting the PC 

characteristics, to achieve competitive rate-distortion (RD) 

performance, notably for PCs with different densities. The 

proposed super-resolution post-processing tool allows to 
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increase the reconstructed PC quality at virtually no 

additional rate cost and may be used with any type of 

geometry coding solution. The ‘double-deep’ attribute in 

2DL-PCC-ASR refers to the approach considered for both 

the PC geometry codec itself and the advanced super-

resolution tool. This is the first solution of this type in the 

literature and outperforms both the G-PCC Octree and V-

PCC Intra PCC standards for a large variety of PCs coded at 

different resolutions and rates. 

This paper is organized as follows: Section II reviews 

some related work, namely in PC coding and PC super-

resolution. Section III provides an overview of the proposed 

architecture and DL-based coding model, whereas Section 

IV focuses on the review of the DL-based super-resolution 

approach and respective training process. Section V presents 

the testing conditions and discusses obtained results. 

Finally, Section VI presents some final remarks. 

II. RELATED WORK 

This section briefly reviews the most relevant background 

work for the proposed solution, notably regarding both key 

PC geometry coding and PC super-resolution solutions. 

A.  Point Cloud Coding 

As mentioned before, two MPEG PCC standards have 

been recently launched [1], G-PCC and V-PCC. G-PCC 

leverages the use of a multi-level-of-detail tree to structure 

the PC geometry, creating a so-called octree. The octree can 

be fully coded to provide lossless compression or pruned for 

lossy compression. As for V-PCC, it targets dynamic PCs 

and relies on available video codecs, e.g., HEVC [3], to 

code selected 2D projections of the 3D geometry and color. 

This approach greatly benefits from the very high 

compression efficiency achieved with conventional video 

codecs, following decades of research and improvements. 

Despite being a PCC standard oriented towards coding 

dynamic PCs, the so-called V-PCC Intra mode allows to 

code static PCs. 

Given the considerable success of DL-based solutions in 

areas such as computer vision [4] and image coding [5], this 

technology was also brought to PCC. Among the most 

relevant DL-based PC geometry coding solutions in the 

literature, a few deserve to be highlighted. In 2020, Guarda 

et al. proposed the so-called Adaptive Deep Learning-based 

PCC (ADL-PCC) solution [6]. This is a block-based PC 

geometry codec that relies on a double Auto-Encoder (AE) 

architecture. The first AE is used to learn a compact latent 

representation of the PC geometry, thus performing 

compression through dimensionality reduction, whereas the 

second AE - a Variational AE (VAE) - is responsible for 

exploiting the statistical redundancy in the latents for 

optimal rate reduction with arithmetic coding [7]. The ADL-

PCC’s adaptive behavior is achieved through the parallel 

assessment of multiple DL models for each PC’s block at 

encoding time, where each DL model was trained to fit 

different block densities. The model reaching the smaller 

RD cost is selected for coding and signaled to the decoder in 

the bitstream. This allows ADL-PCC to dynamically adapt 

to blocks/PCs with distinct characteristics while keeping 

competitive RD performance. However, despite showing 

good compression results for rather dense PCs, the 

performance drops when handling sparser PCs, and low 

rates are often difficult or impossible to reach. 

Another relevant PC geometry solution in the literature is 

the so-called Multiscale PC Geometry Coding (M-PCGC) 

proposed by Wang et al. in 2021 [8]. This solution relies on 

two modules – the sampling module and the Inception 

Residual Network [9]; while the first is responsible for 

changing the PC scale to offer multiscale capabilities, the 

second is responsible for extracting meaningful features. 

Unlike ADL-PCC, M-PCGC relies on sparse tensors and 

convolutions to represent and process the PC features, 

respectively, allowing to greatly reduce the memory and 

computation complexity. After three steps of down-

sampling and feature extraction, an octree encoder is used 

for final coding using an arithmetic encoder. At the decoder 

side, the architecture is mirrored with appropriate up-

sampling instead of down-sampling modules. Competitive 

RD performance is obtained for a varied range of bitrates, 

thus showing the benefits of using appropriate sampling 

tools in a coding context to adapt to varying PC 

characteristics. 

B.  Point Cloud Super-Resolution 

Most PC up-sampling solutions in the literature can be 

organized in two main categories: optimization-based and 

learning-based. In this paper, the focus is naturally on the 

learning-based solutions as they tend to perform better under 

more demanding circumstances [10]. One of the most 

relevant learning-based super-resolution solutions has been 

proposed by Akhtar et al. in 2020 [11]. This solution is 

based on a two-step process where the PC resolution is first 

increased by simply multiplying the points’ coordinates by 

the up-sampling factor, thus performing a basic grid up-

sampling, followed by a PC geometry densification process 

using an advanced, learning-based set up-sampling solution. 

