
Intelligent time-series forecasting and event
prediction for Predictive Maintenance in IT systems

Pedro Moreira
Instituto Superior Técnico

pedro.santiago@tecnico.ulisboa.pt

Abstract—Nowadays, most Information Technology systems
already perform Condition-based Maintenance, which provides
an overview of a system’s condition in real-time and stores its
behaviour (in the form of time-series). A Predictive Maintenance
approach can use this historical data to apply planning corrective
maintenance based on predictions about a system’s evolution.
This work intends to provide useful research in the scope of
Predictive Maintenance through the study of the best approaches
and algorithms to perform time-series forecasting and event pre-
diction within the Information Technology domain. The state-of-
the-art intelligent methods for time-series modelling were studied,
as well as the most promising methods developed for other
domains with existent literature ahead of time-series (like Natural
language Processing). The main focus was on Machine Learning
techniques - from the primary Feed-forward Neural Networks
all the way to the more recent and complex Transformers. For
the time-series forecasting, none of the experimented models
performed satisfactorily. However, it was notable that with the
increase of complexity and size of the model’s architectures,
they learned to output “dummy” forecasts like a naive approach
or a constant value, which although not useful, minimise the
evaluation metrics. For the event prediction problems, a prepro-
cessing step to detect oscillations in the input datasets significantly
boosted the algorithms’ performances. Furthermore, the results
obtained were not ideal but satisfactory enough to be useful, and
the model that showed the best results was the Feed-forward
Neural Network. Finally, it is possible to adjust the predictions’
sensitivity with the tuning of a data preprocessing factor.

Index Terms—Predictive Maintenance; Information Technol-
ogy systems; Time-series forecasting; Event prediction; Compu-
tational Intelligence.

I. INTRODUCTION

Nowadays, most Information Technology (IT) systems are
able to perform Condition-based Maintenance (CBM), which
means that they are capable of monitoring the condition of
their components in real-time and decide what maintenance
is needed. The downside of CBM is that it only orders
maintenance actions when certain indicators show signs of
decreasing performance or upcoming failure, which means
that problems might have already occurred – a problematic
system is not reliable, and lack of reliability is not a good
sign for enterprise profitability. On the other hand, since
IT systems implement CBM, they are already capable of
keeping track of their functioning and store their behaviour
history. This way, a helpful monitoring approach can make
use of this information to predict possible failures in time to
avoid/soften them and predict components’ future behaviours
to, timely, take appropriate precautions. This approach is
known as Predictive Maintenance (PdM), which refers to

planning corrective maintenance based on predictions about
the evolution of a system.

The design of PdM techniques aims to determine the
condition of a system and its components ahead of time.
By looking forward and knowing what failures are likely to
occur, it is possible to schedule adjustments and repairs to
apply them before assets fail and/or the system evolves to
an unwanted state – these preventive actions will provide a
stable environment and an increased assets life. This way,
a useful PdM approach shall be capable of providing the
means to improve productivity, product quality, and overall
effectiveness. Looking from an industry point of view, these
improvements achieved by PdM will lead to a vast range of
benefits [1] that can both save money and maximize efficiency,
such as:

• Reduction (if accurate enough, near elimination) of un-
scheduled equipment downtime caused by equipment or
system failure;

• Better asset management that results in an increased
production capacity and labour utilisation;

• Increased equipment lifespan and more economical use
of maintenance workers that significantly reduces main-
tenance costs.

A private company’s monitoring software tool for IT sys-
tems and components integrated the PdM algorithms devel-
oped in this thesis. The private company is - Identity - and this
thesis engages in a partnership with them. The monitoring plat-
form performs CBM on metrics such as network utilisation,
Central Processing Unit (CPU) load, disk space consumption,
etc. As most of IT monitoring platforms, the collected data on
these metrics is stored chronologically. Identity made available
for this study historical data on hundreds of metrics dating
back to more than five years. This data came from a very dis-
tinct set of machines and users – be it for internal production
inside the company or for external clients/companies that work
in different industries and manage systems from very diverse
environments.

Since the historical data kept by monitoring platforms
from IT systems is often stored chronologically and with a
timestamp attached to every collected metric, this data can
be looked at and analysed as time-series. Time-series analysis
is one of the areas with the biggest potential in PdM, and
historical data, which is its feedstock, can be acquired very
easily by IT systems – most of them already perform this



data collection with the implementation of CBM. The use
of Artificial Intelligence (AI) and other intelligent methods
in PdM has been growing in the past few years, but the
majority of the companies did not adopt it yet [2]. This way,
the research on intelligent methods to analyse time-series in a
PdM perspective can be not only a very recent and interesting
development, but it can also have a significant practical impact
in the real-world environments.

There are several different approaches that one can take
towards the development of a PdM solution. After a PdM
background study applied to modern IT systems needs, and
a strategic fit with the Identity’s monitoring software, this dis-
sertation will tackle two separate problems in the PdM world
that were found to be the most convenient and advantageous
to be integrated with the monitoring of IT systems:

• Time-series forecasting – this solution will consist in the
development of methods to predict the future values of an
IT system’s metric, based on its past values and the past
values of multiple other metrics (the system’s history),
for example, predicting the CPU load for tomorrow at 2
pm.

