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Abstract—In this paper, we present the adaptation of a
Learning-based Model Predictive Control (LMPC) architecture
for autonomous racing to the Formula Student Driverless (FSD)
context. This reference-free controller is able to learn from
previous iterations by building an appropriate terminal set and
cost function from collected trajectories and input sequences.
We improve the real-time capability of the framework to satisfy
the FSD requirements by implementing the controller in C++
and solving the optimization in a commercial solver designed for
embedded solutions of Model Predictive Control (MPC). One
major setback in autonomous racing is that accurate vehicle
models that cover the entire performance envelope are highly
nonlinear and difficult to identify. To address this problem,
we use both past and current measurements and Machine
Learning (ML) techniques to predict the nominal model error. In
particular, we use two sparse Gaussian Process Regression (GPR)
approximations for model learning. We then test this controller
in a vehicle simulator dedicated to the FSD competition. We show
that the original architecture is able to improve its performance
by around 10% measured as lap time reduction. However, the
nominal model mismatch becomes severe as the controller pushes
for incrementally more aggressive behaviour which results in not
fully abiding by the track width constraint. We then employ the
GPR model which is able to reduce the nominal model error
by as much as 75% and safely improve the lap times by up to
12%. We have tested on two different tracks to show signs of
the framework being track agnostic.

I. INTRODUCTION

Autonomous driving (AD) has been an increasingly active
field of research for academia and the industry, especially

in the last two decades, with pioneering events such as the
2005 DARPA Grand Challenge [1]. This thesis focus on
Autonomous Racing, a subfield of Autonomous Driving that
aims to contribute to the broader problem by introducing
innovations in autonomous technology through sport [2]. This
kind of synergy is well established between Formula One and
the automotive industry.

[3] surveyed the state of the art on planning and control
algorithms for AVs in the urban setting. Several controllers
that resort to a kinematic bicycle model have been designed.
For instance, the Stanley [1] controller. To handle more de-
manding driving manoeuvres, more complex controllers must
be designed.

Advances in computing hardware and mathematical pro-
gramming algorithms have made Model Predictive Control
feasible for real-time use in AD [5]. This model-based tech-
nique relies on a sufficiently accurate state transition model

whose complexity can only grow while the real-time feasibility
of the online optimization framework is ensured.

Machine Learning techniques have been used to improve the
formulation of the MPC using collected data [6]. This paper’s
pivot will be Learning-based Model Predictive Control. Most
research has focused on using Machine Learning tools as a
data-based adaptation of the prediction model or uncertainty
description - Model Learning. Notwithstanding, learning has
also targeted an MPC controller’s parameterisation, e.g. the
cost function, horizon length, or terminal components.

Several LMPC architectures have been proposed. Zeilinger’s
research group introduced a cautious Learning-based Model
Predictive Controller that combines a nominal model with
Gaussian Process Regression techniques to model the un-
known dynamics [7]. It has been shown to increase safety and
performance and has been applied to trajectory tracking with
a robotic arm [8]. Schoellig’s Dynamic Systems Lab proposed
using Bayesian Linear Regression to model the unknown
dynamics [9]. These researchers argue that this simple model
is more accurate in estimating the mean behaviour and model
uncertainty than GPR and generalizes to novel operating
conditions with little or no tuning.

We target the 10-lap trackdrive event of the Formula
Student Driverless autonomous racing competition. Formula
Student (FS) is a student engineering design competition
where participating university teams design, build, test and
compete with a single seat formula racecar. The autonomous
driving competition environment is a rather controlled one. For
instance, no other agents, such as other vehicles or pedestrians,
are immediately near the track. The track is composed of blue
and yellow cones on the left and right borders, respectively.
Exit and entry lanes are marked with small orange cones, while
big orange cones are used in the start, finish and timekeeping
lines.

AMZ Driverless, an FSD team, used a learning-based
controller to tackle the issue relevant to autonomous racing
that accurate vehicle models that cover the entire performance
envelope are highly nonlinear and difficult to identify [10].
The proposed formulation considers a simple nominal vehicle
model where GPR models residual model uncertainty. The
approach is based on Model Predictive Contouring Control
(MPCC) [11] and cautions MPC [7]. This framework was
tested on an FSD prototype, achieving lap-time improvements
of 10%.
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The main contribution of this work is the adaptation of
Professor Borrelli’s MPC Lab terminal component learning
LMPC architecture to the FSD context and the computational
improvement of its implementation. Moreover, we further
improve the ML technique that had been used for the model
learning process. We show the architecture is able to improve
the lap time by 12% over the course of the event.

II. THEORETICAL BACKGROUND

We use bold lowercase letters for vectors x ∈ Rn and bold
capitalized letters for matrices X ∈ Rn×m, while scalars are
non-bold.

A. Model Predictive Control

The idea of Receding Horizon Control is that an infinite
horizon sub-optimal controller can be designed by repeatedly
solving Finite-Time Constrained Optimal Control (FTCOC)
problems in a receding horizon fashion [4]. At each sampling
time, starting at the current state, an open-loop optimal control
problem is solved over a finite horizon. The computed optimal
manipulated input signal is applied to the process only during
the following sampling interval [t, t + 1]. At the next time-
step t + 1 a new optimal control problem based on new
measurements of the state is solved over a shifted horizon.

