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Abstract

In Machine Learning (ML) problems, classical approaches such as grid search are not viable methods
for the computation of hyperparameters in higher dimension problems due to combinatorial explosion.
The hyperparameter adjustment can be formulated as a Bilevel Optimization Problem (BP). Furthermore,
some problems might require multiple objectives to be optimized. This work tests the proof of concept
of a Multi-Objective Bi-Level Optimization Problem (MOBP) algorithm, in particular evolutionary-based
algorithms, to solve multi-objective Support Vector Machine (SVM) problems with an automatic selection
of hyperparameters. The selected algorithm is the Hybrid Bi-Level Evolutionary Multi-Objective Optimiza-
tion (H-BLEMO) and, in total, six formulations based on soft margin and total margin formulations were
tested. The formulations with the best results had similar results to the traditional dual formulation SVM.
The formulations with the objective based on the total margin formulation were found preferable since
they achieved better performance in all datasets. However, the classification type problems were found to
impact the observations and conclusions of the upper-level objective space of the MOBP. In conclusion,
the concept was found to be a reliable alternative and a good competitor to the classical SVM algorithms.
Keywords: Hyperparameter Optimization; Multi-Objective Bi-Level Optimization; H-BLEMO;
Multi-Objective Support Vector Machine.

1. Introduction

ML is the development of algorithms and tech-
niques that create a model to predict informa-
tion and making decisions. The learning is made
by providing data and solving an optimization
problem by finding the set of optimal parameters
that minimize a predefined expected loss function
[Claesen and Moor, 2015]. The construction of a
model by the algorithm requires a selection of hy-
perparameters. These variables control the char-
acteristics of the algorithm in training the model
and have a significant influence on its performance.

Since it first appeared, several approaches have
been developed to solve this optimization problem.
The so-called classical approach consists of an ex-
haustive search or brute force strategies such as
Cross-Validation (CV) strategy by employing grid
search procedure. It suffers, however, of several
adversities, the main one being the fact that the
combinatorial nature of this strategy leads to a
combinatorial explosion as the dimension (number
of features) of the problem increases.

A recent alternative to the classical ap-
proach was proposed in the article by
[Bennett et al., 2006]. The CV Hyperparame-

ter Optimization (HO) problem was defined as a
BP. The problem has two distinct levels, the outside
one called upper-level or leader, and the other
called lower-level or follower. The solution to the
lower-level corresponds to the constraint functions
of the leader. In HO, the lower-level corresponds
to the optimization problem of the training stage
and the upper-level to the optimization problem
of the validation stage. Since, as mention above,
the hyperparameters are chosen before training,
they are upper-level variables. As for the model
parameters, they are lower-level variables. The
corresponding solution to the lower-level problem
is the optimal model parameter set of training.

Although each level is composed of single ob-
jective function stage, the BP can be extended to
include several objective functions in both or sim-
ple one level. This new formulation is referred
to as MOBP. Multiple objectives are often consid-
ered and grouped together into the same optimiza-
tion function. However, the inexistence of conflicts
between two or more objects cannot be guaran-
teed. Using multi-objective bi-level Evolutionary Al-
gorithms

based meta-heuristics and the selection of mul-
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tiple objective functions in each layer is the moti-
vation for this thesis. The main contribution of this
thesis is the proof of concept of MOBP in the ad-
justment of hyperparameters and parameters, and
the effect of SVM formulations with different objec-
tives.

2. Revision of Literature
2.1. SVM
SVM is prediction model developed in the 1990s by
[Cortes and Vapnik, 1995] for pattern recognition.
Used in binary classification, it employs the deter-
mination of the optimal hyperplane that separates
the two classes. In many real-world problems, the
data is rarely perfectly separable and usually con-
tains noise. To relax the original strict first SVM for-
mulation it is allow slightly misclassified data points
through the usage of a positive slack ξ. This vari-
able measures the error of misclassified points and
is defined as the distance points to their respective
class hyperplane. The formulation is known as soft
margin SVM and is given by

min
w,w0

1

2
‖w‖22 + C

l∑
i=1

ξi

subject to yi(w
Txi + w0) = 1− ξi,

ξi = 0, i = 1, . . . , l.

(1)

where the parameter C is a non-negative regulari-
sation variable that controls the importance of mis-
classified points. In other words, the significance
given to the optimization of the margin decreases
for higher values leading to a smaller margin.