For this latter stage, the proposed architecture adopts a 3D 

variation of a 2D convolutional model, called U-net [12], 

used to extract and expand PC features to predict the 

optimal location of the new, super-resolved points in the 

original PC resolution/precision. The results obtained show 

a considerable quality improvement over the basic grid up-

sampling solution. In 2022, this solution has been extended 

into a more powerful super-resolution solution capable of 

dealing with much larger and sparser PCs, notably LiDAR 

PCs [13].  

A promising meta-learning-based advanced set up-

sampling solution, named Meta-PU, has been proposed by 

Ye et al. in 2021 [10]. Meta-learning is the ability of 

learning to learn which, in practice, translates into the use of 

two networks in parallel: the main network, a residual graph 

convolutional network is used for feature extraction and 

processing, while a second fully connected network, the so-

called meta-network, is responsible for adjusting the main 

network’s behavior in real time, by refining some of its 

weights. This approach offers adaptability to varying PC 

densities, allowing to use a single trained DL model for any 
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sampling factor while outperforming the state-of-the-art set 

up-sampling solutions, namely PU-GAN [14]. 

III. OVERALL 2DL-PCC-ASR ARCHITECTURE AND 

DL-BASED CODING MODEL 

This section will offer an overview of the proposed 2DL-

PCC-ASR solution by presenting the overall PC geometry 

coding and super-resolution pipeline and walkthrough; 

finally, the DL coding model will be also addressed. 

A. Architecture and Walkthrough 

The overall 2DL-PCC-ASR architecture is presented in 

Fig. 1. The pipeline’s walkthrough proceeds as follows: 

• PC-Level Sampling Factor Selection – This module is 

responsible for estimating the optimal down-sampling 

factor for PCC, e.g. using some point distance-based 

algorithm. 

• PC Block Partitioning – This module breaks down the 

PC into binary 3D blocks of fixed size where ‘1’ and ‘0’ 

correspond to full and empty voxels, respectively. This is 

a vital step as all the following operations are performed 

at the block level. 

• Basic Block Down-sampling – This module reduces the 

input block resolution/precision, thus increasing the voxel 

size by the previously selected sampling factor. This is a 

basic operation as, for each point/voxel, a simple 

coordinate scaling is performed, followed by a rounding 

operation. This is an irreversible and lossy process as 

some points may be lost, especially when dealing with 

dense blocks, as multiple points in the original set may 

collapse into a single point/voxel in the down-sampled 

set. 

• DL-based Block Encoding – The encoder is responsible 

for representing the binary input block in the most 

compact way for the required trade-off between quality 

and rate. More details will be provided in the next sub-

section. 

• Binarization Optimization – This module is responsible 

for selecting the optimal number of filled voxels to be 

reconstructed at the decoder, which is determined by the 

product between the number of points in the input block 

and an optimization factor. This factor is selected from 

within a given range, by optimizing the reconstruction 

quality using a selected distortion metric. In practice, only 

the number of points to be reconstructed for each block 

needs to be transmitted to the decoder. Since the proposed 

architecture includes two binarization modules, this 

optimization process can either generate a single factor 

for both binarization modules or two distinct factors, one 

for each binarization step. In this paper, the later approach 

was adopted. 

• DL-based Block Decoding – The decoder is responsible 

for recovering from the coding bitstream a 3D block with 

the probabilities of each voxel being filled. More details 

on this module will be provided in the next sub-section. 

• Binarization – This module is responsible for converting 

the voxels occupancy probabilities into binary values. In 

this case, the so-called optimized Top-K approach is 

considered where the K voxels with largest decoding 

probabilities are filled; in this context,  K is the number of 

points determined by the previously mentioned binary 

optimization module. This approach establishes a strong 

correlation and fine control between the number of points 

in the original and reconstructed blocks. 

• Basic Block Up-sampling – This module restores the 

original block resolution/precision by simply multiplying 

the voxels’ coordinates by the selected sampling factor, 

thus reducing the voxel size. This basic operation 

inevitably produces a sparser block than the original since 

it does not recover the points that were lost during the 

voxel merging process in the down-sampling module. 