MPC is a Receding Horizon Control problem where the
FTCOC problem with a prediction horizon of N is computed
by solving the following optimization problem online:

Jjt→t+N (xjt ) =

min
ut|t,··· ,ut+N−1|t

[
t+N−1∑
k=t

q( xk|t, uk|t) + p(xt+N |t)

]
(1a)

s.t.

xk+1|t = Axk|t +Buk|t ∀k ∈ [t, · · · , t+N − 1] (1b)
xk|t ∈ X , uk|t ∈ U ∀k ∈ [t, · · · , t+N − 1] (1c)
xt+N |t ∈ Xf (1d)
xt|t = x(t) (1e)

where x is the state and u the control input. The subscript
k|t represents a given quantity in the prediction horizon
with respect to time t. xt|t and xt+N |t represent the initial
and terminal state of the system starting at time t, respec-
tively. Equation (1e) imposes the current system state to be the
initial condition of the generic FTCOC problem. Equation (1b)
represents the discrete-time linear time-invariant system dy-
namics. State and input constraints are given by Equation (1c).
The terminal constraint is given by Equation (1d) which forces
the terminal state xt+N |t into some set Xf . The stage q(·, ·)
and terminal cost p(xt+N |t) are any arbitrary continuous,
strictly positive functions.

B. Learning-based Model Predictive Control

[12] first proposed the LMPC architecture which this work
builds upon. This is a reference-free iterative control strategy
able to learn from previous iterations. At each iteration, the
initial condition, the constraints, and the objective function do

not change. The authors show how to design a terminal safe
set - SS - and a terminal cost function - Q-function - such
that the following theoretical guarantees hold:
• Nonincreasing cost at each iteration.
• Recursive feasibility, i.e. state and input constraints are

satisfied at iteration j if they were satisfied before.
• Closed-loop equilibrium is asymptotically stable.
This framework’s main contribution is to learn terminal con-

straints rather than model learning. Particularly, the terminal
cost is given by the Q-function: p(xt+N |t) = Qj−1(xt+N |t);
whereas the terminal constraint corresponds to the terminal
safe set SS: Xf = SSj−1.

x∗,jt:t+N |t =
[
x∗,jt|t , · · · , x

∗,j
t+N |t

]
(2a)

u∗,jt:t+N |t =
[
u∗,jt|t , · · · , u

∗,j
t+N−1|t

]
(2b)

The Equations (2a) and (2b) are the optimal state and control
solution at time t of iteration j, respectively. At this instance,
the control input applied to the system is the first element of
u∗,jt:t+N |t:

ujt = u∗,jt|t (3)

At the jth iteration, the inputs applied to the system and
the corresponding state evolution are collected in the vectors
given by Equation (4b) and Equation (4a), respectively.

xj =
[
xj0, x

j
1, · · · , x

j
t , · · ·

]
(4a)

uj =
[
uj0, u

j
1, · · · , u

j
t , · · ·

]
(4b)

The safe set SSj , given by Equation (5) is the collection
of all state trajectories at iteration i for i ∈ M j - the set
of indexes k corresponding to the iterations that successfully
steered the system to the final point xF .

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(5)

The Qj function, defined in Equation (6), assigns to every
point in the sampled safe set the minimum cost-to-go along
the trajectories therein.

∀x ∈ SSj , Qj(x) = J i
∗

t∗→∞(x) =

∞∑
k=t∗

q(xi
∗

k , u
i∗

k ) (6)

where i∗ corresponds to the iteration that minimizes such cost
starting at that particular state x and t∗ is the respective time
of that state in that iteration.

[12] provides detailed proof of the theoretical guarantees
stated and the conditions for which these hold.

C. Gaussian Processes Regression

Gaussian Processes is a non-parametric, probabilistic Ma-
chine Learning approach to learning in kernel machines.
By focusing on Gaussian processes, the problem becomes
computationally tractable. Furthermore, it provides a fully
probabilistic predictive distribution, including estimates of
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the uncertainty of the predictions. For a detailed description
of GPR, the author refers the reader to the book Gaussian
Processes for Machine Learning by [13].

Consider now an unknown latent function g : Rnz → Rng

that is identified from a collection of inputs zk ∈ Rnz and
corresponding outputs yk ∈ Rng .

yk = g(zk) + wk (7)

where wk ∼ N (0,Σw) is independent and identically
distributed Gaussian noise with diagonal variance Σw =
diag

(
[σ2

1 , · · · , σ2
ng

]
)
. The set of n input and output data pairs

form a dictionary D:

D =
{
Y = [yT1 ; · · · ;yTn ] ∈ Rn×ng , (8)

Z = [zT1 ; · · · ; zTn ] ∈ Rn×nz

}
(9)

Assuming a Gaussian prior on g in each output dimension
d ∈ {1, · · · , ng}, such that they can be treated independently,
the posterior distribution in dimension d at an evaluation point
z has mean and variance given by Equations (10a) and (10b),
respectively. Further, in this situation, one refers to Y as y.
That is, there is a collection of nd n-dimensional vectors yd.

µd(z) = kdzZ
(
Kd

ZZ + Iσ2
d

)−1
yd (10a)

Σd(z) = kdzz − kdzZ
(
Kd

ZZ + Iσ2
d

)−1
kdZz (10b)

where Kd
ZZ is the Gram matrix, i.e. [Kd

ZZ]ij = kd(zi, zj),
[kdZz]j = kd(zj , z), kdZz = (kdZz)T and kdzz = kd(z, z)
corresponds to the kernel function used.

D. Sparse Approximations for Gaussian Process Regression

The computational complexity of GPR strongly depends on
the number of data points n. In particular, a computational
cost of O(n3) is incurred whenever a new training point is
added to the dictionary D. This is due to the need to invert(
Kd

ZZ +Iσ2
d

)
which is a n×n matrix. Besides, the evaluation

of the mean and variance have a complexity cost of O(n) and
O(n2), respectively.

