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Abstract

In Machine Learning problems, classical approaches such as grid search are not viable methods for the

computation of hyperparameters for higher dimension problems due to combinatorial explosion. The

hyperparameter adjustment can be formulated as a bilevel optimization problem. While the lower-level

optimizes the training stage parameters, the upper-level serves as the validation stage and optimizes

the hyperparameters. These problems can also contain multiple objectives to optimize.

This work tests the proof of concept of a multi-objective bi-level optimization algorithm, in particular

evolutionary-based algorithms, to solve multi-objective Support Vector Machine problems with an auto-

matic selection of hyperparameters. The selected algorithm is the Hybrid Bi-Level Evolutionary Multi-

Objective Optimization algorithm and, in total, six formulations based on soft margin and total margin

formulations were tested.

The formulations with the best results had similar results to the traditional dual formulation Support

Vector Machine. The formulations with the objective based on the total margin formulation were found

preferable since they achieved better performance in all four datasets. However, the classification prob-

lems were found to impact the observations and conclusions of the upper-level objective space of the

algorithm.

In conclusion, the concept can be a reliable alternative and a good competitor to the classical Support

Vector Machine algorithms.

Keywords

Hyperparameter Optimization; Multi-Objective Bi-Level Optimization; H-BLEMO; Multi-Objective Sup-

port Vector Machine.
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Resumo

Em problemas de Aprendizagem Automática, as abordagens clássicas como a pesquisa com base

numa grelha não são métodos viáveis para a computação de hiperparâmetros para problemas de maior

dimensão, devido à sua explosão combinatória. O ajuste do hiperparâmetros pode ser formulado como

um problema de otimização de dois nı́veis. Enquanto o nı́vel inferior otimiza os parâmetros da fase de

treino, o nı́vel superior serve como a fase de validação e otimiza o hiperparâmetros. Estes problemas

também podem conter múltiplos objetivos para otimizar.

Este trabalho testa a prova de conceito de um algoritmo de otimização multiobjetivo binı́vel , em

particular com algoritmos evolucionários, para resolver problemas de Máquina de Vetores de Suporte

com multiobjetivos com seleção automática de hiperparâmetros. O algoritmo selecionado é o algoritmo

Hybrid Bi-Level Evolutionary Multi-Objective Optimization e, no total, seis formulações baseadas nas

formulações soft margin e total margin foram testadas.

No geral, os resultados são semelhantes à formulação dupla de Máquina de Vetores de Suporte

tradicional. As formulações com objetivo baseado na formulação total margin foram consideradas pre-

ferı́veis, uma vez que obtiveram um melhor desempenho nos quatro conjuntos de dados. No entanto,

os problemas de classificação têm um impacto nas observações e conclusões do espaço objetivo de

nı́vel superior do algoritmo.

Em conclusão, o conceito pode ser uma alternativa fiável e um bom concorrente aos algoritmos

clássicos de Máquina de Vetores de Suporte.

Palavras Chave

Otimização de Hiperparâmetros; Otimização Multiobjetivos Binı́vel; H-BLEMO; Máquina de Vetores de

Suporte com Multiobjetivos.
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The goal of Machine Learning (ML) is the development of algorithms and techniques that create a

model to predict information and make decisions. The learning is made by providing data and solving

an optimization problem by finding the set of optimal parameters that minimize a predefined expected

loss function [Claesen and Moor, 2015]. In the case of, for example, a simple linear regression problem,

the model is composed of 2 parameters where the loss function is, typically, the mean square error

function. The construction of a model by the algorithm requires a selection of hyperparameters. These

variables control the characteristics of the algorithm in training the model and have a significant influence

on its performance. For example, in soft margin Support Vector Machine (SVM) models, a selection of

a hyperparameter regularization constant and hyperparameter of the kernel is required. In the case of

artificial neural network, they are the numbers of hidden layers, the number of hidden units, and the

learning rate of the gradient descent algorithm. Generally, they are set before the training stage and are

user-defined, which are a non-optimal selection.

Since it first appeared, several approaches have been developed to solve this optimization prob-

lem. The so-called classical approach consists of an exhaustive search or brute force strategy such

as the Cross Validation (CV) strategy by employing a grid search procedure. It suffers, however, of

several adversities, the main one being the fact that the combinatorial nature of this strategy leads to

a combinatorial explosion as the dimension (number of features) of the problem increases. There are

also assumptions regarding the objective functions such as, for example, convexity or differentiability.

Of course, successful attempts have been made to improve the algorithm and approaches. These

limitations motivated researches to use alternative approaches, such as the popular meta-heuristics,

due to their flexibility. Despite appearing in the mid-1980s, the Evolutionary Algorithm (EA) based meta-

heuristics have, only over the last 20 years, been significantly used and studied [Sinha et al., 2018,Sloss

and Gustafson, 2020].

A recent alternative to the classical approach was proposed in the article by [Bennett et al., 2006].

The CV Hyperparameter Optimization (HO) problem was defined as a Bi-Level Optimization Prob-

lem (BP). The problem contains two mathematical programming problems where one is nested into

the other. The BP has therefore two distinct levels, the outside one called upper-level or leader, and the

other called lower-level or follower. The solution to the lower-level corresponds to the constraint func-

tions of the leader. In HO, the lower-level corresponds to the optimization problem of the training stage

and the upper-level to the optimization problem of the validation stage. Since, as mentioned above, the

hyperparameters are chosen before training, they are upper-level variables. As for the model parame-

ters, they are lower-level variables. The corresponding solution to the lower-level problem is the optimal

model parameter set of training.

Although each level is composed of single objective function stage, the BP can be extended to include

several objective functions in both or single level. This new formulation is referred to as Multi-Objective

3



Bi-Level Optimization Problem (MOBP).

Multiple objectives are often considered and grouped together into the same optimization function.

However, the inexistence of conflicts between two or more objects cannot be guaranteed. Using multi-

objective bi-level EA based meta-heuristic and the selection of multiple objective functions in each layer

is the motivation for this thesis. The main contribution of this thesis is the proof of concept of MOBPs

in the adjustment of hyperparameters and parameters, and the effect of SVM formulations with different

objectives.

This work is organized as follows. Chapter 2 introduces some SVM problems with multiple objective

in Section 2.1. Section 2.2.1 presents the mathematical concepts of multi-objective, and in Section 2.2.2

the bi-level and multi-objective bi-level optimization. It is followed by a brief state of the art review on

classical and EAs applied to Multi-Objective Optimization Problems (MOPs) and MOBPs in Section 2.3,

and the formulation of hyperparameter selection in BP in Section 2.4. Chapter 3 is dedicated to the

description of the selected algorithm in Section 3.1, and to the selected SVM formulations in Section

3.2.1. The Classification results are in Chapter 4 and a comparison with traditional SVM algorithms is

presented. Chapter 5 finalizes this work with conclusions about the results and overall work, and ideas

for future work.
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In Chapter 1, the difficulty of determining the best set of hyperparameters and the parameters that

lead to the best performance of a ML model for higher dimension was stated.

In this Chapter, the first Section will introduce several types and examples of classification problems

with SVM. Section 2.2 will be dedicated to multi-objective and bi-level optimization problems, which will

be formally defined and thier respective concepts described. The following Section will be concerned

with existing MOP and MOBP, specifically the EAs. The Chapter will end with a short introduction of the

BP approach to HO and ML problems.

2.1 Multi-Objective Machine Learning Problems

ML has the objective of creating algorithms and techniques of automatic learning for a given data to

provide accurate estimations. The two more known type of approaches are supervised learning where

classification or regression problems are solved, unsupervised learning where pattern searching prob-

lems are computed by a given non label data.

For the case of classification in supervised learning, the goal of algorithms is to build a mathematical

model that evaluates the given data and returns a label. Generally, these algorithms are linked to

optimization as most models require a minimization problem of a loss function and optimization of model

parameters.

The model is divided into two steps, the selection of hyperparameters and the optimization of pa-

rameters. The typical hyperparameters include the number of layers and nodes in neural networks, or

a regularization hyperparameter in the Lasso algorithm, or the SVM hyperparameters of the slack vari-

able. These hyperparameters have a fundamental role in the algorithm. They are weights that guide

the learning process of the parameters. Something relevant to point out is that they are, in most cases,

defined before training. This makes it difficult task to select since, in most problems, no prior knowledge

of optimal value is known.

The ML algorithms can contain several objectives to optimize, such as the maximization of a clas-

sification metric, or the minimization of training error and validation error, or minimization of the total

number of support vectors in SVM.

These objectives can be together in the same function or the type of problem can demand or allow

multiple objective in different functions. This work focuses on classification problems based on SVM

optimization. SVM is a prediction model developed in the 1990s by [Cortes and Vapnik, 1995] for pattern

recognition. Used in binary classification, it employs the determination of the optimal hyperplane that

separates the two classes.

