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My sincere thanks to my loving girlfriend for having stood by my side, encouraging me every time I

felt lost or not motivated. Her company has been essential and I hope it never changes.

Last, but not least, I am eternally grateful for the help from my friends, which includes all the travels,

parties and moments that made my onboarding at a new city peaceful and amazing.

v



vi



Resumo

Os sistemas de navegação auxiliada por visão são uma tecnologia relevante na indústria espacial.

Este método é baseado no uso de câmaras como o principal componente de um sistema de navegação

para estimar a posição e atitude relativas de um veı́culo espacial, nomeadamente para operações de

proximidade, tais como missões de aterragem lunar e planetária. Nas últimas décadas, as técnicas de

processamento de imagem convencionais têm vindo a ser substituı́das por redes neuronais convolu-

cionais num vasto número de tarefas e domı́nios, dado que os métodos de Inteligência Artificial têm

vindo a ultrapassar em grande parte os testes de referência.

Inspirados por estes avanços promissores, nesta Tese, investigamos alternativas usando Aprendiza-

gem Profunda para algoritmos clássicos de processamento de imagem, que possam vir a ser usadas

numa navegação auxiliada por imagem, no âmbito de missões de aterragem planetária. Desta forma,

propomos uma abordagem completa para avaliar detetores de pontos de interesse com o objetivo de

estimar estados do movimento em missões de aterragem planetária, usando dados representativos,

simulados e ainda o mais recente vı́deo da NASA da aterragem do rover Perseverance. Com este

objetivo, apresentamos uma solução baseada em homografias.

Uma avaliação qualitativa e quantitativa é apresentada, comparando detetores de pontos de inter-

esse clássicos e um baseado em arquiteturas de Aprendizagem Profunda. Ao obtermos resultados

promissores na aplicação de aprendizagem automática para este problema, introduzimos uma alterna-

tiva aos algoritmos clássicos de visão computacional. Para além disso, discutimos possı́veis trabalhos

futuros para melhorar os resultados.

Palavras-chave: Navegação auxiliada por visão, Aterragem Planetária, Homografia, Apren-

dizagem Profunda, Redes Neuronais Convolucionais, Detetores de pontos de interesse
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Abstract

Vision-based navigation systems are a prominent technology in the space industry. This method

is based on using camera images as the primary navigation system to estimate spacecraft relative

position and attitude, namely for rendezvous and proximity operations, such as lunar or planetary landing

missions. In the last few decades, conventional image processing techniques are being replaced by

Convolutional Neural Networks in a vast number of tasks and domains, since these Artificial Intelligence

methods are outperforming on most benchmarks.

Inspired by these promising advances, in this Thesis, we investigate Deep Learning alternatives

to classical image processing algorithms, which may be applicable to image-based navigation in the

scope of planetary landing missions. Thus, we propose a complete framework to evaluate any image

feature detector for the task of motion states estimation during a planetary landing mission, using both

representative and simulation datasets, as well as the most recent Perseverance Rover’s landing video

from NASA. To accomplish this goal, a solution based on homography relation is designed.

A qualitative and quantitative evaluation of the whole pipeline is presented, comparing both classi-

cal feature detectors and one based on Deep Learning architectures. From our promising results for

applying machine learning to this problem, we introduce an alternative to classical Computer Vision

algorithms. Furthermore, we discuss some possible future work to improve the results.

Keywords: Vision-based Navigation, Planetary Landing, Homography, Deep Learning, Convo-

lutional Neural Netwroks, Feature Detection
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Chapter 1

Introduction

1.1 Motivation

In the scope of a recent European Space Agency (ESA) mission1 led by Spin.Works, extensive flight

testing over Mars-representative terrain was carried out to demonstrate real-time embedded vision-

based navigation and hazard detection and avoidance algorithms for planetary landing applications.

Navigation systems like the Global Positioning System (GPS) are only available on Earth, which means

that spacecraft exploring other bodies in space need to estimate their position by different methods.

During the Apollo moon landings, astronauts used visual navigation during the final descent to avoid

craters and land safely. Nowadays, sensors, algorithms and onboard computing are able to substitute

and even outperform that human capabilities and enable safe landings in space.

During the last years, cameras are replacing conventional sensors for entry, descent and landing mis-

sions as they are versatile and lightweight, allowing absolute and relative navigation, hazard detection

and avoidance, to provide precision and reach safe locations, on the Moon, Mars, and beyond. Also, its

natural adaptation capacity to the environment and mimicking the human capacity for detecting hazards,

makes vision-based navigation the most promising technology for lunar and planetary landings.

In recent years, Convolutional Neural Networks (CNNs) are replacing classical image processing

methods in a vast number of tasks and domains. Deep Learning (DL) algorithms are pushing the bound-

aries of what is possible in the Computer Vision field and most benchmarks are being surpassed by using

these techniques. Space industry is also starting to rely on these networks to solve problems, such as

target detection and identification or pose estimation of space targets.

The purpose of this thesis, performed at Instituto Superior Técnico in collaboration with Spin.Works,

is to investigate the use of Artificial Intelligence (AI), namely CNNs, which may be applicable to image-

based navigation in the scope of planetary landing missions. These methods should ideally achieve the

same or better navigation performance than conventional image processing techniques.

1Spin.Works S.A., ”Avoidance Algorithms Extended development and Realistic Testing (AVERT) activity”, under the CCN2 to
ESA Contract No. 4000107704/13/NL/HB. (video https://youtu.be/h27ky9adW4o) 2019

1

https://youtu.be/h27ky9adW4o


1.2 Problem Description

Terrain Relative Navigation (TRN) was essential during the recent Entry, Descent and Landing (EDL)

of NASA’s Perseverance rover and it highly relies on an image-based method2. Vision-based relative

navigation uses a camera to identify surface features and compare their locations along the frame se-

quence in order to figure out the relative position and attitude with respect to the ones from previous

time instants.

For planetary landing missions, we aim to find a planar surface far from craters or other types of

hazards. Besides that, TRN starts a few kilometers above the ground. Therefore, we can rely on

the assumption that the surface seen by the camera is planar and the problem can be tackled using

homographies. Under these assumptions, homographies give exact or almost exact frame-to-frame

transformations.

Given an image of the ground surface taken at a certain time instant, we aim to find the homography

with respect to images from previous time steps, in order to estimate the spacecraft’s relative position

and attitude with respect to previous references.

1.3 Outline of the Approach

The first step is to detect and describe keypoints on two different images of the same scene. Then,

we define a distance measure and use those descriptors to find correspondences between the points on

both images. The encountered correspondences are used to estimate an homography matrix that repre-

sents the transformation between the reference and current image. Finally, that relation is converted into

euclidean coordinates and decomposed into relative rotation and translation between the cameras that

acquired both images. If we choose a fixed reference frame, we can estimate attitude and translation of

the spacecraft along the landing trajectory.

Our focus goes to the detection and description step, where we perform experiments using both

classical and deep learning algorithms to compare the navigation estimates and find the advantages of

moving into the Machine Learning (ML) approach.

1.4 Contributions

In this Thesis, we perform an in-depth analysis of some popular classical feature detection methods

against a machine learning one, for the task of developing a vision-based navigation system applicable

to planetary landing missions. We identify the main contributions as follows:

1. We propose a framework for evaluating feature detectors for the task of motion states estima-

tion during a planetary landing mission, applicable to any video sequence dataset, assuming that

ground truth positions and attitudes of the spacecraft+camera system are known.

2URL: science.nasa.gov/technology/technology-highlights/terrain-relative-navigation-landing-between-the-hazards,
accessed April 19th, 2021
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2. We ran several experiments to compare classical feature detectors and one relying on machine

learning with the purpose of getting the most accurate estimates of position and attitude on a

landing trajectory.

3. We have shown that it is possible to use deep learning feature detectors, namely SuperPoint, to

accurately perform an image-based navigation perception system in landing missions, and that it

actually outperforms classical methods such as Harris Corners or SIFT, specifically when estimat-

ing relative pose between highly spaced frames.

4. We confirmed the possibility of using simulation datasets to evaluate the vision-based system

performance and we have done experiments using the most recent and representative dataset of

our problem, the Perseverance Rover’s Descent and Touchdown on Mars from NASA.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we explain the theory behind the whole pipeline of

extracting pose information from images of a video sequence. First, we talk about the existent feature

detectors and feature tracking and, then, we present the transformations between 2D images, and be-

tween 2D images and the 3D world. In Chapter 3, we review the DL concepts and the state-of-the-art

approaches for learned feature detectors.

In Chapter 4, we construct our implementation in detail, starting from the datasets used, the feature

detection algorithms implemented, the method to reconstruct the motion of the spacecraft from the

image correspondences and finally the metrics chosen for evaluations.

Finally, in Chapter 5, we describe our experiments and present the results achieved by the tested al-

gorithms, in representative, simulation and real datasets, and, in Chapter 6, we report our achievements

and some possible future work.
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Chapter 2

Background

Homographies give image-to-image transformations under some conditions. First, when images are

acquired by a camera that only rotates around its centre of projection. Second, when images are taken

with large distances to objects and, finally, in the case of planar scenes. Landing of spacecrafts is done

in surfaces that are reasonably planar. Therefore, a homography is a good model for what happens to

the same 3D point when it is seen from different viewpoints by the aircraft. Then, using homographies

is a good approach to recover position and attitude of spacecrafts with respect to the ground in order to

build a reliable vision-based navigation system.

Traditional image processing techniques have been used during the past years to solve this problem

in a sequential process of detecting important points in images taken in successive instants of time,

find a relation between these points in different images and then use these relations to compute the

transformation between different viewpoints. These steps and the different traditional computer vision

approaches to them are described in this chapter.

2.1 Feature Detection and Description

Cameras project 3D points from the world into 2D points. Therefore, when the same scene is seen

by cameras from different perspectives, images contain common information.

The ability to look to different images and find common information, common patterns or specific

features that could be easily tracked and compared is present in humans inherently. But how could we

define those features and, most important, convert their search to a computer program?

In the past years, engineers have proposed several handcrafted algorithms to detect and describe

those points based on heuristics. These traditional methods will be presented in the following sections.

These points, also called keypoints or features, should be detected and described in a way that

reliably distinguishes them from other points despite variations in illumination, rotation, and scale. Ideally,

they are also distinguishable in the presence of noise and remain consistent despite any transformation.

Common requirements of the applications that require tracking features are robustness to illumination

and viewpoint changes and real-time processing capabilities.
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2.1.1 Harris Corners & Shi-Tomasi Corners

One of the first and most popular attempts to find those points was done in 1988 in [1]. If we take

a flat region in an image, no gradient change is observed in any direction. Similarly, in an edge region,

no gradient is observed along the edge direction. Hence, they are bad keypoints since they are not

very distinctive, i.e., wherever you move in a neighborhood it looks the same. In the case of corners,

we observe a significant gradient change in all directions, which makes them distinctive and invariant

to translation, rotation and illumination. That was the idea behind Harris Corner Detector, looking for

the regions in images which have maximum variation when moved (by a small amount) in all regions

around it. Therefore, a small window around each pixel is considered. Then, we move the window by

a small amount in the direction (u, v) and compute the Sum of Squared Difference (SSD) between the

intensities in each pixel of the window. Formally,

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (2.1)

The window function w(x, y) could be represented by a rectangular window or a Gaussian window

which gives different weights to pixels. I(x, y) denotes the intensity value of the pixel located at coordi-

nates (x, y) and E(u, v) is the SSD for a deviation in direction (u, v).

In order to maximize the function E(u, v), one needs to maximize I(x + u, y + v). Using first order

Taylor Expansion, we get the following,

I(x+ u, y + v) ≈ I(x, y) + uIx + vIy (2.2)

where Ix and Iy are the image derivatives in x and y directions, respectively.

Then, we get the function E(u, v) written in the matrix form,

E(u, v) ≈
[
u v

]
M

u
v

 , where M =
∑
x,y

w(x, y)

IxIx IxIy

IyIx IyIy

 (2.3)

To measure the corner response at each pixel, a function R is defined by the expression

R = det(M)− k(tr(M))2 (2.4)

where k is a parameters that was empirically determined constant in the range [0.04, 0.06]. It influences

trading off precision and recall. The determinant of M could be computed by the product of its eigenval-

ues and the trace by their sum. Therefore, when |R| is small, which happens when both eigenvalues are

small, the region is flat. If R < 0, which happens when one of the eigenvalues is much greater than the

other, the region is a edge. Finally, when R is large, which happens when both eigenvalues are large,

the region is a corner.

Finally, its results in an array similar to the image with the corner response at each pixel. Using

non-maximal suppression the maxima of corner pixels in every local area is found and the rest are

suppressed. The decision about considering or not a corner is based on a pre-defined threshold on
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corner response values.

Later, J. Shi and C. Tomasi proposed a small modification to the Harris Corner detector in [2]. Instead

of the corner measure in Harris, they proposed the following scoring function,

R = min(λ1, λ2) (2.5)

where λ1 and λ2 are the eigenvalues of the matrix M . The same way, when R is greater than some

threshold, the point is considered a corner. This modification has shown better results with the incre-

mental cost of having to compute the eigenvalues.

Figure 2.1 can represent the differences in the scoring function and the corner classification.

Figure 2.1: Corner classification as a function of the eigenvalues. Left: Harris, Right: Shi-Tomasi

After detecting features, we must assign an identification to each one of them, so that we could search

for the same feature in the next frame or in another image which represents the same scene seen by

other perspective. For video sequences, simple error metrics, such as Sum of Squared Differences

(SSD) or normalized cross-correlation (NCC), can be used to directly compare the intensities in small

patches around each feature point, assuming the local motion is mostly translational.

2.1.2 SIFT & SURF

The methods described in section 2.1.1 fail when there are large scale or rotation changes. Then,

SIFT was presented in [3] and [4], which stands for Scale-Invariant Feature Transform. SIFT remains

one of the most popular and widely used algorithms for feature detection and descriptors.

Points with different scales cannot be detected using the same window. We need larger windows to

detect larger corners. For this reason, D. Lowe proposed to use Laplacian of Gaussian (LoG) for the

image with various σ values, which act as a scaling parameter. Gaussian kernel with low σ gives high

value for small corner, while gaussian kernel with high σ fits well for larger corner. This way, it is possible

to look for 3D (space+scale) maxima and keypoints are represented by space coordinates and scale
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factor.

In order to reduce costs, SIFT approximates LoG with Difference of Gaussians, which computes the

difference between Gaussian bluring of an image with different σ. The process is done in a pyramid of

octaves, generated from downsampling the original image. Each octave’s image size is half the previous

one, as can be seen in the figure 2.2.

Figure 2.2: For each octave of scale space, the initial image isrepeatedly convolved with Gaussians
toproduce the set of scale space images shown on the left. Adjacent Gaussian images are subtractedto
produce the difference-of-Gaussian images on the right.After each octave, the Gaussian image isdown-
sampled by a factor of 2, and the process repeated. From [4]

After generating the scale space and computing the Difference of Gaussians, pixels are compared

with its 8 neighbors as well as 9 pixels in the next scale and 9 pixels in previous scales. If that pixel is a

local extrema, it is a potential interest point at that scale. This process of finding potential keypoints is

described in the figure 2.3.

Figure 2.3: Local extrema of the Difference of Gaussian images detected by comparing a pixel to its 26
neighbors in 3x3 regions at the adjacent scales. From [4]

Then, potential features are refined using Taylor series expansion of scale space and then a measure

similar to Harris Corner Detector is used to eliminate edges. They rely on the 2x2 Hessian matrix

computed at the location and scale of the keypoint.

This way, we guarantee legitimate and stable keypoints with scale invariance. Next, an orientation is

assigned to each keypoint to assure rotation invariance. A local neighborhood is taken and the gradient

is calculated in that region. An orientation histogram with 36 bins is created covering 360 degrees. Each
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10-degree bin gets the magnitude of the gradient in that direction and the highest peak is taken. Other

peaks above 80% of the highest peak are considered and keypoints with same location and scale but

different orientations are created.