A host of sparse approximation techniques have been pro-
posed to allow the application of GPs to large problems in
Machine Learning [14]. An additional set of m < n latent
variables ḡ = [ḡ1, · · · , ḡm], which are called inducing vari-
ables or support points, are used to approximate Equation (10).
These are values of the Gaussian Process evaluated at the
inducing inputs Zind = [z̄T0 ; · · · ; z̄Tm]. The latent variables are
represented as ḡ rather than ȳ as they are not real observations.
Thus, it does not make sense to include a noise variance.

The simplest sparse approximation method is the Subset
of Data (SoD) approximation, i.e. solves Equation (10) by
substituting Z by Zind. It is often used as a baseline for sparse
approximations. The computational complexity is reduced to
O(m3) for training; and O(m) and O(m2) for the mean and
variance, respectively. In order to improve the chances of good
performance, rather than selecting the m points randomly,
researchers have designed methods to select which points are
included in the active set [15].

If D is not updated online, that is, with new datapoints
collected as they are generated, every quantity except those
that depend on the evaluated test case z can be precomputed.
Specifically, only kdzZind

needs to be computed at each sam-
pling time since it depends on new regression feature states
z.

The Fully Independent Training Conditional (FITC) [16]
assumes all the training datapoints are independent. The
computational complexity is O(nm2) initially, and O(m) and
O(m2) per test case for the predictive mean and variance,
respectively. FITC can be viewed as a standard GP with a
particular non-stationary covariance function parameterized by
the pseudo-inputs. The mean and variance are given by:

µd(z) = kdzZind
ΘKZindZΛ−1yd = kdzZind

id (11a)

Σd(z) = kdzZind
K−1

ZindZind
KZindz −KzZind

ΘKZindz (11b)

where Θ =
(
KZindZind

+ KZindZΛ−1KZZind

)−1

and Λ =

diag
(
KZZ−KZZind

K−1
ZindZind

KZindZ

)
. id is the information

vector taken for each d sparse model.

III. METHODS

A. LMPC for Autonomous Racing

Rosolia and Borrelli first introduced in [17] the adaptation of
the core LMPC architecture to the autonomous racing problem.
This is formulated as a minimum time problem, where an
iteration j corresponds to a lap. Therefore, the stage cost is
given as follows:

q(xk, uk) =

{
1 if xk /∈ L
0 if xk ∈ L

(12)

where L is the set of points beyond the finish line. A slower
trajectory contains more points until the finish line. Thus, has
a greater cost associated.

The vehicle’s dynamics are represented by the states and
inputs vector quantities in Equation (13a) and Equation (13b),
respectively.

x = [s, ey, eψ, vx, vy, r] (13a)
u = [a, δ] (13b)

where s is the distance along the track’s centerline; ey and eψ
are the lateral distance and heading angle errors between the
vehicle and the centerline, respectively. These quantities are
given in the curvilinear abscissa reference frame, see Figure 1,
also known as the Frenet reference frame. In particular, a
given track is defined by the curvature k(s) and maximum
admissible lateral error emaxy (s) along the track’s centerline.
vx and vy are the longitudinal and lateral vehicle velocities,
respectively, while r is the vehicle’s yaw rate. The inputs are
the longitudinal acceleration a and the steering angle δ.

[18] further extended this architecture by proposing a local
LMPC that significantly reduced the computational burden by
using a subset of the stored data. In particular, the local convex
safe set CSjl is built around the candidate terminal state ct
using the NSS

p -nearest neighbours from each of the previous
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Fig. 1: Frenet Frame [reprinted from [17]]

NSS
l laps. Notice that NSS

l = j−l. These points are collected
in the matrix Dj

l , defined in Equation (14), which is updated at
each time step. The candidate terminal state ct is the estimated
value for xt+N |t, calculated at time t− 1. The approximation
of the cost-to-go is computed using the costs associated with
the selected states in Dj

l .

Dj
l = [xlt1 , · · · ,x

l
tNSS

p

, · · · ,xjt1 , · · · ,x
j
tNSS

p

] (14)

The original LMPC architecture represents the vehicle’s
pose in the local coordinate frame, Equation (13a). However,
we found that the discretization method used that assumes
constant track curvature κ within a sampling period fails to
properly describe complex tracks. In the FSG track, within
a single meter, the curvature can change as much 0.14 m−1

which is almost half of the track’s maximum curvature. At a
control frequency of 10 Hz it takes a velocity of just 10 m s−1

to travel 1 m. Thus, proving that this modelling strategy is
unfit. The trajectory behaviour at a given corner becomes very
sharp rather than smooth. I argue that the authors in [18],
[19] might have not faced this issue because they have shown
results for constant curvature corners.

Therefore, I have decided to change the vehicle model’s
pose states to global coordinates to fix this issue. s and ey are
still calculated because they provide immediate information
regarding the track but they are not used to characterize the
vehicle’s pose dynamics. The longitudinal control input is P ∈
[−1, 1] which represents a pedal setpoint. This corresponds to
the normalized acceleration and brake pedal travel. This is the
way the actual prototype is controlled both in simulation and
reality. Thus, for our application, Equation (13) becomes:

x = [x, y, ψ, vx, vy, r] (15a)
u = [P, δ] (15b)

where x is the vector of states that describe the vehicle’s
movement and u is the vector of control inputs.

The cost function has five main parts. First, the derivative
terms apply a penalty on the squared change of a given quan-
tity between consecutive steps along the prediction horizon,
both for dynamic state and inputs. This enables one to control
how aggressively the controller behaves and obtain smooth
trajectories. A quadratic cost is applied on vy to act as a
regularization cost which forces the vehicle into its stable

domain and helps convergence. A quadratic cost is applied
on the lag error which measures the accuracy of the global to
local coordinate transformation [11].

