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Abstract

The increasing concern related to air pollution levels caused
by motorized vehicles and obesity levels, along with the tech-
nology evolution and its decreasing cost (making it more
affordable), created new strategies to reduce the emission
and obesity levels. One of them is using the existing sensing
power available on users smartphones and determine his
transportation mode rewarding her/him with gifts if she/he
chooses bicycle as his transportation mode. Thus, the goal of
this work is to improve the existing transportation detection
algorithm accuracy of Biklio, a sustainable mobility encour-
aging app. We propose a machine learning (ML) algorithm
for detecting if a user is using a bicycle. The ML algorithm
is based on Random Forest. It replaces the current solution
used in Biklio that uses the Activity Recognition API from
Google; increasing the detection accuracy, we expect to min-
imize the number of cases where the output does not match
reality.
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1 Introduction

Nowadays, the increasing pollution levels are triggering
more and more discussions around the world, substantially
raising the communities concern once it can have a big nega-
tive impact on people’s health and well-being in the close fu-
ture. There are already plenty of diseases and several deaths
caused by such pollution levels [4, 24]. There are numerous
causes for the increase of such pollution being one of them
the motorized vehicles [6, 23]. In fact, one of the biggest
causes of pollution is the gases released by vehicles, being
these used for most people to move around. Its excessive
use, either for small distances, or the almost equal amount
of vehicles and persons on the road, is concerning for the en-
vironment. The high car density is causing several problems
around the world, not just the pollution they cause, but also
the traffic and the nonexistence of enough parking spots.
Many cities around Europe, are trying to fight against it by
disallowing the circulation of most of the diesel vehicles in
the next ten years [13] since these are currently the ones that
pollute most. This has the objective of reducing car density,
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indirectly improving the other two aspects, traffic, and park-
ing spots. The main goal of the motor industry is to replace
most current vehicles with electric cars, an ecological and
less environment harming solution.

Increasing as well, during the last decades, is obesity [2].
In fact, the World Health Organization (WHO) claims that
worldwide obesity has nearly tripled since 1975. They also
say that in 2016, more than 1.9 billion adults aged 18 years
and older were overweight. Of these over 650 million adults
were obese. Although obesity is not just increasing among
adults. Children also have increased their obesity numbers,
reaching 38 million, under the age of 5 in 2019, and 340 mil-
lion children and adolescents aged 5-19 were overweight or
obese in 2016. The principal cause of obesity is an imbal-
ance of calories consumed and calories expended. Nowadays
global diets have increased in the consumed calories, mainly
energy-dense foods high in fat and free sugars, mostly caused
by the fast-food market. On the other hand, the physical
activity levels decreased due to the higher access to pub-
lic transportations, or the nature of most works nowadays
where the worker spends most of his day sited on a chair in
front of a computer.

Alongside, there has been a fast and notable increase in
the presence of smartphones in human beings daily life in the
past years [19]. In fact, smartphones are becoming ubiquitous
in nowadays society [26]. Everywhere we go, people are
using their smartphones. That is noticeable looking at the
continuous increase of devices per person nowadays [10].
This is due to the higher affordability of technology and its
advance, allowing users to navigate on the web, send emails,
play games, make calls, and many other actions in a simple
smartphone. Smartphones are not only increasing in number
but also computation, networking, and sensing power.

The combination of these three factors, smartphone pres-
ence, and its capabilities, along with the growing need to
reduce the Carbon Dioxide (CO2) emission levels, and the
increasing obesity numbers, created a pretty interesting op-
portunity for the development of a new type of apps.

There are several categories of apps, related to a healthy
lifestyle, that use mobile phone sensors. We are going to
consider three main categories: 1) apps that encourage sus-
tainable mobility such as Biklio [5], (the one we are most
interested in) or MatkaHupi [20]; 2) activity tracking apps
for healthcare such as Activity [11]; 3) finally, activity-driven
crowdsourcing apps such as Waze [7]. All these apps have
in common that they are all based on activity recognition.
Some of the available sensors on the smartphone [26] are
used to predict an activity. All these apps also promote a
healthier and environmentally friendly lifestyle encourag-
ing CO2 emission reductions and the increase of physical
activity.