Finally, each keypoint gets its own descriptor vector with 128 values that is highly distinctive and

invariant as possible to changes in viewpoint and illumination. The computation of this descriptor is

described in figure 2.4

Figure 2.4: Descriptors are created by computing the gradient magnitude and orientation at each image
sample point in a region around the keypoint location. These are weighted by a Gaussian kernel window,
as indicated by the circle. Then, the samples are accumulated into orientation histograms summarizing
the contents over 4x4 regions, with the length of each arrow corresponding to the sum of gradient
magnitudes near that direction with the region. Here, we see a 2x2 descriptor array computed from 8x8
set of samples, whereas the experiments in [4] use 4x4 descriptors computed from a 16x16 sample
array. From [4]

SIFT has achieved great performance. However it is consider computationally expensive. Hence, a

new algorithm was proposed in [5], called SURF, which is a speeded-up version of SIFT.

Its fast computation results from approximating LoG with Box Filter, whose convolution can be effi-

ciently done by integral images. Besides that, SURF relies on determinant of Hessian matrix for both

scale and location rather than using a different measure for selecting the location and the scale because

of its good performance in computation and accuracy.

The integral image I∑(x, y) with the same dimensions of the input image I, is computed in such a

way that each entry results from the sum of all input image pixels within a rectangular region delimited

by the pixel at the coordinates (x, y) and the origin. The Hessian operator can be approximated by

convolving the kernels, shown in figure 2.5, resulting in a series of additions and subtractions os sums

of rectangular areas.

Figure 2.5: Discretised and cropped versions of Gaussian second order partial derivatives in y-direction
and xy-direction (left), and the approximations using box filters (right). From [5]

Scale spaces are usually implemented as image pyramids. The images are repeatedly smoothed
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with a Gaussian filter and subsequently sub-sampled to achieve a higher level of the pyramid. The

authors propose, instead, to apply filters with increasing size to the original image at exactly the same

speed and even in parallel. Then a non-maximum suppression in a 3× 3× 3 neighborhood is applied.

Like SIFT, SURF calculates the orientation of each feature and determines its descriptor vector. The

orientation is determined by computing the first order derivatives across a 6σ area, σ being the scale of

the point, similar to the one described in SIFT, using Haar wavelets to take advantage of integral images.

Figure 2.6: Haar wavelets filters

The orientation is determined by “scanning” the weighted scatter plot of dx and dy values with a arc of

60 degrees, finding the direction with largest values. To get the descriptor, a 20σ × 20σ neighborhood is

oriented along the orientation vector and divided into 16 cells. Within each cell, a vector with 4 elements

is calculated by (
∑
d′x,
∑
d′y,
∑
|d′x|,

∑
|d′y|), result of the Haar kernel convolutions. Then, these vectors

are concatenated into a 64-element descriptor vector.

To sum up, SURF improves the speed in every step, becoming 3 times faster than SIFT with a com-

parable performance. It is good at handling bluring and rotation, but not so good at handling viewpoint

and illumination change.

2.1.3 FAST, BRIEF & ORB

SIFT and SURF got good results, but they were patented for several years and people were supposed

to pay to use them. The US patent on SIFT held by the University of British Columbia expired as of March

7, 2020.

Considering real-time applications, some feature detectors are not fast enough. So, a new algorithm

called FAST was proposed in [6] and later revisited in [7]. FAST, which stands for Features from Accel-

erated Segment Test, is a feature detection method. The most promising advantage is its computational

efficiency. FAST is also one of the first approaches of using machine learning to derive a feature detector

and the paper claims that this detector significantly outperforms existing feature detectors in repeatabil-

ity. Repeatability is one of the most important properties of a feature detector: whether or not the same

real-world 3D point is detected in more than one image of the same scene viewed from two different

positions.

The method consists of considering a circle of 16 pixels (Fig. 2.7) around the corner candidate p,

whose intensity is denoted by Ip. If there exists a set of n contiguous pixels in that circle whose intensity

is above Ip plus some threshold t or below Ip − t, the pixel p is considered an interest point. In the first

version, n = 12, which allows a high-speed test to ignore non-corners. First compare pixels 1, 5, 9 and

13 of the circle and at least 3 of these should satisfy the threshold criterion. If it passes this test, then
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Figure 2.7: Accelerated Segment Test - 16 pixels circle around corner candidate. From [6]

check the other pixels and see if 12 contiguous fall into the criterion. Then, repeat the process for the

pixels in the image.

This method has some limitations. For N < 12, the algorithm does not work very well due to the

number of detected points being very high. Second, the order in which the 16 pixels are tested influences

the speed of the algorithm.

In order to overcome these problems, the authors proposed a machine learning approach. First,

selecting a set of training images and running the algorithm do detect interest points by taking one pixel

at a time and evaluating all the 16 pixels around. For each p in all the images, store the 16 pixels as a

vector P . Each value x in this vector can have one of 3 states (d for darker, when the intensity is smaller

than Ip − t; b for brighter, when the intensity is higher than Ip + t and s for similar, when the intensity is

between those values). Then, the ID3 algorithm (decision tree classifier) will query the 16 pixels in such

a way that the true class is found (interest point or not) with minimum number of queries, i.e., selecting

the pixel x which has the most information about p. The order of querying learned can be used for faster

detection in other images.

Detection of several points adjacent to one another is also a problem of the initial version, which

can be dealt by applying non maximal suppression. This algorithm is faster than other detectors, but

is not robust to high levels of noise. Likewise, there is a growing need for local descriptors that are

fast to compute, fast to match, and memory efficient. SIFT uses floating point numbers, for a 128-

dimension vector, which takes 512 bytes. Computing descriptors for thousands of features takes lots of

memory which is not feasible for resource-constraint applications. Larger memory usage leads to slower

matching.

BRIEF descriptor was proposed in [8]. BRIEF converts image patches into a binary feature vector,

which means that it only contains ones and zeros. Hence, each keypoint descriptor takes 128-512 bits

of memory depending on the dimension of the vector. First, the image patch is smoothed by a Gaussian

kernel and then a set of pixel pairs are selected in an unique way. Then, pixel intensity comparisons are

done on these pairs and depending on the result, 1 or 0 is assigned to that pair. After doing this for N

pairs, we get a N-dimensional descriptor vector. Besides taking low memory, binary strings could also

be matched using Hamming Distance, which is just applying XOR and bit count. These operations are

very fast in modern CPUs and is another advantage of this approach.

From the ”OpenCV Labs”, came out ORB in [10]. ORB, which stands for Oriented FAST and Rotated

BRIEF, is a fusion of FAST detector and BRIEF descriptor with some modifications on both. First,

ORB uses a multi-scale image pyramid to achieve partial scale invariance. The image pyramid consists
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Figure 2.8: Image pyramid. Each level has half the resolution (width and height),and hence a quarter of
the pixels, of its parent level. Adapted from [9]

of sequences of images at different resolutions at different levels in a shape of a pyramid (Fig. 2.8.

ORB detects points at all these resolutions of the image. After that, ORB assigns orientation to each

feature. This orientation is calculated by the direction of the vector from the point to the intensity weighted

centroid of the patch. With this modification, ORB aims to achieve rotation invariance.

Since BRIEF fails with rotation, the authors proposed to rotate it according to the orientation com-

puted for each keypoint. The coordinates of the pairs used in BRIEF are concatenated into a matrix

which is then rotated to get the steered version of them. These changes made ORB a very good substi-

tute to SIFT and SURF which were patented and computationally more expensive.

A lot more efforts were done and a lot more hand engineered detector and descriptors have been

made during the years.

2.2 Feature Tracking

Images of the same scene from different perspectives should have common parts. Therefore, after

detecting interest points in each image, one must find which ones are common between them, i.e., the

ones that should represent the same 3D world point in order to extract useful information. In a video

sequence, feature points can be tracked along frames.

With this purpose, interest point detectors must be robust and repeatable, the algorithm should be

able to detect the same features of the same scene under variety of viewing conditions, independent of

scaling, shifting, rotation, illumination variations and noise. In the same way, feature descriptors must be

discriminative, i.e., descriptors of different regions are different, and invariant, that is, descriptors of the

same object part from different images should be similar.

Features can be tracked along a video sequence using one of two methods, described in the next

sections.
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2.2.1 Optical Flow

Optical flow is the apparent motion of the objects in an image between two consecutive frames

caused by the movement of one with respect to the other. It is represented by a 2D vector field with

vectors indicating the displacement from one frame to the next. It relies on the assumptions that pixel

intensities of an object do not change between consecutive frames and that neighboring pixels have

similar motion. Therefore, optical flow methods rely on the minimization of the brightness constancy,

which can be written as:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.6)

Assuming small displacements, the image intensity can be approximated by a first order Taylor poly-

nomial,

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt (2.7)

The equation above results into the Optical Flow equation,

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (2.8)

where (u, v) are the components of the velocity, which are unknown and cannot be computed as such.

To find the optical flow, another set of equations is needed, given by some additional constraint. Several

methods have been proposed to solve this equation.

One of the most popular is proposed in [11], called Lucas-Kanade method. It assumes that the flow

in a local neighborhood around the corner is constant and solves the optical flow equation (Eq. 2.8 for

each pixel in that patch, by the least squares criterion. This method fails in large motions. The solution

to that is again to use pyramids, because as we go up in the pyramid, small motions disappear and large

motions become small motions. The vector (u, v) that results from least squares is used to estimate the

next position of each interest point.

Other methods are proposed that estimate optical flow for all the points in the image, instead of

sparse feature points. This is called dense optical flow and it is significantly more expensive.

Optical flow methods are more suited to image sequences than image pairs from different views

and, due to the assumptions made, the main problems are large motions, occlusion, strong illumination

changes and changes of the appearance of the objects.

2.2.2 Feature Matching

Feature matching uses the feature descriptors to match features with one another by a nearest neigh-

bor search in the feature space. One keypoint in one image is considered to match another keypoint in

the other image if they are close enough.

The most simple method is Brute-Force matching. Every descriptor in the first image is compared

to every descriptor in the second image according to some distance measure and the closest one is
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returned. The first approach is to use the Sum of Squared Differences (SSD) over the entries of the

descriptor vectors. Similar to that is to use the L2-Norm, which is simply the square root of the SSD. The

Hamming distance can be used with binary descriptor vectors, such as BRIEF.

This process will lead to “incorrect matches” because some descriptors could be ambiguous or be-

cause some features that appear in the first image could not be present in the second. One way to

overcome this problem is to set a threshold on the distance measure and accept only matches be-

low that threshold. However, the choice of the threshold depend on the application and influences the

proportion of “false positives” and “false negatives”.

Another approach to get more “good matches” is to use Lowe’s distance ratio test proposed in [4].

Besides the best match, one must save the second best match too and then it only considers a “good

match” the ones whose error of the best match is less than 70% the value of the error of the second best

match for a particular pair. The efficiency of this measure relies on the fact that similar features will have

both descriptors and than will not be considered a “good match”, as it forces to only accept those whose

nearest descriptor is significantly nearer than the second one.

A good alternative to the ratio test is to perform a two-way nearest neighbor1. A “good match” is only

considered when some descriptor of the second image is the best match for one in the first image and

vice-versa. That is, the two features in both sets should match each other, which provides consistent

results.

Feature matching algorithms are far better if there is a perspective difference between the images,

or the frames, or when the transformations are large, e.g., for a wide interval between frames. They are

scale and rotation invariant and are robust to changes in illumination, as those caused by shadow or

different contrast.

2.3 3D Motion from 2D Image Transformations

A vision-based system must have the ability to extract 3-dimensional world information from the

2-dimensional images, using the information acquired from the cameras to determine the relations be-

tween the objects in the 3D world.

First, one must estimate the transformations between two 2-dimensional images, e.g, between differ-

ent frames. Then, one must understand the projective relation between the world frame and the image

frame itself, in order to transfer the knowledge about image transformations into world coordinates trans-

formations.

2.3.1 2D Image Transformations

Two images of an object from the same camera in different positions are related by a 2D projective

transformation. There are several transformations that relate the pixel coordinates from the images,

depending on the degrees of freedom, as can be seen in Fig. 2.9.

1OpenCV Documentation (crossCheck FLAG in https://docs.opencv.org/3.4/d3/da1/classcv_1_1BFMatcher.html)
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Figure 2.9: 2D Planar Transformations. From from [9]

Complex transformations can be performed by a sequence of simple transformations such as transla-

tion, rotation and scaling. Rotation of 2-dimensional vectors can be made by a 2×2 matrix multiplication

and translation by adding a 2-dimensional vector. To facilitate this process, we use Homogeneous Co-

ordinates, so that every transformation can be represented by a multiplication of a 3× 3 matrix.

Homogeneous coordinates • Any cartesian point can be converted to homogeneous coordinates

adding another dimension, w, into existing coordinates. Therefore, a point with pixel coordinates (u, v)

can be transformed into homogeneous coordinates, becoming (u, v, 1). The same way, points in ho-

mogeneous coordinates can be converted back to cartesian coordinates simply by dividing the first two

coordinates by the last one. A point (u, v, w) in homogeneous coordinates becomes (u/w, v/w) in carte-

sian coordinates. Hence, homogeneous coordinates are scale invariant and allow to represent points at

infinity. Formulas involving this system of coordinates are often simpler and more symmetric than those

using the Cartesian ones.

Next, several transformations will be presented sequentially increasing the degrees of freedom.

Translation • 2D translation can be represented in Cartesian coordinates as x′ = x+ t or in Homo-

geneuous Coordinates as

x̄′ =

I t

0 1

 x̄ (2.9)

where x̄ represents the point x in homogeneous coordinates. Using the full-rank 3x3 matrix, it is possible

to chain transformations by multiplying matrices and also to compute inverse transformations.

Translations have 2 degrees of freedom and they preserve lengths, angles, orientation, parallelism

and straight lines.

Rotation + Translation • This transformation, composed by a rotation followed by a translation, also

called 2D Euclidean transformation, can be written as

x̄′ =

R t

0 1

 x̄ (2.10)

where

R =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 (2.11)

is an orthonormal rotation matrix with RRT = I and |R| = 1. This transformation introduces a new

15



degree of freedom (θ, that represents the rotation angle), summing up to 3. It preserves the same

properties as translation except for the orientation.

Similarity Transform • Also known as scaled rotation, it can be written as

x̄′ =

sR t

0 1

 x̄ (2.12)

where s represents the scale factor. So, it has 4 degrees of freedom and it preserves parallelism and

angles between lines.

Affine • The Affine transformation can be represented as

x̄′ =


a00 a01 a02

a10 a11 a12

0 0 1

 x̄ (2.13)

This transformation has 6 degrees of freedom and parallel lines remain parallel. The angles between

lines are not preserved.

Homography • This transformation is also known as a perspective transform or projective transform

and it can be written as

x̄′ =


h00 h01 h02

h10 h11 h12

h20 h21 h22

 x̄ (2.14)

Since the coordinates are written in homogeneous coordinates, this transformation is written up to a

scale. The resulting point x̄′ must be normalized after the transformation to get the Cartesian coordinates

x, that is,

x′ =
h00x+ h01y + h02
h20x+ h21y + h22

and y′ =
h10x+ h11y + h12
h20x+ h21y + h22

(2.15)

Matrices that differ only by a scale represent the same transformation. Therefore, often the homog-

raphy matrix is divided by h22 so that the value in that position becomes 1 and one can easily see that

this transformation has 8 degrees of freedom. Homographies only preserve straight lines.

All the transformations above can be multiplied by one another to chain transformations, which is of

great importance when applied to images. The next table summarizes the most important properties of

these transformations.

2.3.2 Projective Homography Estimation

Let pi = (ui, vi, 1) be the vector containing the homogeneous coordinates of a point in the first image

and let p′i = (u′i, v
′
i, 1) be the homogeneous coordinates of the same point in the second image. The

projective homography matrix transforms pi into p′i, up to a scale factor and can be solved using the

Direct Linear Transform (DLT) algorithm, as explained in chapter 4.1 in [12].
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Transformation Matrix #DoF Preserves

Translation

[
I t

0 1

]
2 Orientation

Euclidean

[
R t

0 1

]
3 Lengths

Similarity

[
sR t

0 1

]
4 Angles

Affine

a00 a01 a02

a10 a11 a12

0 0 1

 6 Parallelism

Homography

h00 h01 h02

h10 h11 h12

h20 h21 h22

 8 Straight Lines

Table 2.1: Hierarchy of 2D Transformations. Adapted from [9]

This type of homography can be calculated using the pixel locations of corresponding points in the

pair of images. These corresponding points are obtained from “good matches”, as explained in the

section 2.2.