The final result requires at least a pair of sup-
port vectors to define the hyperplane, one for each
class, and only these points from all data are nec-
essary to store. The optimization should be aim-
ing to keep good performance and simultaneously
contain a small set of support vectors. One disad-
vantage of a model with a large number of sup-
port vectors is the possibility of over-fitting. On
this account, a validation stage in conjunction with
the cross-validation technique is required after the
training stage.

The formulation 1 is called the primal SVM for-
mulation and is rarely used for solving the problem.
A transformed formulation is instead used named
the dual formulation, and it is particularly beneficial
in nonlinear datasets and with kernel transforma-
tion. Since computing the mapping of the trans-
formation in the primal formulation can be com-
putationally expensive, using the kernel function
K(x, x) = 〈Φ(x),Φ(x′)〉 where Φ: χ → F and F is
a Hilbert Space, the computation is reduced to dot-
product between points of transformed dataset in a
total of N by N evaluations. Also, the fact that only
the support vectors have α non-zero values facili-
tates the optimization and reduces the complexity.

The soft margin formulation had only in mind
the wrongly classified data points. The distances
of correctly classified data can also be taken
into consideration. The idea was proposed in
[Min Yoon et al., 2003] where the opposite concept
of the slack variable, called surplus variable, ξ+ or
η, was introduced in the problem 1 as a maximiza-
tion objective. This extension is referred to as total
margin SVM and is express in 2, where two hyper-
parameter were introduced to control the trade-off
of the slack vector and the surplus vector with re-
spect to the margin minimization. The variable C1

is selected to be higher than C2, to ensure at that
at least one ξi and ηi are zero.

min
w,w0

1

2
‖w‖22 + C1

l∑
i=1

ξi − C2

l∑
i=1

ηi

subject to yi(w
T Φ(xi) + w0) = 1− ξi + ηi,

ξi = 0, ηi = 0, i = 1, . . . , l,

(2)

2.2. MOP and MOBP
Considering the objective function F : Rn→ R, and
the constraints Gk : Rn → R, k = 1,. . . , K and Hp :
Rn→ R, p = 1,. . . , P, the MOP is given by

min
x∈X

F (x) = (F1(x), . . . , Ft(x))

subject to Gk(x) ≤ 0, k = 1, . . . ,K

Hp(x) = 0, p = 1, . . . , P.

(3)

Contrary to single-objective optimization, with
more the two objective, final solution is a frontier in
the objective space. Two concepts are necessary
for defining it.

Definition 2.1 (Dominance). Given two vector x, y
∈ Rk , x ≤ y if xi ≤ yi for i = 1, . . . ,k, and that
x ≺ y (x dominates y) if f x ≤ y and x 6= y.

Definition 2.2 (Non-dominated). A variable vector
x ∈ X is non-dominated with respect to X if there
does no exist x′ ∈ X such that f(x′) ≺ f(x).

A point is then considered best or non-
dominated if is best in one and not worst in all the
other objectives. In the decision variable space, the
vector containing non-dominated points is called
efficient solution or Pareto optimal solution. As for
the objective space, the vector for the same points
is referred to as Pareto Front (PF).

The BP is a mathematical program composed
of two levels of optimization. The upper-level is
the main optimization problem, and the lower-level
is the secondary optimization problem which is
nested in the first one. The levels are characterized
by their one objective function, constraints, and the
class of decision vector variables. While the lower-
level is optimized with respect to the lower-level de-
cision vector, the upper-level decision vector act as
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a parameter. This implies a constraining nature of
the lower-level concerning the upper-level. For the
upper level objective function F : Rn × Rm → Rp

and the lower level objective function f : Rn × Rm

→ Rq, the MOBP is defined by

“min”
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ argmin
xl∈XL

{f(xu, xl) = (f1(xu, xl), . . .

. . . , fq(xu, xl)) : gj(xu, xl) ≤ 0, j = 1, . . . , J}
Gk(xu, xl) ≤ 0, k = 1, . . . ,K

(4)
where Gk : XU ×XL→ R, k = 1,. . . , K and gj : XU

× XL → R represent the upper level constraints
and the lower level constraints, respectively. Both
constraints can also have equality constraints.

Pioneer by the author of VEGA algorithm
[Schaffer, 1985] in the 1980s, the application of
Evolutionary Multi-Objective Optimization (EMO)
has been widely used and improved since then.
Contrary to classical techniques that require sev-
eral separate runs to compute the PF, as stated in
[Coello, 1999], the EMO are ideal for MOPs since a
set of possible PF solutions in parallel is computed
in a single run as well as being less susceptible to
shape and continuity.