• Advanced Block Up-sampling (ABU) – ABU is an 

optional post-processing module performing advanced set 

up-sampling, thus increasing the number of points in the 

block to eventually recover the down-sampling losses. 

This module targets at increasing the PC quality at no rate 

cost. 

• PC Block Merging – Reverts the PC block partitioning 

operation, thus merging all the decoded and super-

resolved blocks into a single reconstructed PC. 

B. Deep Learning-based Coding Model 

The DL-based coding model is central in the proposed PC 

geometry coding solution. However, it is important to 

 

Fig. 1. 2DL-PCC-ASR architecture including the sampling related (blue), partitioning/merging (yellow), coding (red), 

binarization (green) and advanced up-sampling (purple) modules. 
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highlight that this overall is compatible with any coding 

approach, DL-based or not; for example, one of the MPEG 

PCC codecs may also be used. In this paper, a variation of 

the ADL-PCC codec [6] will be considered for performance 

assessment purposes. 

As ADL-PCC, the adopted DL-based coding model 

adopts an AE for feature extraction and processing, and a 

VAE to characterize the latents statistical properties to be 

used for efficient entropy coding. However, the DL-based 

coding model adopted in this paper follows a more complex 

AE architecture with the convolutional layers for feature 

extraction being complemented with a modified version of 

the well-known Inception Residual Network [9]; moreover, 

the number of filters increases as the network deepens. Due 

to these additions, the number of trainable parameters grows 

to 6.6 million, a 2-times increase over the baseline version. 

Additionally, the ADL-PCC approach for PC adaptability 

based on the usage of multiple trained DL coding models in 

parallel has been dropped in favor of the previously 

described optimized binarization solution. It is worth noting 

that the DL-based coding models were trained in the same 

conditions as ADL-PCC in [6], namely using the same RD 

loss function. 

IV. ADVANCED BLOCK UP-SAMPLING SOLUTION 

This section provides an in-depth description of the 

Advanced Block Up-sampling (ABU) module. This module 

consists of two complementary processes: an advanced set 

up-sampling performed by the DL-based up-sampling model 

followed by a final binarization process in which the super-

resolved voxels’ filling probabilities are converted into 

binary occupancy values, as described in Section III.A. 

A. DL-based Up-Sampling Architecture 

The DL-based up-sampling module, i.e. the ABU model, 

is based on the up-sampling solution proposed by Akhtar et 

al. in 2021 [11], a variation of the 3D Convolutional U-net 

[15]. The main differences between the proposed DL-based 

ABU model and the up-sampling model in [11] can be 

summarized as follows: firstly, the adopted U-net model 

considers dense 3D convolutions instead of the sparse ones 

used in [11], since the sparse ones are not available in 

TensorFlow; secondly, the number of channels in the input 

layer has been decreased to half, and thus C=16, since this 

allowed achieving the same performance at a lower 

complexity cost. The proposed architecture, presented in 

Fig. 2, is invariant to the sampling factor used since basic 

grid up-sampling is performed before. In total, each ABU 

model includes 7 288 893 weights. 

The ABU model gets as input a basic-up-sampled binary 

block of fixed size, e.g. 64 × 64 × 64 × 1, where the first 

three dimensions correspond to the three spatial block 

dimensions and the fourth to the geometry channel denoting 

the occupancy value assigned to each voxel. The ABU 

model includes the following layers: 

• Input Convolutional Layer (orange) – Responsible for 

converting the input binary block into the latent 

representation space with 16 channels, C = 16. 

• Down-Sampling Convolutional Layer (blue) – Since a 

stride of 2 is considered, this layer is responsible for 

reducing the feature map size to half while doubling the 

number of filters; this layer is applied five times on the 

contracting path, the left branch of the U-net. 

• Inception Residual Network (IRN, purple) – This 

module is responsible for feature extraction; see its 

architecture in Fig. 2 a). The Inception Residual Blocks 

(IRB) offer a great complexity-performance trade-off 

since although deep they are lightweight, allowing to 

extract meaningful features based on several local 

neighboring contexts with reduced impact on training 

 

Fig. 2. (a) DL-based ABU model architecture; (b) IRN layer 

architecture with three Inception Residual Blocks (IRBs) 

based on [11]. For every convolution layer (conv), k 

represents the kernel size, f the number of filters and s the 

stride. Note that each convolutional layer is followed by a 

ReLU activation function, except the last conv layer in (a) 

which uses a sigmoid activation. 
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time. Despite using this module several times, the 

complexity growth is limited as the IRBs rely on small 

size kernels, as shown Fig. 2 b). Furthermore, the use of 

these small filters allows to highlight the most relevant 

features on a local scope, hence capable of dealing with 

fine details as desired. Moreover, the use of a skip 

connection allows to pass forward the features extracted 

in previous layers to preserve the global context. This 

module is used between sampling convolutional layers 

and applied five times in each path. 