Each pair of corresponding points allows to write 2 equations, as stated in Eq. 2.15. Given that

homography matrix has 8 unknowns, at least 4 sets of corresponding coplanar points are needed (at

least 3 of them must be non-collinear). We now have at least 8 equations that we can stack and create

the homogeneous system,



u1 v1 1 0 0 0 −u1u′1 −v1u′1 −u′1
0 0 0 u1 v1 1 −u1v′1 −v1v′1 −v′1
u2 v2 1 0 0 0 −u2u′2 −v2u′2 −u′2
0 0 0 u2 v2 1 −u2v′2 −v2v′2 −v′2
u3 v3 1 0 0 0 −u3u′3 −v3u′3 −u′3
0 0 0 u3 v3 1 −u3v′3 −v3v′3 −v′3
u4 v4 1 0 0 0 −u4u′4 −v4u′4 −u′4
0 0 0 u4 v4 1 −u4v′4 −v4v′4 −v′4





h00

h01

h02

h10

h11

h12

h20

h21

1



= 0 (2.16)

The matrix A has rank 8, and thus has a 1-dimensional null-space which provides a solution for h,

up to a non-zero scale factor.

In general, there are many more than four corresponding points in a pair of images. Each additional

pair of points adds two rows to the matrix in 2.16. In this case, the system becomes over-determined.

If all point locations are exact, then the matrixA still has rank 8 an there will be a single homogeneous

solution. However, in practice, there is always some uncertainty, the points will not be exact and there

will not be an exact solution. In this case, one attempts to find an approximate solution that minimizes

a suitable cost, known as the Homogeneous Linear Least Squares problem. It is solved using Singular

Value Decomposition (SVD). One takes the singular vector that corresponds to the smallest singular
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value. This is the solution, h, which contains the coefficients of the homography matrix that best fits the

corresponding points.

The problem in this over-constrained case is the presence of outliers that will degrade the solution

from the Least Squares. Techniques that reject these outliers must be implemented to get a more

accurate estimate of the homography.

2.3.3 Random Sample Consensus

Also known as RANSAC, Random Sample Consensus is an iterative method to estimate the param-

eters of a model which contains outliers. The algorithm was published in [13]. RANSAC allows more

robust estimations since it is able to reject outliers.

RANSAC can be used to estimate homography using the re-projection error as a distance measure

to classify corresponding point pairs as inliers or outliers. RANSAC is an iterative procedure which is

described in the algorithm 1.

Algorithm 1 RANSAC algorithm for Homography Estimation
1: procedure HOMOGRAPHY(src, dst, inlierDistThreshold, inlierRatio,maxIter, confidence)
2: numberIter ← maxIter
3: iterCount← 0
4: while numberIter > iterCount do
5: x, y, u, v ← random(4) . Randomly select 4 correspondences between src and dst
6: h← DLT (x, y, u, v) . Estimate homography using DLT
7: d← ReprojDist(src, dst, h) . Compute Reprojection Error
8: inliers← d < inlierDistThreshold . Compute inliers
9: numInliers← sum(inliers) . Compute number of inliers

10: if numInliers > sum(maxInliers) then . Check if it is the best estimate
11: maxInliers← inliers
12: finalH ← h
13: end if
14: if sum(maxInliers > #points ∗ inlierRatio then . Inlier ratio higher than suggested
15: break
16: end if
17: numberIter ← max(IterationsFromConfidence(confidence, outlierRatio),maxIter)
18: iterCount← iterCount+ 1
19: end while
20: finalH = DLT (inliers)
21: return finalH, inliers
22: end procedure

Normalization • In chapter 4.4 from [12], the authors presented that the DLT algorithm is dependent

on the origin and scale of the coordinate system, which is not desirable for the stability of the algorithm.

To solve this problem, they propose to normalize the coordinates of the points by subtracting the mean

and dividing by the standard deviation, as represented by the transformations below,

p̃i = Tpi and p̃′i = T ′p′i (2.17)

where T and T ′ represent the normalization. Then, estimate the homography H̃ from the normalized

points p̃i and p̃′i. Finally, compute the result homography using matrix multiplication,
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H = T ′−1H̃T (2.18)

2.3.4 Pinhole Camera Model

The information from the 3D world is projected into a 2D plane when a camera acquires an image.

The simplest way of representing this transformation is the pinhole model, described in Fig. 2.10.

(a) Perspective view (b) Side view

Figure 2.10: Pinhole camera model representation

Pinhole Model • The points in the 3D world are projected to a point, the camera centre, represented

in Fig. 2.10 by the letter C. One can construct an Euclidean coordinate system with origin in that point.

The image plane, represented by π, is located in the plane Z = f , f being the focal length of the

camera. A point in the world P = (X,Y, Z) is mapped into the projection plane to a point p = (x, y),

which is the intersection of the projection plane and the projection line that contains the point P and the

camera centre, C. As one can see in the side view in Fig. 2.10, similar triangles allow to calculate the

coordinates of the projected point,

p = (x, y) =

(
f
X

Z
, f
Y

Z

)
(2.19)

The line from the camera centre perpendicular to the image plane is called principal axis or principal

ray, and the intersection with the image plane is the principal point, represented as O.

Pinhole model using homogeneous coordinates • Once again, homogeneous coordinates can

simplify the transformations between points. Here, if the world and image points are represented by

homogeneous coordinates, this transformation can be represented by a linear mapping, computed using

matrix-vector multiplication as

p̄ =


x

y

1

 ≡

fX

fY

Z

 =


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (2.20)

which can be described in a more compact way as
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p̄ = diag(f, f, 1)[I|0]P̄ (2.21)

where p̄ and P̄ represent the homogeneous coordinates of the point in world and in the camera plane,

respectively. In real cameras, this simple approach needs some modifications due to some assumptions

made.

Figure 2.11: Principal point offset. Image and camera coordinate frames

Principal point offset • The first assumption is that the origin of the coordinates coincides with the

principal point, which may not be true as can be seen in Fig. 2.11. A more general approach is to take

into consideration this offset,

p = (x, y) =

(
f
X

Z
+ ox, f

Y

Z
+ oy

)
(2.22)

where (ox, oy) are the coordinates of the principal point in the image frame. This transformation can also

be represented by matrix multiplication in homogeneous coordinates,

p̄ =


x

y

1

 ≡

fX + Zox

fY + Zoy

Z

 =


f 0 ox 0

0 f oy 0

0 0 1 0



X

Y

Z

1

 (2.23)

The same way, can be written in a concise form as,

p̄ = K[I|0]P̄ (2.24)

where K is called the camera calibration matrix or intrinsics matrix and can be written as

K =


f 0 ox

0 f oy

0 0 1

 (2.25)

The world point P is represented in the camera coordinate frame, whose origin is the principal point

and Z axis coincides with the principal axis. This coordinates frame is partially represented in Fig. 2.11

as xcam and ycam.
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Digital cameras • The pinhole model described until now assumes that the image coordinates are

Euclidean coordinates having equal scales in both axial directions. However, digital cameras acquire

images forming an array of pixels. Therefore, one must take into account the quantization process

and there is the possibility of having different scale factors in each direction. To measure the image

coordinates in pixels, one must multiply each coordinate by the number of pixels per unit distance in

both directions, which can be represented as mx and my.

The intrinsics matrix needs to be redefined as,

K =


αx 0 u0

0 αy v0

0 0 1

 (2.26)

where αx = fmx and αy = fmy represent the focal length of the camera in pixel dimensions. Similarly,

the principal point needs to be converted to pixels, using u0 = αxox and v0 = αyoy.

Sometimes, x and y axis are not perpendicular, the pixel is not rectangular, which introduces a new

parameter, the skew factor s and the intrinsic matrix becomes,

K =


αx s u0

0 αy v0

0 0 1

 (2.27)

Lens distortions • The model described above obey a linear projection model where straight lines

in the world remain straight lines in the image, as a consequence of linear matrix operations. However,

in many wide-angle lenses a curvature appears in the projection of straight lines. This effect is named

radial distortion and needs to be compensated when using image processing techniques in order to get

more accurate results in 3D reconstructions.

2.3.5 Euclidean Homography

World points can be represented with respect to different frames. One can convert the representation

of a point from a coordinate frame to another by applying rotation and translation, as the equation

suggests,

P2 = RP1 + T (2.28)

where P1 and P2 represent the coordinates of a point P in the world according to frame 1 and frame 2,

respectively. R = R2
1 is the rotation matrix from frame 1 to frame 2 and T = t22→1 is the translation vector

of the frame 2 to frame 1 represented in the frame 2.

When all points lie on a plane, as in Fig. 2.12, we have another constraint,

NTP1 = nxX + nyY + nzZ = d (2.29)
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Figure 2.12: Representation of a 2D plane in the world and respective notation

where N is the unit normal of the plane represented in frame 1 and d is the distance from frame 1 origin

to the plane along the direction of N . The equation above can be expressed in a more compact way as,

1

d
NTP1 = 1 for pointsP1in the plane (2.30)

Substituting Eq. 2.30 in Eq. 2.28, the transformation becomes,

P2 = RP1 + T
1

d
NTP1 = HP1 (2.31)

where

H = R+
1

d
TNT , H ∈ R3x3 (2.32)

H is known as Euclidean Homography or planar homography matrix. If the camera is placed at

the origin of each frame in different instants of time, the euclidean homography allows to compute the

relative pose between the two cameras, or between the same camera at different instants of time.

Points in the world represented in camera frame can be converted up to a scale into the image frame

using the camera matrix described in section 2.3.4 by the equations:

p̄1 = α1K1P̄1 and p̄2 = α2K2P̄2 (2.33)

where p̄i = (ui, vi, 1) are the homogeneous pixel coordinates of image plane from camera i and P̄i =

(Xi, Yi, Zi, 1) are the homogeneous coordinates of the world point in the reference frame of camera i.

αi are constants.

Assuming the same camera in both frames, K = K1 = K2, and we can derive the relation between

the homogeneous pixel coordinates of common points in both images.
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p̄1 = γK

(
R+

1

d
TNT

)
K−1p̄2 (2.34)

where γ =
z1
z2

is the scale factor and z1 and z2 are the z coordinates of P in each camera frame.

Now, we can relate the projective homography (described in section 2.3.2 estimated by the image

processing techniques with the euclidean homography,

Hproj = γKHeucK
−1 (2.35)

Therefore, the camera motion affects the projective homography in a predictable manner and the

euclidean homography gives a physical meaning to the homography. Then, the homography estimated

using feature matching and DLT algorithm gives information about the poses between the camera in

different instants of time, and consequently, about its motion.
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Chapter 3

Deep Learning

Artificial Intelligence has been witnessing a considerable growth in bridging the gap between the

human capabilities and machines. Machine Learning is the study field responsible for the AI systems to

learn and improve from previous experience and data, without or with little explicit human interference.

ML algorithms acquire data and build models that represent this data and specially, that generalize well

to new entries. In [14], the author defines a learning problem as a computer program that learn from

experience E, with respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E.

Machine learning algorithms are classified into three categories: supervised learning, unsuper-

vised learning and reinforcement learning. Supervised learning needs datasets with labels to find

a deterministic function that maps future input observations to predictions. Unsupervised learning sys-

tems do not use labeled datasets. They investigate similarities between input pairs of objects and derive

some structure. Reinforcement learning do not have a fixed dataset, but a feedback loop between the

system and its experiences. The final goal is to map situations from the environment to actions with the

objective of maximizing rewards.

Looking at the recent literature, one can note that a big focus is being oriented towards deep learning.

Deep learning (DL) is a very powerful framework, as deep models appeared as an alternative to linear

models. They are able to deal with more complex representations of the data with the introduction of

more layers, more units within a layer and non-linear functions. Although the concepts of DL with neural

networks (section 3.1) have long existed, recent advances in computation and research enabled these

techniques to match or exceed state-of-the-art in many problems. Deep models efficiently derive the

function that maps inputs to outputs, due to backpropagation algorithm, described in section 3.2.

The advancements in Computer Vision with Deep Learning arise due to a particular type of archi-

tectures - Convolutional Neural Networks, described in section 3.3. The problem of detecting feature

points in images can also be tackled with deep architectures, section 3.4.
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3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are the core architecture in DL. As described in [15], feedforward

neural networks aim to approximate some function f∗ that maps an input x to an output y, y = f∗(x).

This network defines a mapping y = f(x; θ) and learns the value of the parameters θ that result in the

best function approximation.

Neural networks are composed of several perceptrons or neurons, which are the most basic compo-

nent. It consists of weighted sum of all the inputs and some scalar (bias) and then some function, called

activation function, is applied to this sum in order to achieve non-linearity.

y = fact(w
Tx+ b) (3.1)

where y represents the scalar output of one neuron, x represents the vector of inputs to that neuron,

w is the vector of weights, b is the bias term and fact is the activation function. Non-linear activation

functions are necessary to add the complexity required for solving otherwise intractable problems.

Nowadays, the most common activation function is the Rectified Linear Unit (ReLU), expressed as:

frelu(x) =

0, if x ≤ 0

x, if x > 0

(3.2)

This function is simple to implement, fast to compute, and avoids diminished gradients as operations

are chained together, while achieving the intended non-linear complexity.

Artificial Neural Networks are designed like the human brain, with neuron nodes interconnected with

each other. They are called networks due to their representation by composing together many functions.

They are organized by layers of neurons, where the outputs of layer i − 1 act as the inputs to layer i.

Then, all process can be done by matrix multiplications, getting a vector of values in each layer, instead

of the scalar y in equation 3.1. The first layer is the vector of inputs to the model, called input layer and

the final layer of a feedforward network is called output layer. The layers in between are the hidden

layers. The number of layers, or the length of the chain of functions, gives the depth of the model and

the dimensionality of the hidden layers gives the width of the model.

Deep architectures are not restricted to feedforward neural networks where the information flows

from the input layer to the output one, passing through the computations in the hidden layers. Some

models include feedback connections from the output to the input. These are called Recurrent Neural

Networks (RNNs), which are used in temporal analysis applications.

The weights of the network are learned during the training process, which is composed of two phases.

The first one is the forward pass, where each input instance is passed through the ANN and the result is

compared to the desired output using some cost function. Then, it comes the backward pass, where the

error computed by the cost function is propagated back to the network, using gradients, to update the

weights. This process is described in the next section. To sum up, the training process can be defined

as an optimization problem, whose goal is to minimize the cost function.
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3.2 Backpropagation

The non-linearity of ANNs causes loss functions to become non-convex. Therefore, they are trained

by an iterative process, using gradient-based optimizers to drive the cost function to a very low value,

rather than linear equation solvers used in linear regression models or the convex optimization algo-

rithms. There are several algorithms to compute this optimization, but all rely on the ideas of gradient

descent.

Gradient-based optimization algorithms require the computation of the gradient of the loss function

with respect to each parameter of the network, in order to update its value. This can be done using the

backpropagation algorithm. The gradient with respect to the final layer is calculated first and then partial

computations of the gradient are reused in the computation of the gradient for the previous layer until it

gets to the first layer. This backwards flow of the error information relies on the chain rule of calculus

by computing products between Jacobians and gradients, using matrix-vector multiplications for each

layer and neuron of the network. After being propagated back to all the parameters in the network, the

gradient of the error function is used to update the weights and biases at each iteration of the gradient

descent, according to

θk+1 = θk − α∂L(f(X; θ), y)

∂θ
(3.3)

where θ represents some parameter of the network, k is the iteration of gradient descent and L(f(X; θ), y)

is the loss function computed from the prediction of the network with that parameter and the ground truth.

Backpropagation makes the use of gradient methods for training neural networks feasible. It is con-

sidered a very efficient algorithm, whose implementation can take advantage of parallel computations in

GPUs to further improve the performance.

3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are currently the most prominent type of architectures for

deep learning applications in image data. Whereas for traditional machine learning algorithms relevant

image features have to be extracted manually, deep learning uses the entire image as input and learns

the essential features needed for the application.

