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Abstract

Vision-based navigation systems are a prominent tech-
nology in the space industry. This method is based on using
camera images as the primary navigation system to estimate
spacecraft relative position and attitude, namely for ren-
dezvous and proximity operations, such as lunar or plane-
tary landing missions. In the last few decades, conventional
image processing techniques are being replaced by Convo-
lutional Neural Networks in a vast number of tasks and do-
mains, since these Artificial Intelligence methods are out-
performing on most benchmarks. Inspired by these promis-
ing advances, in this Thesis, we investigate Deep Learn-
ing alternatives to classical image processing algorithms,
which may be applicable to image-based navigation in the
scope of planetary landing missions. Thus, we propose a
complete framework to evaluate any image feature detector
for the task of motion states estimation during a planetary
landing mission, using both representative and simulation
datasets, as well as the most recent Perseverance Rover’s
landing video from NASA. To accomplish this goal, a solu-
tion based on homography relation is designed. A qualita-
tive and quantitative evaluation of the whole pipeline is pre-
sented, comparing both classical feature detectors and one
based on Deep Learning architectures. From our promising
results for applying machine learning to this problem, we
introduce an alternative to classical Computer Vision algo-
rithms. Furthermore, we discuss some possible future work
to improve the results.

1. Introduction

Navigation systems like GPS are only available on Earth,
which means that spacecraft exploring other bodies in space
need to estimate their position by different methods. Sen-
sors, algorithms and onboard computing are able to sub-
stitute human visual navigation and even outperform it to
enable safe landings in space. Cameras are replacing con-

ventional sensors for Entry, Descent and Landing missions
as they are versatile and lightweight, allowing absolute
and relative navigation, hazard detection and avoidance, to
provide precision and reach safe locations, on the Moon,
Mars, and beyond, making vision-based navigation the most
promising technology for lunar and planetary landings.

In recent years, CNNs are replacing classical image pro-
cessing methods in a vast number of tasks and domains.
Space industry is also starting to rely on these networks to
solve problems, such as target detection and identification
or pose estimation of space targets. Our purpose is to in-
vestigate the use of CNNs to image-based navigation in the
scope of planetary landing missions.

Vision-based relative navigation uses a camera to iden-
tify surface features and compare their locations along the
frame sequence in order to figure out the relative position
and attitude with respect to the ones from previous time
instants. For planetary landing missions, we rely in the
assumption that the surface seen by the camera is planar,
since terrain relative navigation (TRN) starts a few kilome-
ters from the ground, and the problem can be tackled by ho-
mographies, that give exact or almost exact image-to-image
transformations.

The first step is to detect and describe keypoints on two
different images of the same scene. Then, we find cor-
respondences between the points on both images and es-
timate an homography matrix that represents the transfor-
mation between the reference and current image. Finally,
that relation is converted into euclidean coordinates and de-
composed into relative rotation and translation between the
cameras. If we choose a fixed reference frame, we can es-
timate attitude and translation of the spacecraft along the
landing trajectory.

Our focus goes to the detection and description step,
where we perform experiments using both classical and
deep learning algorithms to compare the navigation esti-
mates and find the advantages of moving into the machine
learning approach. Our contributions include:
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1. We propose a framework for evaluating feature detec-
tors for the task of motion states estimation during
a planetary landing mission, applicable to any video
sequence dataset, assuming that ground truth posi-
tions and attitudes of the spacecraft+camera system are
known.

2. We ran several experiments to compare classical fea-
ture detectors and one relying on machine learning
with the purpose of getting the most accurate estimates
of position and attitude on a landing trajectory.

3. We have shown that it is possible to use deep learn-
ing feature detectors, namely SuperPoint, to accu-
rately perform an image-based navigation perception
system in landing missions, and that it actually out-
performs classical methods such as Harris Corners or
SIFT, specifically when estimating relative pose be-
tween highly spaced frames.

4. We confirmed the possibility of using simulation
datasets to evaluate the vision-based system perfor-
mance and we have done experiments using the most
recent and representative dataset of our problem, the
Perseverance Rover’s Descent and Touchdown on
Mars from NASA.

