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Abstract

This work comprises a virtual simulation study of position and contact estimation on an inflatable
structure, using computer vision and machine learning tools. The project developed is meant to
be applied and validated on a prototype that will function as an additional link implemented on a
commercial rigid robot manipulator. It builds on previous work, upgrading the internal pattern and the
optical sensor used but not the structure geometry. The simulation environment was built employing
the Blender software, with two different optical sensors: a single camera and stereo camera set. The
images retrieved were submitted to an image segmentation algorithm to extract relevant features to be
used as inputs to an artificial neural network that returns the bending curve and tip displacement. For
the contact estimation, after the image segmentation step, an empirical algorithm, using the principal
inertia moments information, computes the contact point and the direction. The performance of the
bending estimation algorithm was very satisfactory for both single view and stereo view. As for the
contact estimation, initial tests were promising but further study is required to fully establish the
method.
Keywords: Soft Robotics, Proprioception, Computer Vision, Artificial Neural Networks

1. Introduction

Soft robots are intrinsically safe to interact with
people [1] or fragile objects due to their lightweight,
compliant and flexible nature. Accordingly, there is
a lot of research to improve their control and to
integrate them in traditional robotic manipulators.

This project builds on previous work with inflat-
able links [2], in which an inflatable link prototype
was created, with a centered camera at the base,
using the interior images to estimate, recurring to
neural networks, the force applied at the distal end
of the link, with and without rotation.

This work aims to improve the interior pattern
and the image segmentation method and expand
the link proprioception, estimating the bending
curve and contact point and direction. There is also
the intent of changing the sensor to a stereo cam-
era set with a wider field of view and higher frame
rate, so the algorithms must function for stereo im-
ages. The work developed is meant to be applied
and validated on a prototype to be integrated as an
additional link in a traditional robot.

Soft Robots allow for more freedom of movement,
compared to traditional robots, adding degrees of
freedom, which increases the complexity of control.
The applications of soft robotics in engineering are

very vast, since flexibility, freedom of movement
and volume variance are extremely useful features
in this context.

Inflatable links use internal pressure to maintain
structural integrity [3] and have been used in the
robotic domain to lower the contact stiffness of
traditional robots, as inflatable sleeves for a rigid
robotic skeleton [4], or as replacement robotic links
[5][6].

As mentioned before, the significant disadvantage
the soft robots have is the difficulty in control. As
such, they rely on sensors [7], to get information on
the system and to develop control strategies.

Tactile sensing is evolving to recreate the human
touch sensibility in soft robots. There are very in-
teresting investigation works on this topic, such as
the TACTIP device, which is uses internal pins to
assess the surface deformation [8]. This technol-
ogy has been transferred to other geometries, to
accommodate different needs [9]. In [10], there is
a detailed explanation of how to use markers on
a cylindrical surface (TacCylinder) to characterize
the objects that come into contact with it. A cam-
era was place by one of the ends of the prototype
and aligned with its central axis.

The knowledge of the position and deformation of
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the soft surface allows recreating the environment
of interaction [11]. In that way, it is important to
create and improve the tools to comprehend the in-
ternal state of the object.

Proprioception is the understanding of the body
of its internal state. It is crucial to have reliable
information from the robot itself if it is to be used
outside of monitored environments. Research on
proprioception might aim to track the position of
a single point, usually the extremity [12], or to be
aware of the deformation of the entire surface [13].

The authors of [14] present a method to measure
the tip position of an inflatable link and binary con-
tact detection, also using a built-in camera. The
internal pattern consists of ellipse-shaped markers
and the position and contact detection are measure
using blob analysis and geometry.

In Werner et al. [12], the process of estimation
of the three dimensional tip position of an inflat-
able actuator is described, using images from an
integrated centered camera. The pattern applied
uses scattered dots to gather bending information
according to the light density of the image. This
work continues in [15], using the interior pattern
for three actuators. The rotational degrees of free-
dom of the arm are estimated using deep neural
networks.

2. Background
2.1. Computational Vision

Image Segmentation

Segmentation methods were used in this project
to identify and label areas of binary images, to get
information on their geometry.