This group of networks was inspired by the organization of the Visual Cortex in biological processes.

Individual neurons respond to stimuli only in a restricted region of the visual field. The visual fields of

different neurons partially overlap such that they cover the entire visual area.

Another motivation to replace fully connected networks, described in section 3.1, is to avoid the

massive amount of weights and computation to process 2D images. A small image of dimension 128×

128 would need 16, 384 weights and would take that enormous amount of multiplications to calculate the

activation of each single neuron of the first hidden layer. That would lead to very large networks that take

extremely long time to train, require excessive amounts of memory and also can suffer from overfitting.

Overfitting appears due to the massive amount of parameters that make the model extremely complex
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and fitted to the training data, but that fails with new data, which leads to poor generalization ability.

In [16], one of the first CNNs, that propelled the field of Deep Learning, the author explains that fully

connected layers should not be used as first layers, because images are highly spatially correlated, and

using individual pixels as separate features do not take advantage of these correlations. Convolutional

layers are the major building block in CNNs. Convolution is the operation of applying a filter to an input

image to extract certain features from it. These filter are also called kernels and they are matrices that

slide across an image and are multiplied by each single patch of the image, getting some activation

that is higher when the patch has properties similar to those of the filter. Repeated application of the

same filter to the entire image results in a map of activations called feature map. Since these filters are

substantially smaller than the entire image, the number of weights decreases significantly.

The advantage of CNNs is the ability to learn a large number of filters in parallel, which are specific

to the training dataset and the type of problem. In traditional algorithms, these kernels were hand-

engineered. This makes CNNs independent from prior knowledge and human effort in feature design

and results in highly specific features that can be detected anywhere on input image. Consequently,

these networks are space invariant, which means that the filter is able to detect some object indepen-

dently of its position in the image.

The size of each convolutional filter specifies the receptive field of the filter, i.e., the number of

neighborhood pixels that are taken into account to compute the activation in a specific location. Typically,

kernels have dimensions 3× 3, 5× 5 or 7× 7. Since an RGB image is a 3D volume, these filters become

also 3D tensors, taking into account the depth of the input. Tensors are multi-dimensional arrays. For

example, one kernel with receptive field 3 × 3 to be applied to a tensor with depth Di, gets the shape

3× 3×Di.

Each convolutional layer is composed of several (Do) of those filters, each one applied to an input

3D volume of dimensions Wi × Hi × Di, and producing the respective feature map, resulting in a 3D

volume of dimensions Wo×Ho×Do. Wi and Hi are the width and height of the input tensor to the layer

and Wo and Ho are the width and height of the output tensor, or feature map of the layer. Therefore, the

number of weights for this layer becomes K ×K ×Di ×D0, where K represent the size of the kernels.

Similar to the other neural networks, CNNs also have activation functions to introduce non-linearity.

They are applied to the feature maps, which are the result of the convolution layers. Pooling layers are

also introduced in CNNs. They are responsible for dimensionality reduction in the feature maps, leading

to a decrease in computational power required to process the data. This nonlinear downsampling also

helps to extract high level features. Pooling can be done by returning the maximum value in the patch

covered by the kernel, which is called max polling, or by averaging the values in that patch, average

pooling. In some applications, such as image classification, fully connected layers are also introduced

at the end of the network.

CNN architectures vary in the number and type of layers implemented according to the specific

application. However, in general, they are composed of alternately stacked convolutional layers and

pooling layers. Pooling layers contribute to the downsampling task so that models become less complex

and more computationally efficient. Convolution layers are responsible for feature extraction. First layers
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extract low level features, such as, corners, edges, color or gradient orientation. As one goes deep in

the network, the layers start to combine those low-level features and capturing high-level ones, such as

polygons, faces or objects. In figure 3.1, one can see the architecture of LeNet-5, one of the first to use

convolution layers, back in 1998.

Figure 3.1: Architecture of LeNet-5. From [16]

Between 1998 and 2010, neural networks were in incubation. However, the increasing data available,

the increasing CPU power and GPUs becoming a general-purpose computing tool allowed the neural

network progress in Computer Vision. Since then, several architectures have been proposed every year

and the tasks tackled by CNNs are becoming more and more interesting.

3.4 Deep Interest Point Detection

As mentioned in section 2.1.3, FAST introduced the idea of using machine learning for interest point

detection. The success of convolutional neural networks in general object detection and other computer

vision problems motivated research community to explore the performance of these networks for the

keypoint detection task.

To recap the feature detection problem, there are two types of keypoints in common use in computer

vision. Semantic keypoints are interest points with semantic meaning for objects in the image, such as

the left shoulder of a person, the back left tire hub of a car or the left tip of a mouth. Deep learning has

dominated state-of-the-art semantic keypoint detection. These algorithms are supervised learning and

require extensive and expensive human annotation to create datasets labelling this semantic keypoints.

In order to build CNNs for the semantic features extraction process, a stacked hourglass architecture

has been proposed in [17] and [18], and other architectures such as the U-net [19], or variants of the

hourglass have been tested in recent years.

The Stacked Hourglass Network can learn a generalized pattern of human poses, and predict joints

location accordingly. It was first introduced in 2016 in [17] to recognize human poses and it is still one of

the most important networks in pose estimation area, and widely used in several applications.

Hourglass modules downsample the images and then upsample them to the initial size, allowing to

capture and consolidate information across all scales. In the final layer, they produce heatmaps. Human

pose data has lots of variances, which makes it hard to converge if one just simply regress the joint

coordinates. Heatmaps allow the network to express its confidence over a region rather than regressing
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Figure 3.2: Stacked Hourglass Architecture. From [17]

a single (x, y) position for a keypoint. The dataset must be labelled with the coordinates of a fixed

number of semantic keypoints, e.g., left ankle or right shoulder of a person.

In [18], the authors also use a stacked hourglass architecture, but to estimate the 6-DoF object pose.

The model is trained with objects from several classes. In each class, keypoints are manually defined

on 3D models and projected to the images yiealding ground-truth keypoint locations in 2D for training

the network.

The employment of convolutional neural networks for monocular pose estimation in space using se-

mantic keypoints has already become an attractive solution in recent years. One of the main advantages

of CNNs over traditional feature-based methods for relative pose estimation is the increase in robustness

under adverse illumination condition, as well as a reduction in the computational complexity. In [20], the

authors propose a network for spacecraft pose estimation, also based on the detection of semantic key-

points. These networks also have the advantage that the trainable features are selected offline prior to

the training, so the matching of the extracted feature points with the features of the wireframe model can

be made with no need of a long search over the image-model correspondences, which normally charac-

terizes most of the edges/corners-based algorithms. The authors introduced the idea of not only using

the heatmap’s peak location into the pose estimation solver, but also the statistical distribution around

the peak to allow reliable covariances and a robust navigation performance. The network is trained with

the image coordinates of feature points, computed offline based on camera intrinsics and feature coordi-

nates in the target body frame, which are extracted from 3D models prior to training. During training, the

network is optimized to locate a fixed number of manually chosen features of the spacecraft in question.

In many other applications, such as UAV vision-based navigation, the terrain surface does not have

well defined objects and the keypoints have no semantic meaning, thus the need of another type of

keypoints arises. Interest points are low-level points that usually do not have clear semantic meaning,

such as corners. When compared to semantic tasks, such as those explained above, the notion of

interest point detection is ill-defined and thus human annotator cannot reliably and repeatedly identify

the same set of interest points to create datasets. Therefore, it is non-trivial to formulate the task of

interest point detection as a supervised learning problem.

Consequently, the task of detecting interest points using CNNs must rely on self-supervised learn-

ing or unsupervised learning. Unlabeled data is being generated all the time. One must try to make

use of this much larger amount of unlabeled data, setting the learning objectives properly so as to get

supervision from data itself. The basic idea of self-supervised learning is to get labels automatically for
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the unlabeled data and train unsupervised dataset in a supervised manner.

During the last years, several approaches were proposed to tackle this task. The focus is to the

ones that jointly learn the detector and descriptor. In 2016, a novel deep network, called LIFT, was

introduced in [21]. It implements the full feature point pipeline, that is, detection, orientation estimation

and feature description. Their architecture relies on three CNN-based components that feed into each

other: Detector, Orientation Estimator and Descriptor. All these components come from previous articles

and are shown to perform well in their individual functions. The authors mesh them together using Spatial

Transformers to create and end-to-end, differentiable network. They found impossible to learn the full

architecture from scratch and introduced a problem-specific learning approach that involves learning the

descriptor component first, then the orientation estimator and finally using both to train the detector. LIFT

stays close to the traditional patch-based detect then describe recipe and requires supervision from a

classical Structure-from-Motion system.

SuperPoint [22] comes from a self-supervised framework for training interest point detectors and

descriptors. The authors proposed a fully-convolutional neural network architecture that operates on a

full-sized image and produces interest point detection and fixed length descriptors in a single forward

pass, as opposed to patch-based methods. Most of the network’s parameters are shared between

the two tasks, which differs from traditional tasks and contributes to an efficient architecture that can

be used in real-time applications. The paper presents a self-supervised solution using self-training.

They prove that it is possible to transfer knowledge from a synthetic dataset onto real-world images. The

pipeline starts by creating a synthetic dataset of simple geometric shapes with locations of interest points

locations. Then, a simpler network (using only the detector part) is trained on those synthetic images and

it is called MagicPoint. Since MagicPoint misses many potential interest point locations in real images

when compared to classical interest point detector, the authors came with a multi-scale, multi-transform

technique called Homographic Adaptation. This approach boosts interest point detection repeatability

and performs cross-domain adaptation. It is responsible for the self-supervised learning, as it warps the

input images multiple times to help the interest point to see the image from many different viewpoints and

scales. Using Homographic Adaptation together with MagicPoint detector allows to generate pseudo-

ground truth interest points that are more repeatable in real images, supervised by the interest point

itself, rather than a large-scale human annotation effort. Finally, the whole network, now including a

descriptor subnetwork, is trained on this self-annotated dataset, resulting in the SuperPoint. This system

works well for geometric computer vision matching tasks and gives rise to state-of-the-art homography

estimation results on HPatches [23] when compared to LIFT, SIFT and ORB.

LF-Net article [24] proposed a novel deep architecture and a training strategy to learn a local feature

pipeline from scratch, using images without the need for human supervision. The authors use image

pairs for which they know the relative pose and corresponding depth maps. It is proposed to create

a virtual target response for the network, using the ground truth geometry. Specifically, they run the

detector on the first image, find maximum response locations and optimize the network parameters so

that when run on the second image it produces a response map with sharp maxima at the right locations.

The points are warped using the ground truth, which guarantees a large pool of ground truth matches
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to get the descriptors. For training, they divide the problem into two branches, each containing identical

copies of the network. One is used to generate supervision, created by using ground truth warpings

(non-differentiable) and the other is used to optimize the network. They use a dataset containing video

sequences and LF-Net performs worse than SuperPoint for large frame differences.

Key.Net [25] uses a combination of handcrafted and learned CNN features to produce a keypoint

detector. They also propose a novel multi-scale loss and operator for detecting and ranking stable

keypoints across scales and a multi-scale feature detection with shallow architecture. Key.Net produces

only keypoint locations, it does not describe them for future matching.

D2-Net [26] is a close approach to SuperPoint as it also shares a deep representation between de-

tection and description. However, here the network shares all the parameters between detection and

description and uses a joint formulation that simultaneously optimize for both tasks. The authors propose

to postpone the detection to a later stage, which make keypoints more stable. The network is trained us-

ing pixel correspondences extracted from readily available large-scale SfM reconstructions, without any

further annotations and it adresses the problem of finding reliable pixel-level correspondences under

difficult imaging conditions. The method performs worse than SuperPoint for stricter matching thresh-

olds on HPatches, because the latter uses detectors firing at low-level blob-like structures, which are

inherently better localized than the higher-level features used by this approach.

R2D2 [27] introduced the idea of reliability apart from repeatability. The authors argue that salient

regions are not necessarily discriminative, and so can harm the performance of the description. Further-

more, they claim that descriptors should be learned only in regions for which matching can be performed

with high confidence, in order to avoid ambiguous areas. The article contributes with novel unsupervised

losses to learn keypoint detector and descriptor that are both repeatable and reliable. At test time, they

run the trained network multiple times on the input image at different scales and keep a shortlist of the

best descriptors over all scales.

The problem of efficiently and accurately detect and describe interest points using CNNs for higher

level computer vision applications is still an open field of research these days.
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Chapter 4

Implementation

In this Thesis, we evaluate the performance of several image processing algorithms and we aim at

proposing a more accurate monocular vision-based relative navigation system, using an homography-

based approach.

The monocular downward-looking camera takes an image sequence of the ground scene during flight

(Figure 4.1). Since the distance to the ground is high, the ground surface is assumed to be planar and

the landing approach mission can be tackled using the homography approach under this assumption.

Figure 4.1: Spin.Works UAV from one landing mission on a quarry. On the left, we see the UAV with
a monocular camera mounted underneath the electronic systems, pointing to the ground. On the right,
we see it flying over a surface that looks similar to Mars, using a vision-based navigation system. The
geometry of the problem is depicted on Figure 2.12. The images taken during this mission were exten-
sively used during the performance evaluations made in this thesis. The dataset is described in section
4.2.2

Our focus gets to the feature detection algorithms and the improvements gained by substituting clas-

sical approaches to the ones involving deep learning. Therefore, all our implementations and evaluations

use two classical algorithms as reference and one using AI for comparison tests. The reference algo-

rithms chosen were Harris Corners and SIFT. Harris Corners is the first feature detection algorithm and

still used in industry, e.g., in the solution proposed by Spin.Works to the problem tackled by this Thesis.

SIFT is one of the most popular methods due to its high accuracy even when competing with learning

approaches. The algorithm chosen to test the performance of DL in feature detection was SuperPoint

since the results demonstrated by the paper appear to be successful and it outperforms the competitors

in homography estimation metrics.
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In this chapter, we present the whole pipeline built to perform evaluations. In section 4.1 we present

the software tools adopted, then in 4.2, the datasets are described. In sections 4.3 and 4.4, we define the

implementation of the feature detection algorithms and the homography-based motion reconstruction,

respectively. Finally, in section 4.5, the evaluation metrics are outlined.

4.1 Software Tools

In order to solve the problem addressed by this Thesis, a software pipeline was implemented in

Python language to represent to whole process of using camera information to estimate the motion of

the aircraft in landing missions.

Since we are working with images and many matrix calculations are needed, the implementation

makes use of several Python libraries that are optimized for real-time computer vision and image pro-

cessing applications such as OpenCV1 and Numpy2, and that are optimized for neural networks compu-

tations in both CPU and GPU, such as PyTorch3.

Numpy is an open source Python library used for working with arrays, linear algebra, and matrices.

The operations are vectorized, which describes the absence of any explicit looping or indexing in the

code. These things are ”behind the scenes” in optimized, pre-compiled C code, which makes Numpy a

lot faster than regular Python operations. In this implementation, all mathematical operations are made

using Numpy.

OpenCV is a cross-platform library used to develop real-time computer vision applications. It mainly

focuses on image processing, video capture and operations for feature detection, object detection and

tracking and other optimized state-of-the-art computer vision and machine learning algorithms. We make

use of it for reading, resizing and writing images and to implement classical feature detectors, such as

Harris Corner and SIFT.

PyTorch is a library that facilitates building and training deep learning projects. It is very similar to

Numpy but with strong GPU acceleration. It was the chosen framework to train and apply DL algorithms

to the role of feature detection.

Matplotlib4 is a plotting library for Python. Matplotlib’s collection of functions, called pyplot, was the

API chosen to plot the results in this implementation. It makes matplotlib work like MATLAB.

4.2 Evaluation Datasets

4.2.1 HPatches

One of the most popular benchmarks for evaluating local image descriptors is HPatches [23]. The

dataset contains 116 scenes with 696 unique images and it is divided into two groups. The first 57

1https://opencv.org/
2https://numpy.org/
3https://pytorch.org/
4https://matplotlib.org/
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scenes exhibit large changes in illumination while maintaining the viewpoint and the other 59 scenes

have large viewpoint changes. Each scene is composed by 6 images, being the first considered the

reference, and 5 homography matrices that represent the transformation between the reference image

and the respective one. Examples are shown in Figure 4.2.

