Secure Message Exchange System based on a
SmartFusion2 SoC and its Evaluation as a HSM

Alexandre Rodrigues
INESC-ID, IST, Universidade de Lisboa
alexandre.v.rodrigues @tecnico.ulisboa.pt

Abstract—Hardware Security Modules (HSM) play a critical
role in system security and cryptographic key management.
However, they seldom have been used for securing communi-
cations between organizations and people. This paper presents a
solution focused on providing authentication and confidentiality
to communications, using a low-cost and portable HSM. This
work studied and evaluated the services of the SmartFusion2
System-on-Chip (SoC), as the HSM of this system. The board
provides a robust set of security services: AES encryption, a hash-
ing function, HMAC, ECC primitives, a true random number
generator, tamper detection and zeroization. The performance of
these services was modelled and their limitations presented. The
developed proof of concept focused on continuously encrypting
and authenticating communications as an intermediary between
the owner, and other communicating users. A key management
solution is also provided, which takes advantage of the secure
storage, given the device limitations, allowing for regular key
updates. The developed system also provides shared key agree-
ment with ECDH. The board is well-equipped to function as a
HSM, but has some feature, memory and performance limitations
herein analysed. This work provides the necessary groundwork
and analysis for future work, using the SmartFusion2 as a HSM.

Index Terms—Hardware Security Module; SmartFusion2 SoC;
Confidentiality; Authentication.

I. INTRODUCTION

Communications between individuals and organizations are
a recurring target for attackers. This is of special concern
to high profile individuals, who handle sensitive information,
such as government officials and company executives. The
security of communications depends on the cryptography keys
and passwords used. These are usually stored, along with
other sensitive information, in the user’s computer, or not
at all. A more hardened and secure solution is to separate
the computer used for message exchange, and the device
responsible for managing the sensitive data. A secure and
independent solution is needed to establish secure channels
of communication, and bear the responsibility of key storage
and management.

There are dedicated devices currently on the market, de-
signed to secure data and store keys. These types of devices
have physical tamper-resistant measures against attackers, who
wish to read the information on the device. They also provide
fail-safe mechanisms in case of an attack. Smart Cards pro-
vide secure and portable tamper-resistant storage. They have
lower processing power, and a smaller memory. They have a
lower cost, so can be produced in bulk and easily replaced.
Hardware Security Modules (HSM) are high grade devices,

with more computational power and larger storage capacity
for secrets. HSM have seldom been used for securing people’s
communications. They are frequently used to solve specific
problems in the retail, server and healthcare industries [1],
[2], [3], [4]. There is an available opportunity and need for
a system, based on these devices, to enable and secure data
exchange between entities. Such a system should store all
security critical information and allow authorized individuals
to securely communicate, while having a relatively low cost
and be easy-to-use, so it can be distributed to multiple entities.

Herein, a system to secure channels of communication, built
on a low cost SmartFusion2 System-on-Chip (SoC) is pro-
posed. Contrary to existing solutions, this system focuses on
providing confidentiality and authentication to data exchange
between individuals, using internal keys, with the flexibility
to model it to different use case scenarios. Additionally, the
system can generate digital signatures and shared keys with
asymmetric cryptography, allowing users to connect with new
entities with similar devices, without exposing keys. The
crafted system provides secure key storage. A key management
solution was devised to improve the device’s storage, by
overcoming key storage limitations and increasing its lifes-
pan, while retaining its functionalities. A common developer
interface, with PKCS#11, is available to interface with all the
developed services. This provides flexibility for developers
to adopt this system for their own solutions. To demonstrate
this, the system was used in a TCP library to secure the data
channel between the client and server, using the device as an
intermediary.

The SmartFusion2 cryptographic accelerators and developed
services’ performance was tested. Accurate performance mod-
els of these services were calculated and are presented.This
provides an accurate prediction of the board’s behaviour to
future developers to base their work on. Compared to existing
market solutions, this system provides a low cost HSM imple-
mentation and characterization. It offers comparable capabili-
ties, engineered to their optimal level, applied to the presented
scenario.

The paper is organized as follows: Section II covers the nec-
essary technical background. Section III presents the relevant
state of the art. Section IV presents the proposed solution,
while Section V lays out the implementation details. The
proposed solution evaluation and analysis is presented in
Section VI. Section VII concludes the paper.



II. BACKGROUND

This section details the technical concepts required to un-
derstand the proposed solution. It provides an overview of
cryptography services and algorithms. Then it presents several
general purpose computing devices.

A. Cryptography

There are four important cryptographic services relevant to
this work. Confidentiality is used to scramble information,
and hide the content from unauthorized entities. Integrity
protects data from unauthorized modification. Authentication
ascertains the origin of a message. Non-Repudiation prevents
an entity from denying the authorship of a document or
message. Symmetric ciphers are frequently used to provide
authentication and confidentiality, using symmetric keys. Ad-
vanced Encryption Standard (AES) is one of the most popular
symmetric-key algorithms. Asymmetric cryptography is often
used to provide non-repudiation through digital signatures
and agree on shared symmetric keys. There are two popular
algorithms for public-key encryption, RSA and ECC [5]. ECC
keys have the same level of security as RSA keys, with a
smaller key size, e.g., a 160-bit ECC private key has similar
security to a 1024-bit RSA key [6]. Therefore, ECC keys are
more suitable for devices with storage limitations. ECDH is a
popular key agreement algorithm and ECDSA for generating
digital signatures, both using ECC keys.