In order to have the binary image, the original
was transformed into a grayscale image and then
an intensity threshold, chosen through the Otsu
method, was applied to the entire matrix, above
which every pixel will take the value of one and
below it, zero. The grayscale conversion is made
through a weighted sum of the three RGB chan-
nels, following equation (1).

I = 0.2989R+ 0.5870G+ 0.1140B (1)

Often in experimental environment the picture
needs to be corrected in contrast so that important
features are not lost in the process of binarization.

Blob Analysis

In a binary image, a blob is a connected group
of white pixels, as the black pixels are perceived as
background.

After the blobs were labeled, the information of
area, centroid (2), principal moments of inertia and
respective orientation(4) were obtained.

Cx =

∑n
i=1Xi

n
(2)

Cy =

∑n
i=1 Yi
n

(3)

Where n is the number of pixels in the blob, and
Xi and Yi are the x and y components of pixel i,
respectively.
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tan(2θp) =
−Ixy
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Alternatively, it is possible to take the linear alge-
bra approach and compute Imin and Imax using the
eigenvalues of the matrix M depicted in equation 6.

M =

[
Ixx −Ixy
−Ixy Iyy

]
(6)

The value of θ can be calculated through the
eigenvectors of matrix M, by applying the inverse
of the tangent.

Boundary Analysis
Alternatively, to avoid evaluating the blob in its

entirety, boundary analysis was also tested.
The boundary was defined through the Moore-

Neighbor tracing algorithm modified by Jacob’s
stopping criteria[16].

Once the boundary is identified, it is possible to
find the same geometric properties as for the blob
analysis. The boundary approach does not corre-
spond exactly to the geometry of the blob, but it
might be an adequate alternative.

After image processing, the data was used as in-
put for developed algorithms for bending estima-
tion, using artificial neural networks, and for con-
tact point and direction evaluation.

2.2. Artificial Neural Networks
The configured NN was a completely connected
feedforward network typically used in curve fit-
ting problems and regressions, created through the
MATLAB® function fitnet. The NN was defined as
having one hidden layer and a linear output layer.

The NN trains under Supervised Learning, mod-
ifying the weights of the node connections based
on examples of input-output pairs, the training set,
using the error as feedback information for the per-
formance status.

The data for training is split into three categories:
training - to update the weights of the NN -, vali-
dation - to avoid overfitting of the data - and test -
to evaluate the NN performance.
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The training function chosen was the Levenberg-
Marquardt backpropagation, a method for detect-
ing the minimum value of the error. It is a very
fast algorithm which is an advantage in a repetitive
process like training. The algorithm is considered
to have attained convergence when the gradient of
the performance function is smaller than a user-
predefined number.

3. Simulation Setup
The software chosen for the simulations was
Blender, which is more suitable than a finite ele-
ment analysis software since it must produces a vi-
sually realistic behaviour of an inflatable link and
enables customization of camera properties.

The virtual link created is exhibited in figure 1,
with the different components and measurements
discriminated. The overall appearance, size and ge-
ometry were kept from the previous work[2], only
simplified, as there is no need for an overlapping
of the surfaces to close the sleeve. The changes will
occur mainly at the internal pattern and the optical
sensor.

Figure 1: Components and Dimensions of the Sim-
ulation Link

The virtual link was modelled as a cloth ob-
ject with the material rubber and some values were
then adjusted, such as weight and internal pressure.
The internal pressure feature was not used for the
bending simulation, only for the contact simulation,
since it involves collision with other objects and how
the link responds to collisions will heavily depend
on how pressurized it is.

3.1. Bending Simulation
The bending motion was achieved applying a dis-
placement at the extremity of the link, keeping the
base at the same place - a fixed beam with a free
end. The position of the other parts is defined by
the software itself, through the use of inverse kine-
matics.

The virtual link is controlled by a structure (ar-
mature) that encloses its physical properties. It is
at the armature that the displacements are directly
applied, and it is according to the movement of the
structure that the virtual link will then move. The
armature will correspond to the centerline of the
soft link, from where the reference position values

will be taken.
The centerline was divided into six parts, to guar-

antee a smooth bending curve, blocking the rotation
of the last segment relatively to the two of the rigid
body.

