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Abstract

This work presents a CFD study regarding a rotating disc in flight at angles of attack 0◦, 5◦ and 10◦,
seeking to investigate the potential application of such geometry in MAVs. The commercial software
FLUENT was used for the simulations with IDDES. The disc geometry is circular and infinitely thin,
since it has no thickness. The free stream Reynolds number was fixed at 150,000, based on the disc’s
diameter. The AdvR was varied between 0 and 8, where AdvR is the ratio between disc edge speed due
to rotation and flow speed. For zero incidence, rolling and pitching moments, measured for one surface
of the disc, undergo a change of signals from AdvR = 1 to 2, and 2 to 4, respectively. Periodic behaviour
was obtained for AdvR = 2, as was a salient separation line, which moves upstream with increasing
rotation. At α = 5◦, CL remains roughly constant until AdvR = 2, since a laminar separation bubble
is present on the top surface and rotation magnitudes are low. Suppression of the bubble and intense
low pressure regions, caused by rotation, occur at AdvR = 4 and 8 and both lead to an increase in lift
production. The L/D diminished with rotation. Differential rotation AdvR = (8,0) leads to an increase
in CL, while case (8,-8) decreases rolling moment. The results for α = 10◦ show that differential rotation
(8,0) still suppresses the separation bubble and leads to an increase in lift.
Keywords: Rotating Disc; Aerodynamics; Micro Aerial Vehicle; Computational Fluid Dynamics;
IDDES.

1. Introduction

The Micro Aerial Vehicles (MAVs) are a subclass
of UAVs. As the name implies, MAVs are dis-
tinguished by their small size, allowing for added
stealth and versatility. Precise figures vary, but
MAVs do not generally exceed 1 meter in wingspan
and weigh more than 0.5 kilograms. Interest in such
vehicles has grown immensely, due to the wide range
of complicated missions that these futuristic drones
could theoretically perform: detection of radioactiv-
ity and chemical compounds, search for survivors,
improved communications in both urban and mili-
tary scenarios, and infiltration in confined, closely
guarded areas [1, 2].

Generally, fixed-wing MAVs operate at Re <
200,000 [3]. At such low Re, laminar separa-
tion bubbles are expected to make an appearance
and negatively influence aerodynamic performance.
Also, due to size restrictions, Low Aspect Ratio
(LAR) lifting surfaces are utilized in fixed-wing
MAVs. As such, a small, saucer-shaped drone, re-
lying purely on a rotating surface for both lift and
stability seems ideal for this class of vehicles, since
fragile rotors are absent and rotation might be able

to control or even suppress separation bubbles.

As of yet, the resulting flow structures and aero-
dynamic performance at such viscous Reynolds
numbers around a small, spinning surface are still
largely unknown. As such, this study was envi-
sioned with three main goals in mind: test the vi-
ability of a flying, rotating disc design as a possi-
ble MAV application; better understand the compli-
cated interaction between disc rotation and incom-
ing flow at low angles of attack; and explore the
effects that high magnitudes of disc rotation have
on aerodynamic performance.

2. Physics of a Flying Disc
2.1. Description

A flying disc can be regarded as wing with low As-
pect Ratio AR, producing considerable lift at low
angle of attack. For a typical wing, AR can be cal-
culated by the following formula:

AR =
(Wing Span)2

Wing Area
(1)

which, for a circular disc with radius Rd and diam-
eter Dd, results in:
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AR =
D2
d

(Dd/2)2π
=

4

π
≈ 1.273

There are two key parameters governing the flight
of a rotating disc: the aerodynamic upwards force,
also known as lift, and the spin of the disc, which
has a stabilizing effect. Both are vital but it is only
the inherent interplay between the two that allows
the disc to stay airborne.

Lift acts mainly on the front of the disc, ahead
of the center of mass, causing an acute, unstable
pitching moment, leading to a radical nose-up mo-
tion. This moment is perpendicular to the direc-
tion of rotation of the disc, and, due to gyroscopic
precession, a rolling moment is induced. Funda-
mentally, the immediate pitch instability is avoided
and the disc swerves to left or to right, depending
on which direction the disc is spinning. This is of
course a simplification, as the moments will seldom
act exactly on a defined axis. Nonetheless, they
will usually act perpendicular to the direction of
rotation, making the situation described above rep-
resentative of the overall stability granted by disc
rotation.