In particular, Biklio is a sustainable mobility encouraging
app that promotes the use of a greener travel mode, bicycle
to be more specific. As an attempt to encourage people to
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use a bicycle, the app offers awards to users who choose to
cycle, either to go to work, to the grocery store, or to tour
around the city. The more a user rides a bike the more he/she
earns. To be able to provide such awards to their users, the
app has created some partnerships with local stores in the
cities where the app is implemented and operating. Most
shops give discounts when such users buy something after
they have cycled. The app has already been tested in seven
different countries, Portugal, Italy, Sweden, Luxembourg,
Bulgaria, United Kingdom, and the Netherlands. The main
intention here is to reduce the number of cars on the streets
and consequently CO2 emissions.

To provide such offers to their users, the app determines if
a user is cycling or not, and informs them of the award they
can reclaim with a small time delay concerning the end of
the cycling. For that it uses the Google Activity Recognition
(GAR) Application Programming Interface(API) [1].

1.1 Objectives

The main objective of this work is to improve the existing
cycling detection algorithm of the Biklio app [5]. Thus, we
want to ensure that the best possible solution is implemented
on the app, providing the most accurate results possible. For
that, the following requirements need to be satisfied: 1) high
accuracy (to ensure the closeness of the measurements to the
real activity); 2) response time/delay must minimize the time
needed to know the results; 3) battery usage must minimize
the consumption caused by the app, and 4) software compat-
ibility. An android version is implemented to understand if
the app algorithm improved the current solution.

2 Related Work

Over the past years, there has been a lot of research time
and resources spent on how to recognize the current activity
performed by some user. This applies to a lot of cases and
has many possible solutions and uses in a users’ daily life.
The activity field is getting bigger since it can go from simple
actions performed by humans all the way to determine the
transportation mode.

Before we go any further, first we need to define/explain
what is an activity and its purpose, mainly for the particular
case we are addressing. In this work the activity is associated
with the transportation mode. The aim of this work is an
application that determines the users transportation mode,
cycling more precisly. This type of activity is the most in-
teresting for this particular case, once Biklio aims to detect
cycling activities.

On the other hand, back to the desired activity type which
is transportation mode detection, there are several solu-
tions. They can be based on electromagnetic signals, such as
GSM (e.g. Sohn [25]), WIFI (e.g. Wang [27]), Bluetooth (e.g.
Coroama [15]), or a combination of them. Motion detection
sensors, such as accelerometers or gyroscope (e.g. Fang [16])
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can also be used to determine transportation modes. Those
solutions can be external (e.g. Liu [22]) or internal (e.g. Hem-
minki [18]). By external, it means the use of other devices
than a mobile phone, either sensors only or a combination of
sensors. Internal is the opposite, relying only on sensors ex-
isting on a smartphone. Finally, over the sensors results, can
be applied different algorithms. Algorithms that, based on the
received sensor numbers, will determine the activity. There
are many possible algorithms already implemented in this
type of apps. For instance, there are several solutions based
on Machine Learning (e.g. Liono [21] and Ferreira [17]) algo-
rithms to determine the transportation mode. Some others
use existing APIs like GAR [1] that can be used to accomplish
the goal.

Activity recognition systems typically have three main
components [14]: 1) a low-level sensing module that contin-
uously gathers relevant information about activities using
sensors; 2) a feature processing and selection module that
processes the raw sensor data into features that help dis-
criminate between activities; and 3) a classification module
that uses the features to infer what activity an individual or
group of individuals is engaged in, for example, walking or
cycling.

After analyzed several similar works two different ap-
proaches seemed interesting. One was the Google Activity
Recognition (GAR) and the other was the Random Forest
(RF). The GAR was a simpler option once it is a pre-built Ap-
plication Programming Interface (API) that performs all the
detection work. The three main components are integrated
into the API The only thing that is necessary to use it is to
call the API The RF is harder once it is necessary to choose
and implement all the three components necessary for an
activity recognition system, sensors, features, and algorithm.

3 Architecture/Algorithm

There were implemented two different solutions that were
later compared.

The first was the Google Activity Recognition (GAR) Ap-
plication Programming Interface (API). As mentioned in Sec-
tion 2 this solution encapsulates the three main components
of an activity recognition system. This results in a simpler
solution design (see Fig. 2), once those components do not
need to be implemented. They only need to be called and
the API performs all the work for the user returning only
the final result.