3.2. Contact Simulation
The goal of the contact simulation was to anal-
yse the effects of surface interaction at the inter-
nal view. Some cylindrical objects were created to
collide with the virtual link while it followed a pre-
determined trajectory. For this simulation, it was
important to recognise how the interior markers de-
form with the contact with other objects and if it
was possible to identify the location and direction
of the contact.

The reference values of the contact location were
retrieved computing the location of the object rel-
ative to the base of the virtual link.

3.3. Patterns
The interior pattern of the link must provide enough
information to reconstruct the bending curve. An
easy way to do this is to use ring-like markers, using
their centroids to estimate the curve.

Three patterns were evaluated: the Original
Work Pattern - rings covering approximately 40%
of the link (used mostly for comparison purposes)
-, the Striped Pattern - twelve rings covering the
entire link, equally spaced and with the same thick-
ness - and the Checkered Pattern- checkerboard-like
pattern with the same amount of rows as the striped
one. The selected pattern was the Striped Pattern,
portrayed in figure 2.

Figure 2: Striped Pattern

3.4. Distal Extremity Marker
The Distal Extremity Markers have two purposes:
identify the position and the rotation of the end
piece of the link. The markers have to be deter-
mined in a way that allows that specific information
to be retrieved.

There were two distinct types of markers used:
T-shaped marker - where the centroid and the mo-
ment of area indicate the position and the rotation
of the centre of the piece, respectively 3(a) - Two
circular markers - where the combined centroid of
both circles shows the position and the centroids of
each present the rotation, 3(b).
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(a) Original Cover (b) Dotted Cover

Figure 3: Inside View Cover

When the simulation goal is solely to find the po-
sition (in a pure bending motion), the type of cover
marks does not affect the result, as the centroid of
the T and the combined centroid of the circles are
designed to be at the centre of the cover.

In the end, the markers chosen were the two cir-
cles, since they allow for an implementation using
only the centroids of each marker as opposed to
needing the entirety of the boundary.

3.5. Camera Properties
For this project, two camera sets were used: a sin-
gle camera centred at the base of the virtual link
(equivalent to the previous work configuration, with
a Trust SpotLight Pro Webcam1) and a stereo set,
mimicking the Leap Motion Controller™ sensor that
will be used when recreating the simulation in an
experimental environment.

The relevant properties used for the simulation of
this sensors are presented in tables 1 and 2.

Camera Property V alue
Maximum Resolution 640 × 480
Focal Length / Field of View 120o

F-stop f/11

Table 1: Camera Properties - Single Camera

Camera Property V alue
Maximum Resolution 640 × 240
Focal Length / Field of View 150o

F-stop f/11

Table 2: Camera Properties - Stereo Set

3.6. Lighting Conditions
It was decided to even out the lighting in the simu-
lation, avoiding shadows and other obstacles to im-
age processing. This was achieved by removing all
light sources from the simulation environment and
making the background white. That way, it is as
if the entire background is the light source and the

1https://www.trust.com/en/product/16428-spotlight-
pro-webcam-with-led-lights

virtual link is receiving light from every direction
homogeneously.

4. Image Processing
After the binarization of the images, image segmen-
tation follows. Two different image segmentation
methods were defined at this phase to be compared
on the impact of the bending curve estimation per-
formance: Blob and Boundary Detection.

Blob Detection finds and labels all the connected
components in the image. Boundary Detection re-
turns the contour of the blobs. Both methods then
proceed to compute geometric features, such as cen-
troid, area and moment of inertia.

Figure 4 portrays both of the methods, for the
Striped Pattern. In Blob Detection, both binary
and complementary images must be segmented, as
only the white blobs, with value 1, are identified as
objects.

(a) Blob Detection (b) Boundary Detection

Figure 4: Segmentation Methods - Striped Pattern

In table 3, the average computation time required
for each method is presented, with and without dis-
play of the image. The boundary segmentation is
significantly faster, specifically when not showing
the image assessed.

Method ImageDisplay T ime(s)
Blob Yes 1.2299
Blob No 0.8290
Boundary Yes 0.5375
Boundary No 0.04632

Table 3: Computation Time - Striped Pattern

Both methods provide the area within the bound-
ary or the area of the blob, and the location of their
centroids. This is the information that will be used
to compute the deflection of the inflatable link. For
the contact simulation the moments of inertia in the
principal axis of each blob or boundary are com-
puted, as well as their direction.