• Event prediction – this solution will consist in the
development of methods to predict the occurrence of
sporadic events before they actually occur, based on the
event’s previous occurrences, some others events previous
occurrences and the history of some system’s metrics, for
example, issuing a warning four hours before the system
collapses due to lack of free memory.

II. RELATED WORK

In the literature study of this work, the research after the
state-of-the-art intelligent methods for modelling time-series
was led. Beyond that, the most promising models developed
in other domains, such as Natural language processing (NLP),
and with (yet) scarce research for time-series, were also
adapted and used this work with time-series datasets.

The models tested were the following: (a) Feed-forward
Neural Network (FNN); (b) Recurrent Neural Network (RNN)
- introduced by J. L. Elman [3]; (c) Long Short Term Memory
(LSTM) - introduced by S. Hochreiter and J. Schmidhuber
[4]; (d) Gated Recurrent Unit (GRU) - introduced by K. Cho,
B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio [5]; (e) encoder-decoder variants
- introduced by I. Sutskever, O. Vinyals, and Q. V. Le [6];
(f) encoder-decoder with the attention mechanism variants -
introduced by D. Bahdanau, K. Cho, and Y. Bengio [7]; (g)
the Transformer - introduced by A. Vaswani, N. Shazeer,
N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin [8]. The variants are referred to the three
possible cells: RNN, LSTM, and GRU. For the time-series
forecasting problems, the Auto-regressive Integrated Moving
Average (ARIMA) method was also tested and compared, as
it is the most common benchmark in this field.

III. DATASET DESCRIPTION

A. Time-series Forecasting

A monitoring platform collected the datasets available for
this dissertation from “up and running” real-world IT systems.
The platform defines each metric collection as an item, and an
item is mainly (i.e. relevant for this dissertation) characterized
by two settings: (a) the actual metric, for example, the CPU
load of computer X; (b) the collection period, for example,
five minutes (5min). Every collection is then performed, for
each period, only at the instant that the period clocks. For
the given example, if one CPU load value is collected at 14h
00min, the next value is going to be the CPU load at the instant
14h 05min, and not the average load of the CPU between 14h
00min and 14h 05min.

The monitoring platform has two ways of storing the data
regarding the items collected – history and trend – each kept
separately in the database:

• History – keeps each collected value for a pre-defined
period of time (for example, data older than one month
will be discarded by a housekeeper). An example of a
portion of an item’s history can be seen in Table I (with
a period of 1min).

TABLE I
HISTORY TABLE EXAMPLE OF CPU LOAD [%].

Time CPU load [%]
15h 03min 00s 15.32
15h 04min 00s 18.01
15h 05min 00s 15.44

• Trends – basically a historical data reduction mechanism
which stores minimum, maximum, average and the total
number of values per every hour for numeric data types.
An example of a portion of an item’s history can be seen
in Table II.

TABLE II
TREND TABLE EXAMPLE OF CPU LOAD [%].

Time Min Max Avg Values count
11h 00min 00s 15.32 63.35 21.33 20
12h 00min 00s 18.01 71.27 25.24 20
13h 00min 00s 15.44 54.20 20.05 20

After an agreement with Identity on the most useful ap-
proach, the methods studied and fitted in this work were set
to forecast the average value of trends for time horizons of two
hours and beyond. This way, the input data used to compute
the forecasts is prevenient from trends storage, not history.

1) Event Prediction: Similarly to the time series datasets,
every event occurrence will come with a timestamp attached
stating when the event occurred. However, there are only
values when an event occurs, which is supposedly random and
without any respect for periods. In order to have these datasets
interpreted and analysed as time-series, they need some data
preprocessing – those procedures will be explained later in
Section IV-B1. Events datasets will be in the form of Table III
where, when a problem is triggered (event occurrence), a the



platform stores a value of 1 with its correspondent timestamp;
when the problem is solved (or stopped existing), it stores a
value of 0 with its correspondent timestamp as well.

TABLE III
EVENT DATASET EXAMPLE.

Timestamp Event
2020-01-05 01:00:03 1
2020-01-05 01:07:29 0
2020-01-08 04:10:12 1

The available data from the monitoring platform for the
event prediction problems are of two types: trends and events.
The trend values are of the same type described in Sec-
tion III-A. The event data is directly related to events, and
it comes in the form described above.

The events monitored in this work were related to problems
in IT systems, in particular, services shutting down unexpect-
edly or becoming unavailable. This way, when the system
shuts down or becomes unavailable – the event/problem is
triggered – and at that instant, a row in the respective event is
appended with a value of 1. When the system recovers from
the problem, another row is appended with a value of 0.

The available data from trends is related to metrics collected
in the same machine/IT system where the events occur.

IV. IMPLEMENTATIONS

A. Time-series Forecasting

1) Data normalization: The most common two approaches
for normalizing input datasets for Machine Learning (ML)
algorithms are the standardization and the and the Min-
Max scaling. There is no clear winner when choosing the
data normalization method (the normalization itself does not
even improve the performance that much). However, both
standardization and Min-Max scaling were tested in all cases
but showed similar results. The results presented in Section V
were obtained with the Min-Max scaling normalization.

2) Sliding Window: The most common approach to trans-
form a sequential time-series dataset into these input-output
pairs, which is the same one used in this work, is the sliding
window. This method consists in fixating a window of length
(Nin + Nout) in the beginning of the dataset and slide it all
the way until the end. Each slide constitutes one trading pair
to learn from (one input sequence and one output sequence).
A schematic representation of the sliding window approach is
exemplified in Figure 1.