This solution’s algorithm is something the programmer
does not has access to, just like the rest of the information,
sensors, and feature selection namely. What this means is
the programmer does not have a lot of control and knowl-
edge over the solution. It will always be dependent on the
performance of the APL If the API fails the application will
fail and the work necessary to understand/fix the problem is
bigger once the programmer does not know what sensors,
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features, and algorithms are used. That is presented in Fig. 3,
where the cloud symbols represent the unknown informa-
tion. Shows the user/application making a call to the GAR
and the GAR handles the call by calling the selected sensors,
calculating the selected features, and run them through the
selected algorithm.

This algorithm is continuously running. A sampling in-
terval is defined to determine the sampling interval, i.e., the
time between two different readings. Each sampling interval
performs readings, calculates features, runs them through
the algorithm and returns the probability of each one of all
8 possible detectable activities (IN_VEHICLE, ON_BICYCLE,
ON_FOOT, STILL, UNKNOWN, TILTING, WALKING, and
RUNNING).

The probabilities vary between 0 and 100%. Only the ac-
tivities with a current probability higher than 0 are returned.
It is pre-defined that missing values equal a 0% probability.
Those values are returned assigned to an id and not to the
name of the activity. Each activity has a unique id assigned,
being them IN_VEHICLE = 0, ON_BICYCLE = 1, ON_FOOT
=2, STILL = 3, UNKNOWN = 4, TILTING = 5, WALKING =
7, and RUNNING = 8.

The other implemented solution was the RF, a Machine
Learning (ML) algorithm. This application’s architecture de-
sign is much harder than the GAR. That is because this solu-
tion does not have the three components (sensors, features,
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and algorithm) encapsulated. This requires the programmer
to implement them resulting in a higher complexity level
and a higher number of components needed. The Fig. 4 sup-
ports that same affirmation. When compared to the GAR’s
architecture (see Fig. 2) the number of components present
here is considerably higher.

Just like the architecture, the algorithm of this solution is
also harder when compared to the GAR. This is mainly be-
cause the algorithm needs to be chosen, coded/implemented,
trained, and only then used. Each of these steps needs some
work. All essential to achieve the main goal of this work
which is to determine accurately the cycling activity.

Here the chosen algorithm was the RF and after being
implemented it was needed to be tested. In particular, it
was used, as a base model for this solution, the Woorti [17]
application. The testing phase is very important because it is
the foundation of the application’s success. This is since from
here is going to result in the model that is going to be used
for the activity prediction when the user runs the app. This
is performed by gathering data and pass them through the
algorithm, this is, the multiple trees and compare the result
with the ground truth. In Fig. 5 it is shown a representation
of the several steps necessary to perform before the model
is ready to predict something based on raw data.

It starts by gathering data from the desired sensors, in
our case from the accelerometer and the GPS. After that
retrieve the selected features and label them with the ground
truth. With this, it is possible to compare the real activity
(ground truth) and the model result. Only this way is possi-
ble to determine if the model is correct or not. Next, after
labeling, the features must be run through the algorithm to
calculate the predicted activity. Here the result must be com-
pared with the one labeled to check the model’s accuracy.
The values used for decision-making on each node must be
calibrated to increase the accuracy. This must be performed
several times to ensure the model has tested a high number
of cases/sensors readings.

At this stage, if there is the need to improve/calibrate
the model it can either gather more and new samples from
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the sensors or use the ones already labeled and pass them
through the algorithm again. This second option usually only
occurs if the sampling data is already well-populated and
diversified. After doing this several times and assure that the
values used on the nodes to make a decision can not be more
calibrated without harm the accuracy, the model must pass
to its final phase, the detection phase. This is when the final
model is obtained and ready to predicting current activities.