2.2. Nomenclature
For sign convention, the axes of the disc and re-
spective rolling, yawing and pitching moments (R,
S and P ) around the body are defined in Figure 1.
The variable Ω represents the angular velocity of
the disc and COP, COM refer to center of pressure
and center of mass, respectively. Positive rotation
implies anti-clockwise motion.

Figure 1: Orientation of the disc and sign conven-
tion.

Since the disc is rotating, it is useful to distin-
guish retreating and advancing side. The former
refers to the side of the disc at which rotational
speed and free stream velocity have the same sign

and add up. This occurs at positive Z values in
Figure 1. On the other hand, the latter is where
these two velocities oppose each other, happening
at negative Z values. The variable Advance Ratio
AdvR is the ratio of edge speed to flow speed. If
AdvR = 0, the disc is not rotating, and for AdvR
= 1, the edges of the disc are moving at the same
speed as the free flow. Its formula is:

AdvR =
ΩRd
U∞

(2)

where U∞ is the free stream velocity.

Additionally, the coefficients of lift, drag and mo-
ment are calculated by:

CL =
FL

1
2ρAU

2
∞

(3)

CD =
FD

1
2ρAU

2
∞

(4)

CM =
M

1
2ρAU

2
∞L

(5)

where FL, FD, M , ρ, A, and L are the lift force,
drag force, moment, free stream density, surface
area of the disc (πR2

d) and reference length (Dd),
respectively.

2.3. Literature Review
2.3.1 Experimental Studies

[4], [5] laid the foundation of aerodynamic studies
of LAR wings at the typical MAV operational range
(Re from 50,000 to 140,000).

[6] extensively studied the impact that different
configurations of flying discs have on aerodynamic
performance at Re = 378,000.

Most notably [7] tested a restrict range of Ad-
vance Ratios (between 0 and 1.04) at free stream
Reynols numbers between 113,000 to 378,000. It
was seen that, for pre-stall conditions, rotation has
little effect on aerodynamic loads. Lift and drag
curves were unchanged, but pitching and rolling
moments differ only slightly for high values of
AdvR. Some time after, the same authors remarked
through smoke-wire flow visualization that the main
shape of the separation bubble on top of the disc
is mainly unaffected by rotation, even though it
slightly shifts to the advancing side [8].

A similar study regarding the effects of disc rota-
tion was conducted by [9]. They remarked through
flow visualization of a rotating disc at Re = 110,000
and low α (0◦ to 5◦) that the rotation helps to sup-
press separation at the trailing edge, by promoting
transition. Also, delayed and accelerated separa-
tion is seen to occur at the retreating and advancing
side, respectively.
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2.3.2 Computational Studies

A purely laminar study was conducted by [10] on
an ellipsoid with AdvR ranging from 0 to 1.5 at
Mach number 0.5 and α = 5◦. It was discovered
that without rotation, a separation line appears at
the top surface of the disc at roughly 70% chord.
When introduced to a AdvR of 1, the separation
line wrapps around the left receding edge.

[11] performed LES calculations on a rotating
disc in an air crossflow at Re = 13,700, in order to
observe the heat transfer and changes in the wake
that are brought by the spinning. With an AdvR
of 2, a periodic vortex shedding was reported and
when the AdvR was further increased to 10, a fully
turbulent wake was evident. Later, the same author
briefly analysed the consequent wakes of AdvR =
0, 1, 2.5 and 12.5 at Re = 8,000, and remarked the
evolution of the turbulent fluctuations [12].