2. Background
We use homographies to recover spacecraft poses during

landing missions. Traditional image processing techniques
have been used during the past years to solve this problem
in a sequential process of detecting important points in im-
ages taken in successive instants of time, find a relation be-
tween these points in different images and then use these
relations to compute the transformation between different
viewpoints.

2.1. Feature Detection and Description

The first step is to identify repeatable and distinguish-
able keypoints in each image of the sequence and then, to
find a way of reliably describing them. In the past years,
engineers have proposed several handcrafted algorithms to
detect and describe those points based on heuristics. One of
the first and most popular attempts is called Harris Corners
and was done in 1988 in [14]. Later, J. Shi and C. Tomasi
proposed a small modification to the Harris Corner detector
in [15]. Both only return corner locations, with no descrip-
tors, and they fail when there are large scale changes. Then,
SIFT was presented in [10] and [11], and later a speeded-
up version, called SURF, in [6]. These two got good re-
sults, but they were patented for several years. Thinking in
real-time applications, some feature detectors are not fast
enough. So, a new algorithm called FAST was proposed
in [3] and later revisited in [4], to detect feature locations.

Likewise, there is a growing need for local descriptors that
are fast to compute, fast to match, and memory efficient.
Hence, BRIEF descriptor was proposed in [12]. From the
”OpenCV Labs”, came out ORB in [5], which is a fusion of
FAST detector and BRIEF descriptor with some modifica-
tions on both. A lot more efforts were done and a lot more
hand-engineered detectors and descriptors have been made
during the years.

Recently, several approaches were proposed to tackle
feature detection and description using CNNs. In 2016, a
novel deep network, called LIFT, was introduced in [9].
Later, SuperPoint [2] comes from a self-supervised frame-
work for training interest point detectors and descriptors.
LF-Net article [16] proposed a novel deep architecture and
a training strategy to learn a local feature pipeline from
scratch, using images without the need for human super-
vision. Key.Net [1] uses a combination of handcrafted and
learned CNN features to produce a keypoint detector. D2-
Net [13] is a close approach to SuperPoint as it also shares
a deep representation between detection and description.
R2D2 [8] introduced the idea of reliability apart from re-
peatability. The problem of efficiently and accurately detect
and describe interest points using CNNs for higher level
computer vision applications is still an open field of re-
search these days.

2.2. Feature Tracking

Features can be tracked along a video sequence using
one of two methods. Optical flow methods rely on the
minimization of the brightness constancy of an object be-
tween consecutive frames, so they are more suited to image
sequences than image pairs from different views and, due
to the assumptions made, the main problems are large mo-
tions, occlusion, strong illumination changes and changes
of the appearance of the objects.

Feature matching uses feature descriptors to match fea-
tures with one another by a nearest neighbor search in the
feature space. Feature matching algorithms are far better
if there is a perspective difference between the images, or
the frames, or when the transformations are large, e.g., for
a wide interval between frames. They are scale and rotation
invariant and are robust to changes in illumination, as those
caused by shadow or different contrast.

Both methods produce a list of correspondences between
points on both images.

2.3. Projective Homography Estimation

Let pi = (ui, vi, 1) be the vector containing the homo-
geneous coordinates of a point in the first image and let
p′i = (u′i, v

′
i, 1) be the homogeneous coordinates of the

same point in the second image. The projective homog-
raphy matrix transforms pi into p′i, up to a scale factor and
can be solved using the Direct Linear Transform algorithm,
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as explained in chapter 4.1 in [17], requiring a minimum of
4 correspondences between points on both images.

In general, there are many more than four corresponding
points in a pair of images, some of them being outliers that
will degrade the solution if taken into account using Least
Squares. RANSAC algorithm is applied to reject these out-
liers in order to get a more accuracte estimate of the homog-
raphy.