4.1. Experimental Work
When transitioning to the experimental work, a new
pattern was created, the Exponential Distributed
Striped Pattern, with stripes of different thickness,
growing thicker with the distance from the base, so
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they are perceived to have the same width by the
camera.

Figure 5 shows the comparison of the two pat-
terns.

(a) Same Width
Stripes

(b) Exponential Distri-
bution Width Stripes

Figure 5: Comparison of Patterns

The process of treating the images retrieved from
the experimental setup is slightly different mainly
due to the lighting conditions. There is a need to
even out the lighting of the image before making
it binary, at the risk of losing the markers distant
from the camera. The method used was an adap-
tive histogram equalization (CLAHE) with a sin-
gle threshold. This method divides the image into
8 by 8 tiles and applies an histogram equalization
to each, while smoothing the transitions between
neighbouring tiles, with a bilinear interpolation -
shown in figure 6.

Figure 6: Binarization Process Chosen

After having found a suitable binarization
method for the lighting conditions, the rest of the
segmentation and estimation process follows the
same steps as the other pattern.

5. Results

5.1. Bending Problem

The algorithm developed for bending estimation is
presented in algorithm 1.

This process was repeated for both segmentation
methods and the results can be examined in figure
7. The deflection curve is a second order polyno-
mial curve fitting, with the estimated points identi-
fied as markers, over the curve from the simulation
software.

Algorithm 1: Bending Estimation Algo-
rithm
Input: Position of Centroids (Ci), in pixel,

and angle of camera (αi)
Output: Deflection

1. Compute displacement of centroids,
considering the initial position as resting
pose:

∆y = (Ci − C1)

2. Apply pixel to meter conversion
previously found using a known reference:

∆Y = 1.7920 × 10−4 × ∆y

3. Change to global reference frame:
Deflection = Rα × ∆Yi

(a) Boundary Method - Frame 20

(b) Blob Method - Frame 20

Figure 7: Boundary vs Blob Performances

The performance of the algorithm will be eval-
uated by 3 factors: Root Mean Squared Error,
RMSE, (measured using the second order polyno-
mial curve adaptation of the points), Extremity Er-
ror, EE, (measured using only the last value) and
computation time. This algorithm is very suscepti-
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ble to errors when occlusion of markers exist as it
loses information to work with and the information
it does receive is distorted.

Boundary Detection offers a better result than
Blob Detection. The reason for it is likely the dis-
tortion of the rings - as one side grows thicker and
the opposite grows thinner, the blob centroid will
shift towards the thicker side, 8(b). The distortion
of the rings does not affect as much the boundary
method, 8(a), since all the edges remain to be cir-
cles.

(a) Boundary Method (b) Blob Method

Figure 8: Close up on Centroids

In comparison with the previous work pattern,
it is noticeable that the error at the tip was not
improved with the new pattern as it still receives the
same information. What is significantly better is
the error along the bending curve, since the number
of markers as increased.

5.2. Neural Networks

The purpose of using NN is to establish if it can
compensate the occlusion of markers or small de-
viations from the segmentation and, overall, if the
curve error can be reduced. The inputs chosen for
the NN were the marker’s Area, Centroid Position
(vertical only), Position along length and Angle of
camera.

The creation of the NN happens inside a training
loop that increases the number of neurons of the
hidden layer and compares the performance of each
created network, always keeping the best one. 10%
of the data is used for test and the rest is divided
into training and validation sets, in a ratio of 85 to
15, respectively. The network trains with 113 input-
output pairs out of 147. Since the training values
are chosen randomly within the set and they greatly
influence the performance, the NN trains several
times with the same hidden layer size, only changing
the data distribution for training and validation.
This will guarantee the network several chances to
find a better training set.

The best performance of the NN was 3.87× 10−9

for 8 neurons. The mean performance of the NN
for each hidden layer size is displayed in figure 9.

Figure 9: NN Performance Mean with Number of
Neurons 1 to 10

The performance for this NN is in figure 10,
particularly improving the estimation of the curve
(RMSE). The deflection results shows that the NN
approach can provide precise estimations even if
there is occlusion of markers10(b).