Fig. 1. Sliding window approach.

In this example, the input sequence of length Nin = 4
is represented in green and the output sequence of length

Nout = 2 is represented in red. Since the monitoring platform
where the algorithms were implemented would become more
versatile with variable (user-defined) forecasting horizons, a
range of lengths within [2h, 24h] was tested in this work for
the output sequences.

After testing all of the methods with different sequence
lengths (input and output), the results showed that input
sequences longer than 24h did not improve any of the model’s
performances and that for output sequences of 6h, was length
sufficient to illustrate how the models behave in multistep-
ahead forecasts. For output sequences until 6h, the forecasts
did not lower the accuracy significantly. As such, the results
presented in Section V for time-series forecasting were con-
ducted with Nin = 24;Nout = 6 .

3) Hyperparameters of the intelligent method: The hyper-
parameters optimised in the ML models applied in this are the
following: (a) learning rate, (b) loss function, (c) optimisation
solver, (d) activation functions, (e) number of hidden nodes
and (f) number of stacked layers. For the ARIMA model, the
hyperparameters to be predetermined are the constants p, q
and d – ARIMA(p, q, d).

In this work, the optimal hyperparameters were manually
deduced trial-and-error.

The most common optimisation solvers are: (a) the sgdm
[9], (b) the rmsprop [10] and (c) adam [11]. All these three
optimisation solvers were thoroughly tested across all the
ML models, and the adam showed either equal or superior
behaviour in all tests. As such, the results of Section V
were obtained with the adam optimisation solver. The loss
function used in all Artificial Neural Network (ANN) for the
time-series forecasting problems was the Mean Square Error
(MSE), which seems to be a common choice for this type of
predictions. The learning rate used was lr = 0.05; tests with
other values between [0.01, 0.1] were experimented but did not
change the results. For last, the following activation functions -
(a) Linear, (b) Rectified Linear unit(ReLu), (c) Sigmoid and (d)
Hyperbolic tangent - were tested, one for each layer of each
ANN (all combinations), but, except using only linear units
(that showed worst results), the performances were similar and
thus, this choice is irrelevant.

4) Cross-validation: The cross-validation method of splits
the dataset into K segments (folds), equal in size, then K− 1
folds will be used as the training set for the model to learn
from. The remaining fold will be used as the test set. This
procedure is repeated, using the same folds split, but always
using a different fold for the test set until all the possibilities
are carried out. The iteration that showed better results with the
underlying test set will be the one from which the final model
will be taken. This procedure is schematically represented in
Figure 2, with K = 5.

Furthermore, given the time ordering present in time-series,
the Cross-validation method might ignore the sequential na-
ture of time. Namely, instead of just wanting the model to
generalise to unseen new data, for time-series forecasting, it
is wanted that the model generalises for future data. This way,
the method used to secure that the model is only tested for a



Fig. 2. Cross-validation with K = 5 folds.
data latter in time than the training set, is the one represented
in Figure 3.

Fig. 3. Cross-validation for time-series with K = 5 folds.

5) Evaluation Metrics: The metric chose in this work to
evaluate the time-series forecasting models was the MSE, that
is mathematically decribed by

MSE =

∑N
i=1

(
yireal − yiforecast

)2
N

, (1)

where yreal are the true values – the ones present in the test set
outputs –, yforecast and the values forecasted by the model,
and N is the length of the test set.

6) Period Reduction trial: This experiment was only tested
with the ANN architectures.

Although the trend tables (one-hour averages) might be able
to properly shape data over long horizons, some spontaneous
incidents that only happen momentarily could also compose
valuable information to compute the forecasts, as they might
be related to meaningful events with long term impacts. For
example, several CPU spikes during a couple of minutes could
indicate the start of several different applications or services,
that would increase the average CPU consumption over the
next hours. In Figure 4 is a visual example that illustrates
how the trends storage misses irregularities in data that are
caught by the history storage.

Moreover, given that the metrics collection is not continu-
ous, using the minimum period possible will increase catching
spurious occurrences. To test this possibility, items were set
to perform collections with the minimum period allowed by
the monitoring platform, 1sec. An example of a CPU load
collection comparison between a period of 1sec and a period
of 1min is present in Figure 5.

It can easily be noted that there are spikes present in
Figure 5a, that were not caught with a period collection
of one minute – Figure 5b. It must also be noted that
this history storage usage is highly incompatible with the
monitoring platforms’ purpose. According to the platforms’
documentation, the history storage is kept as short as possible
given that it consumes much more disk space then the trends

(a) CPU load – history storage.

(b) CPU load – trends storage.

Fig. 4. CPU load comparison of the two different storage types: history vs
trends; the item’s collection period is one minute.

(a) CPU load with a period collection of 1 second.

(b) CPU load with a period collection of 1 minute.

Fig. 5. CPU load comparison of two different collection periods: 1 second
vs 1 minute.

storage (which is precisely the point of using trends), and
thus keeping history for long periods of time, which would
be needed to train the intelligent forecasting models, could be
unbearable. Furthermore, the collection of data at very short
periods (as one second), weights a significant burden in an
IT system, as it needs to be continually polling data from the
monitored metrics. A monitoring platform is integrated into
an IT system because it can help to maintain it and to keep
it reliable. Thus, if the monitoring tools used consume a lot
of resources, they will interfere with the system and might
weaken it, instead of the opposite. This way, the experiment
described in this chapter was conducted to try to understand
if eventual forecasts with bad accuracies could be due to the
loss of information inherent to the use of trends storage or too
large collection periods.