With the model ready to use, the flow of the algorithm is
pretty simple. It is basically the same as the other solution,
the GAR. The base is the same although they are not exactly
the same. Fig. 6 shows the overall flow of this algorithm. As
it shows and was said a couple of sentences ago, the base
of this algorithm and the previous was basically the same.
They both have the same three big steps in the same order,
the sensors, features extraction, and the algorithm/model.
The main difference is that here all this is chosen and made
by the programmer while on the other was already part of
the API. When the application starts recording the tour it
starts reading the values of the sensors, the accelerometer,
and GPS. It then extracts the necessary values and stores
them. This is performed while the trip is being recorded, no
predictions are made unlike the GAR that for each reading is
making a prediction. This solution only uses the model at the
end, when it stops recording. At that moment, the sensors
stop giving new readings and all the features are calculated
based on the stored values during recording. Those features
are then passed to the algorithm/model obtained from the
training phase. It then builds multiple trees each different
from the others with the features in different node levels to
cover the highest amount of scenarios possible. It passes the
values through them obtaining an activity result from each
one. Here the result is either cycling or not. It then compares
those results to obtain the one with the most votes, resulting
in the final verdict. This is the only value that passes back to
the user and he can see it on the application User Interface
(UD).
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4 Implementation

As mentioned in Section 1 as the fourth and last require-
ment, Android was chosen as the target Operative System
(OS) where these apps should run. It was decided to choose
it over the iOs, which is the Apple OS. This decision was
made based on the available programming languages for each
OS. In other words, it was necessary to choose a program-
ming language that was able to be used to implement both
solutions. A language that had the necessary libraries and re-
sources to be used for determining an activity. Android owns
one of the most well-known and common programming lan-
guages. Naturally, it conditioned the rest of the decisions
made after. Once chosen the target OS, there were some limi-
tations/restrictions that appear. The most important was the
existing languages.

Nowadays there are two main languages for Android pro-
gramming. The first and oldest is Java, and the second and
more recent is Kotlin. They are both capable to implement
a solution of this type. They both own several libraries that
allow us to implement multiple algorithms. For this case, in
particular, which aims to implement the RF algorithm the
languages must be compatible with it. This happens for both
of them, owning both a couple of libraries capable of imple-
menting the RF. Although the decision here was based on
the accessibility of content and familiarity. In these chapters,
Java wins because it is older so it has more content on the in-
ternet making it easier to find bug fixes/corrections. Also, due
to its age and time on the programming world is a more well-
known language for most programmers. Java owns some
pre-built machine learning libraries, such as WEKA [12],
JDMP [8], and MLib (Spark) [9]. Another advantage of Java
is that it is capable of scaling to larger systems or appli-
cations due to being a general-purpose language built for
cross-platform development [3]. Finally but not least, once
the app is going to be tested in android it is needed to use
an appropriate programming language and Java is the oldest
official language.

For each solution was built an app. For the GAR that app
displayed all the possible transportation modes detected by
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it and their confidence degree. This was performed based
on readings made from the sensors every x seconds. Those
readings are then treated, calculating the selected features,
and passed through the algorithm returning each activity’s
probability/confidence. Those results are stored in a log for
further analysis. This log is used at the evaluation time to
help to find wrong transportation modes and some other
cases explained in Section 5. The confidence levels are dis-
played in real-time so the user can see which mode has a
higher confidence level and which modes are detected at the
time. This process repeats itself every x seconds and until
the user stops the application. This type of configuration fa-
cilitates the evaluation stage once the current transportation
mode can be compared in real-time with the real transporta-
tion mode.

All the information is presented on one screen. The ini-
tial screen is the only one that exists and the user sees, to
minimize the complexity to the maximum. It presents the 8
types of activities detected by the GAR.

To present those values it is necessary to call the GAR APIL.
The app performs the sensor’s readings. To perform those
readings it was used a background service called Job Intent
Service. As the name suggests it is a service that runs in the
background, i.e., runs even when the screen is turned off.

There are two different types of APIs, the Activity Recogni-
tion Transition API, and the Activity Recognition Sampling
API. The first is more strict giving less power of choice to
the programmer where the second allows it to control more
things such as sampling intervals. Based on that it was used,
for this work, the second option to be able to compare and
evaluate different sampling intervals impact on accuracy
and battery. The user, by pressing the start tracking button,
requests for activity recognition updates. That is performed
calling the requestActivityUpdates() function [2]. This func-
tion handles everything and returns confidence values for
each detected activity. These are the values that are saved
on the log and displayed to the user. To ensure that the lat-
est version of the GAR was being used it was necessary to
update the play-services-location library. It was used the
"com.google.android.gms:play-services-location:17.1.0" be-
cause it was the latest version at the time of creating the
app.