The images are used by the tested detection algorithms and the homography matrices are the ground

truth needed to evaluate their performance in metrics such as repeatability of keypoints or homography

estimation.

Figure 4.2: Example of HPatches images. Above there are two images of the same scene with viewpoint
changes and, below, images exhibit large changes in illumination while maintaing the viewpoint

4.2.2 Spin.Works UAV Landing Mission Dataset

Since the motivation of our work is to evaluate a vision-based navigation framework for lunar and

planetary landing missions, Spin.Works ran several experiments of landing missions using UAVs in

representative terrain surfaces such as a quarry.

From one of those experiments resulted a video that was highly used during performance evaluations

in this Thesis. This video sequence has a total of 384 frames, similar to those in Figure 4.3, acquired by

a camera attached to the UAV looking downwards during the landing phase in a quarry.

Spin.Works used some software to perform Structure from Motion (SfM), which uses the first 249

frames to compute the orthophotograph of the terrain surface, the position and attitude of the cam-
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Figure 4.3: Example images taken by the downward-looking camera during the Spin.Works UAV Landing
Mission at a quarry

era/aircraft, an estimation of the model of the camera used and the point cloud of the terrain.

The attitude is described by the euler angles (roll, pitch, yaw) and the position by GPS coordinates

in the World Geodetic System 1984 (WGS84). In order to make use of this data, the position must be

converted from geodetic coordinates to cartesian coordinates. First, we converted them to the ECEF

system (earth-centered, earth-fixed) that represents positions as X, Y and Z coordinates. The origin is

defined as the center of mass of Earth, the z-axis points to the true north and the x-axis intersects the

sphere of the earth at the equator and the prime meridian in Greenwich.

For navigation purposes, we like to use local tangent plane reference coordinates, which are a geo-

graphical coordinate system based on the tangent plane defined by the local vertical direction. In aircraft

navigation, most objects of interest are below the aircraft, so the positive direction is often defined point-

ing down. This reference frame is called NED, which stands for north, east, down, since x-axis points to

north direction, y-axis to east and z-axis down. It is more convenient for navigation as it is a local frame,

the numbers involved are relatively small and the axes are more intuitive. Coordinates in ECEF can be

converted to NED by choosing a reference position and using its X, Y and Z coordinates and its latitude

and longitude. We chose its origin to be at the surface of the earth geoid. Now, we have the camera

positions with respect to the NED frame and the terrain surface is at an altitude z = −120m, calculated

from the point cloud. Hence, it is possible to compute the altitude above ground of the aircraft.

The Euler attitude, expressed in [roll, pitch, yaw], corresponds to a rotation ZYX, such that, starting

by overlapping the reference of the body with the local reference frame NED, the body rotates the yaw

value about the z-axis, then it rotates the total pitch about the new y-axis and, finally, the roll angle about

the current x-axis, always using the right hand rule, resulting in the Body reference frame.

All these data is assumed as ground truth for performance evaluation of the algorithms. From that, we

extract the transformations between the surface plane and the image plane, the homographies between

different frames, and the position and attitude at each instant to evaluate the motion reconstruction done

by the image processing techniques.
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4.2.3 Spin.Works Moon Landing Mission Simulation

Since getting real datasets with the ideal conditions and representation of the problem is a difficult

task, we have attempted to create and evaluate the algorithms’ performance in simulation datasets that

reproduce the planetary landing mission.

Spin.Works generated some of these simulations using PANGU5, which is a proprietary software

from STAR-Dundee6 often used by ESA. PANGU is a powerful set of tools for modelling the surfaces of

planetary bodies such as Mars and the Moon. It can generate camera images from any position and

orientation. Hence, they created some Moon landing trajectories and the software produced a collection

of synthetic images, as the ones in Figure 4.4 reproducing the environment one would expect to see

when in a landing phase in a Moon entry mission, forming a video sequence similar to the real one

described in section 4.2.2.

Figure 4.4: Example images from Spin.Works Moon Landing Mission Simulation

We have a completely controllable environment where the camera parameters, the motion states and

the 3D of the surface is perfectly known. The attitude of the aircraft/camera is expressed in euler angles

and the position is expressed in the ENU reference frame, which stands for east, north, up. ENU is also

a local tangent plane frame with a different convention for the axis. The east axis is labeled with x, the

north y and the up z. One can easily convert to NED coordinates to be coherent with the representation

on the real dataset. The x and y-axis must be swapped and the sign of the z-axis must be changed.

5https://pangu.software/
6https://www.star-dundee.com/
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4.2.4 Perseverance Rover’s Descent and Touchdown on Mars (Official NASA

Video)

During Perseverance rover’s descent on February 18, 2021, terrain relative navigation was used to

improve the knowledge about position and to choose a safe landing site. NASA posted online many

images and videos from the mission, including the video from the rover’s descent and touchdown seen

by a down-looking camera. It can be watched in https://www.youtube.com/watch?v=4czjS9h4Fpg.

It is a great opportunity to validate and compare the algorithms using real images, exactly from the

domain we are investigating on this Thesis. That is the most recent and representative dataset available

for our problem. Therefore, we have extracted the frames from the YouTube video, at 10 Hz, and cut

the regions we care about. Then, we resized each frame to 512× 512 dimension, forming a set of 1310

images of the surface from Mars during rover’s descent, similar to the ones in Figure 4.5.

Figure 4.5: Example images from Perseverance Rover’s Descent and Touchdown on Mars (Official
NASA Video)

NASA did not publish navigation data for us to compare our estimates. However, at Spin.Works, they

did a similar approach from the UAV dataset and used the SfM software to get orthophotomaps of the

terrain, as well as position, attitude and model of the camera from the sequence of images.

Positions are defined up to a scale and attitudes may not be defined with respect to the surface

frame. Hence, we need to identify ground control points to get information about the scale factor in

position and the normal of the surface. On one hand, we have rotated data so that the last frame is

vertical to the terrain surface. On the other hand, we know from information published by NASA, that

backshell separation occurs at about 1.3 miles (2.1 kilometers). That frame is visible on the sequence,

with a white puff. So, we could scale position using that information, resulting in a trajectory starting at

11 kilometers from the surface of mars, which is consistent with the EDL diagram published by NASA,

where the heat shield separation occurs at about 7-11km, represented into the first frames of the video.

From the camera model, we used the focal length and defined an approximation by a linear model.
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Finally, we get data for the 6 degrees of freedom during descent, which we use as reference.

4.3 Feature Detection Algorithms

4.3.1 Harris Corners

We have implemented Harris detector using the function goodFeaturesToTrack from OpenCV library

with the flag useHarrisDetector set to True and a fixed number of best features, quality level and mini-

mum distance between features. The function returns a list of coordinates for the features identified.

For each of these features we computed a descriptor as the patch around the pixel location. We have

selected a window size of 15 by 15 pixels centered at the keypoint location and saved the intensity values

in that patch. The result matrix of intensity values is flattened to a vector of dimension 225. Finally, in

order to get illumination invariance of the descriptor we normalized that vector by subtracting its mean

and dividing by its standard deviation.

Next, we defined a similarity measure to compare descriptors from different measures. From several

options we chose the normalized cross-correlation which is defined as

NCC =

∑
i

∑
j(f1(i, j)− µ1)(f2(i, j)− µ2)√

[
∑

i

∑
j(f1(i, j)− µ1)2][

∑
i

∑
j(f2(i, j)− µ2)2]

(4.1)

where f1 and f2 represent the intensity values in the window patches in image 1 and 2, respectively and

µ1 and µ2 are the mean values of that patches.

Score values range from 1 (perfect match) to -1 (completely anti-correlated), so the higher the score,

the better the match. Since we are treating the patches as normalized vectors, they are unit vectors.

Therefore, the correlation becomes the dot product of the descriptors. In order to disambiguate the

descriptor matching, we use cross-check or two-way nearest neighbor described in section 2.2.2.

4.3.2 SIFT

SIFT algorithm was also implemented using OpenCV. In this case, the function returns keypoint

locations and SIFT descriptors. The default parameters were used, we also chose the maximum number

of features to be similar to the other algorithms during performance evaluations.

The similarity metric adopted was the L2 norm. This distance measures the square root of the sum

of the squared differences between the descriptors from different images. As in the other methods, we

also implemented brute-force matching using cross-check to distinguish ambiguities.

4.3.3 SuperPoint

SuperPoint was implemented and trained from scratch using PyTorch framework, following the proce-

dure described in the paper [22], but with slight differences. SuperPoint training is divided into 3 phases

as expressed by the Figure 4.6
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(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training

Figure 4.6: SuperPoint training overview. First, an initial detector network is trained using synthetic
data. Then, that network produces pseudo-ground truth points on MS-COCO images. Finally, Super-
Point is trained using the labels generated before. Adapted from [22]

The initial detector model, called MagicPoint, is firstly trained with synthetic images generated on-

the-fly. In each iteration, the program renders one batch of 32 240 × 320 images with synthetic shapes

such as triangles, squares or chessboard-like structures and the respective ground truth locations of the

corners, junctions of lines and other points of interest. MagicPoint network is similar to the SuperPoint

one, shown in Figure 4.7, but with no descriptor decoder.

Figure 4.7: SuperPoint Architecture. Decoder with VGG-like architecture with 3x3 convolutional lay-
ers sized 64-64-64-64-128-128-128-128. Every two layers there is a 2x2 max pooling layer. Detector
Decoder with a a single 3x3 convolutional layer of 256 units followed by a 1x1 convolutional layer with
65 units and finally a channel-wise softmax layer. Descriptor Decoder composed by a 3x3 convolutional
layer of 256 units followed by a 1x1 convolutional layer with 256 units. All convolution layers in the
network are followed by ReLu non-linear activation and BatchNorm normalization. From [22]

The second phase comprises the generation of pseudo-ground truth labels using the MS-COCO

2014 [28] training dataset split which has about 80,000 images and the MagicPoint model trained earlier.

The images are resized to 240x320 and converted to grayscale and the labels are generated using

Homographic Adaptation method described in the paper and represented by the Figure 4.8. During

Homographic Adaptation a total of 100 random homography matrices are generated as the composition

of simpler transformations, such as translation, scaling or rotation as described in section 2.3.1. The

points that are detected in most transformations are the ones considered as pseudo-ground truth interest

point locations for each image.

The joint training of SuperPoint is done on the grayscale MS-COCO images with the labels generated
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Figure 4.8: Homographic Adaptation. Homographic Adaptation is a form of self-supervision for boost-
ing the geometric consistency of an interest point detector. From [22]

from the Homographic Adaptation with batch size equal to 2. For each training image, a homography

is randomly sampled using the same method described earlier, but with more restrictive parameters

than during Homographic Adaptation, such as, less-extreme rotations. Both the image and the pseudo-

ground truth labels are transformed by this homography and the detector and descriptor losses are

optimized simultaneously. The interest point detector loss is a cross-entropy loss over the downsampled

tensor and the descriptor loss is a hinge loss over the possible descriptor correspondences. They are

well described in section 3.4 of SuperPoint paper. To increase the repeatability of the keypoints detected,

another round of Homographic Adaptation is done before the joint training of SuperPoint, resulting in a

new labelled COCO dataset.

The descriptor loss was slightly modified from the original paper inspired by the paper [29] (section

3.2 paragraph Matching layer) and the Tensorflow implementation in the repository https://github.

com/rpautrat/SuperPoint. The descriptor loss is now computed on L2 normalized descriptors and,

after computing the distance matrix between the descriptors of both images, we have applied ReLu

activation to eliminate obvious non matches (similarity of the descriptor below 0). Then, the distance

matrix is renormalized to help disambiguate when several descriptors are very close. Since the distance

matrix has been normalized, the positive matches have a higher activation than all the negative ones,

so the parameters proposed in the paper needed to be slightly changed. The descriptor loss balancing

term λd becomes 0.05 and the balacing factor between the two losses λ becomes 10,000. The other

parameters are kept equal to the ones proposed in the paper.

All training was done using 2 NVidia GeForce GTX 1070 GPUs and the optimizer was ADAM with

default parameters of lr = 0.001 and β = (0.9, 0.999). Data augmentation techniques such as gaussian

blur, gaussian noise, speckle noise, and random contrast and brightness changes were implemented to

improve the model’s robustness to lighting and viewpoint changes.

At inference time, the method can be described by the algorithm 2

Upsampling layers tend to add a high amount of computation, thus the authors propose this decoder

with no parameters, also known as ”sub-pixel convolution” [30] or ”pixel shuffle in PyTorch, in order to get

an output with the same dimensions has the input. The heatmap expresses at each pixel the confidence

of being an interest point. The threshold we use is equal to 0.015, as suggested in the paper. It

happens that sometimes the heatmap probability is somewhere distributed by the neighbor pixels and

after applying threshold, we get multiple detections of the same point at close coordinate pixels. The
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Algorithm 2 SuperPoint Detection and Descriptors
1: model← SuperPoint(weights) . Create model using pre-trained weights
2: procedure DETECTANDCOMPUTE(image,NMSDist, threshold, numPoints) . Grayscale image
3: heatmap, descriptorsRaw ← model(image) . Spatial dimensions of H/8xW/8
4: heatmap← pixelShuffle(heatmap) . Upsampling heatmap
5: heatmap← NMS(heatmap,NMSDist)
6: if heatmap(x, y) > threshold then . For every location (x,y) in heatmap
7: coordinates = (x, y)
8: score = heatmap(x, y)
9: end if

10: coordinates← bestFeatures(score, numPoints) . Save only fixed number of best points
11: descriptors← BilinearInter(descriptorsRaw, coordinates)
12: descriptors← L2Norm(descriptors)
13: return coordinates, descriptors
14: end procedure

solution is to apply Non-maximum Suppression (NMS) to the heatmap. In our implementation, we firstly

identify the keypoint locations by thresholding the heatmap and then we create a patch around it whose

score is the confidence value. We run a box NMS function from torchvision library that selects from

intersecting patches the one that has the highest score. Now, we get the coordinates of the keypoints

identified by the model after eliminating the multiple close detections.

The descriptor decoder outputs a semi-dense grid of descriptors (one every 8 pixels), because learn-

ing the descriptors semi-densely rather than densely reduces training memory and keeps the run-time

tractable. Then, the paper proposes to perform bi-cubic interpolation of the descriptor and then L2-

normalization. However, we used bi-linear interpolation instead as it is faster and the results are similar.

We interpolate only the descriptors at the keypoint locations rather than interpolate the dense descriptor

map to get lower the computation time.

As in SIFT, we have implemented the L2-norm as a similarity measure for the descriptor matching. All

the operations above mentioned were implemented with the possibility of using GPU acceleration due to

the parallelization of most computations, which enables SuperPoint to be used for real-time applications.

Sub-pixel Refinement

SuperPoint corner locations are defined with pixel coordinates, while other detectors like SIFT have

sub-pixel precision. Some of the experiments we made got better results with SIFT due to this fact.

So, we have implemented a method to refine corner locations from SuperPoint. After getting the corner

locations, we apply the function cornerSubPix from OpenCV that iterates to find the sub-pixel accurate

location of corners as described in [31].

The function gets the grayscale image, the corner locations from SuperPoint and three more param-

eters that we use default values from OpenCV documentation.
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4.4 Homography Estimation & Motion Reconstruction

4.4.1 Ground Truth Homographies

HPatches dataset provides ground truth homographies between different images of the same scene.

Datasets provided by Spin.Works do not have explicit ground truth homographies between the frames

along the video sequences. Nevertheless, it is possible to compute the reference homographies using

the camera model and the motion parameters described in sections 4.2.2 and 4.2.3. Our approach is to

compute the transformations between the ground surface plane and the image plane, as expressed by

the algorithm 3.