Considering two classes 1 and -1, the training data (x1,y1),. . . ,(xn,yn), y ∈ {-1,1} and x ∈ Rd (d is

6



the dimension of feature space) and the following linear function

f(x) = wtx+ w0, (2.1)

the classes of x are defined by

ŷ = sign(wtx+ w0). (2.2)

The optimization of an SVM boils down to the determination of the norm of the hyperplane and the

constant w0 defined in at least one point of each class that divide the training data as

yi(w
txi + w0) ≤ 1 ∀i. (2.3)

The two hyperplanes are compacted in one in equation 2.3. The points belonging to the equation are

called support vectors and, when identified, the remaining points are unnecessary to the classification

task. However, the real problem is finding which ones are the support vectors. To ensure the optimal

separation, the distance of the support vectors must be maximized. This distance is the separating

distance of the two hyperplanes, commonly known as the margin, and is equal to 2
‖w‖2 .

With equation 2.3 and considering the minimization approach to the margin, the SVM Hard formula-

tion is defined by

min
w,w0

1

2
‖w‖22

subject to yi(w
Txi + w0) = 1. (2.4)

The final result requires at least a pair of support vectors to define the hyperplane, one for each

class, and only these points from all data are necessary to store. The optimization should be aiming to

keep good performance and simultaneously contain a small set of support vectors. One disadvantage

of a model with a large number of support vectors is the possibility of overfitting. On this account, a

validation stage in conjunction with the cross-validation technique is required after the training stage to

cancel the disadvantage.

In many real-world problems, the data is rarely perfectly separable and usually contains noise. To

relax constraint 2.3 it is allow slightly misclassified data points through the usage of a positive slack

variable ξ. Even with misclassification, better overall performance is achieved when compared to formu-

lation 2.4. This variable measures the error of misclassified points and is defined as the distance points

to their respective class hyperplane as shown in figure 2.1. The formulation is known as soft margin

SVM and is given by

7



min
w,w0

1

2
‖w‖22 + C

l∑
i=1

ξi

subject to yi(w
Txi + w0) = 1− ξi,

ξi = 0, i = 1, . . . , l.

(2.5)

The parameter C is a non-negative regularisation variable that controls the importance of misclassi-

fied points. In other words, the significance given to the optimization of the margin decreases for higher

values leading to a smaller margin.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

ξ <

1

ξ >

1

Figure 2.1: Illustration of misclassified data points and their respective slack distance.

For nonlinear problems, the introduction of a feature transformation is required and was motivated

by an existing higher-dimensional space compared to the data where the mapping of data into the new

space allows a linearly separation. This concept is significant as it generalizes the SVM formulation.

In formulation 2.5 the points xi in the constraints are modified by a feature transformation function

zi = Φ(xi). Some examples of used functions are shown in table 2.1. However, the utilization of

a feature or kernel transformation is not a guaranteed improvement since these depend on a set of

hyperparameters where the best varies for different datasets.

Table 2.1: Examples of feature transformation functions in SVM.

Feature Transformation Function Hyperparameter
Linear Ax A

Polynomial

[ all monomials of degree up to p,
with scaling depending on A]T .

Ex (d = 2): [A,
√

(2A)x1, . . . ,
√

(2A)xd, x
2
1,

, x1x2, . . . , x1xd, . . . , x
2
d]
T

A, d

Gaussian exp
(
‖x‖22
2σ2

)
σ

Generally, the formulated SVM problems, also named the primal problem, are optimized in a refor-
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mulated problem called dual problem. Reformulating formulation 2.5 into a lagragian

L(w,w0, α) =
1

2
‖w‖22 +

n∑
i=1

α(1− yi(wTxi + w0)− ξi) + C1T ξ − µT ξ (2.6)

and minimizing in respect to w, ξ and w0

∂L(w,w0, ξ, α, µ)

∂w0
=

n∑
i=1

αyi = 0;

∇wL(w,w0, ξ, α, µ) = w −
n∑
i=1

αyixi = 0;

∇ξL(w,w0, ξ, α, µ) = C − α− µ = 0,

(2.7)

the new formulation with kernel transformation is given by

min
w,w0

L∑
i=1

αi −
L∑
i=1

αiαjΦ(xi)Φ(xj)

subject to 0 ≤ αi ≤ C∑
i

αiyi = 0

(2.8)

The dual formulation is particularly beneficial in nonlinear datasets and when using the kernel trans-

formation. Since computing the mapping of the transformation in the primal formulation can be com-

putationally expensive, using the kernel function K(x, x) = 〈Φ(x),Φ(x′)〉 where Φ: χ → F and F is a

Hilbert Space, the computation is reduced to dot-product between points of transformed dataset in a

total of N by N evaluations. Also, the fact that only the support vectors have α non-zero values facilitates

the optimization and reduces the complexity.

The soft margin formulation had only in mind the distances of wrongly classified data points. The

soft margin formulation had only in mind the wrongly classified data points. The distances of correctly

classified data can also be taken into consideration. In other words, all points distances are taken into

account. The idea was proposed in [Min Yoon et al., 2003], where the opposite concept of the slack

variable, called surplus variable, ξ+ or η, was introduced in the formulation 2.5. However, if for the

slack case the objective was to minimize, in this case the distances are maximized. This soft margin

SVM extension is referred to as Total Margin SVM and is expressed in 2.9. Two hyperparameter were

introduced to control the trade-off of the slack vector and the surplus vector in respect to the margin

minimization. The variable C1 is selected to be higher than C2, to ensure that at least one ξi and ηi are

zero.

9



min
w,w0

1

2
‖w‖22 + C1

l∑
i=1

ξi − C2

l∑
i=1

ηi

subject to yi(w
TΦ(xi) + w0) = 1− ξi + ηi,

ξi = 0, ηi = 0, i = 1, . . . , l,

(2.9)

Based on ν-Support Vector Regression [Schölkopf et al., 1998] (modified version of ε-Support Vector

Regression [Vapnik, 1995], where the optimization problem tries to determine a tube of predefined radius

ε that encapsulates the data), an equivalent formulation for classification was presented in [Schölokopf

et al., 2000]. The formulation is named ν-SVM and is defined as follows

min
w,w0

1

2
‖w‖22 − νρ+

1

l

l∑
i=1

ξi

subject to yi(w
TΦ(xi) + w0) = ρ− ξi,

ρ = 0, ξi = 0, i = 1, . . . , l,

0 5 ν 5 1.

(2.10)

This design introduces a new objective into formulation 2.5 given by variable ρ that corresponds to

the minimum distance between all correctly classified points and the separating hyperplane control by

the hyperparameter ν. The hyperparameter C is equal to 1 since the authors concluded that, in the dual

formulation, the variable did not affect the optimization problem. Similarly to slack and surplus variables,

the opposite objective to the one presented before can be formulated by replacing the maximization

of νρ with the minimization of µσ where σ represents the maximum distance between all misclassified

points and the hyperplane.

These two objectives can be joined together identically to formulation 2.5 and form µ-ν-SVM formu-

lation

min
w,w0

1

2
‖w‖22 + µσ − νρ

subject to yi(w
TΦ(xi) + w0) = ν − σ

σ = 0, ρ = 0, i = 1, . . . , l,

0 5 µ, ν 5 1.

(2.11)

So far, no specific information about the training data, except for noise, was mentioned. In real-world

problems, the training sets commonly contain several obstacles such as unbalanced data or outliers.

The presence of one hyperparameter gives equal importance to both classes. This assumption makes
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an inappropriate approach to unbalanced training data cases. To overcome this issue, separable slack

hyperparameters C were applied to formulation 2.5 in [Morik et al., 1999] for each class. Other approach

was made to formulation 2.10 in [Hong-Gunn Chew et al., 2001] by reintroducing the hyperparameter. In

the case of outliers, similar formulation to the 2.5 was presented in [Yoon et al., 2003], where an upper

limit of the variable ξi was limited by an upper bound, ξmax, which proves itself especially functional to

data sets .

2.2 Concepts of Optimization Problems

2.2.1 Multi-Objective Optimization

As in the case of non linearly separable SVM formulation, problems can contain multiple objectives in a

single function. For some, the combination and the actual optimization of various objectives into a single

function can be a complex task. In MOP, a parallel optimization of multiple functions is performed.

Considering the objective function F : Rn → R, and the constraints Gk : Rn → R, k = 1,. . . , K and

Hp : Rn→ R, p = 1,. . . , P, the MOP is given by

min
x∈X

F (x) = (F1(x), . . . , Ft(x))

subject to Gk(x) ≤ 0, k = 1, . . . ,K

Hp(x) = 0, p = 1, . . . , P.

(2.12)

Often, contradicting objectives exist, which creates conflicts between them. As a result, the optimiza-

tion achieves the best result by finding the solution set where all functions are optimized. For a known

solution set, this means that, for all objectives, a better result might exist. However, a worse outcome for

one or more objectives also exists. The existence of this set is the main difference in optimizing single

or multiple functions. The following two definitions are required to define the solution set.

Definition 2.2.1 (Dominance). Given two vector x, y ∈ Rk , x ≤ y if xi ≤ yi for i = 1, . . . ,k, and that

x ≺ y (x dominates y) if x ≤ y and x 6= y.

Definition 2.2.2 (Non-dominated). A variable vector x ∈ X is non-dominated with respect to X if there

does no exist x′ ∈ X such that f(x′) ≺ f(x).

A point is then considered best or non-dominated if is best in one and not worst in all the other

objectives. In figure 2.2, several examples of non-dominated points are depicted such as point 1 (1

dominates 6 in respect to F1) and point 5 (5 dominates 9 in respect to F2). In the decision variable

space, the vector containing the points 1 to 5 is called efficient solution or Pareto optimal solution. As

for the objective space, the same vector for the same points is referred to as Pareto Front (PF).
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Figure 2.2: Example of an illustration of dominated and non-dominated points and True Pareto Front.