• Up-Sampling Deconvolutional Layer (green) – 

Symmetrically to the down-sampling layers, these layers 

are responsible for feature up-sampling with a stride of 

two; this layer is applied 5 times on the expanding path, 

the right branch of the U-net. 

• Merging Convolutional Layer (red) – After processing 

the up-sampled features, a merging process occurs to 

combine the information obtained with the up-sampled 

features and the skip-connection; this layer is applied five 

times in the expanding path. 

• Output Convolutional Layer (orange) – This layer uses 

expanded features to predict the probability of each voxel 

being occupied; thus, the output block includes filling 

probabilities and not binary values as the input block. 

Since the output is a probabilities block, the same 

binarization process as described in Section III.A is here 

required to predict the final voxel occupancy. It is important 

to recall that this is an optimized Top-K approach, and the 

optimization factor used may be the same as in the codec 

itself for a faster coding process or distinct for optimal 

performance. 

B. Training Data, Loss Function and Hyperparameters 

The training process is a fundamental procedure for every 

DL model, hence it should be carefully examined. 

Sampling Factors: For simplicity, the sampling factors 

were narrowed down to powers of two. However, due to the 

complexity of the ABU models, and consequent memory 

restrains verified during the training process, only two 

models were trained, notably for sampling factors 2 and 4. 

Training and Validation Material: 28 PCs were 

selected from the JPEG Common Training and Test 

Conditions (CTTC) PC dataset [16] to form the training data 

and four as validation. Each of these PCs was divided into 

blocks of fixed size, 64×64×64 and 128×128×128 when 

training for sampling factor of 2 and 4, respectively. To 

simulate the super-resolution process, the resolution of each 

block is reduced using a basic grid down-sampling operation 

followed by the symmetric basic grid up-sampling. Given 

that the down-sampling process is lossy, the basic up-

sampled blocks are not the same as the original blocks. This 

is desirable as the ABU model’s task is to learn how to 

mitigate the down-sampling losses. The basic down- and up-

sampled blocks are used as input training data, and the 

original blocks are set as reference for the training loss. 

Given the coding context in which ABU is here considered, 

it is only natural to have the coding process involved in the 

training dataset. However, the best final RD performance 

was obtained without coding during training, as described 

above. 

Loss Function: A distortion-only loss function is 

required since there is no coding involved. Therefore, the 

so-called Focal Loss (FL) [6] was used. Regarding the 

parameters γ, expressing the relevance of voxels hard to 

classify, and α expressing the imbalance between empty and 

occupied voxels, through experimental testing, γ = 2 and α = 

0.7 were considered appropriate. 

Hyperparameters: The ABU models have been trained 

using ADAM optimizer [17] with learning rate of 10-4, and a 

batch size of 8 and 1 for sampling factors of 2 and 4, 

respectively. Early stopping was used to prevent overfitting, 

assuring that the model generalizes well and is not biased 

towards the training data. A patience of 5 epochs was 

defined, meaning that the training stopped when the 

validation loss did not decrease for 5 consecutive epochs. 

The models were trained for a total of 16 and 44 epochs for 

sampling factors 2 and 4, respectively. 

V. PERFORMANCE ASSESSMENT  

This section reports the 2DL-PCC-ASR RD performance, 

namely when considering the proposed ABU super-

resolution model. All results presented have been obtained 

under the conditions defined in the JPEG CTTC [16]. 

A. Test Dataset, Benchmarks and Performance Metrics 

To obtain meaningful results, the test conditions must be 

carefully defined. 

Test Dataset: In DL-based coding, it is vital that the test 

data is not used for training. Moreover to fully assess the 

2DL-PCC-ASR performance, the test dataset must include 

PCs with distinct characteristics, namely in density. Having 

this in mind, four PCs were selected, notably: Longdress, 

Romanoillamp, RWT130 and Housewithoutroof; the first 

three test PCs are rather dense, the last one is much sparser.  

Benchmarks: As in JPEG CTTC, the benchmarks are the 

MPEG PCC standards – G-PCC Lossless, G-PCC Octree 

and V-PCC Intra, all using their respective reference 

software version 14. Moreover since 2DL-PCC-ASR is an 

evolution of ADL-PCC [6], its RD performance is also 

considered. 