Algorithm 3 Ground truth homographies from navigation states and camera model
1: pixelCorners← computeCoordinates(camImageDims) . 4 image corners in pixel domain
2: cameraV ersors← computeCoordinates(FoV ) . 4 image corners in homogeneous coordinates
3: procedure SURFACETOIMAGEHOMOGRAPHY(position, attitude) . Ground to image transformation
4: Body2NED ← angle2dcm(attitude) . Direction Cosine Matrix Body to NED
5: cameraV ersors← multiplication(Body2NED, cameraV ersors) . Rotate versors to NED
6: groundCorners← project(cameraV ersors, position) . 4 image corners in pixel domain
7: homography ← DLT (groundCorners, pixelCorners)
8: return homography
9: end procedure

Image corners in homogeneous coordinates, which we call camera versors, are computed from the

field of view (FoV). When we do not have access to the field of view of the sensor, it is trivial to compute

it from focal length and image dimensions in pixels, using trigonometric relations,

FoVi = 2arctan(
di
2fi

) (4.2)

where FoVi, di and fi represent the field of view, the image dimension and the focal length, respectively,

along each of the dimensions.

Camera versors and image corners are properties that only depend on the camera, thus they are

independent of the camera position and do not change along the frame sequence. Camera versors

are defined in homogeneous coordinates in the Body frame, so we can easily convert them to the NED

navigation frame by a matrix-vector product. The rotation of the Body with respect to the NED frame is

expressed in Euler angles. The rotation matrix can be computed from the Euler angles as,

R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) =


1 0 0

0 cosφ sinφ

0 −sinφ consφ



cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ



cosψ sinψ 0

−sinψ cosψ 0

0 0 1



=


cosψcosθ sinψcosθ −sinθ

cosψsinθsinφ− sinψcosθ sinψsinθsinφ+ cosψcosθ cosθsinφ

cosψsinθcosφ+ sinψsinφ sinψsinθcosφ− cosψsinφ cosθcosφ


(4.3)

The corners of the region of the surface ”seen” by the camera, in meters, are computed projecting

43



camera versors, using similar triangles relations and the camera position. DLT algorithm, described in

2.3.2, computes the homography transformation between the terrain surface plane and the current frame

plane, using 4 corners in meters and in pixel domain.

The ground surface plane remain constant along the frame sequence. Therefore, it is possible to

calculate any homography by matrix operations followed by normalization. If the evaluation procedure

requires inter-frame homographies, we compute them using the formula,

Hj
i = HjH

−1
i (4.4)

where Hj
i represents the homography between frames i and j, and Hi and Hj are the transformations

between the world surface and the image plane, respectively.

4.4.2 Test Set Homographies

In the last section, we have seen how to compute the homographies we use as the reference set,

from navigation states and camera model. We have to estimate the same homographies through image

processing techniques to create our test set.

The procedure to compute these transformations is independent of the algorithm chosen for the

feature detection, description and matching. The homography matrix is computed from the correspon-

dences between features from different frames using the DLT algorithm. However, not all correspon-

dences are correctly identified and we have implemented the RANSAC algorithm to reject outliers and

compute the estimate only with correspondences that are considered inliers using a threshold on a geo-

metric distance between estimated points and original points. Estimated points are transformed from the

source image using the estimate of the homography matrix and the L2-norm distance is calculated with

respect to the correspondent points in the destination image. The correspondences whose distance is

under some defined threshold are considered inliers to the model.

RANSAC was implemented in our framework, following the algorithm described in section 2.3.3.

The parameters were carefully chosen to obtain the best results. We have defined a reprojection error

threshold of 1 pixel, a confidence of 0.999 and an acceptance inlier ratio of 0.9 for a maximum of 2000

iterations.

4.4.3 Non-Linear Least Squares

We have shown, in section 2.3.5, that the coordinates of points from the same plane are related by a

homography transformation. But when we use image processing techniques to estimate the homography

we get a matrix that relates positions in different frames, in pixel units. As shown before, it is possible to

use the camera intrinsics matrix to get this transformation in meters.

Homographies are used to estimate camera positions and attitude in order to reconstruct spacecraft

motion. To evaluate the performance of the algortihms in that task, we used the datasets described in

4.2. In the case of the real dataset, images are resized to reduce computational cost. Therefore, the
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sensor parameters need to be resized, namely the focal length, e.g., if we show one pixel per two from

the original images, focal length, in pixel units, need to be divided by two. Recalling the definition of focal

length from section 2.3.4, αx = fmx, where αx represents the focal length in pixel units, f the physical

focal length of the camera and mx the number of pixels per unit distance in x-direction (inverse of pixel

size), if we resize the images by half, it means pixel size is double, so m′x =
mx

2
. Also, the principal

point, in pixel units, needs to be also scaled to the new image size.

The image processing community often defines the pixel image reference frame with center at the

upper left corner of the image, x-axis horizontal and pointing to the right and y-axis vertical and pointing

down, while in body reference frame it is useful to define x-axis vertical and pointing up and y-axis

horizontal and pointing right to be consistent with NED frames, euler angles and rotation matrices.

Therefore, it is trivial to convert from camera sensor frame to body frame, multiplying by the orthogonal

matrix

D =


0 −1 0

1 0 0

0 0 1

 (4.5)

Homographies computed from image processing techniques must be converted to euclidean homo-

graphies, as described in section 2.3.5, by the formula,

Heuc =
K−1DHprojD

TK

γ
(4.6)

where γ is the scale factor that corresponds to
zf
zi

and zf and zi are the z-coordinates of some point in

the terrain surface with respect to cameras (i) and (f). However, it is not trivial to found this coordinate

values for common points between the frames. In somes cases, using the altitude or the range to ground

are good approximations of the values zf and zi, but as we move from the reference frame, estimates

start getting worse, since z-values refer to different points in plane. The correct solution can be found

in the article [32]. If we notice that the median of the singular values of Heuc is equal to 1, then we can

compute the scale factor γ as follows:

γ = median(svd(K−1DHprojD
TK)) (4.7)

where svd returns the singular values of Heuc, in ascending order. SVD is implemented using the

function svd from numpy linalg library.

After applying equation 4.6 to every single homography matrix computed by the image processing

techniques, we get the estimates of the euclidean homographies between the intervals of frames con-

sidered, so we have information about the relative pose of the camera between those intervals. That

information is implicit and can be recovered if we define the model

Hf
i = R(φ, θ, ψ) +

t(tx, ty, tz)nT

d
(4.8)
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where Hf
i represents the euclidean homography between camera (i) and camera (f), R the rotation

matrix, function of 3 parameters (φ, θ, ψ), t the translation vector (tx; ty; tz) between the two cameras,

considering that camera (i) is at the origin (no translation) and with no rotation, n is the normal vector of

the ground plane, expressed in the camera (i) reference frame and d the distance to the ground plane,

or altitude above ground of camera (i).

Our goal is to produce an estimate of the vector of parameters, x, which we call state vector, that

represents the position and orientation of the aircraft at each time frame and can be defined as

x = [φ, θ, ψ, tx, ty, tz] (4.9)

The estimate of x must be the one that better approximates the data represented by the vector

y, which in our case, denotes the estimated euclidean homography matrix described above, Hf
i , re-

organized from 3x3 to a 9x1 vector, assuming the model y = f(x), specified in equation 4.8. n[3×1] and

d are constants computed, a priori, and related with the pose of camera (i) with respect to the ground

plane.

The function f is non-linear, which complicates the problem. However, we can assume that given

an initial rough condition for our state vector x, it is possible to produce some cost function where our

state space is locally convex and, then, where it is possible to converge to a local minimum that matches

the optimal estimate of x. This problem can be described as a local optimization problem, and can be

solved iteratively, using non-linear least squares (NLLS).

The linearization of the homography function becomes

Hf
i (x) = Hf

i (x0) +
dHf

i

dx
(x0)[x− x0] (4.10)

where Hf
i (x) represents the estimate of the euclidean homography at state x, Hf

i (x0) the result of

applying the homography model at initial state vector, x0,
dHf

i

dx
(x0) denotes the Jacobian of the model at

x0, explicitly defined as
[
dH

dφ
,
dH

dθ
,
dH

dψ
,
dH

dtx
,
dH

dty
,
dH

dtz

]
, a 9x6 matrix and, finally x stands for an improved

estimate of the actual state vector (rinse repeat).

At each iteration of the NLLS algorithm, the state vector is updated by solving the system of linear

equations specified in equation 4.10. Since the problem is represented by an overdetermined system,

i.e, we have more observations than unknowns (9 > 6), linear least squares method is used to get the

solution that minimizes the Euclidean 2-norm ||b−A∆x||, where b is defined as Hf
i −H

f
i (x0), A =

dHf
i

dx
and ∆x represents x− x0.

The solution uses the Moore-Penrose inverse to allow the inversion of the problem, and is ex-

pressed by the formula

∆x = (ATA)−1AT b (4.11)

We implement this step using the function lstsq from numpy linalg library, which operates in a similar

way as the backslash operator (\) in Matlab.
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We make use of the linearization and recursivity due to the fact that the equations are highly non-

linear, which forces the estimate to be done in small steps through the steep gradient and linearizing

again at each iteration.

A key frame must be given, a camera whose navigation motion states are known: position (altitude

above ground) and attitude. The rotation matrix R(φ, θ, ψ) is replaced by R(φ, θ, ψ)R0 in the model,

where R0 is the rotation matrix from the key frame camera to the (ground) local vertical reference frame.

The problem is somewhat badly conditioned, because the attitude in radians is very small and trans-

lation in meters is very large, and the function is highly non-linear. We could perform a scaling operation

to normalize the state variables, but we decided to scale down the ∆x, by a weight factor and increase

the number of iterations to get a slow but stable convergence. Using a scale factor of w = 0.009 and a

number of iterations N = round(20/w), it has a good behavior.

At the end of each convergence (between any two frames), we store the estimated attitude (φ, θ, ψ)

and translation t = (tx, ty, tz). The translation vector needs to be first transformed back to the reference

frame of the key-camera-frame, through: t = −R(φ, θ, ψ)T × t, before storage.

4.5 Evaluation Metrics

The objective of this Thesis is to evaluate the performance of image processing algortihms to recon-

struct spacecraft motion in landing missions. Therefore, our evaluations are conducted in three phases.

We start by testing the repeatability of the points, then using an homography estimation metric and finally

we get to a more advanced metric where we compare the motion states directly. All evaluation metrics

are described below.

Repeatability measures the detector’s ability to identify the same features despite variations in the

viewing conditions. Using ground truth homographies to get reference locations of the keypoints de-

tected in the first image, in the second one, we compute the distance between points detected in the

second image and that reference points. If distance is under some threshold ε, the point is considered to

be re-identifed and we define repeatability as the number of points that are re-identified over the number

of points detected.

We evaluate the ability of algorithms to estimate the homography relating a pair of images, by com-

paring the matrix estimated by the methods described in the last sections to the ground truth homog-

raphy. Since different entries of the matrix have different scales, it is not straightforward to compare

matrices directly. Hence, we use the Reprojection Error, where we compare the performance of the

homography in estimating the location of the four corners of one image into the other. We characterize

the corners as ci with i = 1, 2, 3, 4 and then we apply the ground truth homography to get the reference

location of them in the second image, c′i, and the estimated homography to get the test locations, ĉ′i.

Reprojection error is the mean of the L2 distances from the four reference corners and the four test cor-

ners. We define a threshold ε in pixels to denote the reprojection error acceptable to consider a correct

homography. The percentage of correct homography estimation is the ratio between the number of pairs

whose error is under the threshold and the number of pairs evaluated.
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The most important metric to our study is the Motion Reconstruction Errors. Here, we evaluate

position and attitude estimates by comparing them with ground truth navigation parameters provided,

as described in datasets section. Consequently, we plot Euler angles and translation values along the

frame sequence and estimation errors for each motion state variable.

We use HPatches dataset only as a starting point to evaluate metrics such as repeatability and

homography estimation. Then, we focus on navigation datasets where we test those two metrics and

also the comparison of motion states. There we performed several experiments with different conditions.

Essentially we have two different pipelines.

On one hand, we detect points on every frame and compute estimates of the homography relating

pairs of successive frames. The transformation from the world plane to the ith frame plane can be

estimated as a sequence of frame-to-frame homographies multiplication as follows:

Hi
w = Hi

i−1H
i−1
i−2 ...H

1
0H

0
w (4.12)

where H0
w defines the transformation from the ground plane to the reference frame plane chosen where

we assume to know the motion states. The other Hi
i−1 are the homography transformations between

successive frames. Consequently, we get the transformation between the ground surface and every

frame from the video sequence using composition of homographies estimated from image processing

techniques. We tested different conditions, such as changing the reference frame and the delta be-

tween frames, i.e., the interval between frames we use to estimate homographies using the procedure

described in section 4.4.2.

On the other hand, we choose the key frame, detect keypoints and save descriptors. Then, we

perform directly the estimation of the homography between the key frame and the current frame. For

each frame i we get the expression

Hi
w = Hi

0H
0
w (4.13)

where H0
w is still the transformation from the world plane to the key frame, which is computed assuming

that we know motion states of the frame we choose as reference. These experiments allows to evaluate

the strength of features detected by different algorithms so we can perceive the ones that keep on being

detected during longer periods of time. This procedure contributes to eliminate cumulative errors caused

by composition of homographies, as described above.
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Chapter 5

Results

In this Chapter, we describe our experiments following the framework described in the implementa-

tion chapter and present results achieved by the algorithms in testing. We start using HPatches dataset

to evaluate metrics related to detections and homography estimation and then we move to navigation

datasets. First, we use a video sequence of a landing mission of a UAV in a representative surface.

Then, we test on moon synthetic images from a simulated landing trajectory and finally, we perform

experiments using the video of the latest Mars landing mission from NASA.

5.1 HPatches

We started our evaluations using the HPatches dataset. As stated in section 4.2.1, the dataset is

divided in two groups: one with images that exhibit illumination changes and other with images that are

transformed by viewpoint changes. Therefore, our tests are divided into Viewpoint and Illumination.

5.1.1 Repeatability

We compare the ability to detect the same keypoints in different images of the same scene, using the

repeatability metric. Repeatability is computed at 240× 320 resolution with 300 points detected in each

image and we use a correct distance threshold of ε = 3 pixels. Results are summarized in table 5.1.

Illumination Viewpoint

Harris 0.601 0.593
SIFT 0.487 0.476
SuperPoint 0.640 0.508

Table 5.1: Detector Repeatability on HPatches. Repeatability measures the probability that a point
is detected in the second image. SuperPoint is the most repeatable under illumination changes, while
Harris Corners exhibits better performance under viewpoint changes.

Our implementation of the SuperPoint model outperforms both classical detectors under illumination

changes. However, Harris Corners is the most repeatable detector under viewpoint changes. SIFT
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reveals poor performance on this metric.

5.1.2 Homography Estimation

The problem we aim to solve with this Thesis relies on an accurate estimate of the homography matrix

between different images of the same scene. So, we perform our evaluations using the re-projection

error defined in section 4.5, comparing performances of three algorithms under discussion.

(a) Incorrectly estimated homography. Re-projection error
higher than 10 pixels, meaning that it is considered incorrect
under all thresholds between 1 and 10.

(b) Correctly estimated homography. Re-projection error be-
tween 1 and 2 pixels, meaning that it is considered correct under
all thresholds from 2 to 10 and incorrect using threshold equal
to 1.

Figure 5.1: HPatches example of homography estimation using matches from SuperPoint interest points.
Green lines represent matches that are consider inliers on homography estimation. Red points are
detections that were not matched or whose matches were considered outliers.

We evaluated the set with illumination changes and the set with viewpoint changes separately. We

computed a maximum of 500 points for all algorithms at a 480 × 640 resolution. The re-projection error

is calculated for each pair of images in each set and if it is lower than the threshold ε, we consider

it correctly estimated (example in Figure 5.1). Then, the ratio of correctly estimated pairs by the total

number of pairs is the homography accuracy in the plots. We performed these tests with different

thresholds, ranging from 1 to 10, and the plots below show the comparison between the algorithms.

(a) Illumination Changes (b) Viewpoint Changes

Figure 5.2: Homography estimation accuracy curves on HPatches. The accuracy represents the ratio
between correctly estimated homographies and the total number of image pairs, for re-projection error
thresholds ranging from 1 to 10.