3. The von Kármán Problem
The von Kármán swirling flow is merely composed
by an infinitely long rotating planar disc immersed
in still flow and, as simple as it may sound, ro-
tation is the only factor that drives the flow. A
thin boundary layer on the surface of the disc is
created, due to the no-slip condition. The flow is
pushed outwards, expected due to the centrifugal
force, and drawn axially to satisfy mass conserva-
tion. To properly illustrate this flow problem, the
typical velocity profiles are represented in Figure 2.

The rotating disc is considered in a cylindrical
coordinate system as an planar infinite surface.

Figure 2: Visual representation of the velocity pro-
files from the rotating disc configuration from [13].

To handle this problem on laminar regime, von
Kármán introduced a characteristic length and the
following assumptions for the various velocities and
pressure:

ξ = x

(
Ω

ν

) 1
2

(6)

Ur = ΩrF (ξ) Uθ = ΩrG(ξ)

Ux = (Ων)
1
2H(ξ) p = −ρΩνP (ξ)

(7)

where ξ, ν and p are the characteristic length, the
kinematic viscosity and pressure, respectively.

This exchange of variables enables the deriva-
tion of an exact similarity solution of the stationary
Navier-Stokes equations, allowing the full descrip-
tion of the flow. With the aid of MATLAB, the
evolution of the variables F , G, H and P − P (0)
with regards to ξ was obtained and plotted in Fig-
ure 3.

Figure 3: Evolution of F , G, H and P − P (0) with
ξ.

A region of low pressure is created close to the
surface of the disc. Radial and tangential velocities
tend to zero far from the disc and H to -0.8845.

The Reynolds number definition for rotational
flows is:

ReΩ = r

(
Ω

ν

) 1
2

(8)

[14] remarked that at ReΩ = 510, an absolute
instability was found to take place, which could po-
tentially trigger the onset of transition to turbulent
flow. Furthermore, [15] discovered that for ReΩ >
430, a broad peak centered around 2πf/Ω = 30
appears, which is linked with the formation of sta-
tionary vortices on the disc.

The ReΩ at the edges of the disc, or Reedge, is
given by:

Reedge = Rd

(
Ω

ν

) 1
2

(9)

3.1. Numerical Model
By simulating the von Kármán problem through
CFD and further validating the results, trust is
gained in the mesh, methods and models employed
and confirmation that these are adequate for main
problem is attained.

3.1.1 Mesh

The computational meshes used for the present and
future cases were all produced through the software
ANSY S Meshing.
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The mesh comprises a cylindrical domain. In
its basis, a separate circular region was defined, to
serve as the rotating disc with Rd = 0.1 m, and
at its center, the origin of the Cartesian coordinate
system (X,Y,Z) was defined. The mesh is repre-
sented in Figure 4.

Figure 4: (a) Cylindrical mesh and (b) disc region.

Far-field boundaries were set at a distance of
roughly 6 Dd from the disc, in both vertical and
horizontal directions. The uppermost boundary of
the domain was selected as a pressure inlet and the
sides of the domain as pressure outlets. The bot-
tom of the cylinder was considered as a symmetry
plane and the rotating disc itself as a rotating wall.
No slip-conditions were applied along the disc wall,
meaning zero velocity and impermeability.

Two inflation layers were generated to properly
capture phenomenons close to the disc. The first
was in the axial direction and was constructed
around the boundary layer characteristics of a ro-
tational Reynolds close to transition, since only the
laminar domain is of interest. The other refinement
was created at the interface between the disc and
the outer region.

The resulting mesh contained around 3.8 million
nodes.

3.1.2 Discretization Schemes

The commercial package FLUENT was used for
all simulations. This problem is steady, laminar
and incompressible. Naturally, a pressure-based ap-
proach was selected as it was purposefully designed
for low velocity flows. Additionally, the SIMPLE
algorithm was chosen to solve the linkage between
pressure and velocity. For pressure, a second-order
scheme was utilized and for momentum equations,
the QUICK scheme.

3.2. Problem Parameters

Three distinct cases with different ReΩ were stud-
ied. To change this parameter, only the angular
velocity of the disc Ω was altered, as the radius at
which data was gathered was fixed at 30% Rd. The
tested ReΩ and the Reynolds number on the edge
of the disc Reedge can be seen in the Table 1.