Although the existence of a larger number of function in the optimization problem implicates a higher

probability of existing conflicts, this is not always the case. It might be natural to assume that adding

more objective would turn the problem into a harder one. Except for complex models where adding

more functions increases the difficulty of the problem, it was concluded in [Schutze et al., 2011] that the

addition of many objective functions per se does not necessarily imply an increased hardness of the

problem.

2.2.2 Bi-Level and Bi-Level Multi-Objective Optimization

In single-objective or MOP optimization, the constraints are assumed to be known. However, the set-

valued mapping, that is, the set of constraints, might be itself defined as an optimization problem. This

lead to the conceptualization of a constraint optimization and formulation of the BP.

The BP is a mathematical program composed of two levels of optimization. One is referred to as

the leader or upper-level, and the other is the follower or lower-level. The names are indicative of their

location in the bi-level framework. The upper-level is the main optimization problem, and the lower-level

is the secondary optimization problem which is nested in the first one. The levels are characterized by

their one objective function, constraints, and the class of decision vector variables. While the lower-

level is optimized with respect to the lower-level decision vector, the upper-level decision vector act as a

parameter. This implies a constraining nature of the lower-level concerning the upper-level. The nested

characteristic is the primary source of difficulty in the optimization as it might introduce discontinuities

and non-convexity. The designations leader and follower can be traced back to the 1950s in game theory

today known as Stackelberg games. Later, they were reformulated into a mathematical formulation as
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previously described.

The recent increase in studies of BP in the last 20 years can be explained by the wide variety of

applications in real-life problems and the difficulty of solving non-simple problems. Applications can

be found in Electricity Transmission (electric power, smart grid, distribution), Network design (traffic,

transportation), Telecommunications (wireless, telecommunication interference), Supply Chain (supply,

manufacturer, management inventory), ML (parameter adjustment) among others. For specific exam-

ples, refer to the compilation in [Sinha et al., 2018].

Considering formulation in 2.12 in both levels, the BP can be extended and transformed into MOBP.

For the upper level objective function F : Rn × Rm → Rp and the lower level objective function f : Rn ×

Rm → Rq, the MOBP is defined by

“min”
xu∈XU ,xl∈XL

F (xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ argmin
xl∈XL

{f(xu, xl) = (f1(xu, xl), . . .

. . . , fq(xu, xl)) : gj(xu, xl) ≤ 0, j = 1, . . . , J}

Gk(xu, xl) ≤ 0, k = 1, . . . ,K

(2.13)

where Gk : XU × XL → R, k = 1,. . . , K and gj : XU × XL → R represent the upper level constraints

and the lower level constraints, respectively. Both constraints can also have equality constraints. The

quotation marks in 2.13 highlight the undefined decision of the upper level, due to the objective functions,

of the lower level optimal solution. Since the upper-level optimizes in respect to the xL set and the lower-

level solution is, in general, a set of optimal solutions, the best choice from this set is not clearly defined.

The objective of a MOBP is the determination of the upper-level Pareto optimal solutions that approach

to the theoretical PF (true PF) or at least an approximate PF. Due to this ambiguity, as indicated in [Alves

and Antunes, 2017], four extreme attitudes or solutions were identified: optimistic solution, pessimistic

solution, deceiving solution, and finally rewarding solution.

Unlike BP and as mentioned in 2.2.1, multi-objective optimization can lead to conflicts between ob-

jective functions, and there might not always exist a feasible solution that optimizes the MOBP. A feasible

set of solutions to the upper-level is required to replace the concept of the optimal solution in BP to tackle

this problem. The Pareto optimal solutions of the lower-level are the only set feasible to the upper-level

optimization problem. The MOBP is solved by fixing an upper-level variable and optimizing the lower

level for the lower level variable.
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2.3 Classical and Evolutionary Bi-Level, Multi-Objective and Multi-

Objective Bi-level Algorithms

The BPs are arduous to solve due to their nested structure. That makes the optimization of MOBPs

more complex.

The most basic approach is the transformation of the two-level problem into a simple one-level op-

timization problem. By applying the Karush-Kuhn-Tucker conditions, the lower-level problem is trans-

formed into a set of constraints to the upper-level, for example in [Dempe et al., 2006,Al-Khayyal et al.,

1992]. Another approach is using the descend method with again a level reduction and applying the

gradient on the upper-level function [Vicente et al., 1994] or Penalty functions methods [Aiyoshi and

Shimizu, 1981,Shimizu and Aiyoshi, 1981] for nonlinear problems where the lower-level problem is sub-

stituted by a single or double [Ishizuka and Aiyoshi, 1992] penalty function. So, instead of solving the

problem itself, a less complex problem is optimized, and for this reason, an approximated solution will

be achieved. For some real-world problems this approximated solution is good enough. But in more

complex ones with characteristics such as non-convexity, non-linearity, non-differentiability, classical al-

gorithms fail or can not solve the problem.

The alternative to this are the EAs, in specific the sub-type named genetic algorithm. Based on the

theory of survival of the fittest alongside genetic concepts such as mutation and recombination, it has the

objective of applying these concepts to a population of members and iteratively creating new members,

called offsprings or child solutions, to obtain better solutions compared with the previous population

and generations. These algorithms were also later extended to problems containing multiple objective

functions.

Pioneer by the author of VEGA algorithm [Schaffer, 1985] in the 1980s, the application of Evolutionary

Multi-Objective Optimization (EMO) has been widely used and improved since then. Contrary to classical

techniques that require several separate runs to compute the PF, as stated in [Coello, 1999], the EMOs

are ideal for MOPs since a set of possible PF solutions in parallel is computed in a single run as well as

being less susceptible to shape and continuity.

Over the years, several techniques and approaches were invented, and, by far, the most popular are

the PF based approaches. One of the most used, tested, and widely established EMO is the improved

version of the algorithm by the same authors in [Srinivas and Deb, 1994] and is referred to as Elitist

Non-Dominated Sorting Genetic Algorithm (NSGAII) [Deb et al., 2002]. The main improvement is the

introduction of elitism in the algorithm. With this concept, the previous parent population members can

be contained in the child population, allowing the prevention of loss of good solutions and helping an

overall better convergence [Zitzler et al., 2000]. It is important to mention that, as said in [Deb, 2010], the

EMO are heuristic-based and, for this reason, do not guarantee convergence of exact PF as theoretically
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supposed for tractable, such as linear or convex problems.

The main operators of changing or diversify the population of a genetic algorithm are the crossover,

and mutation with a previous selection. The selection operator is the method where members of a

population are selected by ranking the population with a fitness value. The principal fitness measure is

the Non-Dominated Rank (ND) based on definition 2.2.2. Another important aspect of solutions in the

PF is the requirement of diversity to ensure the complete representation of the PF. For this reason, and

to help differentiate solutions with equal ND, the Crowding Distance (CD) measure is used. Measuring

the density outside of the point by computing the cuboid form with the nearest neighbours as vertices

when two solutions have the same ND rank, a solution with a bigger cuboid or less crowded region is

preferable. This operator is called tournament selection.

The crossover or recombination is, as the name suggests, a reconfiguration of the parents’ solutions

to obtain new child solutions similar to the process of chromosomal recombination in biology. The

NSGAII uses the SBX operator [Deb and Agrawal, 1995].

After the recombination, the mutation operator helps in diversifying the child solutions and prevent-

ing local minima by slightly changing the solutions. The NSGAII uses four parameters to control the

progression of the operators: crossover probability, index for SBX operator, mutation probability, and the

index of polynomial mutation. These have a crucial impact on the performance of the algorithm and vary

on the optimization problem. To take into account this uncertainty of the standard parameters (crossover

probability of 0.9, index for SBX operator of 15, mutation probability of 0.1, index of polynomial mutation

of 20), in [Andersson et al., 2015, Andersson et al., 2016], the authors used MOP and BP approaches

to tune these parameters using the Hypervolume Indicator to evaluate the performance. This is similar

to the HO in BP presented in Section 2.4.

The overall procedure of NSGAII is represented in figure 2.3. Using a parent population of members

Pt of size N , the NSGAII for each generation creates another population Qt called child population with

the above operators. When the total number of new creation is equal to the parent population, the two

equal size populations are combined in a new population Rt. This population is used to create the new

parent population by removing half the members. Ranking and sorting Rt with ND and in turn CD, the

worst solutions of size N are rejected. The previous steps are repeated until the predefined maximum

generation is achieved.

Another different MOP approach is the Multi-Objective Evolutionary Algorithm based on Decomposi-

tion [Zhang and Li, 2007]. As the last name suggests, the main problem is decomposed or transformed

into a series of many new problems, called subproblems, that are optimized in parallel. This series is a

set of single objective optimizations, and the combination of each solution represents the non-dominated

vector solution of the original problem. The presence of many-objective problems was found to compro-

mise the optimization, especially when using the CD calculation [Kukkonen and Deb, 2006] for more
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than three objectives in PF based algorithms. However, the this algorithm did not suffer from this diffi-

culty and was found to surpass the performance of NSGAII [Zhang and Li, 2007]. A general review of

the framework and recent developments can be found in [Santiago et al., 2014].