The fourth part concerns the soft constraints on the states.
Bounds on the states should not be implemented as hard
constraints since one cannot exclude that the real system
moves outside the constraint range due to, for instance, model
mismatch which would render the problem infeasible [4].
Thus, the bound on a given state x ≤ xmax can be approxi-
mated by x ≤ xmax + ε where ε ≥ 0 and a term l(ε) is added
to the cost functional. It can be shown that l(ε) = uε + vε2

with a sufficiently high u and v > 0 ensures that no constraint
violation occurs provided there exists a feasible input. The
bounded states are vx and ey . ey needs to be bounded to
stay within the track width. Finally, a longitudinal and lateral
velocity ellipse is implemented to ensure the vehicle remains
within its physical limits.

Finally, the last two terms constitute the penalty on the
terminal components of the MPC. A linear cost is applied
to the product of αi - the coefficients of the local safe set’s
Dj
l convex hull - and Qj - the cost-to-go of each point in

the safe set (Equation (6)). Moreover, a quadratic penalty is
applied to the error between the terminal state and the safe
set points Dj

l , i.e. xt+N |t − αiDj
i (ct), for each point i in the

safe set. While this slack term ensures the terminal state lies
within the convex hull, the terminal cost favours points in the
safe set that resulted in faster laps.

Bounds on both inputs and their rate are applied. These
bounds may be more restrictive than the actual physical limits
imposed by the robotic platform. The pedal setpoint has no
relevant rate physical limit but imposing this bound ensures
wheel slippage is avoided in case the derivative cost did not
achieve this already. The steering setpoint has a maximum
angular velocity constraint which results from the servomotor
limits.
ujt is the control actuation that is to be applied at the current

sampling time. It corresponds to the previous sampling time
solution shifted by one step, Equation (16). This delay applied
to the system aims to account for solver processing time -
which is significant in real-time and may be inconsistent across
the experiment - and to keep a constant node rate.

ut|t = ujt = u∗,jt|t−1 (16)

1) Vehicle Model: The system dynamics in Equation (1b)
are given in its continuous-time form by Equation (17) which
is the sum of an a priori physics-based model ft and a term
to model the unknown dynamics gt, i.e. those not represented
by ft.

xt+1 = ht(xt,ut) = ft(xt,ut) + gt(xt,ut) (17)

This subsection concerns the a priori model ft. The pose
dynamics can be derived to give the following equation:

ẋ = vx cos(ψ)− vy sin(ψ) (18a)
ẏ = vx sin(ψ) + vy cos(ψ) (18b)

ψ̇ = r (18c)
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The dynamic part of the vehicle model, i.e. related to
Newton’s first law, has been modelled with a dynamic bicycle
model - Figure 2. This model is frequently used in automotive
control algorithms [21] and is given as follows:

v̇xv̇y
ṙ

 =


1

m
(Fx − FF,y sin δ +mvyr)

1

m
(FR,y + FF,y cos δ −mvxr)
1

Iz
(FF,ylF cos δ − FR,ylR)

 (19)

where m is the vehicle’s mass and Iz is the rotational inertia
about the vertical axis z. The front and rear axles are identified
by the subscripts a ∈ {F,R}, respectively. la is distance
between the vehicle’s center of gravity and the corresponding
axle. The lateral force Fa,y is given as:

Fa,y = −2Da sin
(
Ca arctan(Baαa))

)
(20)

where the tire coefficients Ba, Ca and Da are experimentally
identified and αa - the angle between the tire’s centerline and
its velocity vector - is computed as follows:

αF = arctan

(
vy + lF r

vx

)
− δ (21a)

αR = arctan

(
vy − lRr

vx

)
(21b)

The longitudinal force Fx is given as follows:

Fx = 2 · Tmax ·GR · P
rwheel

−Croll ·m ·g+
1

2
ρ ·Cd ·Af ·v2

x (22)

where Tmax is the maximum available torque at each of
the two rear axle in-wheel motors whose maximum practical
value is 21 Nm but a smaller value may be used for safety
reasons. GR is the transmission’s gear ratio and Croll is the
roll resistance factor. Concerning the aerodynamic drag force,
ρ is the air density, Af is the vehicle’s frontal area used
as a reference for the force calculation and Cd is the drag
coefficient.

Fig. 2: Dynamic Bicycle Model: position vectors are in de-
picted in green, velocities in blue, and forces in red. [reprinted
from [20]]

B. Gaussian Processes Regression

GPR is used to predict the error between the vehicle model -
Section III-A1 - and the available measurements, i.e. estimate
gt in Equation (17). One assumes that the modelling error
only affects the dynamic part of the first-principle model, i.e.
the velocity states. Therefore, the training outputs are given by
the difference between the measurement xk+1 and the nominal
model predictions:

yk = B†d
(
xk+1 − f(xk,uk)

)
= g(zk) + wk (23)

where B†d is the Moore-Penrose pseudo-inverse of Bd =
[03×3; I3×3]. Hence, d ∈ {evx , evy , er} and ng = 3.

As a first iteration, we chose the GP training inputs, i.e.
the feature state to be z = {vx; vy; r;P ; δ} and nz = 5. This
is based on the assumption that model errors are independent
of the vehicle’s position. This disregards potential modelling
shortcomings introduced from, for instance, segments of the
track that have different traction conditions, e.g. due to pud-
dles. Later, we have decided to remove vy as we identified a
strong correlation between this quantity and r. This is not very
surprising as both quantities characterize the lateral movement
of the vehicle. The selection for removal of vy instead of r
is justified by the fact that it is hard to precisely estimate
vy while r is measured directly using a gyroscope. Notwith-
standing, this seems like a reasonable approximation which,
furthermore, reduces the learning problem dimensionality.