2.4. Pinhole Camera Model

The information from the 3D world is projected into a 2D
plane when a camera acquires an image. The simplest way
of representing this transformation is the pinhole model. A
point in the world P = (X,Y, Z) is mapped into the pro-
jection plane to a point p = (x, y), which is the intersection
of the projection plane and the projection line that contains
the point P and the camera centre. Similar triangles allow
to calculate the coordinates of the projected point,

p = (x, y) =

(
f
X

Z
, f
Y

Z

)
(1)

Homogeneous coordinates can simplify the transforma-
tions between points.

p̄ =

xy
1

 ≡
fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (2)

The same way, can be written in a concise form as,

p̄ = K[I|0]P̄ (3)

where K is called the camera calibration matrix or intrin-
sics matrix and can be written as

K =

αx s u0
0 αy v0
0 0 1

 (4)

where αx = fmx and αy = fmy represent the focal length
of the camera in pixel dimensions. f represents the focal
length in meters, and mx and my the number of pixels
per unit distance in both directions. Similarly, the princi-
pal point needs to be converted to pixels, using u0 = αxox
and v0 = αyoy , where (ox, oy) are the coordinates of the
principal point in the image frame. s represents the skew
factor

2.5. Euclidean Homography

World points can be represented with respect to different
frames.

P2 = RP1 + T (5)

where P1 and P2 represent the coordinates of a point P in
the world according to frame 1 and frame 2, respectively.
R = R2

1 is the rotation matrix from frame 1 to frame 2 and
T = t22→1 is the translation vector of the frame 2 to frame 1
represented in the frame 2.

When all points lie on a plane, we have another con-
straint,

1

d
NTP1 = 1 for pointsP1in the plane (6)

Substituting Eq. 6 in Eq. 5, the transformation becomes,

P2 = RP1 + T
1

d
NTP1 = HP1 (7)

where

H = R+
1

d
TNT , H ∈ R3x3 (8)

H is known as Euclidean Homography or planar ho-
mography matrix that allows to compute the relative pose
between the cameras. Points in the world represented in
camera frame can be converted up to a scale into the image
frame using the camera matrix,

p̄1 = α1K1P̄1 and p̄2 = α2K2P̄2 (9)

Assuming the same camera in both frames, K = K1 =
K2, we can derive the relation between the homogeneous
pixel coordinates of common points in both images.

p̄1 = γK

(
R+

1

d
TNT

)
K−1p̄2 (10)

where γ is the scale factor. Now, we can relate the projective
homography with the euclidean homography,

Hproj = γKHeucK
−1 (11)

3. Implementation
We evaluate the performance of several image process-

ing algorithms and we aim at proposing a more accurate
monocular vision-based relative navigation system. Our im-
plementations and evaluations use two classical algorithms,
Harris Corners and SIFT, as reference, and SuperPoint as
the machine learning alternative in test.

3.1. Software Tools

A software pipeline was implemented in Python lan-
guage. Since we are working with images and many ma-
trix calculations are needed, the implementation makes use
of Python libraries that are optimized for real-time image
processing applications such as OpenCV1 and Numpy2, and

1https://opencv.org/
2https://numpy.org/
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that are optimized for neural networks computations in both
CPU and GPU, such as PyTorch3.

3.2. Evaluation Datasets

3.2.1 Spin.Works UAV Landing Mission Dataset

Spin.Works ran several experiments of landing missions us-
ing UAVs in representative terrain surfaces such as a quarry.
From them resulted a video that was highly used during our
performance evaluations, which was acquired by a camera
attached to the UAV looking downwards during the land-
ing phase in a quarry. Spin.Works used a Structure-from-
Motion (SfM) software, which uses the first 249 frames to
compute the orthophotograph of the terrain surface, the po-
sition and attitude of the camera/aircraft, an estimation of
the model of the camera used and the point cloud of the ter-
rain. Hence, we get the motion states we use as reference.

3.2.2 Spin.Works Moon Landing Mission Simulation

Getting real datasets with the ideal representation of the
problem is a difficult task. Spin.Works generated some of
these simulations using PANGU4, which is a proprietary
software from STAR-Dundee5 often used by ESA. Hence,
from simulated Moon landing trajectories, the software pro-
duced a collection of synthetic images reproducing the envi-
ronment, forming a video sequence in a completely control-
lable environment where the camera parameters, the motion
states and the 3D of the surface are perfectly known.