Figure 2.3: Flowchart of the NSGA-II algorithm.

Another approach is based on particle swarm optimization and is called Multi-Objective Particle

Swarm Optimization [Coello Coello and Lechuga, 2002]. The algorithm uses a population or a swarm of

solutions that iteratively update their position through the search space to improve their status to achieve

the PF. They are referred to as a swarm since they emulate a flock of birds or shoal of fish, and the

movement is control by a function of position, velocity, and the values of the distance of best position

and current position of a particle, and distance of the global best position and the current position of the

particle. Although not surpassing NSGAII, it shows the algorithm as a solid competitor. For a survey

of variants of the Multi-Objective Particle Swarm Optimization approach and applications, see [Lalwani

et al., 2013].

The difficulty of many-objective problems presented above and increased demand for better al-

gorithm in the last decade lead to the improvement of the NSGAII algorithm with influence of Multi-

Objective Evolutionary Algorithm based on Decomposition by adopting decomposition and reference

points, originating the third iteration named Reference-Point based Many-Objective NSGA-II [Deb and

Jain, 2014,Jain and Deb, 2014]. When testing problems with up to 15 objectives, the algorithm achieved

good convergence, except for the higher dimension cases where it struggled with diversity and conver-

gence to the PF. Although this algorithm was proposed to substitute NSGAII in many objective problems,

a study was conducted by the authors in [Ishibuchi et al., 2016] to compare the performance of both al-
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gorithms. They concluded that NSGAII is not necessarily worse. It depends significantly on the type of

problem rather than just the quantity of functions.

It is important to mention the above algorithms, since most MOBP algorithm used in each level a MOP

algorithm. One of the original authors of NSGAII also developed an approach for MOBP called Bi-Level

Evolutionary Multi-Objective Optimization algorithm [Deb and Sinha, 2009]. Although the described

procedure uses the previous EMO to solve both levels of optimization, as indicated by the authors, any

other developed algorithm can be used. For an algorithm with a similar scheme and based on particle

swarm optimization, see [Carrasqueira et al., 2015].

This algorithm was later acknowledged to contain several drawbacks leading therefore to a new

extended version named Hybrid Bi-Level Evolutionary Multi-Objective Optimization (H-BLEMO) algo-

rithm [Deb and Sinha, 2010]. In Section 3.1 of the following Chapter, the drawbacks and the description

of the H-BLEMO will be presented.

2.4 Hyperparameter Bi-Level Approach

Traditionally, hyperparameters in ML are determined by a series of trial and choosing, in the end, the set

of values that achieved the best performance. This is done by an exhaustive n-dimension grid search.

Typically, a CV technique is combined with the grid to improve validation performance and avoid over-

fitting models. Also called brute force, this approach has the downside of a combinatorial explosion,

causing it to be unreliable in problems of dimension higher than two [Bergstra and Bengio, 2012] which

can reach up to hundreds [Bergstra et al., 2013].

Random search is another technique to improve the previous strategy and consists of randomly

initializing hyperparameters and iteratively modifying their values to better ones, according to the mini-

mization of a loss function. It was also shown in [Bergstra and Bengio, 2012] the improvement of random

search over grid search, stating the primary reason to be the fact that not all the hyperparameters are

equally essential to adjust.

Another technique is the Gradient Descent and was first used by [Bengio, 2000] for computing the

gradient with respect to the kernel and the error. Although highly efficient when applicable, as mentioned

in [Igel, 2005], the differential characteristic of the algorithm restrict the use of non-differential kernels

and objective functions, such as the number of support vectors. This algorithm was also used alongside

the BP in [Sinha et al., 2020].

To remove the problems of using the CV technique for a higher number of hyperparameters, [Bennett

et al., 2006] proposed a new program of bilevel CV and tested on support vector regression model. This

way, for each fold of the CV an automatic selector was included with the training of the model with

the respective set of hyperparameters in the lower-level and the validation in the upper-level. This
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approach is presented in 2.4. This was followed by numerous new approaches such as in [Kunapuli

et al., 2012, Moore et al., 2011, Fischer et al., 2015] using reduction methods with KKT conditions,

gradient descent, and locally replacing the lower level problem with its unique solution, respectively.

For more complex problems, some algorithms were created. For instance, to solve optimization

problems with non-smoothness and non-convexity introduced by the lp regularizers, using scaled bilevel

KKT conditions a new iterative algorithm was created by [Okuno et al., 2018].

Figure 2.4: Bi-Level formulation of hyperparameter optimization

The same authors of the NSGAII algorithm also created their version of automated parameter tuning

in [Sinha et al., 2014]. Instead of solving the nested problem, the lower-level optimization problem

was replaced for the set-valued mapping of the lower-level by a quadratic approximation of the lower-

level function. They also defined for the first time the mathematical formulation of the parameter tuning

optimization problem.

The above approaches and algorithms can only deal with single objectives or functions with multiples

objectives. As mention above, in most cases, no knowledge of the different objectives in the same func-

tion is known to have conflicts or benefits. Some authors created MOP approaches dealing separately

with different objectives such as the number of support vectors and minimization of the classification

error in [da Silva Santos et al., 2021] or in [Igel, 2005].

To the best knowledge found in this work, no attempt was done to incorporate both the multiple

objectives functions and the bi-level formulation of figure 2.4. For this reason, this work focus on the ap-

plication of MOBP evolutionary-based for an automated adjustment of the hyperparameters, and training

and validation of SVM model with different formulations for classification problems.
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In Chapter 2, the basic concepts of MOBP were presented in order to understand how to apply to ML

problems. Also, several of these problems were given focusing mainly on the SVM model. This Chapter

is dedicated to the description and explanation of the selected algorithm applied in Section 3.1 as well

as the different SVM formulations in Section 3.2.1.

3.1 Hybrid Bi-Level Evolutionary Multi-objective Algorithm (H-BLEMO)

Algorithm

As mentioned in Chapter 2, the H-BLEMO algorithm was the result of several improvements to the

former algorithm.

First, the algorithm lacked sensibility in terms of the importance of solutions. Even for good or

non-dominated vector solutions, the algorithm computes in the lower-level a user-defined number of

solutions. This procedure is unnecessary for optimization and only worsens the computation time. For

this reason, a self-adaptive process was created to select the number of lower-level solutions. By taking

into account the ratio of the Euclidean distance of the new upper-level vector and the closest solution

of the archive members, and the maximum Euclidean distance of all members in the archive, the size

of the lower-level population was computed by the integer value of the multiplication of size and ratio.

In this method, the farther the new vector is, the higher number of solutions is allocated to help the

optimization.

Second, this lack of importance is also present in the maximum number of generations of the lower-

level. Independently of the solutions, a user-defined number forced lower-level NSGAII are computed

even for already found good solutions, leading to useless evaluations.

Third, for the termination of both levels, the algorithm made use of a user-defined criterion (the

number of generation). To substitute it for a more sensitive method to the solutions, the Hl metric is

used and computed as follows:

Hl =
Hmax
l −Hmin

l

Hmax
l +Hmin

l

, (3.1)

where maximum and minimum Hypervolume Indicator, respectively, are calculated for every τ generation

(value used: 10).

Fourth, and most importantly, a local search operator is applied to lower-level solutions to ensure

the requirement of solutions being lower-level optimal solutions and final archive solutions to be the true

lower-level Pareto-optimal.

The summary of the procedure of H-BLEMO of a single generation is described below.

The main structure of the algorithm is composed of ns subpopulations. Each one shares the same

upper-level variable vector, and, in total, the subpopulations have Nu members. For each subpopulation,
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a lower-level NSGAII is performed followed by a local search optimization. In every generation, the

archive is updated after every lower-level optimization.

At the beginning of a generation, every member in the population Pt of size Nu and archive have

computed the corresponding values of ND and CD for both levels. Step 1 deals with creating a new

upper-level vector and respective lower-level vectors for the current generation. For a single upper-

level vector creation, a binary tournament selection is applied to population Pt and archive. Of the

four outcome parents, two are selected stochastically are recombined using the SBX operator. Finally,

one is mutated with the polynomial operator. This final vector is the new child upper-level vector. The

aforementioned vector is then used to create Nl child solutions, number which is based on its location

in the current archive members’ space.

After all child solutions are created for the upper-level vector, Step 2 performs the NSGAII to the

lower-level. The algorithm differs solely from the original on the selection. Taking advantage of previous

found archive solutions, if the subpopulation is present in the archive, only these are used in the binary

tournament selection. Otherwise, the normal process is used. At the end of lower-level optimization, the

solutions are sorted and ranked by ND and CD.

Step 3 involves the new optimization addition of the Local Search operator to achieve the locally PF.

Since the operator can be expensive, as later verified to represent 50% of all computation effort in [Deb

and Sinha, 2010], the operator was only applied to solutions that follow certain properties to exclude

inadequate solutions. The operator is defined by the optimization of achievement scalarizing function

problem [Wierzbicki, 1980].

Step 4 is for updating the archive after the Local Search. For only the deemed optimal solutions,

these are compared with all archive members. If the solutions are non-dominated, these enter the

archive, and the dominated members are excluded. In case of exceeding the maximum size of the

archive, until the size is reached, the members are removed according to CD.