The covariance function used is the squared-exponential
kernel with the independent measurement noise component
- σ2

n,dδzz̄:

kdSE(z, z̄) = σ2
f,d exp

(
− 1

2

(z− z̄)T(z− z̄)

l2d

)
+ σ2

n,dδzz̄

(24)
Two sparse approximations have been explored: i) SoD

and ii) FITC. The first approximation method is essentially
a full GP that does not use all data available. This means
the computations for the error prediction in Equation (17) are
those of an exact GP given by Equation (10a). While for the
second approach the computations are those of Equation (11a).

Finally, it should be noted that some quantities can be pre-
computed which otherwise could prevent real-time feasibility.
Particularly,

(
Kd

ZZ + Iσ2
d

)−1
yd in Equation (10a) only needs

to be recomputed whenever the training data D is changed -
this corresponds to training. In the SoD offline fashion,
it is only computed once before the controller is launched.
Inference corresponds to the rest of the computation
of Equation (10a).

In the FITC approximation, the training part corre-
sponds to the determination of the information vector which
only requires recomputation when either the training dataset D
or the inducing points Zind are changed. In our application,
however, the inducing points are updated at each sampling
time. They are equally distributed along the last sampling
time’s shift predicted trajectory. This is a sensible placement
of the inducing points since the new test cases are expected to
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be proximate as the trajectory does not change significantly at
consecutive sampling times. This means the online adaptation
of the dictionary D is immediately possible.

GPR is generally susceptible to outliers, which can hinder
the model error learning performance [10]. Moreover, large
and sudden changes in the GP predictions can lead to erratic
driving behaviour. To attenuate these effects, one only includes
datapoints in the dictionary D (both online and offline) whose
measurements fall within predefined bounds ±ylim, defined
from physical considerations and empirical knowledge. This
bound is also enforced to the GPR predictions.

C. Control Architecture

There are two variations of the LMPC architecture given
by Algorithm 1. They differ only in Line 9. In the pre-
computed version, the model error predictions are fed directly
to the solver based on the previous sampling time’s shifted
trajectory. While in the solver-embedded version the model
error predictions are calculated at each solver’s iteration and
only the information vector id is pre-computed.

Algorithm 1: LMPC Architecture

1 Initializations;
2 while Event not finished do
3 Update car state from SLAM data;
4 Publish control command;
5 Convert to local coordinates;
6 if Lap finished then
7 Add closed-loop data to safe set;
8 if Model learning active then
9 Compute GPR;

10 Find local safe set;
11 Solve nonlinear optimization;
12 Store measurement data;
13 if Online learning active then
14 Update dictionary

IV. IMPLEMENTATION

A. Simulation Platform

FSSIM1 is the vehicle simulator used to test the controllers.
AMZ Driverless developed this vehicle simulator dedicated
to the FSD competition and released it open-source to other
teams. This team reported 1% lap-time accuracy compared
with their FSG 2018 trackdrive run [20]. FSSIM comes with
the standard Acceleration and Skidpad competition tracks.
Additionally, it includes track layout data mapped from the
2018 official FS events of Italy and Germany.

Due to real-time requirements, this simulator does not
simulate raw sensor data, e.g. camera or LiDAR data. Instead,
cone observations around the vehicle are simulated using a
given cone-sensor model, that yields different probabilities of
detecting a cone and correctly identifying its class based on
the distance from the vehicle.

1https://github.com/AMZ-Driverless/fssim

FSSIM simulates the vehicle dynamics using a model that
blends a dynamic and a kinematic bicycle model [20]. The
dynamic bicycle model is ill-defined for slow velocities due
to the tire slip angles considered to compute the tire forces.
In a racing application, most of the track is spent at high-
speeds where this model accurately represents the vehicle
behaviour. At low speeds, e.g. at race start or in sharp corners,
the kinematic bicycle model constitutes a faithful description
of the vehicle dynamics.

B. Controller Implementation

We have started the development of this thesis by testing
some of the available open-source LMPC packages developed
by the MPC Lab researchers. In the implementations in
Python2 [18] and Julia3 [19], it did not seem possible to
increase the node’s frequency from 10 to 20 Hz nor increase
the prediction horizon to more than N = 12 which results in a
lookahead time of just 1.2 s. From experience, the combination
of these two factors is clearly insufficient for an autonomous
racing application.

Hence, I decided to develop a custom C++ implementation
of the LMPC architecture using FORCESPRO [22], [23] -
a solver designed for embedded solving of MPCs - to solve
the optimization problem. With these changes, the controller
is able to run at 20 Hz with N > 20. The controller -
Algorithm 1 - is implemented in ROS/C++.

The coordinate conversion (Line 5) to the Frenet frame
resorts to a library4 [11] that fits the track centerline with
splines. This library enables finding the track progress s and
lateral deviation ey from the centerline given a location (x, y)
and conversely.

The computations associated with GPR model error predic-
tion described in Section III-B resort to the C++ open-source
albatross5 library developed by Swift Navigation.

The hyperparameters are tuned offline based on pre-
collected data. There are two main reasons for which this is not
done online. First, this optimization is not real-time feasible.
Second, it is assumed the general trend of the model error
remains constant throughout the vehicle operation.

The hyperparameter estimation procedure resorts to the
Matlab function fitrgp6. For a particular kernel function
and sparse approximation, given the original dataset of size n,
this function outputs the hyperparameters and the active set of
size m that maximize the marginal logarithmic likelihood. The
active set choice is of particular relevance so as to maximize
the information provided by the subset of the original dataset.
We use the differential-entropy based selection method. We
use the active set of the SoD approximation as the training set
for the FITC approximation, i.e. nFITC = mSoD.