Over the years, several techniques and ap-
proaches were invented, and, by far, the most pop-
ular are the PF based approaches. One of the
most used, tested, and widely established EMO is
the improved version of the algorithm by the same
authors in [Srinivas and Deb, 1994] and is referred
to as NSGAII [Deb et al., 2002]. The main im-
provement is the introduction of elitism in the algo-
rithm. With this concept, the previous parent popu-
lation members can be contained in the child pop-
ulation allowing the prevention of loss of good so-
lutions and helping an overall better convergence
[Zitzler et al., 2000].

The main operators of changing or diversify the
population are the crossover, and mutation with
a previous selection. The selection operator is
the method where members of a population are
selected by ranking the population with a fitness
value. The principal fitness measure is the Non-
Dominated Rank (ND) based on 2.2. Another im-
portant aspect of solutions in the PF is the require-
ment of diversity to ensure the complete represen-
tation of the PF. For this reason, and to help differ-
entiate solutions with equal ND, the Crowding Dis-
tance (CD) is used. Measuring the density outside
of the point by computing the cuboid form with the
nearest neighbours as vertices when two solutions
have the same ND, a solution with a bigger cuboid
or less crowded region is preferable. This operator

is called tournament selection.
The crossover or recombination is, as the name

suggests, a reconfiguration of the parents’ solu-
tions to obtain new child solutions similar to the
process of chromosomal recombination in biology.

After the recombination, the mutation operator
helps in diversifying the child solutions and pre-
venting local minima by slightly changing the solu-
tions. The NSGAII uses four parameters to control
the progression of the operators: crossover proba-
bility, index for SBX operator, mutation probability,
and the index of polynomial mutation and are cru-
cial to the performance of the algorithm.

The overall procedure of NSGAII is shortly de-
scribed below. Using a parent population of mem-
bers Pt of size N , the NSGAII for each generation
creates another population Qt called child popula-
tion with the above operators. When the total num-
ber of new creation is equal to the parent popula-
tion, the two equal size populations are combined
in a new population Rt. This population is used to
create the new parent population by removing half
the members. Ranking and sorting Rt with ND and
in turn CD, the worst solutions of size N are re-
jected. The previous steps are repeated until the
predefined maximum generation is achieved.

It is important to mention the above algorithms
since most MOBP algorithm used in each level of a
MOP algorithm. One of the original authors of NS-
GAII also developed an approach for MOBP called
Bi-Level Evolutionary Multi-Objective Optimization
algorithm [Deb and Sinha, 2009]. Although the de-
scribed procedure uses the previous EMO to solve
both levels of optimization, as indicated by the
authors, any other developed algorithm can be
used. This algorithm was later acknowledged to
contain several drawbacks leading therefore to a
new extended version named H-BLEMO algorithm
[Deb and Sinha, 2010].

2.3. Hyperparameter Optimization
Traditionally, hyperparameters in ML are deter-
mined by a series of trial and choosing, in the end,
the set of values that achieved the best perfor-
mance. This is done by an exhaustive n-dimension
grid search. Typically, a CV technique is com-
bined with the grid to improve validation perfor-
mance. Also called brute force, the approach has
the downside of a combinatorial explosion caus-
ing it to be unreliable in problems of dimension
higher than two [Bergstra and Bengio, 2012] which
can reach up to hundreds [Bergstra et al., 2013].

To remove the problems of using the CV tech-
nique for a higher number of hyperparameters,
[Bennett et al., 2006] proposed a new program of
bilevel CV and tested on support vector regression
model. In this way, for each fold of the CV an auto-
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matic selector was included with the training of the
model with the respective set of hyperparameters
in the lower-level and the validation in upper-level.

3. Methodology
As mentioned in Section 2, the H-BLEMO algo-
rithm was the result of several improvements to
the BLEMO algorithm mostly involving unneces-
sary computation for already found good solutions.

The main structure of the algorithm is composed
of ns subpopulations. Each one shares the same
upper-level variable vector, and, in total, the sub-
populations have Nu members. For each subpop-
ulation, a lower-level NSGAII is performed followed
by a local search optimization. In every genera-
tion, the archive is updated after every lower-level
optimization.