In Step 5 the creation of all new solutions finalizes, meaning the above steps are repeated until

the population of new solutions has the exact size of the parent population Pt. What follows is the

combination of both populations after a ranking by ND and CD for future selection of Nu members.

This selection of half of the combined population is step 6 of the algorithm. The members first

considered are those that have upper-level ND equal to 1, and then lower-level ND equal to 1 in order

of reducing by lower-level CD. If the entire lower-level subpopulation is already present in the side

population and the future solutions are from the same subpopulations and have both ND equal to 1, no

further copy to the side population is done. The process is repeated for all upper-level ND equals 1 and

future values until members reach Nu size.

In the last step, for each subpopulation in the side population not created on the above steps, a

lower-level NSGAII is utilized for helping the individual approximation of PF. The termination criteria
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metric 3.1 is computed, and if the value reaches lower than the threshold on generations multiple of τ ,

the algorithm comes to an end. Otherwise, the steps above are repeated.

3.2 Proposed Multi-Objective Bi-Level Support Vector Machine Prob-

lems

The previous algorithm was used to test two selected ML formulations from the aforementioned in Chap-

ter 2, the formulation 2.5 and 2.9. These problems contain multiple objectives in their function. However,

in most real problems the data might lead to conflicts between objectives which if occurred a worst

performance is achieved. Depending on the problem, these conflicts might disappear if objectives are

transformed into their one function.

3.2.1 Support Vector Machine Formulations

The two objectives in the selected primal formulations are the minimization of slack variable and maxi-

mization of surplus variable, and in total, six different formulations were created. The constraints remain

the same as in the original formulation and for that reason are not shown below. The first two formulas

were based on the formulation 2.5 and were defined as

Formulation 1:

min
w,w0

{
F1 =

1

2
‖w‖22 + C

l∑
i=1

ξi (3.2)

Formulation 2:

min
w,w0


F1 = ‖w‖22

F2 =

l∑
i=1

ξi
(3.3)

while the remaining were originated from the formulation 2.9 and were defined as

Formulation 3:

min
w,w0

{
F1 =

1

2
‖w‖22 + C1

l∑
i=1

ξi − C2

l∑
i=1

ηi (3.4)

Formulation 4:

min
w,w0


F1 = ‖w‖22

F2 = C1

l∑
i=1

ξi − C2

l∑
i=1

ηi
(3.5)
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Formulation 5:

min
w,w0



F1 = ‖w‖22

F2 =

l∑
i=1

ξi

F3 = −
l∑
i=1

ηi

(3.6)

Formulation 6:

min
w,w0


F1 =

1

2
‖w‖22 − C

l∑
i=1

ηi

F2 =

l∑
i=1

ξi

(3.7)

3.2.2 Objectives for Support Vector Machine Evaluation

For evaluating the lower-level solutions in the training and validation stage, two types of objectives were

selected. The first corresponds to the error of a hyperplane of the dataset and the other to the classifi-

cation task.

The hinge loss is the most commonly loss function use in training SVM. It’s defined for a particular

point as

LHinge(y, w
Tx+ w0) = max{0, y(wTx+ w0)}, (3.8)

where y is the output ± 1. This is an equivalent definition to the slack variable presented in Section 2.1.

For the classification of classes, the metric used is a specific case of the F-score [van Rijsbergen,

1979] defined as

F-score = (1 + β2)
PrecisionRecall

β2Precision+Recall
, (3.9)

where Precision is the ratio of true positive labels in all predicted data as positive, Recall is the ratio of

true positive labels in all correctly classified data, and β the importance of the Precision over Recall. The

metric is called F1-score because the commonly used value of β is 1, meaning the same importance

for the precision and recall. To transform this metric into a minimization problem the same approach in

[Musicant et al., 2003] was applied. The author created a SVM formulation integrating the maximization

of the F1-score fused with the slack variable. The new metric is given by

F1-score =
1

1 + 1−C
2z

, (3.10)

where C represents the global performance using the accuracy and z the ratio of true positive classifica-

tions. The maximization of the F1-score is achieved by the minimization of fraction in the denominator,

assuming z 6= 0, and that results in the following minimization problem
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(1− C)− 2z. (3.11)

The main criticism on the utilization of the metric to validate the model lies in the fact that only the

true positive cases are evaluated and can be misleading in unbalanced datasets. For this reason, the

F1-score for negative cases was used. A similar approach to 3.11 can be formulated for the negative

F1-score with a new z variable, zneg, representing the ratio of true negative classifications.

In conclusion, in both levels and in all formulations, the hinge loss, the F1-score, and the negative

F1-score were employed.
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In this Chapter, the results for the proof of concept of MOBP in ML are shown. In Section 4.1, the

source of NSGAII and other algorithms used to adapted into the creation of the H-BLEMO as well as

the basic parameters and the dataset used are indicated. This Section is followed by the decisions and

commentary on the implementation of the algorithm, in specific on the behaviour of traditional MOBP

in Section 4.2.1, on the selection of upper-level and lower-level interval in Section 4.2.1, on the upper-

level objective space in Section 4.2.3, on the termination criteria in Section 4.2.4, on the Local Search

operator in Section 4.2.5, and on the transformation of dataset feature in Section 4.2.6. Finally, the

results of the various SVM formulation of each dataset are presented in Section 4.3.

4.1 Pre-Testing

The H-BLEMO constructed to this work is based on the Matlab tool Evolutionary multi-objective optimiza-

tion platform PlatEMO [Tian et al., 2017] made available by BIMK Group, specifically the multi-objective

algorithm NSGAII. As for the termination criteria, the hypervolume indicator algorithm used was pro-

posed by [Fonseca et al., 2006] version 1.3 and can be found in [Fonseca et al., 2017]. For both levels,

the standard parameters of NSGAII (crossover probability of 0.9, index for SBX operator of 15, mutation

probability of 0.1, index of polynomial mutation of 20) were selected. The number of population mem-

bers was defined by 20 times the total number of variables in the problem following the indication of the

authors. This number achieves best performance with smallest number of function evaluations. A con-

strained non-linear multivariable function from Matlab library was utilized for the Local Search quadratic

optimization.

For the empirical analysis of SVM formulations listed in previous Chapter in classification problems,

several datasets were retrieved from the UCI Machine Learning Repository [Dua and Graff, 2017]:

1. Iris flower dataset or Fisher’s Iris dataset: Dataset for the classification of 3 species of Iris

flower (Iris Setosa, Iris Versicolour and Iris Virginia). Composed of 4 feature representing length

and width of sepal and petal of a flower and with an equal number of instances, 50. Since the SVM

formulations were implemented for binary classification, the set was divide into two set where the

iris versicolour is present in both.

(a) Iris Setosa and Iris Versicolour .

(b) Iris Versicolour and Iris Virginia.

2. Haberman’s Survival: Dataset of case study of survival of patients who underwent breast cancer

surgery. Consists in three feature including age, year of operation, and number of positive axillary

nodes detected.
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3. Wisconsin Breast Cancer Database (January 8, 1991) [Bennett and Mangasarian, 1992]: Dataset

of breast cancer clinical cases to classify cancer status as benign or malignant. Composed of 10

biological features characterized with number from 1 to 10. All instances with missing values were

removed.

For the generalization of the classification task, the CV technique was implemented in the algorithm.

For every generation, the dataset is randomized and 70% used in the lower-level training stage. The

remainder is applied to validate the training results.

4.2 Implementation Details and Observations

In this Section, qualitative observations and remarks about the H-BLEMO algorithm and their relationship

with ML problems are presented.

4.2.1 Behavior of Classical Multi-Objective Bi-Level Problems

Before testing ML problems in the H-BLEMO, the algorithm was simulated in classical MOBPs. This

was done to evaluate the adapted algorithm and compare the results to the original algorithm. The 2

problems selected were originally from [Eichfelder, 2007] and [Deb and Sinha, 2009], and were called,

respectively, TP1 and TP2 in [Deb and Sinha, 2010].

(a) TP1 problem (b) TP2 problem

Figure 4.1: Pareto-optimal fronts of upper-level and some representative lower level optimization tasks are
shown [Deb and Sinha, 2010].

In the objective space for both problems in figure 4.1, the upper-level PF are presented. The display

of the lower-level PF helps the visualisation of the effect of constraints in the optimization solution.
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(a) TP1 problem (b) TP2 problem

Figure 4.2: Solution of final archive of H-BLEMO [Deb and Sinha, 2010].
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Figure 4.3: Example of solution of final archive of constructed H-BLEMO.

Comparing both results of figures 4.2 and 4.3, the constructed algorithm approximately achieves

the true PF but the solutions are considerably fragmented and incomplete. This indicates a lack of

performance since several variable combinations are not present in the final results. In figure 4.3(b),

although not evident but more clearly visible in other slightly worse runs, the algorithm has difficulty in

attaining even an approximate PF. The algorithm is unable to recover the optimal PF from the PF that

dominates the optimal one.

These examples had a modification on the mutation probability parameter of the algorithm. The

substitution was intended to aim for more diverse results because of the poor results. However, the
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parameters used in the Sections below are the same as in Section 4.1.

It is important to state that the H-BLEMO was constructed by the interpretation of the step procedure

and the utilization of different algorithms from the original.