B. Hardware Security Modules

A HSM is a high grade computational device, responsible
for storage, management and generation of cryptographic keys,
as well as cryptographic operations. Keys are never exposed
outside and all operations are performed inside the HSM.
These devices have physical security mechanisms to achieve
tamper-resistance, random number generators, support several
cryptographic algorithms and have fail-safe mechanisms in
place, in case of an attack, e.g., overwriting all memories and
configuration with zeros (zeroization) [7], [8]. These modules
are usually costlier than other computational systems but are
more advanced in processing power and available services.

III. STATE OF THE ART

In general, HSM have been applied in several contexts,
to exploit their cryptographic services, secure storage and
physical tamper protections.

Lesjak et al. [1] developed a system to secure remote
snapshot acquisition, between the vendor and customers, by
attaching a HSM to the products distributed among customers.
The messages are protected with the authenticated-encryption
scheme AES-GCM and a TLS connection. The Infineon secu-
rity controller stores the TLS keys, and protects the data with
the authenticated-encryption scheme, using its True Random
Number Generator (TRNG) and a DH based algorithm, for
key establishment with ECC keys. The controller has protec-
tions against side-channel attacks such as Differential Power
Analysis (DPA) and physical manipulation.

Seol et al. [2] proposed a system to isolate critical operations
and sensitive data from cloud administrators, by implementing
a HSM next to a virtual machine.

Wolf et al. [3] implemented a HSM on a 663 Xilinx Virtex-
5 FPGA, to secure network communications in vehicles. The
authors implemented several cryptographic algorithms on the
FPGA, e.g., AES-128 bit and ECC point-multiplication with a
256 bit curve. The board was connected to a microcontroller
running linux, with additional algorithms available from a
cryptographic library.

An IBM 4764 PCI-X cryptographic coprocessor has been
used to store and manage symmetric keys, which encrypt
biomedical data [4]. The symmetric keys, used to encrypt
the database, are transferred to the device using public-key
cryptography. All database queries are performed by the copro-
cessor, since only it has the keys. The system uses AES with
128 bit encryption. Notably, the device has physical measures
which ensure the keys are not leaked and the data is erased
upon any attack.

Wherry [9] recognizes the need for a HSM in public key
infrastructures (PKIs) to protect the cryptographic keys. Lorch
et al. [10] uses an IBM 4758 cryptographic coprocessor to
protect keys in a secure online repository for PKIs. The
author’s were able to store more than 800 2048-bit RSA key
pairs on the device’s secure storage. The PKI system interfaces
with the HSM using a PKCS#11 interface. Keys are generated
in the coprocessor and the private key is never extracted.
The RSA implementation is used to sign certificates, while
the public key can be extracted to the application. A PIN is
necessary to access the coprocessor.

Beyond actual systems, several protocols and HSM ap-
plications have been proposed. Rssler et al. [11] applied a
HSM to an e-voting electronic ballot box. The HSM is used
for decrypting and verifying the signature of cast votes. The
votes decryption is done solely inside the electronic ballot
box during the counting process. Voters sign their ballot
using a smart card, e.g., their citizen card. Only the HSM
is capable of counting votes, using its private key. The author
recommends 1024 bit RSA or 160 bit ECC keys for an actual
implementation.

Additionally, authors have proposed using a HSM to se-
cure web services by providing secure storage for keys and
cryptography algorithms in the TLS protocol, but also for
providing a complete security service, not just an algorithm
implementation [12], [13].

Martina et al. [14] presents OpenHSM, an open crypto-
graphic protocol to manage private keys in an application
embedded in a HSM. The protocol was implemented with a
customized FreeBSD system. The authors introduced admin-
istrator and operator groups to manage private keys inside the
HSM. The hardware was projected to be tamper proof using
a Security Unit (SU) to manage all sensors and protection
mechanisms. The OpenSSL library and SQLite database were
used to provide smart card support, data storage, secret sharing
and X509v3 certificates.

Apart from developed systems, several market HSMs



have been studied. Kehret et al. [15] studied two devices.
VaultIC460, a secure microcontroller manufactured by Inside
Secure with a RISC CPU. It includes a varied offering of
cryptographic algorithms, such as, AES encryption, public-
key cryptography with RSA and ECC, Message Authentication
Code (MAC), SHA, SSL support, as well as a random num-
ber generator. Additionally it includes several authentication
mechanisms for users, to secure the connection between the
application and device. It includes 112 KB of tamper resistant
memory for key storage. ATECCS508A from Microsemi is a
small security controller with the asymmetric key algorithms:
ECDSA and ECDH, along with SHA, a TRNG and storage
of up to sixteen 256 bit keys. These types of controllers, in
general, are not suitable for this work. They are very limited,
with no symmetric key algorithms, preventing encryption of
large amounts of data. They are designed to be added to
Internet of Things devices.

The survey [16] studies the features of four HSM on the
market, Keyper v2 by AEP, nShield Connect 6000 by Thales,
Safenet Luna and Utimaco CryptoServer. All devices support
authentication using smartcards, password or a PIN. The
AEP and Utimaco also have additional smartcard integration,
for backing up the device’s internal keys. All devices have
tamper resistant storage, a TRNG, as well as a varied range
of supported cryptographic services. Several AES encryption
modes for both 128 and 256 bit keys, SHA, HMAC and
public-key cryptography with RSA. ECDSA and ECDH are
supported by the devices from Safenet and Utimaco. All
devices provide a PKCS#11 interface implementation for all
cryptography services. The provided API can be used to
build an application adapted to each user’s requirements. The
PKCS#11 implementation does not output any unencrypted
sensitive information, such as keys.