To try to make some meaning out of the spikes noted in



datasets like Figure 5a, an approach that aims to count the
number of spikes and feed it to the intelligent method was
conducted. First of all, given the lack of available history
data with short collection periods to train the models, trend
tables of 10min averages were manually created to increase
the number of time-steps. Using this “artificial” trend table,
the same number of time-steps were used for the input
and output sequences – Nin = 24 and Nout = 6. Then,
instead of just using the sliding window approach, described
in Section IV-A2, to generate sequences to feed the model,
K extra points will be added to the sequence, where K is
the number of input features. Each of the K points will be
the total count of spikes, #spikes, of the respective feature,
during the whole input window time segment. Note that each
input is referent to a 10min average, while the spikes count is
performed in the whole history data (one value per second).
As such, for an input sequence of four time-steps, the input
sequence timeline accounts for 4× 10× 60 = 2400 seconds,
which is the number of points evaluated to count the spikes.

In Figure 6, is an example of the upgraded sliding window
just described, but with Nin = 4 and Nout = 2.

Fig. 6. Sliding window for the period reduction trial.

The spikes count – #spikes – was calculated with a trial
and error approach. Looking at each feature’s graphical data,
like Figure 5a, define a threshold value, on top of the mean of
the whole sequence, above which a spike would be considered
abnormal. For example, if the mean of an input sequence is
µ = 7 and defined threshold is T = 30, for each time that
the metric’s collected value crosses the value µ + T = 37
during the subject input sequence timeline, the spike count
is incremented. For metrics like free memory, where a lower
value is the “problematic” and not the other way around (like
CPU load), the spike count is incremented when the line
µ− T is crossed. After several trial and error iterations, pick
the threshold that led to better results and use it to the final
forecasting model.

B. Event Prediction

1) Event to time-series: Given that the event points present
in the datasets are not periodical, the intelligent methods
studied are not prepared to receive such data as input and
compute predictions with it. To convert the original event
datasets to periodic sequences suitable for the ANN models,
a preprocessing step that results in a binary time-series was
applied:

1) Round the timestamps of the events to the closest (past)
hour (because the trends have values per hour);

2) Generate a time-series with 0’s as values for the same
timeline and with the same period (one hour) of the
trends metrics that will be used.

3) For the time between every event occurrence and its
respective recovery, flip the values of the time-series to
values of 1.

After applying this technique, the original events from
Table III would be transformed into the time-series table in
Table IV.

TABLE IV
TIME-SERIES EVENT DATASET EXAMPLE.

Timestamp Event
2020-01-05 00:00:00 0
2020-01-05 01:00:00 1
2020-01-05 02:00:20 0

... ...
2020-01-08 03:00:00 0
2020-01-08 04:00:00 1
2020-01-08 05:00:20 1

... ...
2020-01-09 21:00:00 0
2020-01-09 22:00:00 1

Now that all of the data available (metrics and events) is in
a time-series format, the events can also be used as inputs, as
if they are just another feature, and the ML can work just like
for a time-series forecasting procedure. To predict one event,
simply choose as the feature to “forecast”, the respective event
time-series.

2) Data normalization: The same normalization described
in Section IV-A1 was applied to the metrics as inputs used in
the event prediction. Given that the events time-series datasets
already comprises values between [0, 1], there is no need to
normalize them.

3) Sliding Window: The same sliding window approach
described in Section IV-A2 was used with the addition of the
event time-series. After testing all of the ML architectures
with the different lengths, the results showed that input se-
quences longer than 20h did not improve any of the model’s
performances and that for output sequences longer than 4h,
the performance started to deteriorate notably. For output
sequences until 4h, the forecasts did not lower the accuracy
significantly. As such, the results presented in Section V for
event prediction were conducted with Nin = 20;Nout = 4 .

4) Oscillations detection: After looking at the available
metrics with graphical representations and crossing them with
the respective event occurrences, it could be suggested that
some of the metrics revealed destabilised behaviours in the
times tightly close to an event occurrence. Such occasions are
exemplified in Figure 7.

In an attempt to extract this information from the data and
feed it directly to the network, an approach using standard
deviations to capture those irregularities was used (every
feature separately): for each point of each input sequence,
compute the standard deviation of the last K values and use
it as an extra input to feed the network. This way, each point
of the input sequence would now be a 2D vector with: (a)



(a) CPU load.

(b) Free memory.

Fig. 7. Graphical representation of CPU load and free memory with event
occurrences highlighted.

the actual value of the metric at the respective time-step and
(b) the standard deviation of the previous K time-steps of the
subject metric. This constant K used for the horizon of the
standard deviation computations was deducted with a trial and
error manual approach. The value that revealed best results was
k = 10 and thus, is the one used for the results presented in
section V.

Several other methods were experimented in place of the
standard deviation, like the harmonic mean and a spike count
similar to Section IV-A6, but none of them led to superior
results.

5) Minority Class Oversampling: Given that the events
evaluated in this work are derived from problems and failures,
such occurrences only happen sporadically. This way, if the
two possible outputs (0 and 1) are labelled into two classes –
the minority class and the majority class –, the first would be
for a prediction of 1 and the second for a prediction of 0.