4.2.2 Upper-Level and Lower-Level Variable Vector Interval

The first predicament when starting the optimization problem lies in the definition of the range of lower-

level variables. In the test problem TP1, the choice is straightforward since they are a constraint. The-
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(a) Linearly separable
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(b) Non-linearly separable

Figure 4.4: Basic datasets where each colour represents a different class.

oretically speaking, the parameters that define the hyperplane belong to Rn but, for practical reasons,

the interval should be as compact as possible to achieve, simultaneously, the best results in a shorter
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computation time. In respect to the upper-level, the variables are hyperparameters in the SVM prob-

lem. Therefore they should encompass large but reasonable intervals. For every test, the interval of

the hyperparameter C is [10−4, 100]. For the parameter σ in the Gaussian transformation, the interval is

defined in Section 4.2.6.
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(a) Linearly separable dataset
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(b) Non-linearly separable dataset

Figure 4.5: Effect of lower-level variable interval [-1;1] in the final archive solutions.

In the enquire of the effect of the interval in the performance of the classification, numerous tests

were computed. Starting with the same interval of the TP1 problem, [-1,1], intervals were modified by

a multiplying factor of 10 twice with no other change to the algorithm. Using formulation 1 the test were
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performed on two simple self-made datasets, one linearly separable and the other non-linearly separable

dataset, respectively presented in figure 4.4. The three tests for each dataset are presented in figures

4.5, 4.6, and 4.7.
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(a) Linearly separable dataset
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(b) Non-linearly separable dataset

Figure 4.6: Effect of lower-level variable interval [-10;10] in the final archive solutions.

In the linearly separable case, from the classification point of view, no effect is visible from the mod-

ification of the variable interval, since any hyperplane of the final archive in each test achieves perfect

class separation. However, the hyperplanes become less homogeneous for the larger intervals. This

outcome most probably exists due to the existence, in the feature space, of a well visible band that
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Figure 4.7: Effect of lower-level variable interval [-100;100] in the final archive
solutions.

separates both classes and the possibility of the algorithm to create a more diverse hyperplane.

Although the last observation is valuable in the generalization of the interval choice, the actual results

are not observable. The test of a more demanding dataset is the primary reason for observing this effect.

Since the band of the linearly separable dataset does not exist in the non-linearly example, a more

concise hyperplane is demanded by the dataset for classification. Therefore the algorithm requires

more freedom in selecting variables. Comparing the non-linearly separable dataset in figure 4.5, 4.6,
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and 4.7, it is clear the effectiveness of a larger interval.

Of course, this decision is depending of the location of the features in the feature space, but with a

simple normalization this problem can be overcome. In conclusion, the interval selected for classification

test below was [-100, 100].

4.2.3 Upper-Level Objective Space

The upper-level is the primary optimization of the MOBP in classical problems. On the contrary, the

lower-level is the main optimization in ML problems because it is the training stage of the classification

task.

In the upper-level objective space of classical problems, the PF represents a direct outcome of the

variation of the upper-level variables in the optimization. For instance, in the problem TP1 in figure 4.1(a),

a particular variable y, x1, and x2 which originates a F1 and F2 objective value that corresponds to point

C. This direct causation is the main distinction when comparing with classifications problems due to the

existence of two steps in the problem: computation of a hyperplane; and classification task evaluation

with the metric function(s). This means that in MOBP the hyperplane is defined by the variables and the

objectives functions are defined not by the variables but by the hyperplane.

Although seemingly irrelevant, this slight difference changes the dynamic of the algorithm, for exam-

ple, in the termination criteria, and the evaluation of the performance of the final results. First, the values

of objective functions evaluating the classification belong to a set of finite numbers and are dependent

on the number of points in the dataset and the percentage of true positive cases for the F1 score metric

and true negative cases for the F1 score metric. The consequence of this is a nonsmooth and depleted

PF. However, these vacant spaces in the PF are not a sign of the ineffectiveness of the algorithm but

simply an intrinsic characteristic of the classification problem. Second, the points in the objective space

can have the same values even though they represent different hyperplanes. The opposite can also

happen, i.e., different values for the same hyperplane. These two cases take place due to not just the

minimization of both the F1-scores but also the addition of the CV technique.

The PF can also cease to be a frontier. Using the hinge function and only the true F1 or the negative

F1 instead of both, the PF becomes a single point. This occurs for two reasons: the hinge function

being lower bound by 0, and the ND. Given Definition 2.2.2, when one point with hinge equal to 0

and an arbitrary F1 score value, the archive will only accept points with smaller F1 while removing the

remaining.

These previous observations alter the synergy of the upper-level PF and MOBP algorithms. The

objective space becomes unusable when concluding or comparing the performance of the algorithm

and the different formulations. However, this does not imply an useless utility to the validation and

training stage of the hyperplanes.
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Using the same tests of figure 4.12 in Section 4.2.5 without taking into account the goal for using

them there, the upper-level objective space was compared and are presented in figure 4.8.
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Figure 4.8: Comparison of pareto front of archive solutions of formulation 1 for the first test of Section 4.2.5.

When comparing the point in the objective space of the test in figure 4.8, the figure 4.8(a) apart from

containing more points than in figure 4.8(b), only the effect of the CV technique can be visualised given

the different values of F1 and negative F1 and comparing it the respective hyperplanes solutions in figure

4.12(a). The results contain hyperplanes that misclassify points whilst getting the lowest possible value

of the hinge objective. This is possible to happen since the solutions represent the PF of the validation
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stage of the problem, meaning only 30% of the dataset is used. In conclusion, no comparison about the

performance of classification of these two test can be made.

The previous observations and conclusions made the evaluation of the advantages and disadvan-

tages of the different formulations in the classification task from the upper-level space impossible. Also,

the PF ceases to be the final solution of the problem to be the space of features. These observations

were not reported in HO of Section 2.4 because the optimization was done in BP and the concept of

PF is not applicable. For these reason, the original datasets were partitioned, and the new section was

used for testing by computing the accuracy of solutions.

4.2.4 Termination Criteria

As mentioned in the previous Section, ML problems affect the MOBP, mainly the objective function

space. This effect is especially concerning because of its dependency on the termination of both the

lower-level and the algorithm. A comparison of the algorithm with the criteria and without was done to

evaluate its impact. In replacement, a number defines the maximum number of upper-level generations.

In the tests of figure 4.9, the differences are very slim, chiefly due to being an easily separable

dataset. Nonetheless, the hyperplanes in figure 4.9(a) with a non-zero slope, although it separates the

data, has a worse separation for future data when compared to the others.

In figure 4.10, the differences are more apparent. Some tests with the termination criteria accomplish

results similar to figure 4.10(b), but not using it seems favourable to better performance. Its impact is

even more expressive in more complex datasets with the presence of noise. To that effect, a new dataset

was created, and the results are presented in figure 4.11.

The reason for these discrepancies in the results lies in the fact that the termination criteria depends

on the maximum and minimum values of the Hypervolume Indicator. In most runs of the algorithm, the

upper-level PF did not change in ten consecutive generations, making both values equal and criteria

zero, immediately stopping the algorithm.

Despite the identical utilization in the lower-level problem, the lower-level objective space is less

prone to consecutively remaining the same due to the presence of a higher number of objective func-

tions and in particular non-classification objectives such as, for example, the norm and the sum of the

distances to hyperplane of misclassified points. For this reason and the confirmation of good perfor-

mance provided by the tests without the termination criteria visible in figures 4.10(b) and 4.11(b), the

lower-level did not have any changes.

In conclusion the termination criteria using the Hypervolume Indicator is not suitable for ML prob-

lems. In the tests of Section 4.3 below, it was substituted with a maximum number of generations. Two

separate tests were done for every formulation and dataset with two values, 100 and 200 generations,

to ensure solid results.
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(b) Without termination criteria

Figure 4.9: Comparison of the effect of termination criteria in the final archive solutions of the linearly separable
dataset with formulation 1.
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Figure 4.10: Comparison of the effect of termination criteria in the final archive solutions of the non-linearly
separable dataset with formulation 1.
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Figure 4.11: Comparison of the effect of termination criteria in the final archive
solutions for the Noisy dataset with formulation 1.
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4.2.5 Local Search

The Local Search optimization is the attempt to guarantee the lower-level solutions to be locally PF. ML

problems change the relationship between variables, the objective function and objective space, and the

problem itself. A study of the effect of the Local Search optimization was carried out. As in the previous

Sections, both the linearly and non-linearly separable datasets were used. The results are presented,

respectively, in figure 4.12 and figure 4.10.
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Figure 4.12: Comparison of the effect of Local Search in the final archive solutions for the linearly separable
dataset with formulation 1.
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The first observable aspect in figure 4.12(a) is how the solutions are more sparse and seemingly

more diverse in terms of the number of different hyperplanes when compared with figure 4.12(b). Com-

paring it to figure 4.4(a), several hyperplanes do not correctly divide this trivial space. Of course, the

archive contains solutions that perfectly classify the data that could be highlighted after measuring the

accuracy in the test stage. However, in terms of the overall performance of the H-BLEMO, the non-

perfect solutions can be detrimental in the creation step of new child solutions due to their dependency

on the archive.
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Figure 4.13: Comparison of the effect of Local Search in the final archive solutions for the non-linearly separable
dataset with formulation 1.
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For a dataset with a more restricted space for the best separation (that is the case of the dataset in

figure 4.10), the algorithm, in the long run, tends to have all solutions in the archive alike or coinciding

with each other. Comparing figures 4.13(a) and 4.13(b) again it is observed that the Local Search did

not aid the results.