One of the smallest and cheapest devices, the YubiHSM
2 by Yubico [17], is a USB sized device for €650. It
supports several SHA algorithms, RSA, the asymmetric key
ECC algorithms: ECDSA and ECDH, with multiple curves, a
TRNG and the AES-CCM authenticated encryption algorithm.
It provides a PKCS#11 implementation, 128KB of tamper
resistant storage for keys, and an authenticated and encrypted
connection, between the PKCS#11 API calls and the device.
Compared to these HSMs which provide a PKCS#11 interface
along with the device, the proposed solution offers a lower
cost system with an API optimized for secure communications,
using a SmartFusion2 SoC.

IV. PROPOSED SOLUTION

This paper proposes a low cost system based on a HSM
responsible for securing communications between individuals
and organizations. The HSM acts as an intermediary, where
the data is forwarded and received back, before it is sent to its
destination. The SmartFusion2 SoC was analysed to function
as a HSM, and be used as the HSM of the system. The board
integrates a non-volatile FPGA with a SoC, an internal Non-
Volatile Memory (eNVM) of 512 KB and SRAM-PUF secure
storage. Its RAM has 64 KB protected against SEU or 80 KB

unprotected. The board has an embedded ARM Cortex-M3
processor with a TRNG and some cryptography algorithms:
AES, SHA-256, HMAC and ECC. The device also has tamper
detection mechanisms which can be used to trigger zeroization,
which erases all its information.

The system proposed is composed of two main compo-
nents: the physical device, responsible for all operations,
and an application on the user’s computer, which provides a
straightforward interface to users. The HSM’s services can be
accessed through a PKCS#11 API, which provides a common
developer interface.

Several services are proposed and detailed next. A secure
data exchange service, a key management solution, shared key
agreement, qualified digital signatures, key importation and
several tamper protection mechanisms. To access the services,
the user must authenticate with a PIN number. This number
can be changed after login.

A. Secure Data Exchange

The main goal of this solution is to provide confidentiality,
integrity and authentication, to entities with identical devices.
To grant these services, communicating entities must have
previously agreed on a symmetric key. This key will be stored
in the devices of both entities, and is never exposed to the
outside.

Symmetric encryption schemes provide confidentiality to
data, while MAC algorithms provide authentication. AEAD
schemes, which authenticate and encrypt messages, such as
AES-GCM, may be more efficient and are less likely to
be misused, compared to combining separate encryption and
authentication schemes. Unfortunately, devices such as the
SmartFusion2 SoC, do not provide AEAD schemes. However,
it provides separate encryption and authentication algorithms.
Thus, the proposed solution combines an encryption and
authentication scheme, in order to provide the necessary cryp-
tography services. Specifically, AES with CBC encryption and
HMAC with the SHA-256 hash function. Studies recommend
combining a secure encryption and secure MAC, with the
encrypt-then-MAC method [18]. This method encrypts the
plaintext first, then generates the MAC from the generated
ciphertext.

The proposed encryption protocol is pictured in Equation 1.
The plaintext data is encrypted with an internal symmetric key
and a randomly generated IV, with the board’s TRNG. Next,
a MAC is generated from the concatenated IV and ciphertext.
If the IV can be modified by an attacker, the original plaintext
cannot be fully recoverable. Therefore, it is important that the
MAC is generated from both the ciphertext and IV, this way
the receiver can detect if either information was altered. The
output data is the concatenation of the IV, ciphertext and MAC.

Eyey{Data, IV}, MACyey{IV + Egey{Data,IV}} (1)

The decryption protocol is pictured in Equation 2. The proto-
col follows the same process as the previous protocol, but in
reverse order. First, a new MAC is generated from the received
IV and ciphertext. Then, the computed and received MACs



are compared. If identical, the ciphertext is decrypted with
the same internal symmetric key used for encryption and the
received IV, to obtain the plaintext.

(M ACkey{IV + Ciphertext} == MAC) =>

) ()
=> Ejey{Ciphertext, IV} => Data

When choosing key sizes, and taking into account the
limited storage capacity of the board, a smaller, but still secure,
key size is preferred. The AES 128 bit and 256 bit services
guarantee 128 and 256 bit security respectively. HMAC with
SHA-256 provides 256 bit security, with 256 bit keys. Ac-
cording to the NIST recommendations [19], algorithms which
guarantee both 128 and 256 bit security, are expected to be
secure until 2031 and beyond. If storage is extremely limited,
AES with 128 bit keys is a secure and adequate option.
However, with 256 bit security, the system will have a longer
life expectancy. The key used for HMAC should be different
from the one used in encryption, to ensure the best security
practices, by not reusing the same key in different algorithms.
So in practice, a key used for securing communications is split
in two keys, one for encryption and one for authentication.

Considering the RAM is limited to a maximum of 80 KB
and the device does not provide either a continuous encryption
or authentication implementation, there is a limit to the data
size which can be secured by the service. To overcome this
limitation, the characteristics of the AES CBC mode can be
taken advantage of. CBC mode encrypts data one 16 byte
block at a time, using an IV. The IV of the first block is
the randomly generated value from the TRNG. The IV of
the subsequent blocks, is the previously computed ciphertext
block. If the data is received in chunks, the IV of the first
chunk is the randomly generated value, while the IV of the
next chunk is the last ciphertext block of the previous chunk.
This allows continuous encryption of data divided in chunks.
To avoid padding and guarantee CBC’s security, ciphertext
stealing was implemented.