The RF application requires a different implementation.
This is since this type of solution requires other development
steps. Both apps have the same bases, i.e., both apps read
from sensors and use their values to calculate the final activ-
ity and display it to the user. However, they have different
implementations as is explained next. This app shows to
the user the end result, i.e., if the recorded trip was cycling
or not. Similar to the GAR application, readings are being
performed each x seconds. Here start the implementation
differences. This kind of solution needs the programmer to
choose which sensors must be used. As well it is encharged
to chose which features must be extracted from each sensor.
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With those features, it must run them through the RF algo-
rithm to determine the activity. This part is divided into two
steps.

The first is the testing phase where, as the name suggests,
the algorithm is trained and refined to obtain the most ac-
curate output possible. This is performed by passing the
features extracted, with a ground truth attached, through
the algorithm and compare its result with the ground truth.
A feature with a ground truth attached is saying that for a
certain set of features they have already a determined ac-
tivity associated. This is performed previously, by matching
each set of features to a ground truth activity after record-
ing some trips doing some activities. This action is called
labeling. The higher the number of times the result matches
the ground truth, the higher the accuracy of the algorithm.
With higher accuracy, it means that the adjustments nec-
essary to improve the algorithm are less significant than if
the algorithm presents a lower accuracy. This phase is really
important because it prepares/trains the algorithm for the
next step.

The second step is the model application phase, i.e., the
testing phase where the algorithm/model is used to deter-
mine an activity based on features that do not have a ground
truth attached. These features are obtained in real-time, un-
like the ones used in the training phase, that were previously
obtained, labeled, and passed to the algorithm. Here the fea-
tures are passed without pre-labeled ground truth. The result
of the algorithm is considered the ground truth for the app.
This is the reason why the first phase is so important, a good
training phase results in a reliable model application.

5 Evaluation

Both solutions were tested under the same conditions, as far
as possible. There were used 3 different devices, the Oneplus
7, Oneplus X, and Xiaomi Redmi Note 4. Each of these devices
has a different Android version running, sensors versions,
and computational power. This way both solutions can be
tested for a wider type of devices, instead of only one specific
type. Each approach was tested for two different positions.
One was in the front pocket of the pants and the other was in
a backpack. The solution was tested during cycling but also
going up/downstairs. This was because the movement of the
legs when going up/downstairs is similar to when cycling.

To avoid/minimize the differences between cycling trips,
the route performed during the testing phase was always the
same. That is an attempt to simulate that the same conditions
were present for both solutions. The same happened for each
sampling interval pre-defined of both algorithms.

Each solution was tested in three main fields, accuracy,
response time, and battery. These are the first three require-
ments discussed in Section 1.
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5.1 Accuracy

For each solution (GAR and RF), the accuracy-test was di-
vided into two main components, device placement, and
activity. Each algorithm was tested and their results were
discussed.

Moving on to GAR’s evaluation we started by testing its
accuracy while cycling. For that when the trip record button
was pressed the user/tester started cycling and continue for
30 minutes at least. Few stops were performed during the
testing phase, only the necessary due to traffic lights or to
stop recording were made. This made that most of the time,
over 90%, the user was cycling so the outputs are around 90%
relative to continuous cycling. As mentioned previously that
was performed for both front pocket and backpack positions.
Table 1 and Table 3 show the results obtained from those tests
for the front pocket for cycling and stairs respectively, while
Table 2 and Table 4 for backpack. For all tables, the values on
the vertical left point the used phones, and the top horizontal
mark the sampling intervals. Although, while in Table 1 and
Table 2 (tested while cycling) the higher the values the better
the accuracy, in Table 3 and Table 4 (tested while on stairs)
the lower the better. That is due to the objective of these
last two tables. They are used to evaluate the up/downstairs
movement and are tested to see if the cycling activity is
detected. So the fewer times that happens the better, because
it means fewer false positives.