3.2.3 Perseverance Rover’s Descent and Touchdown
on Mars (Official NASA Video)

NASA posted online many images and videos from the
Mars landing mission, including the video6 from Persever-
ance rover’s descent and touchdown on February 18, 2021,
seen by a down-looking camera. We have extracted the
frames from the YouTube video, at 10 Hz, and then resized
each frame to 512 × 512 dimension, forming a set of 1310
images of the surface from Mars during descent. NASA
did not publish navigation data for us to compare our esti-
mates. However, at Spin.Works, they used, once again, the
SfM software to get position and attitude of the camera at
each frame from the frame sequence. Then, we have rotated
data so that the last frame is vertical to the terrain surface.
Finally, since backshell separation occurs at about 2.1 kilo-
meters and that frame is visible on the sequence, we scaled
the position, resulting in a trajectory starting at 11 kilome-
ters from the surface of Mars, which is consistent with the
EDL diagram published by NASA.

3https://pytorch.org/
4https://pangu.software/
5https://www.star-dundee.com/
6Video URL: https : / / www . youtube . com / watch ? v =

4czjS9h4Fpg

3.3. Feature Detection Algorithms

3.3.1 Harris Corners

Harris detector was implemented using the function good-
FeaturesToTrack from OpenCV with the flag useHarrisDe-
tector set to True. This function returns a list of coordinates
for the features identified. For each of these features we
computed a descriptor as the 15× 15 patch of intensity val-
ues around the pixel location and flattened to a vector of
dimension 225. The similarity measure used to compare
descriptors was normalized cross-correlation.

3.3.2 SIFT

SIFT algorithm was also implemented using OpenCV. In
this case, the function returns the keypoints’ locations and
also the SIFT descriptors. The default parameters were
used, we also chose the maximum number of features to
be similar to the other algorithms during performance eval-
uations. The similarity metric adopted was the L2 norm.

3.3.3 SuperPoint

SuperPoint was implemented and trained from scratch us-
ing PyTorch framework, following the procedure described
in the paper [2], but with slight differences. The descrip-
tor loss was slightly modified from the original paper in-
spired by the paper [7] (section 3.2 paragraph Matching
layer) and the Tensorflow implementation in the repository
https://github.com/rpautrat/SuperPoint.
The descriptor loss is now computed on L2 normalized de-
scriptors and, after computing the distance matrix between
the descriptors of both images, we have applied ReLu acti-
vation to eliminate obvious non matches (similarity of the
descriptor below 0). We have implemented the L2-norm as
a similarity measure for the descriptor matching. Opera-
tions were implemented with the possibility of using GPU
acceleration due to parallelization of most computations.

SuperPoint corner locations are defined with pixel coor-
dinates, while other detectors like SIFT have sub-pixel pre-
cision. So, we have implemented a method to refine corner
locations from SuperPoint. After getting the corner loca-
tions, we apply the function cornerSubPix from OpenCV
that iterates to find the sub-pixel accurate location of cor-
ners.

3.4. Homography Estimation & Motion Recon-
struction

3.4.1 Ground Truth Homographies

Our datasets do not have explicit ground truth homogra-
phies between the frames along the video sequences for us
to use as reference. Nevertheless, it is possible to com-
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pute reference homographies using the camera model and
the motion parameters.

Our approach is to compute the transformations between
the ground surface plane and the image plane, projecting
the camera versors, calculated using navigation states, into
the ground surface and getting the 4 corners of the surface
region seen by the camera, in meters. The ground surface
plane remain constant along the frame sequence. Therefore,
it is possible to calculate inter-frame homographies, by the
formula,

Hj
i = HjH

−1
i (12)

where Hj
i represents the homography between frames i

and j, and Hi and Hj are the transformations between the
world surface and the image plane, respectively.

3.4.2 Test Set Homographies

The procedure to compute the test set of projective homo-
graphies is independent of the algorithm chosen for the fea-
ture detection, description and matching. The homography
matrix is computed from the correspondences between fea-
tures from different frames using the DLT algorithm. How-
ever, not all correspondences are correctly identified and we
have implemented the RANSAC algorithm to reject outliers
and compute the estimate only with correspondences that
are considered inliers using a threshold on a geometric dis-
tance between estimated points and original points.

3.4.3 Non-Linear Least Squares

Homographies are used to estimate camera positions and at-
titude in order to reconstruct the motion of the spacecraft.
Matrices computed from image processing techniques must
be converted to euclidean homographies, as described in
section 2.5, by the formula,

Heuc =
K−1HprojK

γ
(13)

where γ is the scale factor. If we notice that the median of
the singular values of Heuc, then we can compute the scale
factor γ as follows:

γ = med(svd(K−1HprojK)) (14)

Pose information is implicit in euclidean homographies
and can be recovered defining a model using equation 8.
Our goal is to produce an estimate of the vector of parame-
ters, x, which we call state vector, that represents the posi-
tion and orientation of the aircraft at each time frame.