The total data length is not sent initially, instead, the length
of each chunk is sent before the chunk. This allows for a
more flexible system. User applications calling the PKCS#11
API, can send data to the device as it is needed, even if it
does not have the complete data initially. The downside of
this approach is the device does not know the amount of data
it will encrypt. Therefore, the internal buffer must be managed,
so it adds complexity to the implementation.

As previously introduced, the board’s AES implementation
is not resistant to side-channel attacks, such as DPA. This
means attackers with physical access to the device can po-
tentially read and compromise the keys stored internally. In
order to mitigate this and build a more robust system, a 128
bit AES core implemented in the board’s FPGA, resistant to
side-channel attacks, was also tested with this service.

B. Key Management

The system is responsible for the storage, security and
management of its keys. Thus, it is essential for the system

to have a secure and flexible key management solution, which
takes advantage of the device’s secure storage.

The SmartFusion2 provides a secure storage service, the
SRAM-PUF. It has 56 available key slots, where one key can
be saved in each slot with a maximum of 512 bytes for a single
key. The service uses private eNVM pages to store part of the
key data, which are limited to 1000 writes for each page, for
a predicted lifespan of 20 years. Thus, there is a limit for the
key storage frequency in the PUF service. It should be used
carefully, restraining how often it is written to, in order to
preserve its lifespan.

So as to mitigate the limitation of the PUF storage, an
alternate solution, in which the keys are stored in a non
volatile memory was developed, as depicted in Figure 1. In

" SRAM-PUF |

= T )

Key

l MAC
|

Encrypt +

@—’ Authenticate

Key List

IV +

Giphertex_! a

Storage

Fig. 1. Key management solution to store keys encrypted and authenticated
in a non volatile memory using the SRAM-PUF secure storage

order to securely store the keys, they must be encrypted so
as to hide their contents, and authenticated to detect any
unauthorized modifications. To encrypt and authenticate keys,
a symmetric key is necessary. This key is randomly generated
in the device and stored in a dedicated PUF slot, only used for
storing keys in memory. The ciphertext of the keys is stored in
memory, along with the IV used for encryption. Both pieces
of information are authenticated by generating a MAC, which
is stored in another dedicated PUF slot. With this solution,
a key can be accessed by generating the MAC of the stored
data and comparing it to the one stored in the PUF slot. If
they match, the keys are authenticated, and can be decrypted
with the IV and dedicated PUF key.

While this solution still uses the PUF service, its usage is
more measured. By using the PUF service, when one key is
stored one slot is written to. In the case of the implemented
solution, for each change of the key list stored in memory,
only the MAC slot is written to. If keys are added one at a
time, the amount of PUF slots written per key is identical for
both options. However, multiple keys can be updated at once,
if for example a list of keys is imported. In this case, multiple
keys can be added or updated, with only one write to a PUF
slot.

The amount of available key storage is not a problem, since
the board allows for external storage devices to be connected,
where keys can be stored, encrypted and authenticated. If



attackers get access to the key storage, the encrypted keys
cannot be read, without the key protected in the SRAM-PUF.

C. Import Keys

To complement the key management solution, a key import
operation was implemented, which imports a set of encrypted
keys into the device. The service allows entities to receive a
set of encrypted keys from another entity, forward the list
to their device, which decrypts them with the secure data
exchange service and stores them in the non volatile storage.
The entity from which the keys are received is responsible for
the distribution of keys among entities. So as to communicate
with the trusted entity, all devices are delivered with a stored
symmetric key for secure communications with the entity.

D. Key Generation

The goal of this service is to enable agreement of symmetric
keys between entities with identical devices. This enables enti-
ties with no previously agreed keys, to securely communicate
with each other, using internal keys stored in their devices.
Two entities can agree on a symmetric key, using public key
cryptography and the ECDH algorithm. Both entities must
have a private and public key pair, and share both public keys
with the other entity. Only the private key must remain a secret,
the public key can be shared. Then, both entities can generate
the same key, using their private key and the peer’s public
key. The SmartFusion2 SoC provides the necessary ECC scalar
multiplication accelerator, to generate a shared key with the
ECDH algorithm.

As mentioned, both entities must share their device’s public
key with the other entity. They must do it in a way, so
that they can be sure the received public key is from the
actual entity they wish to communicate with, and not an
impersonator. This is usually achieved by a PKI, which is
a trusted third party which stores, validates and distributes
public keys. Instead of entities sharing public keys using an
untrustworthy communication service, with no validation of
the traded public keys, a PKI inspired system can be used. In
this system, keys are exchanged using an intermediary, which
is a special entity, trusted by both sides. Both entities should
have previously agreed keys with the special entity, so they
can securely send their public key. Thus, the special entity is
responsible for distributing the public keys. Entities can trust
the received keys belong to the correct entity.

E. Qualified Digital Signatures

Digital signatures provide non-repudiation to a piece of
data. This prevents an entity from denying the authorship of a
message. Qualified signatures are a special type of signatures
where the private keys, which generated them, are stored
inside a device, such as a HSM, and are never exposed to
the outside. Therefore, the signature must be generated inside
the HSM, and the device should support an algorithm for the
generation of signatures, such as ECDSA. The private key,
which will generate signatures, identifies the entity and is
stored inside the device. In order for the device to be ready

for the generation of signatures, the key must be randomly
generated and subsequently stored in the device, before it is
delivered to entities.