Case Ω [rad/s] ReΩ Reedge
1 0.04 1.65 5.5

2 4.38 16.50 55

3 365.18 150 500

Table 1: Values for each case.

3.3. Results
To assess the precision of the CFD results, values
of G, F and H at different ξ were gathered and
compared to their theoretical predictions. Figure 5
illustrates this comparison.

Figure 5: Evolution of (a) G, (b) F and (c) H.

Cases 2 and 3 produced excellent results, with
the latter showcasing a slightly better agreement
with the theoretical predictions. On the other hand,
measured data from case 1 break away from the ex-
pected trend. These poor results are caused by the
low ReΩ of case 1, since the von Kármán problem
considers infinite ReΩ and thin boundary layer ap-
proximation only valid for high enough ReΩ.

Overall, the simulations successfully replicated
the von Kármán problem with the intended accu-
racy. The boundary conditions and used methods
were deemed applicable to this kind of rotational
flow.

4. Problem Formulation
As opposed to the von Kármán problem, a rotating
disc will now be evaluated in flight condition at sev-
eral angles of attack. As such, some new definitions
are in order. The Reynolds number based on the
free stream velocity is given by:

Re =
DdU∞
ν

(10)

To allow comparison with previous studies, the
relevant variables were adimensionalized as such:

4



p− p∞
1
2ρU

2
∞

= Cp
tU∞
Dd

= t′

where t is time.
The angle of attack, or α, is defined as the incli-

nation between the longitudinal axis of the disc and
the incoming airflow. This variable was adjusted by
varying the components of the incoming flow.

4.1. Numerical Model
4.1.1 Mesh

The new mesh was obtained my mirroring the one
from the von Kármán problem with regards to a XZ
plane. The full mesh is represented in Figure 6.

Figure 6: Final mesh.

The distance from the disc to the outer bound-
aries was 10 Dd. The top and bottom faces of the
domain were deemed as periodic interfaces. The
side face was divided in half by a YZ plane, as to
consider the portion at negative X values as a ve-
locity inlet, and the one at positive X values as a
pressure outlet. At the center of domain, the disc
was once again chosen as a rotating, no-slip wall.

The end result was a mesh with 7.6 million nodes.

4.1.2 Discretization Schemes

A pressure-based solver was once again chosen.
SIMPLE was selected for the pressure-velocity cou-
pling. To finalize the choice of schemes, second-
order for pressure, QUICK for momentum and tur-
bulent equations were selected once more. Implicit
second-order scheme was used for time. For the
time step size, tc = 0.005 s was used.

4.1.3 Turbulence Model

For the purpose of the present numerical simula-
tions, the model IDDES was chosen. Values of y+

were controlled as to ensure that the viscous sub-
layer was always properly resolved. Turbulence in-
tensity at boundaries was prescribed as 1%.

4.2. Problem Parameters
A Reynolds number given by the Formula 10 of
150,000 was chosen, typical for a fixed-wing MAV
operation. The flow direction is (1,0,0). The disc is
rotating at a fixed angular velocity Ω with both the
top (+Y) and bottom surface (-Y) initially rotating
in the same direction. Later, differential rotation
was applied, meaning that each surface has its own
AdvR. All tested cases are summarized on Table 2.

AdvR Ω [rad/s] Reedge
0 0 0

0.5 13.67 193

1 27.39 274

2 54.78 387

4 109.56 548

8 219.12 775

Table 2: Values for each case.

Aerodynamic coefficients of lift and drag were
calculated with regards to the free stream velocity
axes, and the moment coefficients relative to the
body axes. The moments were taken about the
center of the disc. Finally, the circular disc with
Rd = 0.2 m has no thickness, to neglect gyroscopic
precession. The angle of attack assumed values of
0◦, 5◦ and 10◦. For the first two, the full range of
AdvR was tested. However, only AdvR = 0 and
differential rotation were simulated for α = 10◦.