5 |10 | 30 | 60
or7 84 | 85 | 80 | 76
orx 84 |82 83|79
REDMI4 | 81 | 85 | 82 | 77
Table 1. GAR cycling accuracy front pocket
First line has the sampling intervals

Other lines display the accuracy (%)

5 |10 | 30 | 60
oP7 80 | 83 | 77 | 74
OoPX 86 | 82 | 81 | 79
REDMI4 | 78 | 82 | 76 | 72
Table 2. GAR cycling accuracy backpack
First line has the sampling intervals

Other lines display the accuracy (%)

The cycling results (Table 1 and Table 2) shows that the so-
lution presented better results for smaller/median sampling
intervals. The bigger interval, 60 seconds was for all cases
the worst one. This can be since with a larger interval in the
same amount of time there are fewer readings, which means
a higher probability of a set of wrong readings influences
negatively the final result.



DetectBiklio - detect bicycle usage with an Android smartphone app

5110 | 30 | 60
or7 614 |4 |3
OPX 716 |5 |6
REDMI4 (5|4 |5 |3

Table 3. GAR stairs accuracy front pocket
First line has the sampling intervals
Other lines display the accuracy (%)

5|10 | 30 | 60
or7 513 |4 |4
orx 616 |7 |5
REDMI4 |4 |4 |3 |3

Table 4. GAR stairs accuracy backpack
First line has the sampling intervals
Other lines display the accuracy (%)

In terms of false positives, i.e., the number of times the
cycling activity is detected while going up/downstairs was
low for all devices and samplings. They are also very similar
for both device placements.

Moving on to the RF the exact same tables were con-
structed. Table 5 and Table 7 show the results obtained from
the tests for the front pocket for cycling and stairs respec-
tively, while Table 6 and Table 8 for backpack.

5 (10|30 | 60
or7 89|91 | 91 | 89
OoPX 88190 | 92 | 89
REDMI4 | 89 | 92 | 92 | 90
Table 5. RF cycling accuracy front pocket
First line has the sampling intervals

Other lines display the accuracy (%)

5 |10 | 30 | 60
oP7 88 190 | 91 | 89
(0) 9,4 87 188 | 89 | 86
REDMI4 | 89 | 93 | 91 | 89
Table 6. RF cycling accuracy backpack

First line has the sampling intervals

Other lines display the accuracy (%)

In Table 5 and Table 6 are represented the cycling accuracy
obtained for both placements. In this case, unlike the former
one, the results are more well-distributed between all sam-
pling intervals. Here the larger sampling results are closer to
the results obtained on the smaller samplings. Also for both
placements, the results are better overall for a considerable
amount.
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5|10 | 30 | 60
oP7 1|1 1 1
OPX 2|1 1 |2
REDMI4 | 2 | 1 1 1

Table 7. RF stairs accuracy front pocket
First line has the sampling intervals
Other lines display the accuracy (%)

510 | 30 | 60
or7 1)1 1 1
orPXx 2|1 1
REDMI4 |1 |1 1 1

Table 8. RF stairs accuracy backpack
First line has the sampling intervals
Other lines display the accuracy (%)

The same happened when it comes to false positives. This
solution, when tested up/downstairs rarely presented the
cycling activity as the determined activity. That is possible to
confirm in Table 7 and Table 8. Just like in the cycling accu-
racy determination, here the results are almost the same for
both tables no matter the device placement. Results those that
are low and show that the probability of an up/downstairs
activity being confused with a cycling activity is lower than
when used the GAR.

5.2 Response Time

The response time was tested by calculating the exact time
the user needs to wait to obtain the result of the determined
activity. In other words, the time difference between the
moment he stops cycling and he sees if the tracked activity
was detected as cycling or not so he can use his benefits.

5 |10 | 30| 60
orP7 57 | 47 | 36 | 29
orXx 72| 58 | 53 | 42
REDMI4 | 68 | 55 | 49 | 37
Table 9. GAR average time

First line has the sampling intervals

Other lines display the response time (ms)

5 10 | 30 | 60
or7 531 | 510 | 487 | 459
orx 612 | 603 | 596 | 589
REDMI4 | 587 | 580 | 569 | 554
Table 10. RF average time

First line has the sampling intervals

Other lines display the response time (ms)