To counter the majority class dominance, the minority class
oversampling method was used. This method identifies the
minority class occurrences in the training set and replicates
them until the two classes are balanced enough for the model
to learn to output both of the predictions. A value of 0.5 for
the minority class oversampling technique ratio, ROMC =
0.5, will result in a dataset where both classes have the same
number of occurrence. Is this number is less than 0.5, the
majority class will dominate by the correspondent ratio. If the
oversampling ratio is more than 0.5, the (initially) minority
class will dominate the dataset, by the respective ratio ROMC .

6) Intelligent Methods Implementation: For the ML meth-
ods tested in the event prediction problems, the hyperparam-
eter search was conducted like described in Section IV-A3 as

well. The optimisation solver’s conclusions were the same –
the adam optimisation solver showed either equal or superior
behaviour in all tests. However, since this is now a classifi-
cation problem instead of a regression, the loss function used
is the Binary Cross Entropy (BCE), which also seems to be a
common choice for this type of predictions.

Similarly to the forecasting study, for event prediction, after
several learning rates experimented between [0.01, 0.1] ending
up with the same results, the learning rate used in all final
models was lr = 0.05. The activation functions, on the other
hand, took a slight difference from the forecasting models –
the output activation function (after the last layer) was always
the sigmoid, which is the most common for problems where
the output should be between [0, 1]. For the other activation
functions, all of the ones presented in Section IV-A3 were
tested, and again, the results were all very similar which makes
this choice irrelevant as well.

7) Evaluation Metrics: For this type of problems, accuracy
is not a good indicator of performance. A method that never
predicts an event will probably have a high accuracy by merely
predicting that the event never occurs.

This way, to evaluate the event prediction models, two
measurements were used – precision and recall. Precision and
recall can be mathematically described by

Precision =
TP

TP + FP
× 100, (2)

Recall =
TP

TP + FN
× 100 (3)

where TP stands for true positives, FP stands for false
negatives, and FN stands for false negatives.

V. RESULTS AND DISCUSSION

A. Time-series Forecasting

The algorithms developed in this dissertation were put into
production environments and tested across several different
machines and with different metrics. For the results report,
a set of data (collected from the same machine) was chosen
to illustrate the performance of the embraced algorithms. The
whole dataset accounts for three years of past data, and for
the results presented in this chapter, it was split into a training
set and test set for 80% and 20%, respectively.

The first metric is the free RAM memory of the machine, in
percentage. The second metric is the CPU load of the machine,
in percentage. The third metric is the rate of bytes per second
that are being read from disk. The fourth metric is the free disk
space, in GB. The fifth and last metric is the download speed
of the machine, in Mbps. Out of the five metrics, the two that
had more interest in being forecasted (product wise) were the
free RAM memory and the CPU load. The results obtained
in both of the forecasts were similar. This way, even though
the free RAM memory will be the forecasted and evaluated
metric in this chapter, the conclusions also apply to CPU load
forecasts.

The ANN models were thoroughly tested for different
numbers of hidden nodes and stacked layers. The rest of



the hyperparameters are already defined in Section IV-A. For
the ARIMA method, since the goal was to use it as the
statistical reference to compare the ML models with, rather
than optimize it thoroughly, a python module auto arima()
[12] was used to estimate the optimal parameters.

A table with the range of hidden nodes and stacked up layers
tested in each model is present in Table V.

TABLE V
RANGES OF HYPERPARAMETERS EXPERIMENTED FOR THE FORECASTING

MODELS.

Model Nodes Layers
FNN [15, 100] [1, 10]

Vanilla RNN variants [15, 500] [1, 5]
Encoder-decoder variants [15, 150] [1, 5]

Attention Encoder-decoder variants [15, 150] [1, 5]
Transformer 8 [1, 15]

The Transformer hidden nodes are referent to the parallel
attention heads used in the multi-head concatenation (the same
number used in the original work [8] was used).

Unfortunately, none of the models achieved satisfactory
performances, and none of them accomplished forecasts good
enough to be worth being used in a monitoring platform to
assist in PdM. However, the configuration of each architecture
that performed better (least bad), in terms of MSE, are written
in Table VI.

TABLE VI
BEST PERFORMING FORECASTING MODELS AND CORRESPONDING MSE

EVALUATIONS.

Model Nodes Layers MSEt MSEt+2 MSEt+5

ARIMA - - 58.33 63.27 61.68
FNN 35-40-25 3 64.27 46.65 38.35

Vanilla RNN 40 1 11.53 13.12 14.70
Vanilla LSTM 50 1 6.61 9.75 11.89
Vanilla GRU 40 1 9.12 12.34 13.31
Enc-dec RNN 20 1 13.38 13.92 14.37

Enc-dec LSTM 20 1 13.47 13.91 14.73
Enc-dec GRU 20 1 13.64 13.25 14.86

Att. RNN 20 1 13.36 13.42 14.69
Att. LSTM 20 1 13.18 13.22 13.93
Att. GRU 20 1 13.43 13.27 14.70

Transformer 8 3 13.53 13.63 14.56
Naive - - 3.61 9.74 14.51

As the datasets are from trend tables, their collection period
is of 1 hour, and the outputted forecast has an horizon of
6 hours. This way, the first (t), the middle (t + 2) and the
last (t + 5) forecasts respective performances are present in
Table VI. Furthermore, for comparison purposes, an extra
row is appended with the results of the naive approach. The
naive approach is an estimating technique in which the last
period’s values are used “blindlessly” as the next period’s
forecast, without adjusting them or attempting to establish
causal factors. Despite the fact that, for real values that are
more constant over time, the naive approach will output many
forecasts with a low MSE , these forecasts are of no practical
use because they will not add more information than the
one already present in real-time monitoring. This way, for an

intelligent model to be considered useful in this problem, its
forecasts would not only have to compute forecasts with an
MSE significantly below the naive approach but also detect
abnormal behaviours before they occur.