5. Results for α = 0◦
5.1. Aerodynamic Coefficients
5.1.1 Full Disc

Values of aerodynamic coefficients were obtained
through time averages of at least 55 t′, after en-
suring that a statistically steady state was reached.
For the full disc, it was seen that drag and yaw in-
crease with AdvR, while lift, rolling and pitching
moments are zero, since the symmetric geometry
of the disc at α = 0◦ produces a symmetric flow
situation.

5.1.2 Half Disc

Table 3 summarizes the aerodynamic data obtained
by considering only the top surface of the disc.

AdvR CL CD CM roll CM pitch CM yaw

0 4.62 e−3 6.13 e−3 0 0 0

0.5 4.98 e−3 6.36 e−3 -1.58 e−4 1.01 e−3 -1.09 e−3

1 6.71 e−3 6.78 e−3 -1.12 e−4 1.71 e−3 -2.21 e−3

2 1.58 e−2 7.16 e−3 1.14 e−3 1.69 e−3 -5.12 e−3

4 3.73 e−2 9.88 e−3 4.39 e−4 -3.91 e−3 -1.54 e−2

8 9.13 e−2 1.22 e−2 7.33 e−4 -1.99 e−2 -5.17 e−2

Table 3: Mean aerodynamic coefficients for the up-
per surface of the disc for α = 0◦.
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The increase of lift with AdvR is due to low pres-
sures near the disc, generated by rotation.

Immediately noticeable is the change of signs for
both roll and pitch coefficients, occurring at the
transitions from AdvR = 1 to 2, and 2 to 4, re-
spectively.

5.2. Periodic Behaviour

A flow cycle was observed for AdvR = 2, made
evident by the regular, oscillatory variation of all
aerodynamic coefficients. Drag, pitching and yaw-
ing moments showcased clearer cyclic characteris-
tics however. The frequency of this established cy-
cle f can be expressed in adimensional form as the
Strouhal Number (St = fDd/U∞). The cycle takes
about 10 t′, or St = 0.1.

This peak in frequency spectrum occurs at much
lower frequencies (2πf/Ω = 0.16) than the one
found by [15] (2πf/Ω = 30). A periodic vortex
shedding at AdvR = 2 for zero incidence was also
reported by [11], for a disc with small thickness.
However, a very different Re was used, and the re-
ported St was higher than the one found in this
study.

For AdvR = 4 and 8, this cyclic behaviour disap-
pears.

5.3. Limiting Streamlines

Mean limiting streamlines, along with Cp contours
were obtained, as in Figure 7.

Figure 7: Mean limiting streamlines with contours
of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4
and (f) 8.

For zero rotation, the streamlines are perfectly
straight. As rotation is increased to AdvR = 0.5,
asymmetry is evident between both sides of the disc.
For AdvR = 1, the slight adverse pressure gradient
causes a small separation line, made clear by the
convergence of limiting streamlines.

When AdvR = 2 is reached, a focus of reat-
tachment is visible, representing the suction of the
flow due to rotation. Additionally, the separation
line migrated upstream, coincident with the adverse
pressure gradient. The separation line effectively di-
vides regions where rotation and convection by the
outer flow dominate. [10] reported a similar sepa-
ration line for AdvR = 1 but on the retreating side.
The fact that the tested geometry had thickness
and a much higher free stream velocity was utilized
(Mach = 0.5) might explain this disparity.

Further increasing the magnitude of rotation to
AdvR = 4 and 8 moves the separation line to the
leading edge and approximates the topology of the
streamlines to that of a pure rotation problem, as
the focus migrates to the center of the disc.

Overall, after a critical AdvR is reached, the ef-
fect of rotation on the periphery of the disc becomes
intense enough to oppose the convective transport
of the outer flow. It generates a separation line
which pushes back the flow to the edges and can
project fluid particles with sufficient force to leave
the surface of the disc.

6. Results for α = 5◦
6.1. Aerodynamic Coefficients
Now the problem ceases to be symmetric. There-
fore, only the aerodynamic data regarding the full
disc is of interest. Table 4 summarizes the results.