The device can generate signatures with the device’s private
ECC key, an implementation of the ECDSA algorithm and
the SHA-256 hash function. The board is not equipped with a
ECDSA implementation. The algorithm can be implemented,
by combining the provided ECC security cores, TRNG, the
SHA core, and a big numbers library, which must allow
operations between numbers of at least 48 bytes.

F. Tamper Detection

An important part of a HSM based system is its physical
protection measures against tampering and attacks. In order
to defend the system against physical threats, the tamper
detection, zeroization and secure boot functionalities of the
SmartFusion2 SoC were taken advantage of.

Tamper attacks and possible attempts can be detected by
the board. When these events occur, flags are asynchronously
set, which warn the user from potential anomalies, errors and
attacks. With this information, measures, such as zeroization,
can be taken to protect the system. Zeroization is a process
which erases all sensitive information from the device. This
process can place the device in three possible states. It can
be rendered permanently unusable, reset to its initial state or
recoverable only with a key file supplied by Microsemi.

Another security measure of the SmartFusion2 board, is
the computation of digests from the eNVM blocks and fabric
configuration, which also holds the code. Every time the board
is programmed or the configuration is changed, new digests
are computed and stored in secure storage. On boot, the board
computes the digests and compares them to the stored values.
This allows the board to safeguard the integrity of its storage
and configuration.

When the tamper attacks are flagged in the implemented
system, the device does not accept any more PKCS#11 calls
and zeroization is performed on the device, erasing all keys,
configuration and data. Additionally, the secure boot checks
are turned on. Zeroization was configured to reset the device
to its initial state from fabric. The user also has the option
to manually trigger zeroization, by pressing a button on the
board. These measures can have a denial-of-service effect on
the system, but are a trade-off deemed necessary, in order
to avoid successful attacks and potential leaks of sensitive
information.

V. IMPLEMENTATION

The system was implemented on a SmartFusion2 SoC
Security Evaluation Kit, version M2S090TS from Microsemi.
It combines an ARM-Cortex M3, a non-volatile memory
(eNVM), FPGA and several cryptographic accelerators: AES-
256, SHA-256, HMAC, SRAM-PUF secure storage and ECC
multiplication and addition on the NIST P-384 curve. By
default, the RAM is 64 KB. For each byte of RAM, there
are 2 bits for error detection and correction, a total of 16
KB, which mitigates Single Event Upsets (SEU). It corrects



1 bit errors and detects up to 2 bit errors. The board was
configured with this setting disabled in Libero software, to
free the additional 16 KB of memory, for a total of 80 KB.
The computer and device are connected through a serial con-
nection using the available UART controller. All the services
implemented on the Smartfusion2 are accessed through the
developed PKCS#11 API It was implemented on Windows
10 with C/C++ for the open source MinGW compiler.

The device was configured to detect tamper attempts. When
the tamper attacks are flagged in the implemented system,
the device does not accept any more PKCS#11 calls and
zeroization is performed on the device, erasing all keys,
configuration and data. Zeroization was configured to reset
the device to its initial state from fabric. The user also has the
option to manually trigger zeroization, by pressing a button
on the board. Additionally, the secure boot checks are turned
on.

Regarding the secure data service, with all the code and
drivers needed for the implementation, only around 36 KB of
space for data buffers is available. This means the device can
secure up to 36 KB of data, using the same buffer for input
and output. This was overcome by the proposed continuous
secure data exchange service, which was implemented using
the device’s AES SoC accelerator in CBC mode and a HMAC
software library [20].

To implement ECDSA, a big numbers library was included
[21]. Qualified digital signatures generation was implemented,
without verification. The library takes up around 54 KB of
RAM space. Thus, this functionality only works with a limited
buffer size of around 1.5 KB, if all other implemented features
are disabled. Future work should revise this functionality, by
evaluating existing lightweight libraries, which provide the
necessary features, or even a custom implementation.

A. TCP Channel

With the secure data exchange service, entities can securely
trade messages using an offline service such as e-mail or
an online chat service. In order to truly establish a secure
communication channel, and demonstrate the usage of the
common developer interface, the secure data service was
used to encrypt and authenticate a TCP connection. A TCP
implementation using Windows sockets is used to exchange
data through a channel, between a client and server, running
on the same computer. The library was altered, to call the
PKCS#11 API of the SmartFusion2 system, to encrypt the
plaintext data in each TCP packet, before it is sent. Likewise,
when a packet is received, the decryption API is called, in
order to authenticate and retrieve the plaintext.

Before a secure TCP connection is established, both entities
must agree on a symmetric session key, which will be used
to encrypt and authenticate the connection. This is achieved
by using the previously described key generation service with
ECDH. After each side trades their public keys, they can
compute the same symmetric key. In order to emulate two
communicating entities using a similar system, one side is
running a local implementation of the same cryptographic

services of the proposed system, with the mbedTLS 2.26.0
library.

VI. RESULTS AND ANALYSIS

This section presents the evaluation of the SmartFusion2
board and the developed prototype, its services, their perfor-
mance, capabilities and limitations. The tests were all per-
formed on a Windows 10 computer, running the user software
which calls the implemented PKCS#11 API. Since the board
does not provide a clock and API to measure elapsed time,
the time is measured on the computer between PKCS#11
API calls. The elapsed time was measured with microseconds
precision.