The model is non-linear, which complicates the problem.
However, we can assume that given an initial rough condi-
tion for our state vector x, it is possible to produce some

cost function where our state space is locally convex and,
then, where it is possible to converge to a local minimum
that matches the optimal estimate of x. This problem can
be described as a local optimization problem, and can be
solved iteratively, using non-linear least squares (NLLS).
The linearization of the homography function becomes

Hf
i (x) = Hf

i (x0) +
dHf

i

dx
(x0)[x− x0] (15)

where Hf
i (x) represents the estimate of the euclidean ho-

mography at state x, Hf
i (x0) the result of applying the ho-

mography model at initial state vector, x0,
dHf

i

dx
(x0) de-

notes the Jacobian of the model at x0, explicitly defined as[
dH

dφ
,
dH

dθ
,
dH

dψ
,
dH

dtx
,
dH

dty
,
dH

dtz

]
, a 9x6 matrix and, finally

x stands for an improved estimate of the actual state vector
(rinse repeat).

A key frame must be given, a camera whose navigation
motion states are known: position (altitude above ground)
and attitude. The rotation matrix R(φ, θ, ψ) is replaced by
R(φ, θ, ψ)R0 in the model, where R0 is the rotation matrix
from the key frame camera to the (ground) local vertical
reference frame.

At the end of each convergence (between any two
frames), we store the estimated attitude (φ, θ, ψ) and trans-
lation t = (tx, ty, tz). The translation vector needs to be
first transformed back to the reference frame of the key-
camera-frame, through: t = −R(φ, θ, ψ)T × t, before stor-
age.

3.5. Evaluation Metrics

The objective of this Thesis is to evaluate the perfor-
mance of the image processing algortihms to reconstruct
the motion of the aircraft in landing missions. Therefore,
our evaluations were conducted in three phases. We started
by testing the repeatability of the points, then the accuracy
of homography estimation and finally we got to a more ad-
vanced metric where we compare the motion states directly.

On one hand, we detect points on every frame and com-
pute estimates of the homography relating pairs of succes-
sive frames. The transformation from the world plane to the
ith frame plane can be estimated as a sequence of frame-to-
frame homographies multiplication as follows:

Hi
w = Hi

i−1H
i−1
i−2 ...H

1
0H

0
w (16)

We tested different conditions, such as changing the ref-
erence frame and the delta between frames, i.e., the interval
between frames we use to estimate the homographies. On
the other hand, we chose the key frame, detect the keypoints
and save the descriptors. Then, we perform directly the es-
timation of the homography between the key frame and the
current frame. For each frame i we get the expression
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Hi
w = Hi

0H
0
w (17)

These experiments allows to evaluate the strength of the
features detected by the different algorithms so we can per-
ceive the ones that keep on being detected during longer
periods of time. This procedure contributes to the elimina-
tion of the cumulative error caused by the composition of
successive homographies.

4. Results
4.1. Spin.Works UAV Landing Mission

The Spin.Works UAV landing mission dataset is our first
approach to compare algorithms in an environment similar
to what is expected in a planetary landing mission.

We started by evaluating the performance of the algo-
rithms in the task of estimating the homographies that rep-
resent the image transformations between different frame
transitions. First, we tested all the transitions between con-
secutive frames and then, we have successively increased
the interval between the frames. Results indicate that Super-
Point performs comparably to the classical methods in the
case of intervals of consecutive frames and slightly better
when we increase the delta between frames, specially when
compared to SIFT. This consequence suggests that Super-
Point could be a powerful alternative for transitions that are
more spaced in time. The detected corners remain being
correctly matched along longer time sequences.

However, these metrics are insufficient to demonstrate
that SuperPoint keypoints and descriptors are advantageous
over Harris Corners and SIFT at the high level task of esti-
mating motion states for the vision-based navigation prob-
lem. Qualitative results from matchings between highly
spaced frames also shown that SuperPoint has a stronger
performance when facing high scale changes.