Performance Metrics: Given the 2DL-PCC-ASR 

compression goals, the RD performance is assessed using 

the point-to-point PSNR D1 and point-to-plane PSNR D2 

geometry quality metrics, as recommended in the JPEG 

CTTC [16], bits per input point (bpp) to measure the rate. 

B. 2DL-PCC-ASR Configurations RD Performance 

This sub-section reports the 2DL-PCC-ASR RD 

performance, notably with and without ABU to clearly show 

its impact on the final RD performance. Fig. 3 shows RD 

performance results for multiple 2DL-PCC-ASR 

configurations as well as the convex hull curve 

corresponding to the best set of configurations along the 

rate. The results show that the lower coding rates can only 

be achieved when performing down-sampling, thus showing 

how critical this step is to cover a large range of rates. 

However, given the lossy nature of the basic down-sampling 



6 

 

operation, the super-resolution proves to be indispensable to 

mitigate the quality drops and achieve competitive RD 

performance. The gains obtained with ABU decrease with 

the rate, notably due to the appearance of strong coding 

artifacts for the lower rate points. 

When considering denser PCs, Fig. 3 a) to c), ABU gains 

go from 3 to 10 dB over the basic up-sampling 

configuration, with virtually no impact on rate (only a 

couple of binarization parameters). In opposition, for the 

sparser PC, Fig. 3 d) shows that ABU has a similar behavior 

although with smaller gains, improving up to 2 dB over the 

basic up-sampling configuration. For this PC, no results are 

included for sampling factor 1 since competitive results are 

only obtained when considering down-sampling, i.e. for 

sampling factors larger than 1.  

Finally, the convex hull curve shows the set of best 2DL-

PCC-ASR performing configurations, thus selected for 

comparison with the benchmarks in the next sub-section.  

C. Benchmarking RD Performance 

This sub-section aims at comparing the 2DL-PCC-ASR 

and MPEG PCC standards RD performance. In the charts, 

the black vertical line indicates the rate at which G-PCC 

achieves lossless quality; so only the RD points to the left of 

that line are relevant for lossy coding. The results in Fig. 4 

demonstrate that the adopted improvements allow the 

proposed 2DL-PCC-ASR to achieve much better RD 

performance than the previous ADL-PCC solution (with 

53.2% rate reduction measured as BD-Rate for PSNR D1). 

The proposed solution largely outperforms G-PCC Octree 

(with 81.9% rate reduction measured as BD-Rate for PSNR 

D1), which typically performs better for sparse PCs, and 

outperforms/equals V-PCC Intra which is based on very 

powerful video coding standards (achieving a 22.3% rate 

reduction measured as BD-Rate for PSNR D1). This occurs 

for PCs with rather different characteristics, namely density.    

The fact that 2DL-PCC-ASR outperforms or is equivalent 

to V-PCC Intra in RD performance is a great achievement 

for 2DL-PCC-ASR since V-PCC Intra represents the best of 

conventional PC geometry coding as it relies on powerful 

video coding standards, improved along the last three 

decades. It is relevant to mention that it was not possible to 

code Housewithoutroof with the V-PCC Intra reference 

software since this coding solution is not appropriate for 

sparse PCs. 

Overall, the RD performance show that the proposed 

 

Fig. 3. PSNR D1 RD performance for 2DL-PCC-ASR in multiple configurations, namely for distinct sampling factors (SF) 

and with or without ABU, for all four test PCs: a) Longdress, b) Romanoilamp, c) RWT130, d) Housewithoutroof. 

 

Fig. 4. PSNR D1 and PSNR D2 RD performance comparison between 2DL-PCC-ASR and MPEG standards – G-PCC 

Octree, V-PCC Intra – and ADL-PCC, for all four test PCs: a) Longdress, b) Romanoilamp, c) RWT130, d) 

Housewithoutroof. 
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2DL-PCC-ASR solution achieves top-notch RD 

performance independently of the PC characteristics. 

VI. FINAL REMARKS AND FUTURE WORK 

This paper proposes a double DL-based approach for PC 

geometry coding and super-resolution in a single pipeline, 

capable of outperforming the state-of-the-art MPEG PCC 

standards.  

The gains obtained with the ABU super-resolution model 

are very significant and can be as high as 10 dB when 

coding dense PCs with high rates. Future work will target 

the extension of this coding pipeline to jointly code 

geometry and color. Additionally, a single ABU model will 

be developed to accommodate all sampling factors. 
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