Each component was tested with at least 30 repetitions,
in order to achieve a variance below 1%. Aside from the
communications channel, the rest of the services were tested
by minimizing the communications overhead. This way, the
isolated service performance in the device can be more accu-
rately assessed.

After measuring the results for multiple services, it was
observed that most followed a close to perfect linear evolution,
in function of the processed data size. Thus, their performance
can be modeled with a formula composed of two different
components Trorai = Tcoonstant + I Data * K B, a constant
value independent of processed data, and a factor dependent
on the processed data size. These values were calculated and
are presented next to the median average percentage error, so
as to assess the accuracy of the models.

In order to assess the communication channel performance,
and its impact on the system, the average time to transmit
data was measured. The experimental throughput stabilized
around 11 KB/s, as data size increased. The performance of
the data channel, in milliseconds, can be modelled by a linear
equation, with values T},tq = 7.281 + 88.638 x K B, and a
median average percentage error of 0.92 %.

A. SmartFusion2 Services

All the security accelerators of the SmartFusion2 SoC were
tested. This includes the TRNG, AES SoC accelerator, SHA,
HMAC, KeyTree and ECC scalar multiplication and point
addition(Add.) services. Additionally, a side-channel resistant
128 bit AES core implemented in the FPGA was also tested.
The isolated service throughput results are presented in Figure
2.

The AES SoC service was tested with all possible variations.
Namely, with 128 bit and 256 bit keys, with all four available
modes and with encryption and decryption. Only one result is
shown, since there was no variation among them. The AES
mode, key size or encryption/decryption operation does not
impact the performance. Therefore, there is no performance
advantage in choosing CTR mode over CBC mode, or any
other mode.

Most services throughput, shown in KB/ms, increases and
eventually stabilizes at a specific value. SHA stabilizes at
around 1.2 KB/ms, and both SoC AES and HMAC at around
0.1 KB/ms. The AES core implemented on the FPGA is



—a-— AES SoC —e— AES FPGA
—8— SHA SoC —#— HMAC SoC

14

12

0.8

0.6

Throughput (KB/ms)

0.4

0.2

0 5 10 15 20 25 30 35 40

Data (KB)

Fig. 2. Security services throughput evolution

significantly faster than the SoC AES core, with performance
comparable to the SHA accelerator. Due to its side channel
mitigations and performance advantage, it is a significantly
better choice than the AES SoC core.

All data dependent services followed a near perfect linear
evolution, in function of the processed data size, as presented
in Table I. The TRNG service was tested by generating 16

Time (ms) | AES SoC | SHA | HMAC | TRNG | Add. | ECDH

Constant 0.489 0.498 0.783 0.368 | 7.204 | 545.381
Data (KB) 11.124 0.807 7.815 0.007 - -
MAE 0.12% 0.84% | 0.13% 2.29% - -
TABLE 1

SMARTFUSION2 ACCELERATORS PROCESSING TIME PERFORMANCE
VALUES ACCORDING TO A LINEAR MODEL

random bytes, up to the maximum allowed of 128 bytes.
As expected, the performance barely increases with the data
size. The error percentages are all below 1%, except for the
TRNG service, proving these models accurately predict the
performance of the services.

Core/Software Comparison: The SHA and HMAC perfor-
mance difference results were enigmatic. The HMAC data
dependent portion, 7.815 ms, is nearly 10 times higher than the
SHA value, 0.807 ms. This means HMAC’s time performance
degrades nearly 10 times faster than the SHA performance.
This is a surprising result, since the HMAC algorithm is
composed of two hash computations and uses SHA-256, so the
results are expected to be closer. The software implementation,
included in Section V, of HMAC, SHA and AES were tested
for comparison with the SmartFusion2 SoC services. The
library used for HMAC and SHA was [20], and for AES [22].

Analyzing the time performance results in Figure 3, the
SHA and HMAC software results are almost identical, the

—8— AES SoC
—e— AES Software

—8— HMAC SoC —8— SHA SoC
HMAC Software —#— SHA Software

1000

Time (ms)

40

Data (KB)

Fig. 3. Performance comparison of the board’s cores and a software
implementation

HMAC is a slightly worse performer. Compared to the soft-
ware results, the SHA core is significantly faster, and deterio-
rates very slowly as data size increases. The opposite happens
for the HMAC core. It is convincingly a worst performer,
compared to both HMAC and SHA software implementations.
This is an ambiguous result, as there is no clear reason for the
HMAC core performance degradation, compared to the SHA
core and the software implementations. One could assume
it is caused by possible DPA mitigations, but it would still
not explain the meaningful discrepancy compared to the SHA
core, which also includes these mitigations. The AES software
implementation was tested with encryption in CBC mode and
a 256 bit key. As expected, it performs worse than the core
service. CTR mode with the same configuration was also
tested, and has very similar performance to CBC.

Memory Performance: The read and write performance of
the different device’s memories, along with the PUF service
were tested. Both eSRAM and eNVM memories were tested
from 0.5 KB to 36 KB. The PUF performance was tested from
16 bytes, up to its limit of 512 bytes.

The linear model values were calculated from the results,
and are presented in Table II.