We tested our algorithm using the reference set of homo-
graphies, so that we could verify that the motion recovery
algorithm is correctly implemented and that it does not con-
tribute with errors to the final solution. Therefore, the esti-
mate deviations from the reference can be used as an eval-
uation metric of the quality of the homographies produced
by the different methods.

4.1.1 Reference frame: 20, Delta between frames: 1

We defined one reference frame from the beginning of the
sequence, e.g. frame 20, and the smallest interval possi-
ble, delta between frames equal to 1. The deviations be-
tween the estimated translations and attitudes by the three
methods and the reference values are plotted in Figure 1.
We can visually notice that SIFT exhibits the worst perfor-
mance among the three, since estimates are much deviated
from the reference values. Harris Corners and SuperPoint

perform similarly, although SuperPoint seems to be slightly
more accurate, namely in pitch and y-translation.

(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 1. UAV landing pose recovery deviations, using homogra-
phies calculated from image processing techniques with different
features detectors. Frame 20 is used as reference and delta be-
tween frames is equal to 1. Inter-frame homography matrices are
multiplied to get the transformation of the current frame with re-
spect to the reference frame.

4.1.2 Reference frame: 1, Delta between frames: 20

We performed several experiments changing the reference
frame and increasing the delta between frames. In the cur-
rent condition the frame 1 is the key frame and the delta is
equal to 20. Results are presented in plots from figure 2.
It is trivial to see that, using SuperPoint, the estimates are
clearly better. Both Harris and SIFT fail badly on the final
transitions of 20 frames, making estimates completely im-
practical. To maintain the readability of the plots, we have
cut the last estimates from both classical algorithms and that
is why the x-axis is shorter than in SuperPoint where the es-
timate remain accurate until the end of the sequence, since
the deviations stay much lower than using Harris or SIFT.
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Besides that, we can compare the accuracy of the predic-
tions in the first frames’ transitions and the difference is vi-
sually noticeable.

(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 2. UAV landing pose recovery deviations, using homogra-
phies calculated from image processing techniques with different
features detectors. Frame 1 is used as reference and delta between
frames is equal to 20. Inter-frame homography matrices are mul-
tiplied to get the transformation of the current frame with respect
to the reference frame. Last estimates cut from both classical al-
gorithms, as Harris and SIFT fail badly on the final transitions.

This method of relative navigation, similar to dead reck-
oning, is subject to cumulative errors. The composition of
the homographies accumulates errors that are introduced in
individual inter-frame estimations. For long periods of time,
cumulative errors can lead to obsolete information about po-
sition and attitude of the aircraft. For that reason, it is im-
portant to increase the delta between frames, which reduces
the number of estimations made and, consequently, the ac-
cumulation of errors. It can be used as an additional source
of information to the perception system, like another sen-
sor to introduce into the navigation filters to help rectify the
estimates of pose state variables.

4.1.3 Limit for delta between frames

At second pipeline of our experiment, we aim to evaluate
the longest period of frames in which the same features re-
main being correctly detected and matched, producing ac-
curate estimates of pose states. Here, we do not rely on
composition of inter-frame homographies. Instead, we per-
form directly the homography estimation between the ref-
erence frame features and the ones from the current frame.
We perform experiments using different reference frames
and count the number of frames until when deviations start
exploding and the estimation become very unstable. Table
1 shows results for the three algorithms for different key
frames. The numbers represent the period of frames start-
ing from each reference, where estimations are accurate and
stable.

Reference Frame 1 45 90 150 200

Harris Corners 70 53 44 29 17
SIFT 70 55 15 44 24
SuperPoint 100 84 61 42 26

Table 1. Number of frames until degradation of motion states es-
timates for UAV landing video sequence, from different reference
frames

Once again our conviction is confirmed. SuperPoint ac-
tually shows better results for longevity of detected features
and pose estimation between long periods between frames
is significantly more stable and accurate using SuperPoint
than classical methods, which indicates that the learned de-
tector and descriptors are more robust and invariant to scale,
translation and rotation changes in environments similar to
lunar or planetary surface.