(a) Frame 20

(b) Frame50

Figure 10: NN Performance - Bending in One Di-
rection
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5.3. Bending in Multiple Directions
To evaluate if the NN can predict the bending in
various directions, different rotations are applied to
the collection of images. The goal of this stage will
be to verify if the NN can estimate the deflection in
the main bending direction, when it has to combine
the displacements in the orthonormal axes. The
estimated deflection will only be defined in the main
direction.

The inputs chosen for the NN were the marker’s
Area, Centroid Position (vertical and horizontal),
Position along length and Angle of camera. The
training process and determination of the best net-
work created follows the same method described for
the previous NN.

The evaluation of the results occurs with the com-
parison of the curves for the same image with differ-
ent rotations applied. An example of this process is
presented below, in figure 11.

(a) Rotation angle 60º

(b) Rotation angle 150º

Figure 11: NN Performance - Bending in Different
Directions

In table 4, the performance for each of the meth-
ods can be analysed. The computation times are,
all at the same order of magnitude, 10−5s, so, it is

fair to choose the best method based on the accu-
racy alone, using the average error values.

Method RMSE (m) EE (m)
Bound 0.0013 7.5314 × 10−4

BlobComp 0.0017 7.4768 × 10−4

BlobBin 0.0015 8.8917 × 10−4

BlobAll 0.0019 8.7730 × 10−4

NN (1D) 6.6082 × 10−5 1.1047 × 10−4

NN (MD) 2.8817 × 10−4 4.0691 × 10−4

Table 4: Performance - Bending Curve

The bending algorithm does not achieve an ade-
quate performance when compared to the NN ap-
proach. That way, all further simulations will be as-
sessed using NN. The following step is to test with
two cameras, using the structure of the Leap Mo-
tion Controller™ sensor.

5.4. Stereo Vision
A new NN was created and trained using six inputs:
Area and position of the centroid (vertical and hor-
izontal) for both images. Since the NN takes the
data from both pictures, even when there is occlu-
sion of markers from one view, the NN is capable
of getting information from the other.

The performance of the NN application in the
stereo images can be seen in figure 12.

Figure 12: Stereo Set - NN Performance

Below, in table 5, the average performance of the
NN is exhibited.

Method RMSE (m) EE (m)
NN Stereo 3.4895 × 10−4 4.4119 × 10−4

Table 5: Stereo Set Performance - Bending Curve

At this point, the method developed is adequately
examined and presented a successful performance.
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The next step is to validate it in an experimental
setting.

5.5. Contact Problem
If there is no contact, all of the boundaries have
a circular shape, approximately, which means that
the ratio of moments of inertia will be close to 1.
If the contact exists, then the circular shape is de-
formed, which will lead to an alteration of the ratio
of inertia moments.

According to this notion, the algorithm presented
in algorithm 2 was developed.

Algorithm 2: Contact Estimation Algo-
rithm
Input: Position of Centroids (Cx, Cy),

Principal Inertia Moments (I1, I2)
and respective direction (θ1,θ2)

Output: Contact point (CPoint) and
Contact direction (CDirection)

1. Compute ratio of moments of inertia:
Ratio = I2/I1

2. Find peak value and respective index of
boundary.

3. Compute Contact point:
CPoint = maxindex × widthmarker

4. Get the directions of the minor axis (θ2)
and the centroid trajectory(θc) for the
boundary:
CDirection = θ2
θc = arctan(Cyi − Cy1 , Cxi

− Cx1
)

5. Correct contact direction with a π
deviation - only if centroid trajectory
direction is in the same quadrant:
CDirection = CDirection+ π

The direction of the contact is retrieved from the
minor axis angle (θ2) and a decision mechanism was
applied after this, using the neutral position of the
centroids of the link (C1). The angle of contact is
opposite to the direction the centroid moves (θc).
This effect is shown in figure 13.

Figure 13: Centroid movement along principal axis

Figure 14 portrays the different elements involved

in the contact detection. The contact position re-
ceived from the simulation is plotted as a vertical
line for a straightforward comparison with the peak
value.

(a) Frame 85

(b) Frame 163

Figure 14: Contact Evaluation

In table 6, the performance of the developed al-
gorithm for contact detection is exhibited.