At the beginning of a generation, every member
in the population Pt of size Nu and archive have
computed the corresponding values of ND and CD
for both levels. Step 1 deals with creating a new
upper-level vector and respective lower-level vec-
tors for the current generation. For a single upper-
level vector creation, a binary tournament selection
is applied to population Pt and archive. Of the four
outcome parents, two are selected stochastically
are recombined using the SBX operator. Finally,
one is mutated with the polynomial operator. This
final vector is the new child upper-level vector. The
aforementioned vector is then used to create Nl

child solutions, number which is based on its loca-
tion in the current archive members’ space.

After all child solutions are created for the upper-
level vector, step 2 performs the NSGAII to the
lower-level. The algorithm differs solely from the
original on the selection. Taking advantage of pre-
vious found archive solutions, if the subpopulation
is present in the archive, only these are used in the
binary tournament selection. Otherwise, the nor-
mal process is used. At the end of lower-level op-
timization, the solutions are sorted and ranked by
ND and CD.

Step 3 involves the new optimization addition of
the Local Search operator to achieve the locally
PF. Since the operator can be expensive, as later
verified to represent 50% of all computation effort,
the operator was only applied to solutions that fol-
low certain properties to exclude inadequate so-
lutions. The operator is defined by the optimiza-
tion of achievement scalarizing function problem
[Wierzbicki, 1980].

Step 4 is for updating the archive after the Lo-
cal Search. For only the deemed optimal solu-
tions, these are compared with all archive mem-
bers. If the solutions are non-dominated, these en-
ter the archive, and the dominated members are
excluded. In case of exceeding the maximum size

of the archive, until the size is reached, the mem-
bers are removed according to CD.

In Step 5 the creation of all new solutions final-
izes, meaning the above steps are repeated until
the population of new solutions has the exact size
of the parent population Pt. What follows is the
combination of both populations after a ranking by
ND and CD for future selection of Nu members.

This selection of half of the combined population
is step 6 of the algorithm. The members first con-
sidered are those that have upper-level ND equal
to 1, and then lower-level ND equal to 1 in order of
reducing by lower-level CD. If the entire lower-level
subpopulation is already present in the side popu-
lation and the future solutions are from the same
subpopulations and have both ND equal to 1, no
further copy to the side population is done. The
process is repeated for all upper-level ND equals 1
and future values until members reach Nu size.

In the last step, for each subpopulation in the
side population not created on the above steps, a
lower-level NSGAII is utilized for helping the indi-
vidual approximation of PF. The termination criteria
metric is computed, and if the value reaches lower
than the threshold on generations multiple of τ , the
algorithm comes to an end. Otherwise, the steps
above are repeated.

4. Proposed SVM Problems for MOBP
4.1. SVM Formulations
The two objectives in the selected primal formu-
lations are the minimization of slack variable and
maximization of surplus variable, and in total, six
different formulations were created. The con-
straints remain the same as in the original formula-
tion and for that reason are not shown below. The
first two formulas were based on the formulation 1
and were defined as

• Formulation 1:

min
w,w0

{
F1 =

1

2
‖w‖22 + C

l∑
i=1

ξi (5)

• Formulation 2:

min
w,w0


F1 = ‖w‖22

F2 =

l∑
i=1

ξi
(6)

while the remaining were originated from the for-
mulation 2 and were defined as

• Formulation 3:

min
w,w0

{
F1 =

1

2
‖w‖22 + C1

l∑
i=1

ξi − C2

l∑
i=1

ηi

(7)
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• Formulation 4:

min
w,w0


F1 = ‖w‖22

F2 = C1

l∑
i=1

ξi − C2

l∑
i=1

ηi
(8)

• Formulation 5:

min
w,w0



F1 = ‖w‖22

F2 =

l∑
i=1

ξi

F3 = −
l∑

i=1

ηi

(9)

• Formulation 6:

min
w,w0


F1 =

1

2
‖w‖22 − C

l∑
i=1

ηi

F2 =

l∑
i=1

ξi

(10)

4.2. Objectives for SVM Evaluation
For evaluating the lower-level solutions in the train-
ing and validation stage, two types of objectives
were selected. The first corresponds to the error
of a hyperplane of the dataset and the other to the
classification task.

The Hinge loss is the most commonly loss func-
tion use in training SVM. It’s defined for a particular
point as

LHinge(y, w
Tx+w0) = max{0, y(wTx+w0)}, (11)

where y is the output ± 1. This is an equivalent
definition to the slack variable.