4.2. Spin.Works Moon Landing Mission Simulation

The main advantage of the lunar landing simulation is
that we can easily vary the conditions, such as the trajec-
tory, the landing site or the camera model and we have a
completely controllable environment where we known for
sure the motion states.

4.2.1 Reference frame: 1, Delta between frames: 1

Once again, we started by testing the methods with the
simplest scenario of using the first frame as reference and
composing the inter-frame homographies (calculated with
a delta between frames equal to 1) to obtain the relation
between the current and reference frames. We also the de-
viations of the estimated translations and attitude from the
real values defined by the simulated trajectory of an EDL
mission to the Moon, Figure 3.

Results show that all three methods are able to retrieve
motion states fairly well. However, SIFT exhibits the best
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(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 3. Moon landing simulation pose recovery deviations from
reference states, using homographies calculated from image pro-
cessing techniques with different features detectors. Frame 1 is
used as reference and delta between frames is equal to 1. Inter-
frame homography matrices are multiplied to get the transforma-
tion of the current frame with respect to the reference frame.

performance among all, as the estimates are far closer to
the references, namely the translation ones. SIFT detec-
tions have sub-pixel precision, while both Harris Corners
and SuperPoint keypoints are defined at integer coordinate
locations. Since this dataset has a larger number of frames,
there are a lot more transitions to estimate, which may result
result in more cumulative errors as we go further from the
reference. Besides that, translations are a lot higher than the
ones from the UAV dataset. Sub-pixel precision may reduce
the errors, which gives SIFT a great advantage and supports
the results.

To tackle this problem and make SuperPoint competitive
to SIFT, we tested to introduce the function cornerSubPix
from OpenCV to the corners detected by SuperPoint in or-
der to refine corner locations and allow sub-pixel precision.
Results are presented in figure 4. As we expected, estimates
are far better now and they can reproduce well both attitude

and translation until the end of the trajectory, demonstrating
less accumulated errors at the end than SIFT, namely in the
x-axis from horizontal translation.

Figure 4. Moon landing simulation pose recovery deviations from
reference states, using homographies calculated from SuperPoint-
cv.cornerSubPix detections. Frame 1 is used as reference and delta
between frames is equal to 1. Results should be compared to Fig-
ure 3

4.2.2 Reference frame: 1, Delta between frames: 20

Next, our experiments concern larger intervals between
frames. We have increased delta and significant differences
arise for intervals of 20 or 30 frames. Results are repre-
sented in figure 5 for delta equal to. Once again, we prove
our conviction that SuperPoint brings enormous advantages
when we increase the period between the frames, as its de-
tections and descriptors are stronger and more invariant than
those using classical methods. Estimates using SuperPoint
remain valuable until the end of the sequence. The same
does not happen with Harris Corners or SIFT. SIFT per-
forms well until frame 750. From then on, it clearly fails
to estimate the homography, which is reflected by the big
deviation in the final transitions. Harris Corners fails a lot
earlier in the sequence. Figure 5 shows an enormous devi-
ation after frame 400 and another at about frame 750. The
plot was cut to maintain readability, but deviation ”steps”
keep on happening and getting bigger until the end of the
video. We can confirm that SuperPoint is a lot more stable,
as estimations did not explode in any condition from these
experiments.

Results from simulation sequences are important be-
cause they are much easier to create and to change condi-
tions in order to prepare the algorithms for the environment
and dynamics the aircraft will come across when on a real
mission. It allows to predict algorithm’s behavior a prior
and to parameterize the system to the specific conditions of
the mission.

4.3. Perseverance Rover’s Descent and Touchdown
on Mars

We do not have the actual navigation data from NASA,
and the reduced set of information regarding the camera
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(a) Harris Corners

(b) SIFT

(c) SuperPoint + cv.cornerSubPix

Figure 5. Moon landing simulation pose recovery, using homogra-
phies calculated by image processing techniques, with frame 1 as
reference and delta between frames equal to 20

specifications, the reference altitude associated with the key
frames and the whole video sequence as a whole, forced
us to make several educated guesses during the process
of reconstructing the navigation states using SfM methods.
Moreover, the quality markers of the SfM results are not
so good, indicating that the SfM process found a lot of in-
consistencies in the data and, therefore, the quality of the
results is questionable. All this uncertainty makes the avail-
able navigation results from SfM only valid for qualitative
analysis and not quantitative. Still, the novelty of the data
justified it being included here.