Method T ime (s) Image Display
Contact
Detection 0.22144 Yes
Contact
Detection 2.756 × 10−5 No

Table 6: Table caption

This algorithm achieves a location error of
1.69 cm, which places the contact in the right
marker, considering their width is about 1.9 cm.

For the case that an occlusion of the markers ex-
ists, the comparison is not as straightforward for the
occlusion might alter the shape of the markers be-
yond it. A more appropriate definition could be to
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specify a limit value for each boundary above which
the ratio should be disregarded, as it corresponds to
an incomplete marker.

Like for the bending problem, the final step is to
apply the same type of method to the stereo vision
case.

5.6. Stereo Vision
The stereo images do not capture the first marker
completely, so it is disregarded, as it is not applica-
ble for the designed method. Therefore, any contact
happening in the first marker or before it will not be
recognised. This problem has already been solved
in the new prototype, with the exponential distri-
bution pattern, that guarantees the first marker is
fully captured by the camera.

Figure 15: Contact Evaluation - Stereo Vision

This method would be a good candidate for a
NN approach, as it would establish rules for the
occlusion of markers.

The developed process should not be regarded
as a fully finalized method but as the first step of
problem-solving and evidence that the second mo-
ment of area of the markers provides relevant infor-
mation for contact characterization.

6. Conclusions
The animation software Blender was a suitable
choice, allowing to retrieve realistic enough images
of the movement of the link as well as the centerline
and contact point positions. This was confirmed
by comparing the simulation generated images with
images obtained from the experimental prototype in
preliminary trials.

Boundary analysis is very advantageous com-
pared to Blob analysis, because of its speed and
non-susceptibility to ring distortion, allowing for
better results when tracking in real time.

For the bending simulation, the markers of the
chosen pattern are sufficient to get a smooth and
accurate bending curve. The process of training a

NN is worthwhile since the deflection it measures
is much more reliable than the empirical algorithm
results. The NN approach is also promising when
evaluating bending in multiple directions, although
these results should be confirmed through further
simulation work.

The stereo camera set does not hinder the bend-
ing simulation, with the new NN estimating the de-
flection curve taking information from both images
retrieved. The stereo set also offers an advantage
when dealing with occlusion of markers, when the
deformation occurs in the plane of the two cameras,
perpendicular to the image plane, with one of the
images probably being occlusion-free, or, at least,
less affected by it.

The ratio of inertia moments is a relevant infor-
mation for contact estimation, but might not be
enough to confidently establish the contact point,
the average error being 1.69cm. The results may be
enhanced by defining more rules, to avoid choosing
an occluded marker or using another approach to
compute the contact location, for example NN. As
for the direction of the contact, the method chosen
returns accurate results, as long as the resting pose
is the same and the inflatable link remains with the
same internal pressure.

As a final conclusion, it was demonstrated that
the designed pattern can in fact provide relevant in-
formation for both bending and contact situations,
and that a approach merging computer vision and
neural networks is a suitable solution for tracking
the internal state of the inflatable link.
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Lisbon, 11 2019.

[3] Siddharth Sanan. Soft Inflatable Robots for
Safe Physical Human Interaction. PhD thesis,
Robotics Institute Carnegie Mellon University,
Pittsburg, Pensilvania, 8 2013.

[4] Preston Ohta, Luis Valle, Jonathan King,
Kevin Low, Jaehyun Yi, Christopher G. Atke-
son, and Yong Lae Park. Design of a
lightweight soft robotic arm using pneumatic
artificial muscles and inflatable sleeves. Soft
Robotics, 5, 2018.

[5] Siddharth Sanan, Michael H. Ornstein, and
Christopher G. Atkeson. Physical human inter-
action for an inflatable manipulator. In 2011

9



Annual International Conference of the IEEE
Engineering in Medicine and Biology Society,
pages 7401–7404, 2011.

[6] Agostino Stilli, Helge A. Wurdemann, and
Kaspar Althoefer. A novel concept for safe,
stiffness-controllable robot links. Soft Robotics,
4, 3 2017.

[7] Javier Tapia, Espen Knoop, Mojmir Mutný,
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