As it is shown, the bigger the sampling interval gets, the
faster is the response. This is a common behavior for all
devices. The same happens with the algorithm used. This
can be due to the reason that in the same hour of recording,
each sample has a different number of readings. For instance,
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in an hour the 60 seconds interval performs 60 readings
while the 30 seconds interval performs 120. The 10 performs,
even more, ending with 360 readings to be analyzed and
calculated while the 5 seconds interval performs around 720
readings. This is 12 times more data to analyze than the 60
seconds interval. Here the GAR has an advantage once it
displays lower response times. In fact, the difference between
the GAR and the RF is in the order of 10x or more. It is a
pretty big difference, although, it is necessary to remember
that these values are in milliseconds. What this means is that
the worst-case displayed here, which is the RF solution for
the OnePlus X (OPX) at a 5 seconds sampling and it returned
a 612 milliseconds response time. That is 0.612 seconds. This
is fast enough to return the determined activity to the user
after he stopped tracking it without him noticing he has to
wait for the result.

5.3 Battery

In terms of battery, the values of consumed battery do not
vary with the position changing as it occurs with the accu-
racy. It only depends on the sampling interval. The smaller
the sampling interval the higher the number of readings.
The higher the number of readings, the higher the energy
consumption. On the other hand, the higher the sampling
interval the lower the energy spent on gathering samples
which means less battery consumption.

Both these solutions write in a log file every 5 seconds.
Those writes are performed only for evaluation purposes.
They are not necessary for both application’s normal ex-
ecution. This value was defined because it is the greatest
common divisor of all the samplings available, 5, 10, 30, and
60 seconds. These continuous writes take some computa-
tional power which increases battery consumption. So the
results here are influenced by the battery spent on writing.
However, with this is possible to guarantee that the impact
of the writings is the same for all solutions and samplings.
The only difference is if the writing is empty or has a corre-
spondent reading associated.

Table 11 and Table 12 display the number of readings
performed while the battery percentage dropped 1%. That is
achieved thanks to the log file. By analyzing it is possible to
get the number of writes, associated with a specific reading,
made during the same battery percentage level. The battery
percentage level is associated with each write so it is possible
to know the battery level in the log.

Here, by comparing both tables, is possible to immediately
detect that the RF algorithm can perform more readings for
the same amount of battery consumption. This shows that
the battery used during the data gathering, i.e., read from the
sensors, store and write those values in the log file is less for
RF than GAR. That occurs for all devices except for the OPX.
For this device, all the values are lower than for the same
sampling intervals on GAR. This one is the oldest and the
less powerful in terms of computational capacity. Maybe for
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that reason, it may struggle more with the constant sensors
readings, especially the GPS, which as seen before is one
of the most power-demanding sensors. For the other two
devices, the RF results were better.

5 10 | 30 | 60
oP7 341 | 390 | 446 | 523
oPX 272 | 295 | 342 | 401
REDMI4 | 309 | 356 | 438 | 504
Table 11. GAR number of readings

First line has the sampling intervals

Other lines display the number of readings

5 10 | 30 | 60
or7 374 | 395 | 461 | 553
OoPX 239 | 270 | 304 | 341
REDMI4 | 320 | 381 | 447 | 532
Table 12. RF number of readings

First line has the sampling intervals

Other lines display the number of readings

For both solutions, the number of readings increases with
the increase of the sampling interval. That was expected
once the bigger the sampling interval the fewer the number
of calls to the sensors. And fewer calls to the sensors means
fewer readings performed in the same time interval. Which
results in a lower battery consumption caused by the sensors.

6 Conclusion

The increasing concern with the global environment due to a
continuous increase of the global average temperature along
with the decreasing of global natural resources there caused
the world to take some actions. Actions aiming to improve
those aspects of the environment. One of the most discussed
issues that are helping to increase the global temperature
is Carbon Dioxide (CO2) gases. Gases those that are major-
ity expelled by factories but also cars. So the reduction of
the number of cars circulating daily around the world is a
good measure to reduce those emissions and consequently
decrease the temperature rising. This along with some health
factors related to increasing obesity levels created an oppor-
tunity to remove cars from the roads and making people
practicing physical exercise. There are many applications
with that purpose, being Biklio the one that is interesting for
this work. It offers some gifts/discounts to encourage people
to replace the car or bus with a bicycle. This app detects if
the user is cycling for that.