Regardless of the bad results, some conclusions about what
did the models learn from the data could be taken from their
behaviour and graphical representations.

The “simplest” networks – the FNN – have fewer parame-
ters to learn from and thus, in theory, are able to retain less
information than the most robust ANN architectures. From
their forecasts, it seems that the FNN were simply not able to
model the training dataset and, as such, performed very poorly.
However, it is notable that the last positions of the output
sequence (the forecasts of further time-steps in the future)
are less oscillatory than the first ones, which can be seen in
Figure 8. This is the reason why in Table VI, the MSE of the
forecast (t+ 5) is smaller than the one of (t+ 3).

Fig. 8. Forecasts of the FNN model with 3 layers of 35, 40 and 25 hidden
nodes, respectively.

The architecture that best performed in terms of MSE was
the vanilla LSTM, and it did so because it managed to learn
something close to a naive approach, and not by “intelligently”
computing forecasts. A sample of the forecasts computed
by the “winner” vanilla LSTM is graphically represented in
Figure 9.

It can be deducted from Figure 9 that the network learned to
output a constant for most of the time and that when it detects
a steep oscillation, it reacts with a softened naive approach –
softened in the sense that, above a certain amplitude, it repli-
cates the oscillation but with a less steep reaction. It is possible
that the LSTM learns that by applying a naive approach, it will
achieve a smaller MSE (which is the mathematical goal of
the training process). Moreover, an LSTM network with more
nodes can learn more information and is able to learn that
by outputting a constant value and softening the oscillations
reaction, the MSE can be even smaller. Furthermore, the
most oversized LSTM networks tested in this work went even
further and learned to just output a constant regardless of the
input sequence. As an example, a forecast of a LSTM network



Fig. 9. Forecasts of the vanilla LSTM model with 50 hidden nodes and 1
single layer.

with 3 stacked up layers of 200, 500 and 50 hidden nodes,
respectively, is represented in Figure 10a.

Just like the biggest vanilla LSTM models, the larger
and more complex architectures – Encoder-Decoder, Encoder-
Decoder with Attention and the Transformer – learned to
forecast a constant output regardless of the inputs as well, even
with one single layer and few nodes (20). When increasing the
number of hidden nodes and the number of stacked layers,
these last models show the exact same behaviour. Which
probably means that the most information that can be taken
out of the training data is that a constant forecast is the one
that will result in a lower MSE. As a representative example
of these models, in Figure 10b is a graphical representation of
the forecasts computed by an encoder-decoder LSTM model
with 20 hidden nodes and 1 layer.

In terms of output shapes (oscillations, naive approaches and
constant outputs), the RNN cells of the three types studied all
reveal similar results. This way, all of the graphical examples
given for architectures with LSTM cells can be generalised
for the Elman RNN and the GRU.

1) Period Reduction Trial: The metrics used for this experi-
ment were the same ones, but the with specifications described
in Section IV-A6.

With the heavier architectures – Encoder-Decoder, Encoder-
Decoder with Attention and the Transformer – for the most
part of the (repeated) experiments, the models outputted con-
stant values, similar to the ones obtained in Figure 10b. As
such, either these models ignored the spikes count as an extra
feature, or what they learned from the spikes simply reinforced
what had been learned from the plain data – outputting a
constant will likely minimize the loss function (MSE) across
new datasets.

For the FNN and vanilla RNN variants, the period reduction
trial revealed visible differences. Regarding the evaluation
metric used (MSE), for the RNN architectures some tests led
to better results than the ones in Table VI and others did
not, given that different training iterations constantly led to
different results. For the FNN however, with 2 hidden layers

(a) Forecasts of the vanilla LSTM model with 3 layers of 200, 500 and
50 hidden nodes, respectively.

(b) Forecasts of the Encoder-decoder LSTM model with 20 hidden nodes
and 1 single layer.

Fig. 10. Constant forecasts computed by the larger and more robust archi-
tectures.

of 45 and 75 hidden nodes, respectively, the results were
slightly better (even considering the inconsistent repetitions) –
with MSE values in between [20, 35] for the last point of the
output sequence (the 6th), for the free RAM memory forecast.
Nonetheless, given that the time-steps of the sequences in this
experiment are 10min apart (as described in Section IV-A6),
the last step predicted (t + 5), is only 1 hour in the future
instead of 6. This way, it is hard and inaccurate to compare
these values with the ones from Table VI.