In conclusion, the removal of the operator does not negatively affect the H-BLEMO. On the contrary, it

improved or corrected the performance of solutions. Another advantage of this disposal is the significant

reduction of the computation time on an average of approximately four times. The reason for these

problems has two possibly origins: the algorithm constructed has worse performance when compared

to the original one, and/or the choice of the Local Search algorithm and respective parameters. For

these reasons and improvements, the particular Local Search algorithm was removed, but the rest of

the preparation of the Local Search step was maintained.

4.2.6 Feature Transformation

The classifications tests in Section 4.3 used only the Gaussian transformation to accomplish better

results when compared with the original dataset. The hyperparameter that characterizes this transfor-

mation impacts only the variables of the feature space, something which is not directly connected with

the H-BLEMO but with the SVM formulation problem.

However, if a polynomial transformation (see table 2.1) were to be used, the hyperparameter d re-

sponsible for selecting the degree will cause problems in the algorithm. The sizes range of the lower-level

and upper-level variables are chosen by the user. They are purposely static given that, in the child pop-

ulation creation stage, the crossover and mutation operations require the exact size of vectors. Also,

when conjoined with other hyperparameters, a mixture of variable encoding exist, and, for each one, the

genetic operators are computed in different methods.

The interval of the hyperparameter employed is bound by 10−4 and double the maximum absolute

value of all features. The upper limit is defined in this way to prevent the transformation from becoming

a flat hyperplane. Also, the transformation was defined as a degree above the original dataset and

centered around the average of the features.

4.3 Classification Results

The objective of this work is the proof of concept of using MOBP algorithms for optimization of classifi-

cation problems, there was no necessity for fine tuning for each dataset. For this reason, only simpler

separations were used, that is flat hyperplanes.

To evaluate the performance of the classification of the final solutions. the testing stage was created.

Using 20% of the original dataset, which was initially saved, the accuracy was computed after the algo-
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rithm finished to run. In the replacement of the termination criteria with the number of generations, the

assurance that the algorithm would stop when it achieved good results disappeared. For this reason,

two different maximum values of generations were tested. The succinct results for the dataset Iris Setora

and Iris Versicolour, Noisy, Iris Versicolour and Iris Virginia, Haberman’s Survival, and Wisconsin Breast

Cancer Database are presented, respectively in the tables 4.1, 4.3, 4.2, 4.4, and 4.5.The extensive

results will only be presented in Appendix A.

At the end of each run, the algorithm contains multiple solutions. The accuracy in percentage for

each run of the tables in the Appendix represent the mean across all. In Gaussian tests, in particular,

the comparison is not just done between hyperplanes but also with different σ values. In Section 4.3.1,

the values presented are only the mean of the total number of runs.

4.3.1 H-BLEMO Results

In table 4.1, the algorithm, independently of the formulation, has a perfect separation rate. This result

is expected, as the dataset has ample space between the two classes similar to dataset in figure 4.4.

Since the following datasets are more complex, the influences of the separation of different objectives in

the formulations can be detected.

Table 4.1: Accuracy (%) and standard deviation of runs for each formulation for the
Iris Setosa and Iris Versicolour dataset.

Generations
100

Transformation Original
Formulation Mean SD

1 99.97 0.0543
2 100 0
3 99.76 0.4656
4 100 0.1845
5 100 0
6 100 0.0106

In table 4.2, contrary to the previous one, there is no perfect flat hyperplane that separates the space.

However, a slight improvement can be observed along with the different formulations in the original

dataset. For this dataset, the slack objective improves the optimization when separated from the norm

objective. Although in the formulation 3.4 (3) that is not verified, the presence of the surplus objective is

what improves the performance in 1.5% or 2.56% in the 200 gen test, when compared with formulation

3.2 (1). The introduction of the surplus objective likewise helps the performance, notably, of formulation

3.5 (4), for which the best result is achieved of roughly 95%. As for the Gaussian transformation, the

values are seemingly beneficial in formulation 3.2 (1) and 3.4 (3) but have a high enough value of

42



Table 4.2: Accuracy (%) and standard deviation of runs with different generations for
each formulation for the Iris Versicolour and Iris Virginia dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 91.67 6.1301 94.99 5.4773 91.43 5.0766 91.43 5.6057
2 92.00 4.0000 92.93 2.5386 92.00 2.4495 90.58 7.1666
3 93.16 3.8931 96.82 6.0383 93.99 3.6782 95.81 3.5094
4 94.93 1.5142 93.89 1.4285 95.44 4.1858 95.48 2.7633
5 94.00 4.8990 92.19 3.1306 95.02 3.1625 93.20 4.0513
6 94.01 3.4765 96.64 1.8939 94.68 3.0684 94.67 2.9887

standard deviation to indicate overfitting. However, both formulations 3.5 (4) and 3.7 (6) attain similar

and slightly better results than without transformation, respectively.

Table 4.3: Accuracy (%) and standard deviation of runs with different generations for
each formulation for the Noisy dataset (see Section 4.2.4).

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 87.79 3.3481 86.84 5.9969 85.22 2.1326 88.17 6.1430
2 88.22 4.3825 89.91 4.5375 85.35 4.9404 89.35 3.7455
3 92.47 2.7534 93.02 2.7588 94.57 1.4614 92.63 3.6807
4 92.40 2.7183 95.13 2.3548 92.76 2.7014 92.36 0.9536
5 93.00 1.6956 92.24 2.9985 93.50 2.8940 92.88 3.7838
6 93.31 2.3762 89.63 3.0316 92.50 1.4309 92.80 3.2020

In table 4.3, the effects of the slack and surplus objectives are similar to the Iris Versicolour and Iris

Virginia dataset, albeit the best performances in the original dataset are formulation 3.4 (3) and 3.6 (5),

around 93.50% and 93.25%, respectively. With the Gaussian transformation, the improvement is barely

significant. In the case of the formulation 3.5 (4), the best mean value is achieved in the 100 generation

test whereas, in the 200 generation test, the performance is worse than formulation 3.4 (3), 3.5 (4) and

3.7 (6) meaning this formulation is not as good as the formulation 3.4 (3) with no transformation.

The Haberman’s Survival dataset was by far the dataset with worst performance as well as the most

standard deviation. The reason for this disparity is the extreme complexity of the dataset itself seen in

figure 4.14 and for this reason the very difficult task of separate with flat or non-flat hyperplanes.

Despite this, the advantage of some formations is visible. Again the separation of slack objective

and the introduction of the slack objective increased the overall performance. Especially, formulation 3.5

(4) in the original transformation achieves around 10% and 5% better results than formulation 3.2 (1)

and 3.3 (2), respectively. The best results are the 72% of the formulation indicated above and 73% of
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Table 4.4: Accuracy (%) and standard deviation of runs with different generations for
each formulation for the Haberman’s Survival dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 63.37 3.6062 69.51 6.6618 65.37 8.2017 63.15 5.9226
2 67.59 8.3339 62.26 4.7574 65.90 6.8304 62.19 5.6920
3 69.70 5.4575 67.37 4.2309 69.18 1.7316 71.81 6.4129
4 72.10 5.5328 69.79 5.6901 72.89 4.2815 69.93 3.2024
5 68.83 8.1508 71.55 1.9678 71.17 7.4315 71.59 0.7218
6 73.41 3.4715 72.00 4.1078 71.82 4.2295 72.83 5.1015

formulation 3.7 (6). In the Gaussian transformation tests, the performance is similar or worse than that

of the original transformation. Comparing the tests of different generations, no advantage is found in

using more than 100 generations, since no considerable reduction in the standard deviation is attained.

Again, this is a consequence of the complexity of the dataset.

Table 4.5: Accuracy (%) and standard deviation of runs with different generations for
each formulation for the Wisconsin Breast Cancer dataset.

Generations
100 200

Transformation Original Gaussian Original Gaussian
Formulation Mean SD Mean SD Mean SD Mean SD

1 76.46 9.3958 91.66 2.0571 78.02 4.6195 92.31 1.5933
2 67.44 5.5326 86.61 6.7933 72.26 6.0014 90.57 5.6901
3 91.96 0.8946 96.58 1.4128 93.30 1.8187 95.12 0.1920
4 97.03 0.5305 96.51 1.5377 95.72 1.5826 96.53 1.5827
5 92.71 3.3031 95.80 1.3211 95.34 1.0050 94.95 1.4038
6 95.49 1.5539 96.16 1.6965 95.87 1.5312 96.62 1.3957

In table 4.5, the results for the most challenging dataset in terms of the total number of features is

presented. The dataset is the most notable for the positive influence of the introduction of the slack

objective, achieving around 15% better accuracy and significantly better precision between formulation

3.2 (1) and 3.4 (3). The better results are attained when the two variable objectives are solely in the

same function, in particular the best in formulation 3.5 (4) reached approximately 97% in accuracy. With

the Gaussian transformation, a drastic improvement is reached in formulation 3.2 (1) and 3.3 (2) though

insufficient to surpass the remaining. Also, there is no distinction in the performance when the surplus

objective is introduced, yet they still achieved similar results to the best formulation in the original dataset.