For the classification of classes, the metric
used is a specific case of the F-score. To
transform this metric into a minimization prob-
lem the same approach in [Musicant et al., 2003].
Using the minimization approach of F1-score in
[Musicant et al., 2003], the new F1-score metric is
given by

F1-score =
1

1 + 1−C
2z

, (12)

with C representing the global performance using
the accuracy and z the ratio of true positive clas-
sifications. The maximization of the F1-score is
achieved by the minimization of fraction in the de-
nominator, assuming z 6= 0, and that results in the
following minimization problem

(1− C)− 2z. (13)

Since the metric takes only into account only
the true positive cases, a similar approach to 13

can be formulated called negative F1-score with a
new z variable, zneg, representing the ratio of true
negative classifications. In conclusion, in both lev-
els and in all formulations, the hinge loss, the F1-
score, and the negative F1-score were employed.

5. Results & Discussion
5.1. Pre-Testing
The H-BLEMO constructed to this work is based
on the Matlab tool Evolutionary multi-objective
optimization platform PlatEMO [Tian et al., 2017]
made available by BIMK Group, specifically the
multi-objective algorithm NSGAII. As for the termi-
nation criteria, the hypervolume indicator algorithm
used was proposed by [Fonseca et al., 2006]. For
both levels, the standard parameters of NSGAII
(crossover probability of 0.9, index for SBX opera-
tor of 15, mutation probability of 0.1, index of poly-
nomial mutation of 20) were selected. The number
of population members was defined by 20 times
the total number of variables in the problem fol-
lowing the indication of the authors. This number
achieves best performance with smallest number
of function evaluations. A constrained non-linear
multivariable function from Matlab library was uti-
lized for the Local Search quadratic optimization.

For the empirical analysis of SVM formu-
lations selected, several datasets were re-
trieved from the UCI Machine Learning Repos-
itory [Dua and Graff, 2017]: Iris flower dataset
or Fisher’s Iris dataset(Iris Setosa and Iris
Versicolour and Iris Versicolour and Iris Vir-
ginia); Haberman’s Survival; and Wisconsin
Breast Cancer Database (January 8, 1991)
[Bennett and Mangasarian, 1992]. Three self-
made dataset were also created: linearly separa-
ble, non-linearly separable and non-linearly sepa-
rable with noise (Noisy) datasets. For the general-
ization of the classification task, the CV technique
was implemented in the algorithm. For every gen-
eration, the dataset is randomized and 70% used
in the lower-level or training stage. The remainder
is applied to validate the training result.

5.2. Behavior of Classical Multi-Objective Bi-Level
Before testing ML problems in the H-BLEMO, the
algorithm was simulated in classical MOBPs, the
two first test problems in [Deb and Sinha, 2010]
called TP1 and TP2, to evaluate the performance
of the adapted algorithm.

The results of the constructed algorithm approx-
imately achieves the true PF but the solutions are
considerably fragmented and incomplete. This in-
dicates a lack of performance since several vari-
able combinations are not present in the final re-
sults. The test required a modification on the mu-
tation probability parameter of the algorithm. The
substitution was intended to aim for more diverse
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results because of the poor results. However, the
parameters used in the Sections below are the
standard values. It is important to state that the
H-BLEMO was constructed by the interpretation of
the step procedure and the utilization of different
algorithms from the original.

5.3. Upper-Level Objective Space
In the upper-level objective space of classical prob-
lems, the PF represents a direct outcome of the
variation of the upper-level variables in the opti-
mization while in classifications problems two steps
exist: the computation of hyperplane, and classifi-
cation task evaluated with a metric function. This
means that in MOBP the hyperplane is defined by
the variables and the objectives function are de-
fined not by the variables but by the hyperplane.
This difference changes the dynamic of the algo-
rithm, for example, in the termination criteria, and
the evaluation of the performance of the final re-
sults.

First, the values of objective functions evaluating
the classification belong to a set of finite numbers
and are dependent on the number of points in the
dataset and the ratio of positive cases of the F1-
score metrics. The consequence of this is a non-
smooth and depleted PF. However, these vacant
spaces in the PF are not a sign of the ineffective-
ness of the algorithm but simply an intrinsic char-
acteristic of the classification problem. Second, the
points in the objective space can have the same
values even though they represent different hyper-
planes, but the opposite can also occur. These two
cases take place due to not just the minimization of
both the F1-scores but also the addition of the CV
technique.