AdvR CL CD L/D CM roll CM pitch CM yaw

0 0.181 2.56 e−2 7.07 0 -4.70 e−2 0

0.5 0.181 2.60 e−2 6.96 0 -4.71 e−2 -2.14 e−3

1 0.182 2.68 e−2 6.79 -2.65 e−4 -4.75 e−2 -4.37 e−3

2 0.183 2.81 e−2 6.51 -1.48 e−3 -4.75 e−2 -1.01 e−2

4 0.197 3.63 e−2 5.43 -2.67 e−3 -4.75 e−2 -3.08 e−2

8 0.241 4.54 e−2 5.31 -2.56 e−3 -5.20 e−2 -0.104

Table 4: Mean aerodynamic coefficients for α = 5◦.

Lift stays approximately constant until AdvR =
2. This trend was confirmed by the findings of [7]
up to AdvR = 1.04. However, when AdvR = 4 is
reached, CL increases roughly 8% and after AdvR
= 8, a substantial increase of 22% is observed. Drag
follows a similar trend than that of zero incidence,
as it increases with rotation. The L/D is severely
worsened at AdvR = 4, but at AdvR = 8, the mas-
sive increase in lift almost balances the increase in
drag, only leading to a small decrease of lift to drag
ratio. Pitching moment is roughly constant until
AdvR = 8, at which point it increases in magni-
tude.
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6.2. Limiting Streamlines
6.2.1 Top Surface

Figure 8 showcases the mean limiting streamlines on
the top surface of the disc along with Cp contours.

Figure 8: Mean limiting streamlines with contours
of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4
and (f) 8 for the top surface.

Starting from AdvR = 0, a separation and reat-
tachment line are immediately noticeable on the
front, signaling the presence of a laminar separa-
tion bubble (LSB). Here, flow reversal towards the
leading edge occurs and the fluid particles are con-
vected to the sides, where they eventually join other
separation lines, representing here the tip vortices.

Adding rotation of AdvR = 0.5 and 1 causes a
shift of the LSB, like the flow observations from [8].

For AdvR = 2, the separation lines on the side
cease to appear, meaning that the tip vortices are
not created directly on the surface, as if prevented
to do so by the rotation. Also, like in Figure 7
(d), a reattachment focus is present. Here, rotation
is strong enough to generate suction and expelling
fluid particles in a centrifugal motion. The sepa-
ration and reattachment line are still present, the
latter emerging from the focus. This represents a
complex separation pattern, similar to a tornado-
like vortex, where fluid from the LSB is drawn to
the disc due to rotation.

Finally, for high rotation values AdvR = 4 and

8, a pure rotation topology is obtained, as in zero
incidence (Figures 7 (f)) and thus the LSB is fully
suppressed.

Focusing on the contours of pressure, the distri-
bution barely changes up until AdvR = 2. Pressure
stays approximately constant on the center region
of the LSB and increases in the vicinity of the sep-
aration lines on the sides. Only after AdvR = 4,
when the LSB is suppressed, that strong, low pres-
sure regions start to appear. Indeed, at AdvR = 8,
intense negative pressure regions cover the entirety
of the leading edge, strongest near the retreating
side.

6.3. Bottom Surface

The same distributions for the bottom surface are
represented in Figure 9.

Figure 9: Mean limiting streamlines with contours
of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4
and (f) 8 for the bottom surface.

The patterns drawn by the limiting streamlines
are the same as for zero incidence, in Figure 7.
However, Cp contours are radically different. As
expected, a high pressure region occupies the front,
where the flow directly collides with the surface. As
rotation takes hold, this region decreases in size and
migrates to the leading edge and, for AdvR = 8, it
shares the front with equally intense low pressure
regions.