This work goes through several aspects of the necessary
things to have a detection application working and ready. As
shown before there are already many possible solutions for
transportation mode detection and many different ways to
implement it. There are solutions based only on the mobile
phones of the users. Others are focused on external devices,
either composed of a single sensor or a combination of them.
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Others that are a hybrid solution, i.e., a solution that relies on
both users phone and external device. There are three main
decisions to make in this type of works, which sensors to
use, which features, and which algorithm. It was shown that
there are several sensors capable of determining an activity.
Also, it was shown that multiple features can be selected
and extracted based on the selected sensors. Although for
each sensor the amount of features is very high and they are
not always used the same features in different works with
the same sensors. Finally, the algorithm decision is equally
hard because there are so many already applied for this
type of application and presenting good results. Although
it is necessary to understand which fits better for each case,
having its advantages and disadvantages into consideration.
The combination of these three decisions is almost infinite
due to multiple options on each of the decisions.

From all the possible solutions existing it was decided to
choose a Machine Learning (ML) algorithm to attempt to
replace the Google Activity Recognition (GAR). The decision
was to use the Random Forest (RF) with the accelerome-
ter and the GPS. The GAR and RF applications were im-
plemented and tested to compare them and evaluate their
performance in three main terms, accuracy, response time,
and battery consumption. The RF presented better results
for accuracy and battery consumption while the GAR pre-
sented better results for response time. During the testing
phase, it was possible to assess some of the expected out-
comes. Le., most of the time it was really difficult to deter-
mine/understand the reasons why the results exhibited by
the GAR once the programmer does not know how it works
and what sensors it uses. While on the other hand, the RF,
is clear and transparent to the programmer, knowing all the
used sensors, features, and algorithms. This made it easier
to understand and explain the results obtained during the
evaluation phase. However, this solution has its disadvan-
tages. The main one is the necessary work to implement
it. The programmer must test the sensors to see which are
better. Test the features to understand if they are necessary
and useful. Create the algorithm and adjust all the necessary
values so it performs as it should. Gather readings and train
the algorithm so it can build a successful model. Only then it
can start determining the activity. The GAR in its turn only
needs to be called and displays the results.

Overall, the proposed solution for this work, RF, presented
better results. It outperformed considerably the GAR in the
accuracy test, returning higher accuracy levels for both de-
vice placements. The number of false positives returned was
also lower than the GAR. It also performed better for the
battery test, being able to perform more readings spending
the same amount of battery as the GAR. And although it had
taken more time to return the result to the user, its response
time is still nothing once it never reaches the one-second
mark. This amount of time is basically nothing to the users.
It is not an amount of time that requires the user to wait
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for the result. It is almost instantaneously displayed after
stopped tracking and reached the destination. Both solutions
presented fast response times but it is necessary to remember
that this GAR solution had a simple average algorithm on

top.

7 Future Work

This work presents several things that could be done as
future work. For starters, the RF application can be tested
in multiple different ways. It was only tested for cycling
and stairs activities. The other activities can produce a high
number of false positives and cause the accuracy of the app
to drop.

Also, the values used on the features could be modified to
see if it is possible to achieve higher accuracy. By changing
slightly the windows of accepted values in the RF algorithm
the accuracy may improve. There are several combinations
and not all have been tested here due to time limitations.

Nowadays, there are multiple sensors available on smart-
phones that could be somehow used to determine the type of
activities described in this work. So it would be interesting to
see how this solution behaves with different sensors combi-
nation. In particular with the accelerometer, magnetometer,
and gyroscope combination. This solution seems promising
and presented interesting results in [16], although it uses a
different algorithm. It would be nice to see if those sensors
could improve this application using the RF. The most inter-
esting part here is that the possibility of replacing the GPS
with the magnetometer, and gyroscope. This modification
could, theoretically, mean a less battery hungry application
once the GPS is one of the sensors that use most battery and
the combination of the individual battery consumption of
those two sensors is lower than the GPS alone.

There is equally the option of adding new features or
removal of used features. The addition of a single feature
can have a significant impact on the result of the application.
The right features for this particular case must be tested. We
only have tested some but there are still many that have not
been tested and can help to improve the accuracy of the app
or remove/decrease the number of false positives.

This is only for local applications. In case an app with
an external sensor/device presents better results without
compromising the rest of the work, i.e., without increasing
significantly the battery consumption or response time due
to the communications that need to be established with the
external sensor/device.
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