SuperPoint outperforms both classical methods in the homography estimation task for image pairs
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with illumination changes. Also, it performs comparably to SIFT and considerably better than Harris

in the case of viewpoint changes. These results suggest that SuperPoint could be a more accurate

alternative to classical methods to solve the problem addressed by this Thesis.

However, we need to prove that these results remain when it comes to images of lunar and planetary

terrain taken by a spacecraft in a landing phase. Also, we need to understand the influence of this low

level metric in the estimate of motion states to better distinguish the algorithms’ performance in the high

level task of estimating the relative motion of the aircraft descending to the surface. Therefore, next we

perform evaluations in datasets that are more representative of the problem at hand.

5.2 Spin.Works UAV Landing Mission

The Spin.Works UAV landing mission dataset, described in detail in section 4.2.2, was our first

approach to compare classical algorithms versus the deep learning one in an environment that looks

similar to what is expected in a lunar or planetary landing mission. The terrain surface from the quarry

could be a good approximation of what one camera would see when approaching lunar or planetary

surface, so results here should be more reliable than using an all-purpose dataset, such as HPatches.

We also used the homography estimation metric, but we go further and compare motion states

estimates to results from the SfM software to evaluate algorithms’ performance on the task we really

care about.

Original images taken frame-by-frame from the video sequence have dimensions 1080 × 1920. In

order to balance performance and processing time and resources, images were resized to 512× 512 for

all performance tests. Ground truth homographies are calculated from navigation states provided by the

SfM software, using the procedure described in section 4.4.1.

5.2.1 Homography Estimation

We started by evaluating the performance of the algorithms in the task of estimating homographies

that represent image transformations between different frame transitions. First, we tested all transitions

between consecutive frames and then, we have successively increased the interval between frames.

Plots below express the accuracies, with thresholds ranging from 1 to 10, for homography estimates at

intervals of 1, 10 and 20 frames, which we call delta between frames.

Results indicate that SuperPoint performs comparably to classical methods in the case of intervals

of consecutive frames and slightly better when we increase the delta between frames, specially when

compared to SIFT. This consequence suggests that SuperPoint could be a powerful alternative for tran-

sitions that are more spaced in time, which make us believe that SuperPoint keypoints and descriptors

are more invariant to viewpoint and illumination changes and so, the detected corners remain being

correctly matched along longer time sequences.

However, this metrics are insufficient to demonstrate that SuperPoint keypoints and descriptors are

advantageous over Harris Corners and SIFT at the high level task of estimating motion states for the
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(a) Delta between frames equal to 1 (b) Delta between frames equal to 10

(c) Delta between frames equal to 20

Figure 5.3: Homography estimation accuracy curves on UAV landing dataset from Spin.Works. The
accuracy represents the ratio between correctly estimated homographies and the total number of image
pairs, for re-projection error thresholds ranging from 1 to 10.

vision-based navigation problem that we are investigating with this Thesis.

5.2.2 Qualitative Results

Homography estimation highly depends on the precision of the features detected and quality of the

descriptors that contributes to correct matches between keypoints detected in different images of the

same scene. One of the most important attributes of detectors is to provide repeatable and distinguish-

able features that remain being detected and correctly matched along the frame sequence, in order to

provide stability to the vision-based navigation system.

We have done a qualitative evaluation of this aspect, visualizing the features detected and correctly

matched in two frames separated by increasing periods of time. We run the algorithms, implemented

as described in section 4.3, to detect and describe a maximum of 500 keypoints on each frame image

resized to dimensions 512 × 512. Then, descriptors are compared between frames, as reported in the

same section. Finally, RANSAC uses correspondences to estimate the homography matrix that relates

those frames and provides the set of inliers (section 4.4.2).

Inliers are correspondences whose re-projection error using the matrix estimated is below the thresh-

old value parameterized into the implementation of RANSAC. We use the same values for the three
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algorithms: re-projection error threshold of 1 pixel, maximum of 2000 iterations and a confidence level

of 0.999.

Qualitative results are shown by the images, where green circles and lines represent keypoint loca-

tions and correspondences, respectively, that belong to the inlier set, and red circles are keypoints that

were detected, but not matched between frames, or whose match was considered an outlier.

In Figure 5.4 we tested the ability to find correspondences between features in images separated by a

period of 80 frames, taking as reference the first frame of the video sequence. SuperPoint outperformed

classical algorithms, specally Harris Corners, having a large set of reliable correspondences between

frames, while Harris correspondences clearly fail. As we increased the frame interval, the number

of correspondences was getting lower, namely when using Harris Corners or SIFT. SuperPoint is still

visually having a good performance after 80 frames, where we see considerable changes in scale, which

also supports our conviction that SuperPoint is a more stable and reliable detector for a vision-based

navigation system. It is also interesting to notice the ability of SuperPoint to detect points in the region

of the terrain outside the cliff, contrarily to Harris Corners or SIFT, which is important in the homography

estimation task due to the assumption that the terrain is planar.

(a) Harris Corners - 6 Inliers / 71 Matches (b) SIFT - 8 inliers / 42 Matches

(c) SuperPoint - 44 Inliers / 161 Matches

Figure 5.4: Feature correspondences between frame 1 and frame 81 of the UAV landing video sequence

Another example can be seen in Figure 5.5, where the transition also expresses a significant scale

change and where apparently the region has some repetitive texture. Besides that, SuperPoint keeps

being the most promising of the three in the task of estimating the transformation between the frames.

Even with promising results for the deep learning alternative, it is not sufficient to clarify if it is capable

of detecting points good enough to retrieve motion states of the spacecraft along the landing into a

planet, so that it could be integrated into a system for vision-aided navigation.

53



(a) Harris Corners - 5 Inliers / 84 Matches (b) SIFT - 5 inliers / 18 Matches

(c) SuperPoint - 56 Inliers / 143 Matches

Figure 5.5: Feature correspondences between frame 101 and frame 151 of the UAV landing video
sequence

5.2.3 Navigation States Estimation

Using the procedure described in section 4.4.3, we retrieve motion states (position and attitude)

from homographies estimated by image processing techniques. The SfM software gave us ground truth

values of position and attitude that we assume as reference (shown in Figure 5.6). A pinhole model is

defined, using focal length from the SfM software, to construct the intrinsics matrix.

Figure 5.6: Reference navigation data (translations and attitude) for the UAV landing mission dataset
from Spin.Works, using NED navigation frame.

Our implementation allows us to vary some conditions, such as to choose the frame we use as ref-

erence (frame where we assume to know the pose) and the delta between frames where algorithms
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detect keypoints and estimate homographies. First, the motion recovery algorithm is tested using a con-

trol set of homographies, where we are using the SfM navigation data to generate the homographies

and then use the homographies to move backwards and reconstruct the navigation states, hoping to

get the same results. This procedure allows us to verify that the algorithms and functions are correctly

implemented and evaluate how much information is lost in the process when using controlled, noise

free data. Consequently, we discard causes of error, such as recursive least squares not converging,

etc. Some deviations still occur between the original navigation dataset and the reconstructed dataset.

These deviations are plotted in Figure 5.6. The magnitude of these deviations shows a maximum of

0.009 degrees in attitude (occurring in pitch), about 5 cm in horizontal displacement (
√

3.52 + 3.52) and

sub-milimeter deviations in altitude. These deviations can be interpreted as a ”noise-floor” for the perfor-

mance of the algorithm, i.e. deviations of this magnitude are interpreted as best achievable performance

using the proposed system. Therefore, estimated deviations can be used as an evaluation metric of the

quality of the homographies produced by different methods.

Figure 5.7: UAV landing pose recovery deviations, using homographies calculated directly from naviga-
tion data instead of image processing techniques. Frame 1 is used as reference.

As explained in section 4.5, our tests are divided in two different pipelines. On one hand, we estimate

homographies between a fixed interval of frames and compose transformations to get the matrix that

relates the reference frame and the current one. On the other hand, we increase the interval between

frames and estimate directly the homography between the reference and the current frame. Results are

presented by plotting deviations of the estimates of the 6 degrees of freedom (3-axis translation and

Euler angles) from the reference values (plotted in Figure 5.6).

Reference frame: 20, Delta between frames: 1

At a primary stage of evaluations, we defined one reference frame from the beginning of the se-

quence, e.g. frame 20, and the smallest interval possible, delta between frames equal to 1. The devi-

ations between the estimated translations and attitudes by the three methods and the reference values

are plotted in Figure 5.8. We can visually notice in plots that SIFT exhibits the worst performance among
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(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 5.8: UAV landing pose recovery deviations, using homographies calculated from image process-
ing techniques with different features detectors. Frame 20 is used as reference and delta between
frames is equal to 1. Inter-frame homography matrices are multiplied to get the transformation of the
current frame with respect to the reference frame.

56



the three methods, since estimates done using SIFT keypoints are much deviated from the reference

values. Harris Corners and SuperPoint perform similarly, although SuperPoint seems to be slightly more

accurate, namely in pitch and y-translation.

tx ty tz Roll Pitch Yaw

Harris 0.942 1.451 1.962 0.706 1.871 0.272
SIFT 3.885 3.308 2.589 3.751 3.736 0.811
SuperPoint 1.079 0.572 3.062 1.042 0.692 0.270

Table 5.2: Mean of the absolute value of the absolute deviations at each time step for UAV pose recovery
using different feature detection methods. The values representing translations (tx, ty, tz) are expressed
in meters and the ones for attitude (Roll, Pitch, Yaw) are represented in degrees

tx ty tz Roll Pitch Yaw

Harris 0.577 0.968 1.703 0.455 0.762 0.178
SIFT 2.618 3.015 1.415 1.938 2.041 0.276
SuperPoint 0.620 0.547 0.177 0.667 0.547 0.177

Table 5.3: Standard Deviation of the absolute value of the absolute deviations at each time step for UAV
pose recovery using different feature detection methods.

tx ty tz Roll Pitch Yaw

Harris 2.599 3.902 5.096 1.884 3.119 0.773
SIFT 9.396 9.447 4.785 7.492 7.025 1.307
SuperPoint 2.371 1.902 5.419 2.473 2.182 0.588

Table 5.4: Maximum Deviation of the absolute value of the absolute deviations at each time step for UAV
pose recovery using different feature detection methods.

Quantitative results for deviations from reference of each state variable and detection method are

summarized into tables 5.2, 5.3 and 5.4. Each column represents each of the variables that compose

the state (3 for translation and 3 for attitude). The values in the table express the mean, standard

deviation and maximum value, respectively, of the absolute value of the absolute deviations from the

reference. The ones representing translations are expressed in meters and the ones for attitude are

represented in degrees.

Results in the tables support our qualitative evaluation from the plots. SIFT deviations are o lot higher

than SuperPoint and Harris Corners. The last two algorithms perform comparably with these conditions,

but SuperPoint demonstrates lower values of maximum deviations in general. This conclusions comply

with the first goal of our work, which was to introduce artificial intelligence into a vision-based system

for lunar and planetary landing missions. We have seen that the method using deep learning reveals

at least the same performance of classical algorithms, which indicates that it is worth to investigate

this field. The following tests will focus on proving our conviction that SuperPoint’s strength shows up,

specially, when we use longer intervals of frames.
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Reference frame: 1, Delta between frames: 20

We performed several experiments changing the reference frame and increasing the delta between

frames until we get to the current condition, where frame 1 becomes the reference and algorithms

only detect keypoints and estimate the homography between images that are separated by a period of

20 frames, starting from the key frame, until the end of the video sequence. Inter-frame homography

matrices are multiplied to get the transformation of the current frame with respect to the reference frame

before estimating the motion states, as in the last condition.

Results are presented in plots from figure 5.9. It is trivial to see that, using SuperPoint, the estimates

are clearly better. Both Harris and SIFT fail badly on the final transitions of 20 frames, making estimates

completely impractical. To maintain the readability of the plots, we have cut the last estimates from both

classical algorithms and that is why the x-axis is shorter than in SuperPoint where the estimate remain

accurate until the end of the sequence, since the deviations stay much lower than using Harris or SIFT.

Besides that, we can compare the accuracy of the predictions in the first frames’ transitions and the

difference is visually noticeable.

tx ty tz Roll Pitch Yaw

Mean 0.355 0.323 2.880 0.365 0.517 0.139
Standard Deviation 0.240 0.188 1.732 0.670 0.467 0.229
Maximum 0.689 0.570 5.288 2.601 1.715 0.919

Table 5.5: Statistics for the absolute value of the absolute deviations during UAV pose recovery, using
SuperPoint detector with delta between frames equal to 20. Results should be compared to the last line
in Tables 5.2, 5.3 and 5.4. Bold means that values are better than using delta between frames equal to
1 from the last tables.

This time, we only show metrics of the absolute deviations for SuperPoint (table 5.5). Due to the

reason mentioned above, the values of the deviations for the classical methods were enormous in the

final transitions, which influenced a lot the statistical analysis and the values of the mean and standard

deviation became worthless.

This method of relative navigation, similar to dead reckoning, is subject to cumulative errors. The

composition of the homographies accumulates errors that are introduced in individual inter-frame es-

timations. For long periods of time, cumulative errors can lead to obsolete information about position

and attitude of the aircraft. For that reason, it is important to increase the delta between frames, which

reduces the number of estimations made and, consequently, the accumulation of errors. It can be used

as an additional source of information to the perception system, like another sensor to introduce into the

navigation filters to help rectify the estimates of pose state variables.

When we compare table 5.5 with the results of SuperPoint from tables 5.2, 5.3 and 5.4, we see that,

in this condition of intervals, the absolute deviations of the estimates are clearly lower, with maximum

values of less than 1 meter in horizontal translation, which supports the above description of the cumula-

tive errors. Our conviction that the power of SuperPoint lies on the fact that its matchings stand valuable

for longer periods of time into the video sequence is once again supported by this results.
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(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 5.9: UAV landing pose recovery deviations, using homographies calculated from image process-
ing techniques with different features detectors. Frame 1 is used as reference and delta between frames
is equal to 20. Inter-frame homography matrices are multiplied to get the transformation of the current
frame with respect to the reference frame. Last estimates cut from both classical algorithms, as Harris
and SIFT fail badly on the final transitions.
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Limit for delta between frames

At second pipeline of our experiment, we aim to evaluate the longest period of frames in which the

same features remain being correctly detected and matched, producing accurate estimates of pose

states. Here, we do not rely on composition of inter-frame homographies. Instead, we perform directly

the homography estimation between the reference frame features and the ones from the current frame.

We perform experiments using different reference frames and count the number of frames until when

deviations start exploding and the estimation become very unstable. Table 5.6 shows results for the

three algorithms for different key frames. The numbers represent the period of frames starting from

each reference, where estimations are accurate and stable.

Reference Frame 1 45 90 150 200

Harris Corners 70 53 44 29 17
SIFT 70 55 15 44 24
SuperPoint 100 84 61 42 26

Table 5.6: Number of frames until degradation of motion states estimates for UAV landing video se-
quence, from different reference frames

Once again our conviction is confirmed. SuperPoint actually shows better results for longevity of

detected features and pose estimation between long periods between frames is significantly more stable

and accurate using SuperPoint than classical methods, which indicates that the learned detector and

descriptors are more robust and invariant to scale, translation and rotation changes in environments

similar to lunar or planetary surface. Figure 5.10 expresses estimations with SuperPoint for the first 100

frames, using this method. As it was said before, this evaluation is very important because since we

do not compose homographies, it does not contribute to the existence of cumulative errors and, once

again, it could be another information, or another sensor, to help rectify the predictions to achieve the

goal of building a precise vision-based navigation system for landing missions.

Figure 5.10: UAV landing mission - Pose estimation from direct SuperPoint matchings from reference
frame (frame 1) until frame 100
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The table exhibits one interesting detail. As the reference advances in the sequence, the number

of frames until degradation of results becomes lower. This consequence can be explained by the area

reduction over time. The region of the surface seen by the camera changes along the sequence of

frames, so we decided to compute the ratio of the intersection between the region seen by the reference

camera and the region seen by the current camera over the area of the region from the reference

camera. This region is computed using the reference navigation data, projecting the camera versors

into the surface and getting coordinates, in meters, of the four corners. The intersection ratio decreases

as we go further from the reference. However, this decrease is a lot faster when the reference is further

from the beginning of the video, which means, in that conditions, the region of the reference frame seen

by the next frames decreases a lot faster and, as a consequence, it becomes harder to detect the same

features and obtain valuable matches. Table 5.7 expresses these ratios, in percentage, using the same

reference frames from table 5.6 and current frames by summing the number of frames until degradation

of SuperPoint to the respective reference frames.