7



6.3.1 Discussion

From Table 4, It was seen that CL increases for
AdvR = 4 but the biggest improvement was from
AdvR = 4 to 8. A reasoning behind this evolu-
tion can be accomplished by considering the results
from section 6.2.1. The pressure contours are al-
most equal until AdvR = 4 and a LSB is evident.
This is why CL is practically constant between these
cases. Low enough pressure is only created with
high values of Ω, so low rotation magnitudes, cou-
pled with the presence of the LSB, which forces a
plateau of pressure, leads to virtually constant CL
values for low AdvR, up to 2. With increased ro-
tation, the separation bubble is fully suppressed at
AdvR = 4 and a low pressure region is seen on the
retreating side. Both factors cause a mild increase
in lift. However, the biggest jump comes as a conse-
quence of the intense low pressure regions, covering
most of the leading edge for AdvR = 8. It can be
deduced that the elimination of the LSB is funda-
mental to achieve increase in lift for fixed incidence.
This suppression not only increases lift by itself, but
also allows the creation of low pressure regions on
the top surface more efficiently due to rotation, fur-
ther boosting CL.

Moreover, it can be argued that the bottom sur-
face does not play a pivotal rule in the lift evolution.
At AdvR = 4 and 8, low pressure regions, conse-
quence of the high degree of rotation, are created
on this surface as well, albeit with much lower domi-
nance, which undoubtedly worsen CL. However, at
these values of AdvR, lift is seen to increase. As
such, the biggest contribution of this lower surface
is the increase in drag it brings, since its effect on
lift is not determinant.

The high concentration of negative pressure on
the leading edge for AdvR = 8 is also responsible for
the increase in pitching moment. This region and
high pressure areas in the bottom surface lead to
the most adverse CM pitch of all cases, even though
negative pressure is also evident on the lower surface
(Figure 9 (f)), which would help counteract the one
on top.

Overall, high values of rotation (AdvR = 4 and
8) allow for an increase in CL, but also in CD
and CM pitch, which undoubtedly worsen aerody-
namic performance. However, for a real life disc
with mass, the unstable pitching moment would be
translated into a rolling moment by gyroscopic pre-
cession, as explained in section 2.

6.4. Differential Rotation

Better aerodynamic performance can undoubtedly
be accomplished by imposing different degrees of ro-
tation on the top and bottom surfaces of the disc.
The two simulated cases with differential rotation
are listed in Table 5. Here, negative AdvR implies

clockwise rotation. This selection of AdvR was car-
ried out with the purpose of trying to maximize
L/D and reduce the unstabilizing moments. Since
AdvR = 8 on top produced the best CL results, only
the rotation of the bottom surface was altered.

Case Top AdvR Bottom AdvR

1 8 0

2 8 -8

Table 5: The choice of AdvR for differential rota-
tion.

The aerodynamic data is summarized in Table 6.

Case CL CD L/D CM roll CM pitch CM yaw

1 0.253 3.87 e−2 6.54 -3.27 e−3 -5.87 e−2 -5.17 e−2

2 0.239 4.76 e−2 5.02 -5.32 e−4 -5.74 e−2 -7.21 e−4

Table 6: Mean aerodynamic coefficients for differ-
ential rotation.

The resulting limiting streamlines and pressure
contours on the top surface are the same as Figure
8 (f) for both cases. The bottom surface however,
resulted in the same configuration as Figure 9 (a)
for case 1, and a shifted Figure 9 (f) for case 2.

Lift increases for case 1, when compared to equal
rotation of AdvR = 8 on both surfaces (Table 4).
Now, the bottom surface is free of any rotation and
thus of induced negative pressure regions. There-
fore, the negative impact that these had on CL is
gone, leading to an increase in lift production. Case
2 results in approximately equal CL to AdvR = 8 on
both sides, as pressure distributions mainly shifted
sides on the bottom surface.

Drag follows the opposite trend. It decreases in
value for case 1, since now there is no high rotation
to oppose the flow on the bottom surface. Addition-
ally, a slight growth is noticeable for case 2. These
changes bring an appreciable increase in L/D for
case 1 and a modest decrease for case 2. Interest-
ing to note is that L/D for case 1 is only slightly
smaller than the one produced by AdvR = 0, which
shows that applying differential rotation from case
1 to achieve better CL is well worth the consequent
increase in drag.

Rolling moment suffers an increase in magnitude
in case 1 but is then drastically reduced for case 2.
Pitch always seems to slightly deteriorate.