Time (ms) | RAM(W) | NVM(R) | NVM(W) | PUFR) | PUF(W)

Constant 0.012 0.01 8.03 128.49 747.84

Data (KB) 0.014 0.02 298.10 0.006 0.008

MAE 2.76% 3.76% 0.31% 0.17% 0.06%
TABLE I

SMARTFUSION2 READ AND WRITE PERFORMANCE VALUES ACCORDING
TO A LINEAR MODEL

The results show that the PUF service barely fluctuates with
the data size, since a slot only goes up to 512 bytes. It has
an almost constant read and write performance. Regarding
the eNVM, its write performance deteriorates significantly



with increasing data sizes. The RAM write performance is
comparable to the eNVM read performance.

B. Implemented Services

This section presents the performance results of the imple-
mented services from Section V. Each service’s performance
depends on the used accelerator’s, memory access and imple-
mented logic.

—o— Encrypt+MAC —e— Decrypt+MAC
70

65

Z 60
=
5
2
=
g 55
=
=
50
45
0.1 1 10 100 1000
Data (KB)
Fig. 4. Continuous encryption and decryption throughput evolution for

increasing input data sizes

Figure 4 plots the throughput (KB/s) values for the contin-
uous encryption and decryption services. Throughput steadily
increases and stabilizes after 10 KB, at around 68 KB/s, for
both services.

Similarly to the previous tests, the time performance results
evolve linearly. The obtained values are presented in Table III.
By analysing the calculated models we can detect a difference

Time (ms) ‘ Encryption ‘ Decryption ‘ ECDSA ‘ Key Gen.

Constant 2.556 1.557 629.434 578.092
Data (KB) 14.730 14.729 - -
MAE 0.18% 0.04% - -
TABLE III

IMPLEMENTED SERVICES PROCESSING TIME PERFORMANCE VALUES
ACCORDING TO A LINEAR MODEL

in the constant component of the encryption service compared
to decryption. This is due to the random IV generation with
the board’s TRNG on the encryption service. Key generation
with ECDH performs at a constant time of 578.092 ms,
and ECDSA at 629.434 ms. Scalar multiplication has a big
impact on the performance for both ECDH and ECDSA. The
median average percentage error for the continuous encryp-
tion/decryption models is below 0.19%, so the models almost
perfectly represent its performance.

As mentioned previously, the continuous encryp-
tion/decryption with MAC implementation uses a 36
KB buffer. Thus, the service can receive chunks of up to
36 KB at a time. Since the service is continuous and can

encrypt and authenticate a limitless amount of data, the
buffer does not necessarily need to be the maximum possible
value. The service might have comparable performance with
a smaller buffer, which frees up memory space for further
implementation code.

In order to understand the impact of the buffer size on
performance, the previous test on the encryption and MAC
service was repeated, with varying buffer sizes, from 0.1 KB
up to 35 KB. All tests revealed the same linear performance
behaviour as the previous test with a 36 KB buffer. In order
to compare and understand the service performance for each
buffer size, the maximum, minimum and average throughput
are pictured in Figure 5. The worst performance, and therefore

=8 Average == Maximum =@= Minimum

70
65
60

55

Throughput (KB/s)

50 —

¢

45

40
0.05 0.5 5 50

Buffer Size (KB)

Fig. 5. Continuous encryption and MAC throughput evolution with increasing
buffer sizes

lower throughput, is achieved with the lowest data size of 0.5
KB. The throughput eventually stabilizes around its maximum
value, with data sizes higher than 20 KB. A smaller range from
the minimum to maximum throughput, for a particular buffer
size, indicates the throughput increases slower, as data size
increases.

Analysing the plot, the average throughput significantly
increases from 0,1 KB up until 5 KB, after which, the average
throughput stabilizes around 66 KB/s and the maximum at
68 KB/s. If the goal is to maximize throughput, there is no
advantage in using a buffer bigger than 10 KB. Even a 5 KB
buffer has almost identical performance.

The minimum throughput spikes at 49.5 KB/s with a 0.5
KB buffer, then is relatively constant. As discussed before, the
minimum throughput is achieved at the lowest processed data
size of 0.5 KB. Thus, by analysing the graphic, the minimum
throughput increases until the buffer size (0.5 KB) is equal
to the amount of data being processed (0.5 KB). When this
happens, the complete data can be sent in only 1 chunk.
After that, there is no benefit in having a bigger buffer size,
since the lowest amount of processed data is still 0.5 KB.
Therefore, if the amount of data which will be processed is
known beforehand, the system can be configured with a buffer



of equal size, so as to maximize performance and available
RAM space.

The SmartFusion2 SoC is a portable board, with a robust
set of security services. Compared to the existing HSMs on
the market, this device is one of the cheapest, so it is adequate
for distribution among several users. Market HSMs go from
650 up to $39,000 [23], [24]. A M2S090TS SmartFusion2
evaluation kit is priced at 384 [25].

The proposed system provides a fully functional HSM,
comparable to the state of the art offerings. It provides con-
fidentiality, authentication and non-repudiation, with tamper
detection and protection against attacks, as well as a PUF
based secure storage solution with improved lifespan and
storage capacity. Like the state of the art HSMs, it provides a
common developer interface with PKCS#11.