2https://github.com/MPC-Berkeley/barc/tree/devel-ugo
3https://github.com/MPC-Berkeley/barc/tree/LMPC-Shuqi
4https://github.com/alexliniger/MPCC/
5https://swiftnav-albatross.readthedocs.io/en/latest/index.html
6https://www.mathworks.com/help/stats/fitrgp.html
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V. SIMULATION RESULTS

In Section V-A, we show results for both sparse approx-
imations by varying the size m of their latent variables.
There, we aim to study the influence of these parameters in
the ability to predict the nominal model error. We test both
sparse models in an offline and online learning fashion. In the
former, the training dataset is not updated online with current
measurements while in the latter it is. We also analyse how
the computational cost of GPR prediction evolves for these
strategies. The results shown there correspond to the average
over 10 laps.

We use the compound average error to evaluate the overall
model learning performance: ||enom|| is the average 2-norm
error of the nominal model, i.e. ||enom|| = ||B†d

(
xk+1 −

f(xk,uk)
)
||; and, ||eGP || is the corresponding error of the

corrected dynamics, i.e. ||eGP || = ||B†d
(
xk+1 − f(xk,uk) +

g(zk)
)
||. For the SoD computational cost analysis, we measure

T inf and T trn - the inference and training time, respectively.
TGP is the time spent on GP computations which for the FITC
method corresponds to inference and training.

In Section V-B, we use the best performing models found
in Section V-A to evaluate the complete LMPC architecture.
We evaluate its performance with the lap times over the 10-
lap trackdrive event. We show results in the FSG track and
change the controller parameters to achieve a more aggressive
controller. Finally, we also compare the FITC pre-computed
and embedded versions of the architecture - Algorithm 1.

A. Model Learning

For the Subset of Data approximation, we use the tuning
scheme described in Section IV-B to find the active set of
different sizes mSoD for each model from a dictionary of
nSoD = 43329.

In Table I, we show the model error prediction fitness for
the SoD approximation. The dashed line separates results of
offline (above) and online (below) schemes. Recall, in the
offline method where the training points are not updated online
the computation of

(
Kd

ZZ + Iσ2
d

)−1
yd is performed before-

hand and therefore incurs no extra computational cost.

mSoD ||enom|| ||eGP || T inf [ms] T trn [ms]

200 0.25 0.09 0.5 -
300 0.26 0.08 0.8 -
400 0.26 0.08 1.0 -
500 0.27 0.09 1.3 -
600 0.25 0.07 1.5 -
200 0.27 0.09 0.5 4.9
300 0.27 0.07 0.7 13.6

TABLE I: SoD Active Set Size Analysis

Table I shows that the model learning procedure reduces
model mismatch, i.e. difference between ||enom|| and ||eGP ||,
by at least 60 %. There is a positive correlation between
mSoD and model error fitting ability. For instance, in the
offline fashion, the 2-norm average error reduction is 63.9%
and 70.7% with mSoD = 200 and mSoD = 600, respectively.
The computation cost evolves linearly with m but within this

range takes acceptable values given the current node rate of
20 Hz. Arguably, one could further increase mSoD but likely
with negligible model learning improvements.

Instead, one should aim to adapt the training data online as
that would enable adapting to changing conditions or even just
collecting data from dynamic manoeuvres not included in the
original dictionary. The last two lines of Table I corroborate
this hypothesis. With a dictionary of under 300 datapoints, the
model error reduction is 65.4% and 75.7% for mSoD = 200
and mSoD = 300, respectively. In particular, it enables more
aggressive manoeuvres towards the end of the event while
keeping the corrected dynamics error relatively low. The model
error fitting ability is very similar in the first few laps. But,
as the LMPC architecture pushes the vehicle to the limits of
friction, the offline method remains more conservative. This is
evidenced by the last lap data where in the offline version with
mSoD = 600 the nominal model average norm error increases
to 0.28, while the online versions increase to around 0.32,
from around 0.21 in the first few laps. The model learning
is then able to reduce the corrected dynamics model error to
0.09 (offline - mSoD = 600), 0.13 (online - mSoD = 200) and
0.08 (online - mSoD = 300) which amounts to a reduction of
69, 59 and 76%, respectively.

It has been demonstrated the importance of online learning.
The model with mSoD = 300 performs significantly better
than the model with mSoD = 200. While the average node
processing time is well within the limits, it too often breaks
the real-time requirement. Thus, the latter model is used for
benchmark later. I argue that the performance deterioration
from this reduction comes mainly from the naı̈ve dictionary
update process. When online learning is active every new
measurement and its corresponding model error is added to the
dictionary by removing the oldest point. For the FSG track,
with lap times around 17 s and a node rate of 20 Hz it would
be required a dictionary size of 340 points to cover the whole
track. Note that I am not claiming there is necessarily a spatial
correlation to the model error that would require data from
the whole track. Nevertheless, there might exist parts of the
track that result in model error different than the GPs trend
or specific dynamic manoeuvres not repeated throughout the
track.

As explained in Section II-D, the FITC sparse approxima-
tion is a natural candidate to enable online learning. In Table II,
we show average error similarly to Table I. There are three
groups separated by the horizontal dashed lines. In order,
we first show the results for offline and online learning with
nFITC = 300. Subsequently, we extend those with data from
nFITC = 400. For each of these, we test three different
inducing points strategies along the prediction horizon which
is equivalent to changing mFITC .