Moreover, it is notable that the FNN in this period reduction
trial approach, reacts steeply to spikes in data and, at times,
is able to detect them ahead of time, although still with
high MSE values overall. Furthermore, it was evident that the
threshold T defined to consider the spikes highly influences
the “sensitivity” towards spikes. In Figure 11 is a comparison
of a FNN trained with a threshold T = 7 – Figure 11a; and the
same FNN trained with T = 15 Figure 11b. A lower threshold
will count more spikes, as it will require a lower amplitude
to be considered and counted as a spike. And vice-versa for a



higher threshold.

(a) FNN model forecast of free RAM memory with a
spike detection threshold of T = 7.

(b) FNN model forecast of free RAM memory with a
spike detection threshold of T = 15.

Fig. 11. Graphical comparison of the forecasts over different threshold values
for the period reduction trial.

From Figure 11a it is clear that the network was able
to forecast steep oscillations (although not with the correct
amplitude). However, it also does forecast some oscillations
shortly before time (for example, around the time-step 230),
and even some oscillations that did not take place at all (for
example, around the time-step 190). In Figure 11b, with a
less sensitive threshold line, the model does not forecast steep
oscillations so easily and instead tries to follow the metric’s
previous values. Although this second one does not seem to
add any valuable forecasting information, it does result in a
lower MSE – 26.57, which is significantly lower than 33.74
for Figure 11a.

B. Event Prediction

To illustrate the behaviour and performance of the algo-
rithms developed for event prediction, the set of input metrics
described in Section V-A was used alongside two different
events S1 and S2 that the models learned do predict. These
events are related to problems in IT systems that are useful
to be predicted in advance of the actual occurrence. Both S1

and S2 are referent to services running on the same machine
where the metrics were collected, service 1 and service 2,
respectively. Whenever service 1 crashes or is down, the event
S1 is triggered, and when it is back up and running, the event

S1 is signalled and reverts the trigger, producing this way
a dataset of the form of Table III. For service 2, the same
mechanism is used with the correspondent event S2. For the
event prediction problems, the dataset split into training set
and test set was also of 80% and 20%, respectively. To have a
clearer visualization of the occurrence of events alongside IT
systems, one can look at the example of Figure 7.

The ANN models studied were also experimented for a
vast range of hidden nodes and stacked up layers, following
the implementation techniques described in Section IV-B. In
Table VII is a summary of the intervals tested for each
architecture.

TABLE VII
RANGES OF HYPERPARAMETERS EXPERIMENTED FOR THE EVENT

PREDICTION MODELS.

Model Nodes Layers
FNN [15, 100] [1, 6]

Vanilla RNN variants [15, 500] [1, 3]
Encoder-decoder variants [15, 150] [1, 3]

Attention Encoder-decoder variants [15, 150] [1, 3]
Transformer 8 [1, 10]

The best performing configurations for each model are
present in Table VIII, alongside the correspondent evaluation
metrics described in Section IV-B7 – precision (P) and recall
(R).

TABLE VIII
BEST PERFORMING CONFIGURATIONS FOR THE EVENT PREDICTION

MODELS – WITH THE CORRESPONDING PRECISION AND RECALL.

Model Nodes Layers S1 S2

P R P R
FNN 45-60 2 48.6 56.0 47.8 58.9

Vanilla RNN 35 1 36.7 35.5 33.7 34.8
Vanilla LSTM 25 1 43.8 44.2 45.1 51.0
Vanilla GRU 30 1 40.0 41.6 44.8 44.4
Enc-dec RNN 25 1 33.6 35.3 31.3 35.4

Enc-dec LSTM 20 1 36.4 34.8 35.2 35.7
Enc-dec GRU 15 1 34.2 34.2 36.8 32.2

Att. RNN 30 1 37.2 32.9 34.1 34.5
Att. LSTM 25 1 41.8 32.9 38.2 37.6
Att. GRU 30 1 38.1 31.1 36.1 37.3

Transformer 8 6 45.3 40.7 48.3 41.0

The event prediction algorithms’ results are not ideal, but
already provide useful outputs and show that the algorithms
were able to learn from the input data on how to predict
events. The FNN is the undisputed winner with the tech-
niques developed for these problems, in both precision and
recall measurements. The vanilla LSTM and GRU networks
also performed reasonably and, surprisingly, the Transformer
outperformed all of the other encoder-decoder models.

Given that the oscillation detections (described in Sec-
tion IV-B) were the key for the models to learn to predict the
event occurrences, the FNN managed to take better advantage
of them due to the fully connected layers that compose its
architecture. The RNN variants, on the other hand, process
the inputs sequentially, which attenuates the presence of the
spikes over the network. The fact that the encoder-decoder



architectures performed bellow the vanilla RNN only strength-
ens this hypothesis, given that the inputs have to go through
two entire RNNs. The attention mechanism still caught up
some information that faded through the encoder-decoder but
still underperformed the vanilla RNN models. For last, the
Transformer does not have the feedback loop of all the RNN
cells based models and thus is able to better capture the
oscillations information from the inputs. Nonetheless, it still
underperformed the integral fully connected layers of the FNN
model, that are able to interpret the oscillation detection inputs
and directly forward it to predict the events.

Moreover, the minority class oversampling technique used
for all the above results was implemented with a ratio of
ROMC = 0.5. This parameter highly influences the outputs
and might be important to adjust it according to the pro-
grammer’s preferences and needs. If the ratio is increased, the
model will be fed with more event occurrences, which will
result in a lower precision but a higher recall. On the other
hand, if the ratio RMOC is decreased, the model will be fed
with fewer event occurrences, which will result in the opposite
– higher precision and lower recall. In Table IX are illustrative
results of experiments with difference ratio RMOC values by
the best performing model – FNN.