The PF can also cease to be a frontier. Using the
hinge function and only the true F1 or the negative
F1 instead of both, the PF becomes a single point.
This occurs for two reasons: the hinge function be-
ing lower bound by 0, and the ND. Given the ND,
when one point with hinge equal to 0 and an ar-
bitrary F1 score value, the archive will only accept
points with smaller F1 while removing the remain-
ing.

The objective space becomes unusable when
concluding or comparing the performance of the
algorithm and the different formulations. However,
this does not imply an useless utility to the valida-
tion and training stage of the hyperplanes.

5.4. Termination Criteria
The effect in upper-level objective space is espe-
cially concerning because of its dependency on the
termination of levels of the algorithm. A compari-
son of the algorithm with the criteria and without
was done to evaluate its impact. In replacement,
maximum number of upper-level generations is de-

fined.
For the linearly separable dataset, the differ-

ences are very slim, chiefly due to being an eas-
ily separable dataset. Nonetheless, some hyper-
planes were found to not perfectly separate the
data. In the non-linearly separable dataset, some
of the tests with the termination criteria accom-
plish results similar to previous test, but not us-
ing it seems favourable to better performance. Its
impact is even more expressive in more complex
datasets such as the Noisy dataset. The reason
for these discrepancies in the results lies in the fact
that the termination criteria depends on the maxi-
mum and minimum values of the HV. In most runs
of the algorithm, the upper-level PF did not change
in ten consecutive generations, making both val-
ues equal and criteria zero, immediately stopping
the algorithm.

Despite the identical utilization in the lower-level
problem, the lower-level objective space is less
prone to consecutively remaining the same due to
the presence of a higher number of objective func-
tions and in particular non-classification objectives
such as, for example, the norm and the sum of the
distances to hyperplane of misclassified points.

The termination criteria used was then removed
for not being suitable for these problems and was
substituted with a maximum number of genera-
tions.

5.5. Local Search
The Local Search optimization is the attempt to
guarantee the lower-level solutions to be locally PF.
ML problems change the relationship between vari-
ables, the objective function and objective space,
and the problem itself. A study of the effect of the
Local Search optimization was carried out.

The first aspect observed is how the solutions
are more sparse and, seemingly, more diverse in
terms of the number of different hyperplanes. Sev-
eral hyperplanes of in the archive of linearly sepa-
rable dataset do not correctly divide space. In this
case, archive contains only perfectly classification
solutions, but not good solutions were highlighted
after measuring the accuracy in the test stage. In
terms of the overall performance of the H-BLEMO,
this non-perfect solutions can detriment the cre-
ation step of new child solutions due to the depen-
dency on the archive.

In the non-linearly separable dataset with a more
restricted space for the best separation, the algo-
rithm, in the long run, tends to have all solutions
in the archive alike or coinciding with each other.
The utilization of the Local Search did not aid the
results.

The removal of the this step does not negatively
affect the H-BLEMO. On the contrary, it improved
or corrected the performance of solutions. Another
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advantage of this disposal is the significant reduc-
tion of the computation time. The reason for these
problems has two possible origins: the algorithm
constructed has worse performance when com-
pared to the original one, and/or the choice of the
Local Search algorithm and respective parameters.
This operator was removed from the H-BLEMO.

5.6. Classification Results
A testing stage was created to evaluate the perfor-
mance by using 20% of the original dataset, com-
puted by the accuracy. At the end of each run, the
algorithm contains multiple solutions. The accu-
racy percentages represent the average of 5 runs
of the average of all solution in a single run. In
Gaussian tests, the comparison done between hy-
perplanes and also with different σ values.

The algorithm for the Iris Setosa and Iris Versi-
colour dataset, independently of the formulation,
has a perfect separation rate. This result is ex-
pected, since the dataset has ample space be-
tween the two classes.

In table 1, there is no perfect flat hyperplane that
separates the space. However, a slight improve-
ment can be observed along with the different for-
mulations in the original dataset. For this dataset,
the slack objective improves the optimization when
separated from the norm objective. Although in the
formulation 7 (3) that is not verified, the presence
of the surplus objective is what improves the per-
formance in 1.5 %, or 2.56 % in 200 gen test, when
compared with formulation 5 (1). The introduction
of the surplus objective likewise helps the perfor-
mance, notably, of formulation 8 (4), for which the
best result is achieved of roughly 95%. As for the
Gaussian transformation, the values are seemingly
beneficial in formulation 5 (1) and 7 (3) but have a
high enough value of standard deviation to indicate
overfitting. However, both formulations 8 (4) and
10 (6) attain similar and slightly better results than
without transformation, respectively.