Reference / Current 1 / 100 45 / 129 90 / 151 150 / 192 200 / 226

Ratio 35% 35% 40% 36% 37%

Table 5.7: Ratio of the intersection over the reference, for reference and current frames calculated from
SuperPoint results of table 5.6

It is worth to realize that SuperPoint starts producing unvaluable results when the ratio is below the

values expressed in table 5.7, which are all similar. This information can be valuable for parameterizing

the vision-based navigation system, as it allows us to predict, a priori, when the algorithm would fail

to estimate reliable homographies and decide the delta between frames not by a fixed interval, but by

thresholding this area ratio.

To sum up, SuperPoint exhibits the best performance among the three. We based our experiments

on two assumptions: the camera model is linear and the surface is planar, which may justify the small

deviations in the estimations. It is possible to take into account possible distortions from the real camera

in order to try to reduce those errors. However, it was not explored on this Thesis, as our goal was

to compare several detection algorithms under the same conditions and assumptions. Besides that,

the proposed homography-based navigation system can be integrated into navigation filters so that the

errors would easily shrink.

5.3 Spin.Works Moon Landing Mission Simulation

As stated in section 4.2.3, we also performed experiments in simulation datasets for lunar landing

missions. The use of simulations arises due to the difficulty of getting real datasets for this problem. The

main advantage is that we can easily vary the conditions, such as the trajectory, the landing site or the

camera model and we have a completely controllable environment where we known for sure the motion

states of the aircraft. Consequently we can evaluate our algorithms and tune their parameters simulating

the conditions of a real landing mission in order to prepare the vision-based navigation system for real
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applications.

We have position and attitude of the camera with respect to the ground with a time-step of 0.1

seconds, plotted in Figure 5.11. Synthetic images with size 512 × 512 are generated using a pin-hole

camera model, at 10Hz, for all the descent, which forms a dataset with 950 frames.

Figure 5.11: Reference navigation data (translations and attitude) for the Moon landing simulation
dataset from Spin.Works, using NED navigation frame.

5.3.1 Navigation States Estimation

We skip our experiments to the ones involving the estimation of pose during the video sequence that

represents the trajectory of an aircraft on a moon landing scenario, as it is the ultimate focus of this

investigation. We also started by evaluating the estimates of the motion states from the homographies

computed from the states themselves, which gave us residual errors, such as a maximum deviation

of 3 meters in a 1.5 kilometer horizontal translation. This result validates our implementation and we

proceed the evaluations using homographies calculated by the image processing techniques. Once

again we change conditions, such as the reference frame and the delta between frames.

Reference frame: 1, Delta between frames: 1

Once again, we started by testing the methods with the simplest scenario of using the first frame as

reference and composing the inter-frame homographies (calculated with a delta between frames equal

to 1) to obtain the relation between the current and reference frames. We also the deviations of the

estimated translations and attitude from the real values defined by the simulated trajectory of an EDL

mission to the Moon, Figure 5.12.

Results show that all three methods are able to retrieve motion states fairly well. However, SIFT

exhibits the best performance among all, as the estimates are far closer to the references, namely the

translation ones. SIFT detections have sub-pixel precision, while both Harris Corners and SuperPoint

keypoints are defined at integer coordinate locations. Since this dataset has a larger number of frames,
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(a) Harris Corners

(b) SIFT

(c) SuperPoint

Figure 5.12: Moon landing simulation pose recovery deviations from reference states, using homogra-
phies calculated from image processing techniques with different features detectors. Frame 1 is used
as reference and delta between frames is equal to 1. Inter-frame homography matrices are multiplied to
get the transformation of the current frame with respect to the reference frame.
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there are a lot more transitions to estimate, which may result result in more cumulative errors as we

go further from the reference. Besides that, translations are a lot higher than the ones from the UAV

dataset. Sub-pixel precision may reduce the errors, which gives SIFT a great advantage and supports

the results.

To tackle this problem and make SuperPoint competitive to SIFT, we tested to introduce the function

cornerSubPix from OpenCV to the corners detected by SuperPoint in order to refine corner locations

and allow sub-pixel precision. Results are presented in figure 5.13. As we expected, estimates are

far better now and they can reproduce well both attitude and translation until the end of the trajectory,

demonstrating less accumulated errors at the end than SIFT, namely in the x-axis from horizontal trans-

lation.

Figure 5.13: Moon landing simulation pose recovery deviations from reference states, using homogra-
phies calculated from SuperPoint-cv.cornerSubPix detections. Frame 1 is used as reference and delta
between frames is equal to 1. Results should be compared to Figure 5.12

As we know from the last dataset, SuperPoint does not bring considerable advantages when we

evaluate estimations from consecutive frames or small intervals between frames, but it is also important

to notice that at least it performs comparably to the classical algorithms under these conditions and for

the real application of developing a vision-based system for space missions.

Reference frame: 1, Delta between frames: 20 / 30

Next, our experiments concern larger intervals between frames. We have increased delta and signif-

icant differences arise for intervals of 20 or 30 frames. Results are represented in figures 5.14 and 5.15

for delta equal to 20 and 30, respectively. Once again, we prove our conviction that SuperPoint brings

enormous advantages when we increase the period between the frames, as its detections and descrip-

tors are stronger and more invariant than those using classical methods. Estimates using SuperPoint

remain valuable until the end of the sequence using both delta equal to 20 and 30. The same does not

happen with Harris Corners or SIFT. SIFT performs well until frame 750. From then on, it clearly fails to

estimate the homography, which is reflected by the big deviation in the final transitions and both figures.
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(a) Harris Corners

(b) SIFT

(c) SuperPoint + cv.cornerSubPix

Figure 5.14: Moon landing simulation pose recovery, using homographies calculated by image process-
ing techniques, with frame 1 as reference and delta between frames equal to 20

65



(a) Harris Corners

(b) SIFT

(c) SuperPoint + cv.cornerSubPix

Figure 5.15: Moon landing simulation pose recovery, using homographies calculated by image process-
ing techniques, with frame 1 as reference and delta between frames equal to 30
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Harris Corners fails a lot earlier in the sequence. Figure 5.14 shows an enormous deviation after frame

400 and another at about frame 750. The plot was cut to maintain readability, but deviation ”steps” keep

on happening and getting bigger until the end of the video. We can confirm that SuperPoint is a lot more

stable, as estimations did not explode in any condition from these experiments.

At this time, we did not present the results for the limit for delta between frames because it is not much

higher than 30 with several references, specially from the beginning. This trajectory is very different from

the UAV one. Here, we have a more accelerated scenario, horizontal translations are higher and the

aircraft incidence angle changes a lot during the simulation flight, which makes the intersection area

ratio to decrease a lot faster, making it impossible to find the same features, since camera stops being

looking to the same region a lot faster. This reduction in the intersection ratio is expressed in figure 5.16,

using frame 1 and 400 as reference.

Figure 5.16: Area reduction from reference frame region seen by the camera

Results from simulation sequences are important because they are much easier to create and to

change conditions in order to prepare the algorithms for the environment and dynamics the aircraft will

come across when on a real mission. It allows to predict algorithm’s behavior a prior and to parameterize

the system to the specific conditions of the mission. Despite our initial doubts about the performance

of the vision based navigation, since simulation terrain texture could be less embossed and harder

for feature detection, SuperPoint also proves to be very accurate and a good alternative to classical

methods, specially for matchings in longer intervals of frames.

5.4 Perseverance Rover’s Descent and Touchdown on Mars

TRN has two distinct parts: first, the algorithm tries to do terrain matching with a surface map stored

in memory, which results in an absolute navigation solution; second, after getting that solution, it moves

to relative navigation until it reaches the landing site. Our work addresses the relative vision-based

navigation. We do not have the actual navigation data, and the reduced set of information regarding

the camera specifications, the reference altitude associated with the key frames and the whole video

sequence as a whole, forced us to make several educated guesses during the process of reconstructing

the navigation states using SfM methods. Moreover, the quality markers of the SfM results are not so

good, indicating that the SfM process found a lot of inconsistencies in the data and, therefore, the quality

of the results is questionable. All this uncertainty makes the available navigation results from SfM only
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valid for qualitative analysis and not quantitative. Still, the novelty of the data justified it being included

here.

Reference frame: 50, Delta between frames: 10

Figure 5.17: Perseverance landing pose recovery, using homographies calculated by SuperPoint key-
points, with frame 50 as reference and delta between frames equal to 10

The first frames occur while the heat shield is separating, so it appears in the images. Therefore, we

have selected frame 50 to be our reference and estimated homographies with a delta equal to 10 until the

end of the sequence. Motion states estimated using SuperPoint are represented in figure 5.17, having

a very accurate agreement in attitude and vertical translation, specially in terms of trend following, i.e.,

neglecting the bias and focusing on the dynamic behavior. Harris Corners is not represented because

the results were completely damaged and were considered not significant and SIFT did not detect any

point in frame 50 or other frames around, which reinforces our conviction that SuperPoint is a good

alternative to classical methods.

Unfortunately, the horizontal translation, which is the most important result for GNC given that the re-

maining states are being well observed by other sensors aboard the spacecraft, show a poor agreement

with the reference from SfM.

Reference frame: 700, Delta between frames: 1 / 10

From NASA’s plan for the EDL mission, we get that TRN starts at about 4 kilometers above the

surface. In a mission similar to this one, our algorithms would work at that phase. So, we decided to

perform experiments starting at that point. From the position data we use as ground truth, we found that

the rover is at an altitude of 4 kilometers at about frame 700. So, our reference now is frame 700 and

we evaluate using deltas equal to 1 and 10.

Only SuperPoint and Harris Corners produced valuable results, that are represented in figures 5.18

and 5.19 for deltas equal to 1 and 10, respectively. SIFT clearly failed a lot transitions along the se-
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(a) Harris Corners

(b) SuperPoint

Figure 5.18: Perseverance landing pose recovery, using homographies calculated by image processing
techniques, with frame 700 as reference and delta between frames equal to 1

quence, in both conditions, which made results insignificant, that is why we do not present them.

SuperPoint and Harris Corners show similar results, but SuperPoint is getting slightly lower devia-

tions, specially in translations and in the condition of delta equal to 10, as we espected. Again, Super-

Point reveals to be more powerful than conventional detectors for larger transitions as it happened in the

other datasets.

We consider these results extremely promising, since there are a lot of uncertainties in the whole

process. We do not have the exact navigation states from the mission and the values we use as ref-

erences are subject to errors. When we choose the key frame, we assume to know the motion states,

such as attitude and altitude above ground. We have noticed during our experiments that small changes

in that altitude contribute to significant differences, which allows to conclude that these processes are

hugely sensitive. Hence, small inaccuracies in altitude can explain the deviations we see, namely in

translation.

Another factor that could be causing errors is the assumption of a linear model to the camera, which

do not take into account the possible distortions and can influence the results. However, this assumption
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(a) Harris Corners

(b) SuperPoint

Figure 5.19: Perseverance landing pose recovery, using homographies calculated by image processing
techniques, with frame 700 as reference and delta between frames equal to 10

is enough for our goal, that is to compare detection algorithms. These refinements of the estimations go

beyond the purpose of our work.

We did not go further in detail on this dataset because there are a lot of information that can be not

100% tunned, but the outcomes we got are really promising. Despite all uncertainties we consider this

evaluation very important due to the fact that this is the most recent and representative dataset for our

problem and the satisfactory results points that we are following the right path and this is still an open

field for investigation.

5.5 Discussion

The first goal of this extensive experimental campaign was to confirm that the promising results of

CNNs on almost every CV related task were also applicable to the motion states estimation task using

a vision-based navigation system during spacecraft landing missions, and it was accomplished. Results

70



on every dataset shown that SuperPoint detections could at least perform similar estimations as the

ones using classical methods.

Besides that, this investigation have shown that an homography-based vision system could largely

benefit from SuperPoint as its detections are stronger and keep on being correctly matched along larger

intervals of frames and larger viewpoint and illumination changes, which gives very useful information to

the navigation system. According to classical methods, Harris Corners have shown better results under

some conditions, e.g., using the Mars landing dataset, while SIFT had better performance for the Moon

simulation dataset. Nevertheless, SuperPoint kept being consistent and showing satisfactory results for

all the scenarios performed, presenting always the same or higher accuracy estimating motion states,

which makes it a more stable and reliable method that gives more confidence when used for real world

applications.
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Chapter 6

Conclusions

6.1 Achievements

Autonomous navigation is an area of great interest among the scientific community and space indus-

try is not an exception. To accomplish autonomous navigation, the spacecraft needs to know where it

is (perception). Specially in space missions, where GPS is not available, cameras proved to be deci-

sive for precision navigation. That made vision-based navigation essential for planetary or lunar landing

missions.

Concurrently, Artificial Intelligence is becoming hugely popular and recent advances in hardware

capabilities allowed DL models to achieve unimaginable performances in tasks that were done by hu-

mans in the past. Computer Vision is one of those fields, since CNNs are replacing conventional hand-

engineered methods in almost every task, which induced us to do this investigation on combining these

domains.

Therefore, we developed a comparison on classical solutions to the problem of estimating motion

states of a spacecraft using camera, during a landing mission, against a solution based on a DL algo-

rithm. To achieve that, an extensive study was performed comprising the topics described on the first

chapters. Computer vision concepts such as feature detection, homography estimation, camera pinhole

model, methods for the extraction of 3D information from the planar homography, DL and CNNs were

studied.

A complete framework to evaluate the performance of any feature detector for the task of estimating

position and attitude of an spacecraft along a landing trajectory, using a sequence of images, acquired

by a mounted camera, was implemented. Two classical feature detectors (Harris Corners and SIFT)

and one using deep learning (SuperPoint) were used to perform evaluations on that framework. Tests

were made in three video sequences. The first one from a UAV landing in a Mars representative terrain,

from Spin.Works. The second from a simulated landing trajectory on a synthetic lunar surface, also from

Spin.Works and, finally, the video sequence published by NASA from Perseverance rover’s landing on

Mars.

Results have shown that the deep learning detector achieved at least the same navigation perfor-
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mance on all datasets, as the conventional methods, and that it even outperforms them under some

conditions. SuperPoint proved to bring enormous advantages in detecting stronger keypoints and de-

scriptors that remain being detected and correctly matched on much more images of the same scene

along the video sequence. That is reflected on much better estimates of relative pose between much

higher intervals between frames. This quality is of great importance as it can be used as complementary

information to the relative pose between successive frames, in order to refine the estimates and reduce

cumulative errors that arise from successive small errors from inter-frame predictions. Also, the out-

comes show that even using the assumptions of a linear camera model and a planar surface, results are

quite satisfactory. Finally, SuperPoint was trained with general images completely outside the domain,

but even so it produces better results than hand-engineering methods.

These promising results from SuperPoint suggest that this problem is another task where convo-

lutional neural networks are outperforming conventional computer vision methods and that this field is

worth of investigation. Space exploration will be revolutionized in the next years by the power of these

AI techniques.

6.2 Future Work

This problem is still an open field for investigation and the next planetary missions are expected to

largely rely on the improvements that could be made by the scientific community until then. The first,

and probably most obvious, future work is to implement this solution in hardware to evaluate real-time

performance and integration into the navigation systems during a simulated planetary landing using

UAVs on representative surfaces, similar to the one used on the UAV video sequence from Spin.Works.

More research could be done to integrate geometric constraints and the camera pose estimation

pipeline into the trainable network, so that it optimizes the detected keypoints supervised by the ultimate

goal of relative pose estimation. Besides that, it would be interesting to investigate the introduction of

temporal information into the homographies estimation in order to try to reduce cumulative errors. Also,

it would be important to study the introduction of sub-pixel precision into the detector part of the network.

Another important aspect to improve is computational efficiency of the deep learning network. The

VGG-style backbone has lot of standard 2D convolutional layers that could be converted to most efficient

building blocks as the ones proposed by MobileNets.
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