Although in a comparable order of magnitude, the offline
version exhibits better model error fitting ability. I once again
argue that this is due to the dictionary update procedure.
Therefore, we have increased the training dataset to nFITC =
400. The best performing model with mFITC = 10 yields
model learning performance comparable to that of the SoD
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approximation. The corrected dynamics average error is 0.12
slightly above of the SoD benchmark value of 0.09.

mFITC ||enom|| ||eGP || TGP [ms]

5 0.27 0.14 2.6
10 0.26 0.15 3.0
20 0.26 0.15 4.1
5 0.28 0.15 2.6

10 0.26 0.17 3.0
20 0.26 0.15 4.1
5 0.28 0.15 3.3

10 0.27 0.12 3.8
20 0.27 0.13 5.2

TABLE II: FITC Inducing Points Strategy Analysis

B. Learning-based Model Predictive Control
In Table III, we show the lap times along the 10-lap

trackdrive event and average model error for the FSG track.
The initial safe set was collected using the nominal controllers.
It is composed of four laps with lap times of around 28.8 s.
The controllers herein have a prediction horizon of N = 20
which corresponds to a look-ahead time of 1 s, until stated
otherwise. The LMPC results without model learning prove the
iterative improvement character of the architecture. The first
lap is immediately 33% faster compared to the path-following
controller. Equivalently, the last lap is 39% faster. Furthermore,
the last lap corresponds to a 10% improvement compared to
the first LMPC lap.

Figure 3 shows the FSG trackdrive trajectories. The finish
line is at the origin and the vehicle runs clockwise. It can
be seen that the LMPC exploits the track layout to improve
performance measured by lap time. Nevertheless, the third
column of Table III exhibits severe model mismatch which
causes the vehicle to break the track constraint. See, for
instance, the exit of the hairpin or the first corner where the
trajectory is on top of the track boundary which entails a
cone was hit since the trajectory corresponds to the centre
of mass. The car starts at the origin. The hairpin is the
sharp corner on the rectangle region given by the top left
corner of (10,−65) and the bottom right corner of (30,−75).
Furthermore, the approach to the slalom segment is not optimal
per empirical vehicle dynamics standards. The vehicle is
braking too late which leads to a slower slalom with greater
steering actuation required. The slalom segment is given by
the corners (−10,−15) and (0,−45). In this case, I reckon it
is due to a combination of a relatively short prediction horizon
and model mismatch.

Let one now analyse the performance of the LMPC when
the GP model learning scheme is deployed. Table III shows
that the last lap is 42 and 12% faster when compared to
the path-following lap and the first lap, respectively. These
results correspond to the online SoD model with mSoD = 200.
Figure 3 shows the corresponding FSG trackdrive trajectories.
It is clear the reduced model mismatch prevents the vehicle
from disrespecting the track constraint. However, the slalom
trajectory does not yet look optimal.

Table IV exhibits the equivalent data for the FITC approx-
imation for the best performing model: online with nFITC =

LMPC LMPC + SoD
Lap Time [s] ||enom|| Time [s] ||enom|| ||eGP ||

1 19.36 0.22 18.92 0.21 0.06
2 19.33 0.21 18.75 0.21 0.07
3 19.34 0.21 18.73 0.21 0.07
4 19.33 0.22 18.71 0.21 0.07
5 17.78 0.29 17.17 0.29 0.08
6 17.45 0.30 16.85 0.31 0.11
7 17.44 0.31 16.77 0.32 0.13
8 17.51 0.29 16.84 0.32 0.11
9 17.43 0.30 16.80 0.31 0.12

10 17.43 0.30 16.96 0.32 0.13

TABLE III: LMPC Lap Times and Model Error

Fig. 3: FSG Trackdrive Trajectory of LMPC without Model
Learning

400 and mFITC = 10. The fact that in the embedded scheme
the model error prediction is computed for every control input
considered prompts comparatively more aggressive behaviour
on the initial laps. This is evidenced by the lap times and nom-
inal model error. However, this scheme fails to significantly
improve performance and quickly converges to a lap time of
around 17.3 s. First to last lap time reduction of 13 and 9%
on the pre-computed and embedded architectures, respectively.
Both schemes are able to sustain an approximately constant
corrected dynamics average error of 0.13, which is low enough
for fast and feasible racing.

LMPC + FITC-P LMPC + FITC-E
Lap Time [s] ||enom|| ||eGP || Time [s] ||enom|| ||eGP ||

1 19.13 0.22 0.11 18.87 0.25 0.12
2 19.03 0.21 0.10 18.63 0.25 0.11
3 18.99 0.21 0.10 18.64 0.28 0.12
4 19.16 0.22 0.10 18.61 0.24 0.11
5 17.32 0.28 0.13 17.72 0.27 0.13
6 16.87 0.30 0.13 17.43 0.29 0.14
7 16.75 0.31 0.14 17.27 0.28 0.13
8 16.71 0.31 0.13 17.12 0.32 0.13
9 16.67 0.31 0.14 17.27 0.30 0.13
10 16.68 0.31 0.13 17.27 0.30 0.13

TABLE IV: LMPC Lap Times and Model Error - FITC
Approximation
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Fig. 4: FSG Trackdrive Trajectory of LMPC with Model
Learning [N = 20]

We have subsequently tested with increasing prediction
horizons. In Table V, we display the lap times and modelling
errors for two sets of controller gains with N = 30. The results
on the left correspond to the parameters used thus far in this
chapter. On the other hand, for the controller on the right, we
reduce some derivative costs and the regularization cost on vy ,
and increase the Q-function associated cost to promote greater
track progress at each sampling time.

With a longer horizon, both controllers can safely navigate
around the track such that the safe set loses its relative impor-
tance. That is, the controller is able to predict consistently until
the slowest point on a given corner. This way, the information
conveyed by the safe set regarding what sort of manoeuvres
come after is not as valuable. The safety character referred
only applies when model learning is deployed. Otherwise,
the severe model mismatch hinders performance. This is
substantiated by the fact that both achieve small lap times
in the first few laps and quickly converge to their steady-state
lap times of around 16.7 s for the default controller and 16.2 s
for the aggressive controller.