In table 2, the effects of the slack and surplus
objectives are similar to the Iris Versicolour and
Iris Virginia dataset, albeit the best performances
in the original dataset are the formulations 7 (3)
and 9 (5), around 93.50% and 93.25%, respec-
tively. With the Gaussian transformation, the im-
provement is barely significant. In the case of the
formulation 8 (4), the best mean value is achieved
in the 100 generation test whereas, in the 200 gen-
eration test, the performance is worse than formu-
lation 7 (3), 8 (4) and 10 (6) meaning this formula-
tion is not as good as the formulation 7 (3) with no
transformation.

The Haberman’s Survival dataset was by far the
dataset with worst performance as well as the most
standard deviation. The reason for this disparity is

the extreme complexity of the dataset. Despite this,
the some advantages of the formations are visible.
Again the separation of slack objective and the in-
troduction of the slack objective increased the over-
all performance. Especially, formulation 8 (4) in the
original transformation achieves around 10% and
5% better results than formulation 5 (1) and 6 (2),
respectively. The best results are the 72% of the
formulation indicated above and 73% of formula-
tion 10 (6). In the Gaussian transformation tests,
the performance is similar or worse than that of the
original transformation. Comparing the tests of dif-
ferent generations, no advantage is found in us-
ing more than 100 generations, since no consider-
able reduction in the standard deviation is attained.
Again, this is a consequence of the complexity of
the dataset.

In table 4, the results for the most challenging
dataset in terms of the total number of features is
presented. The dataset is the most notable for the
positive influence of the introduction of the slack
objective, achieving around 15% better accuracy
and significantly better precision between formu-
lation 5 (1) and 7 (3). The better results are at-
tained when the two variable objectives are solely
in the same function, in particular the best in formu-
lation 8 (4) reached approximately 97%. With the
Gaussian transformation, a drastic improvement is
reached in formulation 5 (1) and 6 (2) though in-
sufficient to surpass the remaining. Also, there is
no distinction in the performance when the surplus
objective is introduced, yet they still achieved sim-
ilar results to the best formulation in the original
dataset.

Comparing the overall datasets, the test of the
Iris Setosa and Iris Versicolour had similar compu-
tational times when compared with the Wisconsin
Breast Cancer dataset. Since the former is not as
complex as the latter, the explanation for this is in
the total number of generations. For 100, the value
is simply excessive for the optimization reaching a
point of repetitive comparisons of newfound solu-
tions and the solution in the archive. The total num-
ber of possible archive members can be reduced
since there is no necessity for a complete filled PF.
However, the value can maybe be chosen accord-
ing to the dataset. The values used here were the
same for all test simply because no prior sensibility
was known.

Comparing the results of table 5 and the best
results of previous tests, the H-BLEMO achieved
similar results except for the most complex dataset,
the Haberman’s Survival. This proves how versa-
tile MOBP algorithms can be in the optimization of
different types of problems, as well being a com-
petitor with traditional SVM algorithms allowing a
shift in focus from also the selection of the best set
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Table 1: Accuracy (%) and standard deviation of runs with different generations for each formulation for
the Iris Versicolour and Iris Virginia dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 91.67 6.1301 94.99 5.4773 91.43 5.0766 91.43 5.6057
2 92.00 4.0000 92.93 2.5386 92.00 2.4495 90.58 7.1666
3 93.16 3.8931 96.82 6.0383 93.99 3.6782 95.81 3.5094
4 94.93 1.5142 93.89 1.4285 95.44 4.1858 95.48 2.7633
5 94.00 4.8990 92.19 3.1306 95.02 3.1625 93.20 4.0513
6 94.01 3.4765 96.64 1.8939 94.68 3.0684 94.67 2.9887

Table 2: Accuracy (%) and standard deviation of runs with different generations for each formulation for
the Noisy dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 87.79 3.3481 86.84 5.9969 85.22 2.1326 88.17 6.1430
2 88.22 4.3825 89.91 4.5375 85.35 4.9404 89.35 3.7455
3 92.47 2.7534 93.02 2.7588 94.57 1.4614 92.63 3.6807
4 92.40 2.7183 95.13 2.3548 92.76 2.7014 92.36 0.9536
5 93.00 1.6956 92.24 2.9985 93.50 2.8940 92.88 3.7838
6 93.31 2.3762 89.63 3.0316 92.50 1.4309 92.80 3.2020

of the hyperparameters to just the choice of feature
transformation, the type of hyperplane and different
formulations and objectives.