TABLE IX
ROMC VARIATIONS FOR EVENT PREDICTIONS WITH THE FNN MODEL OF

TABLE VIII.

ROMC
S1 S2

P R P R
0.25 70.34 37.05 68.43 39.72
0.5 48.55 55.95 47.75 58.94

0.75 39.08 71.21 38.30 75.73

VI. CONCLUSION

A. Time-series forecasting

The more advanced and complex models – vanilla encoder-
decoders, encoder-decoders with the attention mechanism, and
Transformers – could not outperform the vanilla RNN models,
namely the LSTM which is the model that scored the lowest
MSE in tests. Unfortunately, none of the models tested in this
work delivered encouraging results. The reason could have
either been that the algorithms were not suitable to model the
data, or that the data itself is not capable of establishing causal
factors. Consequently, each in their own way, the models ended
up learning naive approaches or to just output a constant
in order to minimize the loss function, regardless of the
“reasonless” outputs. Moreover, given the disappointing results
in this section, an alternative data preprocessing/rearrangement
technique was employed (described in Section IV-A6), to try to
make sense of spikes present in the data and maybe justify the
bad results. Moreover, this experiment was not intended to be
put into production, as it was incompatible with the monitoring
platform where the algorithms were deployed. However, due
to the scarce data needed for this experiment, solid conclusions
could not be taken. Nonetheless, the spikes counting technique
helped the FNNs to forecast steep oscillations in data, that

could not have been done before (even though these forecasts
were unstable).

B. Event Prediction using time-series

A visual data analysis of the problem recognized that often
event occurrences were surrounded by data oscillations on the
metrics collected on the same machine as the events. Ac-
cordingly, a method to detect these oscillations (with standard
deviation) and explicitly feed that information to the model
was developed (described in Section IV-B4). The oscillations
detection approach significantly improved the predictions, that
before this treatment had very poor performances. As reported
in Section V-B, the predictions are not ideal, but their outputs
can be useful and are already capable of being interpreted.
The FNN is the model that revealed the best performances,
as it can take batter advantage of the oscillation detection
data thanks to the fully connected layers that composes its
architecture. The recurrent networks end up attenuating the
oscillation detection inputs in their feedback loops, resulting
in worse results than the simpler FNN. The Transformer
does not comprise any recurrent mechanisms and thus is
able to forward more easily the oscillation detection inputs
to the outputs of the network. Even though still behind the
FNN, the Transformer outperformed the other methods based
in recurrent units. Lastly, the oversampling minority class
technique can be manipulated, by tuning the ratio ROMC as
desired, which will result in projecting a deliberate bias in the
predictions, to either be riskier or more conservative (complete
explanation in Section V-B).

REFERENCES

[1] (2019) Importance and benefits of predictive and preventive main-
tenance. [Online]. Available: https://www.eaglecmms.com/importance-
and-benefits-of-predictive-and-preventive-maintenance/

[2] (2018) State of deep learning: Industrial PdM | LinkedIn. [Online].
Available: https://www.linkedin.com/pulse/deep-learning-iiot-checklist-
lothar-schubert/

[3] J. L. Elman, “Finding structure in time,” vol. 14, no. 2, pp. 179–211,
1990. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/036402139090002E

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” vol. 9,
pp. 1735–80, 1997.

[5] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” 2014.
[Online]. Available: http://arxiv.org/abs/1406.1078

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” 2014. [Online]. Available: http:
//arxiv.org/abs/1409.3215

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2016. [Online]. Available:
http://arxiv.org/abs/1409.0473

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: http://arxiv.org/abs/1706.03762

[9] N. Qian, “On the momentum term in gradient descent learning
algorithms,” vol. 12, no. 1, pp. 145–151, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608098001166

[10] Neural networks and deep learning. [Online]. Available: https:
//www.coursera.org/learn/neural-networks-deep-learning

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: http://arxiv.org/abs/1412.6980

[12] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” p. 25, 2012.

https://www.eaglecmms.com/importance-and-benefits-of-predictive-and-preventive-maintenance/
https://www.eaglecmms.com/importance-and-benefits-of-predictive-and-preventive-maintenance/
https://www.linkedin.com/pulse/deep-learning-iiot-checklist-lothar-schubert/
https://www.linkedin.com/pulse/deep-learning-iiot-checklist-lothar-schubert/
http://www.sciencedirect.com/science/article/pii/036402139090002E
http://www.sciencedirect.com/science/article/pii/036402139090002E
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1706.03762
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
http://arxiv.org/abs/1412.6980

	Introduction
	Related Work
	Dataset Description
	Time-series Forecasting
	Event Prediction


	Implementations
	Time-series Forecasting
	Data normalization
	Sliding Window
	Hyperparameters of the intelligent method
	Cross-validation
	Evaluation Metrics
	Period Reduction trial

	Event Prediction
	Event to time-series
	Data normalization
	Sliding Window
	Oscillations detection
	Minority Class Oversampling
	Intelligent Methods Implementation
	Evaluation Metrics


	Results and Discussion
	Time-series Forecasting
	Period Reduction Trial

	Event Prediction

	Conclusion
	Time-series forecasting
	Event Prediction using time-series

	References