Default Parameters Aggressive Parameters
Lap Time [s] ||enom|| ||eGP || Time [s] ||enom|| ||eGP ||

1 17.16 0.27 0.07 16.37 0.39 0.14
2 16.92 0.26 0.07 16.18 0.37 0.15
3 16.91 0.26 0.07 16.17 0.37 0.15
4 16.88 0.26 0.07 16.13 0.37 0.15
5 16.69 0.28 0.08 16.17 0.36 0.15
6 16.66 0.28 0.09 16.21 0.37 0.15
7 16.67 0.28 0.08 16.19 0.36 0.15
8 16.68 0.28 0.08 16.14 0.37 0.16
9 16.68 0.27 0.08 16.15 0.37 0.16

10 16.69 0.27 0.08 16.11 0.36 0.15

TABLE V: LMPC Lap Times and Model Error [N = 30]

Both models used the offline version of the SoD approxi-
mation with mSoD = 600. Table V further corroborates these
claims. For instance, the nominal model average error on the

first lap of the default controller with N = 30 of 0.27 is
substantially higher than those with N = 20 which is on
average 0.21. The increased driving behaviour aggressiveness
is verified by the larger nominal model errors of around 0.37.
The model learning scheme is able to significantly reduce the
model mismatch to enable safe aggressive racing. For the first
case, the corrected dynamics model average error is around
0.08 which corresponds to a reduction of about 70%. While
for the aggressive controller, the final model mismatch is on
average 0.15, a reduction of 60%. The model learning scheme
is able to keep an acceptable value of corrected dynamics
model mismatch even in the case of offline model learning
on the aggressive controller. It should be noted that such high
nominal model errors data were not present in the original
training dataset.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we have adapted the LMPC architecture
proposed by Professor Borrelli’s Model Predictive Control
Lab at the University of California Berkeley to the FSD
context. We have implemented the framework in C++ and used
FORCESPRO, a state-of-the-art optimization solver developed
especially for solving MPCs in embedded platforms. Hence,
we have been able to improve the real-time capability of
this controller which is paramount at high-speed racing. In
particular, we have been able to double the controller sampling
frequency and more than double the prediction horizon length.

We have demonstrated that the LMPC using a dynamic
bicycle model with an appropriately built safe set and Q-
function leads to safe iterative improvements. In this racing
application, the improvements were measured on a lap time
basis. However, as the controller pushes the vehicle to the
limits of the performance envelope the nonlinearities drasti-
cally increase model mismatch which hinders performance.
This performance deterioration has been shown qualitatively
by the suboptimal trajectories taken and by slightly breaking
the track width constraint.

In order to overcome this issue, we use Gaussian Processes
Regression to predict the nominal model error. The GPs are
able to successfully model this error such that the corrected
dynamics exhibit reasonably low model errors - model error
reduction of at least 65% and by as much as 75%. This error
remains about constant as the LMPC strives for faster laps in
which the nominal model error increases to prohibitively high
errors.

We have shown how the model error fitting ability changes
with varying parameters for the sparse GP approximations.
We have concluded that it is more important to enable online
learning, i.e. adaptation of the training dataset with data
collected on a given run. In the SoD approximation, this
comes with a considerable computational cost burden due to
training which only allows relatively small active sets whilst
still abiding by the real-time requirement. With the naı̈ve
dictionary update technique implemented, which stores the
most recent datapoints, the small active set size does not
yield significant prediction improvements. I argue that a better
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selection procedure should improve results although the active
set size would still be rather short.

The FITC approximation is a natural candidate for online
learning since the inducing points are changed at each sam-
pling time, which implies training the model. Thus, changing
the training set does not hold further computational costs.
Furthermore, this process is much less computationally ex-
pensive. The model error results are satisfactory but not as
good as SoD’s. We have also implemented a variation where
the model error predictions, i.e. GP’s mean, is computed for
each control input pair considered at each solver’s iteration.
This is in contrast with the previous variant where the model
error predictions were pre-computed for each prediction stage
based on the previous sampling time’s trajectory. However,
the embedded architecture did not improve the performance
significantly.

Subsequently, we have demonstrated that the full architec-
ture, i.e. LMPC with model learning, outperforms the one
without model learning in the metrics considered.

Finally, I argue that with longer horizons the safe set loses
some of its merits. This is because the prediction horizon
covers the track farther enough such that it can react in due
course to the forthcoming track segments. With a shorter
horizon, the safe set has been proven to be crucial.

Until the moment this thesis was concluded, the FST10d -
FST Lisboa autonomous racing prototype - was not yet ready
to test the LMPC controller. That is because the localization
algorithm that estimates the car’s pose was not yet showing
reliable results. The results in this thesis should be replicated
on the actual prototype to further substantiate the results
achieved in the simulation environment.

The greatest focus of the academia that studies learning
model-based controllers has been on reducing model mis-
match. First, one should start by testing the Automatic Rel-
evance Determination (ARD) kernel. It gets its name from
having individual length-scales which enables identifying ir-
relevant inputs - those with a very large length-scale where the
covariance function becomes effectively independent of that
input. Other ML techniques should also be considered such as
the use of Bayesian Linear Regression or Neural Networks.
Finally, one has already claimed that a dictionary data selec-
tion criterion that considers the information each data point
conveys should improve prediction accuracy considerably.

In this LMPC architecture, the Q-function could be im-
proved. The minimum-time stage cost should be augmented
such that points that yield long-term benefits are more
favoured. The state uncertainty measurement which is inherent
with the use of Gaussian Processes should be considered in a
Robust Learning-based Model Predictive Control framework.
Finally, learning of other MPC parameters should also be
targeted. For instance, one could explore methods to automat-
ically adjust the MPCs parameters using some kind of reward
function exploited by a Reinforcement Learning algorithm.
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