VII. CONCLUSION

In this paper a low cost and versatile secure message
exchange system is proposed and implemented on a Smart-
Fusion2 SoC. The solution takes advantage of the device’s se-
curity features, cryptography algorithms and PUF based secure
storage. The developed system provides continuous encryption
and authentication to communications, shared key agreement,
qualified digital signatures and a key import service. It also
provides a PUF based key storage solution, which improves its
lifespan, storage capacity and flexibility. The board is protected
with tamper detection mechanisms, startup digest checks and
zeroization.

This work also contributes with an extensive characteri-
zation of the SmartFusion2 device. It studied each security
service advantage and possible trade offs. Furthermore, it
models the performance of every service, providing a useful
prediction of the system’s behaviour.

REFERENCES

[1] C. Lesjak, H. Bock, D. Hein, and M. Maritsch, “Hardware-secured and
transparent multi-stakeholder data exchange for industrial iot,” in 2016
IEEE 14th International Conference on Industrial Informatics (INDIN).
IEEE, 2016, pp. 706-713.

[2] J. Seol, S. Jin, D. Lee, J. Huh, and S. Maeng, “A trusted iaas environ-
ment with hardware security module,” IEEE Transactions on Services
Computing, vol. 9, no. 3, pp. 343-356, 2015.

[3] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation of
a vehicular hardware security module,” in International Conference on
Information Security and Cryptology. Springer, 2011, pp. 302-318.

[4] M. Canim, M. Kantarcioglu, and B. Malin, “Secure management of
biomedical data with cryptographic hardware,” IEEE Transactions on
Information Technology in Biomedicine, vol. 16, no. 1, pp. 166-175,
2011.

[5] D. Mahto, D. A. Khan, and D. K. Yadav, “Security analysis of elliptic
curve cryptography and rsa,” in Proceedings of the world congress on
engineering, vol. 1, 2016, pp. 419-422.

[6] K. Gupta and S. Silakari, “Ecc over rsa for asymmetric encryption:

A review,” International Journal of Computer Science Issues (IJCSI),

vol. &, no. 3, p. 370, 2011.

P. FIPS, “140-2 federal information processing standards publication—

security requirements for cryptographic modules,” Issued May, vol. 25,

2001.

[8] M. K. Bond, “Understanding security apis,” Ph.D. dissertation, Univer-
sity of Cambridge, 2004.

[9] D. C. Wherry, “Secure your public key infrastructure with hardware
security modules,” SANS Institute, Tech. Rep, Tech. Rep., 2003.

[7

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
(22]

[23]

[24]

[25]

M. Lorch, J. Basney, and D. Kafura, “A hardware-secured credential
repository for grid pkis,” in IEEE International Symposium on Cluster
Computing and the Grid, 2004. CCGrid 2004. 1EEE, 2004, pp. 640—
647.

T. Rossler, H. Leitold, and R. Posch, “E-voting: A scalable approach
using xml and hardware security modules,” in 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service. 1EEE, 2005,
pp. 480-485.

A. Baldwin and S. Shiu, “Hardware encapsulation of security services,”
in European Symposium on Research in Computer Security. Springer,
2003, pp. 201-216.

M. C. Mont, A. Baldwin, and J. Pato, “Secure hardware-based dis-
tributed authorisation underpinning a web service framework,” HP
Laboratories Bristol, 2003.

J. E. Martina, T. C. S. de Souza, and R. F. Custodio, “Openhsm: An open
key life cycle protocol for public key infrastructures hardware security
modules,” in European Public Key Infrastructure Workshop. Springer,
2007, pp. 220-235.

O. Kehret, A. Walz, and A. Sikora, “Integration of hardware security
modules into a deeply embedded tls stack,” International Journal of
Computing, vol. 15, no. 1, pp. 22-30, 2016.

J. Ivarsson, A. Nilsson, and A. Certezza, “A review of hardware security
modules fall 2010,” Technical report, Certezza, 2010, Tech. Rep., 2010.
Yubico, “Yubihsm 2,” last visited 2021-05-27. [Online]. Avail-
able: https://www.yubico.com/pt/product/yubihsm-2-hardware-security-
module/

H. Krawczyk, “The order of encryption and authentication for protecting
communications (or: How secure is ssl1?),” in Annual International
Cryptology Conference. Springer, 2001, pp. 310-331.

E. Barker, “Nist special publication 800-57 part 1, revision 5,” NIST,
Tech. Rep, 2020.

0. Gay, “Software implementation in ¢ of the fips 198 keyed-hash
message authentication code hmac for sha2,” http://ouah.org/ogay/hmac,
2013, last visited 2021-05-27.

R. Benadjila, A. Ebalard, and J.-P. Flori, “libecc project,”
https://github.com/anssi-fr/libecc, 2017, last visited 2021-05-27.

C. Heath and R. Misoczki, “Tinycrypt cryptographic library,”
https://github.com/intel/tinycrypt/, 2017, last visited 2021-05-27.

L. Harbaugh, “Thales nshield connect offers
enterprise-class key management,” Network World,
2009, last visited 2021-02-23. [Online]. Avail-
able: http://www.networkworld.com/article/2246758/security/thales-

nshield-connect-offers-enterprise-class-key-management.html

J. Schlyter, “Hardware security modules,” last visited 2021-02-23.
[Online]. Available: https://internetstiftelsen.se/docs/hsm-20090529.pdf
M2s090ts-eval-kit pricing. Last visited 2021-02-02. [Online]. Available:
https://eu.mouser.com/ProductDetail/Microchip-Microsemi/M2S090TS-
EVAL-KIT/?qs=HNBw3F7vE2zzRkt03XBdWg==