6. Conclusions
Traditional SVM algorithms, despite efficient for
simple or small dataset, for large datasets and the
presence of high number of hyperparameters, suf-
fer from combinatorial explosion, making them un-
usable. A new alternative consisted in transforming
the problem into a mathematical problem of two
levels, where one is the minimization problem of
the training and evaluation and the other the mini-
mization of the validation.

For this the MOBP algorithms based on EA and
their concepts were used. In particular, the al-
gorithm used is called H-BLEMO. Since the algo-
rithms allow optimization of multiple objectives at
the same time in each level, several formulations
of the SVM problem were created, focusing on two
objectives: the slack objective and the surplus ob-
jective to evaluate the existence of possible con-
flicts between objectives and the advantages of
separating these objectives.

The several tests indicated that ML problems
change how the MOBP is optimized and the re-
spective conclusions of the final solution. There

is no direct connection with the solution of the hy-
perplanes and of the PF. For this reason, the PF
becomes a just a tool to achieve the best results
and not to evaluate the final archive solutions and
thus a different termination criteria is required.The
overall tests indicate the introduction of the surplus
objective in the formulation is preferable since the
models achieved better results with it than with-
out. The best formulation with this objective vary
with the dataset. However, the results were slightly
worse when objective was by itself. As for the soft
margin based formulation, the results were similar
with the best results also varying with the dataset.

In conclusion, the utilization of MOBP are a reli-
able alternative and a good competitor to the clas-
sical SVM algorithms, since it allow an automatize
selection of hyperparameters and the testing for
advantages and disadvantages of the relation be-
tween objectives and their separation.

7. Further Work
This work proved the potentiality of the concept.
However, other studies are required for under-
standing the real impact of classification problems
in MOBP and for fine-tuning.

First, although the performances were still good
while not removing it, an analysis of the impact of
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Table 3: Accuracy (%) and standard deviation of runs with different generations for each formulation of
Haberman’s Survival dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 63.37 3.6062 69.51 6.6618 65.37 8.2017 63.15 5.9226
2 67.59 8.3339 62.26 4.7574 65.90 6.8304 62.19 5.6920
3 69.70 5.4575 67.37 4.2309 69.18 1.7316 71.81 6.4129
4 72.10 5.5328 69.79 5.6901 72.89 4.2815 69.93 3.2024
5 68.83 8.1508 71.55 1.9678 71.17 7.4315 71.59 0.7218
6 73.41 3.4715 72.00 4.1078 71.82 4.2295 72.83 5.1015

Table 4: Accuracy (%) and standard deviation of runs with different generations for each formulation for
the Wisconsin Breast Cancer dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 76.46 9.3958 91.66 2.0571 78.02 4.6195 92.31 1.5933
2 67.44 5.5326 86.61 6.7933 72.26 6.0014 90.57 5.6901
3 91.96 0.8946 96.58 1.4128 93.30 1.8187 95.12 0.1920
4 97.03 0.5305 96.51 1.5377 95.72 1.5826 96.53 1.5827
5 92.71 3.3031 95.80 1.3211 95.34 1.0050 94.95 1.4038
6 95.49 1.5539 96.16 1.6965 95.87 1.5312 96.62 1.3957

Table 5: Accuracy (%) and standard deviation of
test with soft margin SVM in dual problem formula-
tion for each dataset.

Transformation
Original Gaussian

Dataset Mean SD Mean SD
Setosa &

Versicolour 100 0 100 0

Noisy 93.34 2.0263 92.00 2.0484
Versicolour
& Virginia 95.33 3.3993 96.40 3.5901

Haberman 73.07 3.9875 76.46 3.8640
Wisconsin

Breast
Cancer

96.93 0.9491 97.25 0.8552

the termination criteria in the lower-level optimiza-
tion should be made and the reason for the nega-
tive effect of the Local Search optimization.

Second, due to the changes in the objective
space, an evaluation should be effectuated to the
ranking of solutions to verify if the CD criteria are
relevant and necessary since there is no utility for
scarcity in the PF.

Finally, more test should be done with a

higher number of feature (> 10) and testing
other formulations and taking into account differ-
ent hyperparameters for each class in imbalanced
datasets. Also, the test can include non-flat hy-
perplanes for separation and using the algorithm
Reference-Point based Many-Objective NSGA-II
[Deb and Jain, 2014] created for many-objective
problems in the lower-level or both levels.
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