Each differential rotation case is best suited for
separate goals. Case 1 is apt at increasing L/D and
case 2 at minimizing the rolling moment. The lat-
ter becomes particularly useful when remembering
that in a real life scenario, gyroscopic precession will
occur, and added rolling moment will be induced.
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7. Results for α = 10◦
7.1. Aerodynamic Coefficients
The full range of aerodynamic coefficients for a non-
rotating disc (AdvR = 0) is summarized in Table
7.

α [◦] CL CD L/D CM roll CM pitch CM yaw

0 0 1.22 e−2 0 0 0 0

5 0.181 2.56 e−2 7.07 0 -4.70 e−2 0

10 0.397 7.83 e−2 5.07 0 -9.66 e−2 0

Table 7: Mean aerodynamic coefficients for AdvR
= 0.

These values can be compared to data from [5]
and [6]. For the former, results from an elliptic wing
model with AR = 1.25 are used for comparison. Re-
garding the latter, validation can be carried out by
considering aerodynamic results from the thinnest
disc geometry. The sign conventions from this study
and [6]’s are opposite for the pitching axis. To per-
form validation, the obtained CM pitch values from
this study were made positive.

This comparison can be seen in Figures 10, 11,
12 and 13. All compared values from Table 7 agree
exceptionally well with the previous studies.

Figure 10: Comparison of obtained CL values with
previous experimental studies.

Figure 11: Comparison of obtained CD values with
previous experimental studies.

Figure 12: Comparison of obtained L/D values with
previous experimental studies.

Figure 13: Comparison of obtained CM pitch values
with previous experimental studies.

7.2. Limiting Streamlines

Figure 14 showcases mean limiting streamlines with
contours of Cp for both surfaces of the disc.

Figure 14: Mean limiting streamlines with contours
of Cp for the (a) top and (b) bottom surface.

When compared to Figure 8 (a), the two separa-
tion lines representing the tip vortices now unite in
one long separation, that is present near the lead-
ing edge, and an additional reattachment line is ob-
served. This translates the appearance of a second,
smaller separation bubble, encapsulated by the big-
ger one. Also, the original LSB increases in size, as
the reattachment line signaling that the end of the
bubble moves downstream. This expansion with
α was noted by [9] and the resulting topology of
streamlines on Figure 14 (a) is strikingly similar to
the one reported on the same study, for the same
angle of attack.

7.3. Differential Rotation

Differential rotation case 1 of Table 5 is applied to
α = 10◦. Results are in Table 8.

Case CL CD L/D CM roll CM pitch CM yaw

1 0.479 9.89 e−2 4.84 -3.37 e−3 -0.108 -5.24 e−2

Table 8: Mean aerodynamic coefficients for differ-
ential rotation.

Values of CL, CD and CM pitch all increase in
magnitude, when compared to the results from Ta-
ble 7. Again, L/D suffered only a slight decrease
from AdvR = 0. The separation bubble was also
fully suppressed here.

9



One can conclude that AdvR = 8 is still domi-
nant enough to eliminate the now larger separation
bubble and to generate a vast improvement in CL
over the disc without rotation, like for α = 5◦.

8. Conclusion
In conclusion, a deeper understanding of the physics
governing the flight of a rotating disc at low α and
at Re for typical fixed-wing MAV operation was
gained. Aerodynamic data and topologies of limit-
ing streamlines for high values of AdvR, otherwise
missing from previous studies, were obtained.

These results will undoubtedly prove valuable for
possible applications of rotating discs in MAVs, ei-
ther to control flow separations, improve lift capa-
bilities, reduce drag forces and moments as to stabi-
lize the disc’s flight, develop optimal rotation con-
figurations for specific mission and objectives and
overall contribute to the amounted knowledge of
this field.

Possible future investigations are: observe the im-
pact of changing Re on tested cases; extend the
range of applied AdvR to even higher values; extend
the range of applied α; analyze additional combi-
nations of differential rotation; and experimentally
recreate the simulations of this study, as to ascer-
tain their results.
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