4.3.1 Reference frame: 50, Delta between frames: 10

The first frames occur while the heat shield is separating,
so it appears in the images. Therefore, we have selected
frame 50 to be our reference and estimated homographies
with a delta equal to 10 until the end of the sequence. Mo-
tion states estimated using SuperPoint are represented in

Figure 6. Perseverance landing pose recovery, using homographies
calculated by SuperPoint keypoints, with frame 50 as reference
and delta between frames equal to 10

figure 6, having a very accurate agreement in attitude and
vertical translation, specially in terms of trend following,
i.e., neglecting the bias and focusing on the dynamic behav-
ior. Harris Corners is not represented because the results
were completely damaged and were considered not signifi-
cant and SIFT did not detect any point in frame 50 or other
frames around, which reinforces our conviction that Super-
Point is a good alternative to classical methods. Unfortu-
nately, the horizontal translation, which is the most impor-
tant result for GNC given that the remaining states are being
well observed by other sensors aboard the spacecraft, show
a poor agreement with the reference from SfM.

4.3.2 Reference frame: 700, Delta between frames: 10

(a) Harris Corners

(b) SuperPoint

Figure 7. Perseverance landing pose recovery, using homographies
calculated by image processing techniques, with frame 700 as ref-
erence and delta between frames equal to 10

From NASA’s plan for the EDL mission, we get that
TRN starts at about 4 kilometers above the surface. In a
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mission similar to this one, our algorithms would work at
that phase. So, we decided to perform experiments starting
at that point. From the position data we use as ground truth,
we found that the rover is at an altitude of 4 kilometers at
about frame 700. Only SuperPoint and Harris Corners pro-
duced valuable results, that are represented in figure ?? for
delta equal to 10. SIFT clearly failed a lot transitions along
the sequence, in both conditions, which made results in-
significant, that is why we do not present them. SuperPoint
and Harris Corners show similar results, but SuperPoint is
getting slightly lower deviations, specially in translations.

We did not go further in detail on this dataset because
there are a lot of information that can be not 100% tunned.
Despite all uncertainties we consider this evaluation very
important and promising since this is the most recent and
representative dataset for our problem and the satisfactory
results points that we are following the right path and this is
still an open field for investigation.

5. Conclusions
To accomplish autonomous navigation, the spacecraft

needs to know where it is (perception). Specially in space
missions, where GPS is not available, cameras proved to
be decisive for precision navigation. Concurrently, Arti-
ficial Intelligence is becoming hugely popular and recent
advances in hardware capabilities allowed DL models to
achieve unimaginable performances. CNNs are replac-
ing conventional hand-engineered methods in almost every
task, which induced us to do this investigation on combin-
ing these domains.

A complete framework to evaluate the performance of
any feature detector for the task of estimating position and
attitude of an spacecraft along a landing trajectory, using a
sequence of images, acquired by a mounted camera, was
implemented. Two classical feature detectors (Harris Cor-
ners and SIFT) and one using deep learning (SuperPoint)
were used to perform evaluations on that framework.

Results have shown that the deep learning detector
achieved at least the same navigation performance on all
datasets, as the conventional methods, and that it even out-
performs them under some conditions. SuperPoint proved
to bring enormous advantages in detecting stronger key-
points and descriptors that remain being detected and cor-
rectly matched on much more images of the same scene
along the video sequence. That is reflected on much bet-
ter estimates of relative pose between much higher intervals
between frames. This quality is of great importance as it
can be used as complementary information to the relative
pose between successive frames, in order to refine the esti-
mates and reduce cumulative errors that arise from succes-
sive small errors from inter-frame predictions.

This problem is still an open field for investigation and
the next planetary missions are expected to largely rely on

the improvements that could be made by the scientific com-
munity until then. The first, and probably most obvious, fu-
ture work is to implement this solution in hardware. More
research could be done to integrate geometric constraints
and the camera pose estimation pipeline into the trainable
network and, finally, another important aspect to improve
is computational efficiency of the deep learning network.
The VGG-style backbone has lots of standard 2D convolu-
tional layers that could be converted to most efficient build-
ing blocks as the ones proposed by MobileNets.
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