Comparing the overall datasets, the test of the Iris Setosa and Iris Versicolour had similar compu-

tational times when compared with the Wisconsin Breast Cancer dataset. Since the former is not as

complex as the latter, the explanation for this is in the total number of generations. For 100, the value is
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Figure 4.14: Three axes views of the Haberman’s Survival dataset

simply excessive for the optimization reaching a point of repetitive comparisons of newfound solutions

and the solution in the archive. Of course, the total number of possible archive members can be reduced

since there is no necessity for a complete filled PF. However, the value should be chosen according to

the dataset. The values used here were the same for all test simply because no prior sensibility was

known.

4.3.2 Comparison with Dual Formulation Algorithm Results

For comparing this new approach with classical ML algorithms, tests were done with the dual formulation

with mean of performance of validation data along with CV technique. The results are presented in figure
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4.6. These tests were tune according to the hyperparameters just to some extent. Therefore, a more

exhaustive fine-tuning could have provided better results.

Table 4.6: Accuracy (%) and standard deviation of test with soft margin SVM in the dual problem formulation for
each dataset.

Transformation
Original Gaussian

Dataset Mean SD Mean SD
Iris Setosa and Iris Versicolour 100 0 100 0

Noisy 93.34 2.0263 92 2.0484
Iris Versicolour and Iris Virginia 95.33 3.3993 96.40 3.5901

Haberman’s Survival 73.07 3.9875 76.46 3.8640
Wisconsin Breast Cancer 96.93 0.9491 97.25 0.8552

Comparing the results of table 4.6 and the best results of previous tests, the H-BLEMO achieved

similar results except for the most complex dataset, the Haberman’s Survival.

This proves how versatile MOBP algorithms can be in the optimization of different types of problems,

as well being a competitor with traditional SVM algorithms allowing a shift in focus from also the selection

of the best set of the hyperparameters to just the choice of feature transformation, the type of hyperplane

and different formulations and objectives.
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5.1 Conclusions

Traditional SVM algorithms, despite efficient for simple or small dataset, for large datasets and the pres-

ence of high number of hyperparameters, suffer from combinatorial explosion, making them unusable. A

new alternative consisted in transforming the problem into a mathematical problem of two levels, where

one is the minimization problem of the training and evaluation and the other the minimization of the

validation.

For this the MOBP algorithms based on EA and their concepts were used. In particular, the algorithm

used is called H-BLEMO. Since the algorithms allow optimization of multiple objectives at the same time

in each level, several formulations of the SVM problem were created, focusing on two objectives: the

slack objective and the surplus objective. These creations are intended to evaluate the existence of

possible conflicts between objectives and the advantages of separating these objectives into different

optimization functions.

In total six formulations were created. The several tests indicated that classification problems change

how the MOBP is optimized and the respective conclusions of the final solution. There is no direct

connection with the solution of the training problem (hyperplane) and of the PF. For this reason, the

PF becomes a just a tool to achieve the best results and not to evaluate the final archive hyperplanes

solutions and thus a different termination criteria is required. The overall tests indicate the introduction

of the surplus objective in the formulation is preferable since the models achieved better results with it

than without. The best formulation with this objective vary with the dataset. However, the results were

slightly worse when this objective was by itself. As for the soft margin based formulation, the results

were similar with the best formulation also vary with the dataset.

In conclusion, the utilization of MOBP to solve ML problems are a reliable alternative and a good

competitor to the classical SVM algorithms, since it allows an automatize selection of hyperparameters

and the testing for advantages and disadvantages of the relation between objectives and their separa-

tion.

5.2 Further Work

This work proved the potential of this concept. However, other studies are required for understanding

the real impact of classification problems in MOBP and for fine-tuning.

First, although the performances were still good while not removing it, an analysis of the impact of

the termination criteria in the lower-level optimization should be made. An analysis is also required to

understand the reason for the negative effect of using the Local Search optimization.

Second, due to the changes in the objective space, an evaluation should be performed on the ranking

of solutions to verify if the CD criteria are relevant and necessary, since there is no utility for scarcity in
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the PF.

Finally, more tests should be done with a higher number of features (> 10), testing other formulations

such as the remaining presented in Section 2.1, and taking into account different hyperparameters for

each class in imbalanced datasets. Also, the test should include non-flat hyperplanes for separation and

use the algorithm Reference-Point based Many-Objective NSGA-II in the lower-level or both levels.
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bilevel programming. J. Optim. Theory Appl., 81(2):379–399.

[Wierzbicki, 1980] Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimiza-

tion. In Fandel, G. and Gal, T., editors, Multiple Criteria Decision Making Theory and Application,

pages 468–486, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Yoon et al., 2003] Yoon, M., Nakayama, H., and Yun, Y. (2003). A soft margin algorithm controlling

tolerance directly. In Multi-Objective Programming and Goal Programming, pages 281–287, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Zhang and Li, 2007] Zhang, Q. and Li, H. (2007). Moea/d: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731.

[Zitzler et al., 2000] Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(2):173–195.

55



A
Accuracy Results

56



Table A.1: Noisy Dataset: Accuracy (%) of archive solutions for each run, and average and standard deviation of all runs for 100 and 200 generations for original
and gaussian transformation.

Generations
100 200

Run Mean SD Run Mean SD

O
ri

gi
na

l

Formulation Variables N 1 2 3 4 5 1 2 3 4 5
1 4 80 87.43 89.97 91.25 82.5 82.50 87.79 3.3481 86.13 86.20 84.99 81.26 87.50 85.22 2.1326
2 3 60 81.24 95.00 88.75 88.75 87.36 88.22 4.3825 88.24 90.00 76.01 87.50 85.00 85.35 4.9404
3 5 100 88.75 91.25 96.25 91.10 95.00 92.47 2.7534 92.50 96.21 94.12 96.25 93.75 94.57 1.4614
4 5 100 92.50 93.90 96.55 88.86 90.18 92.40 2.7183 95.00 91.21 96.35 92.50 88.74 92.76 2.7014
5 3 60 91.25 91.25 95.00 92.50 95.00 93.00 1.69556 92.50 95.00 93.75 88.75 97.50 93.50 2.8940
6 4 80 88.75 95.38 93.70 93.72 95.00 93.31 2.3762 92.50 94.77 94.85 96.13 92.50 94.15 1.4309

G
au

ss
ia

n

1 6 120 81.33 95.18 84.07 80.80 92.82 86.84 5.9969 91.04 75.97 92.28 91.49 90.08 88.17 6.1430
2 5 100 91.28 88.02 89.13 83.64 97.50 89.91 4.5375 84.51 87.50 93.75 87.24 93.77 89.35 3.7455
3 7 140 90.50 97.28 94.96 92.41 89.95 93.02 2.7588 92.33 86.74 91.20 97.40 95.48 92.63 3.6807
4 7 140 94.57 9302 92.50 98.75 96.84 95.13 2.3548 92.39 92.50 90.75 93.75 92.40 92.36 0.9536
5 5 100 95.00 87.50 92.48 95.68 90.52 92.24 2.9984 94.11 92.44 97.88 86.23 93.75 92.88 3.7838
6 6 120 84.47 88.98 93.75 90.96 90.00 89.63 3.0316 90.68 95.00 87.50 95.80 95.00 92.80 3.2020
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Table A.2: Iris Versicolour and Iris Virginia Dataset : Accuracy (%) of archive solutions for each run, and average and standard deviation of all runs for 100 and
200 generations for original and gaussian transformation.

Generations
100 200

Run Mean SD Run Mean SD

O
ri

gi
na

l

Formulation Variables N 1 2 3 4 5 1 2 3 4 5
1 6 120 100 85.69 97.64 90.00 95.02 91.67 6.1301 90.00 100 88.64 85.00 93.50 91.43 5.0766
2 5 100 90.00 90.00 100 90.00 90.00 92.00 4.0000 90.00 95.00 95.00 90.00 90.00 92.00 2.4495
3 7 140 91.18 89.44 90.29 100 94.89 93.16 3.8931 94.99 94.85 91.57 88.81 99.75 93.99 3.6782
4 7 140 95.81 95.01 95.98 91.99 95.89 94.93 1.5142 99.89 94.09 98.58 88.04 96.62 95.44 4.1858
5 5 100 100 95.00 95.00 95.00 85.00 94.00 4.8990 95.00 100 90.00 95.09 95.00 95.02 3.1625
6 6 120 88.43 93.75 93.37 95.33 99.21 94.01 3.4765 95.03 90.07 94.79 99.68 93.82 94.68 3.0684

G
au

ss
ia

n

1 8 160 94.96 85.00 95.00 100 100 94.99 5.4773 93.46 85.02 93.32 99.94 85.44 91.43 5.6057
2 7 140 95.00 89.61 90.03 95.00 94.99 92.93 2.5386 95.00 99.70 90.00 78.20 90.00 90.58 7.1666
3 9 180 100 84.74 99.52 99.83 99.99 96.82 6.0383 100 94.68 95.35 88.95 95.05 94.91 3.5094
4 9 180 95.10 94.41 91.37 93.34 95.24 93.89 1.4285 97.97 90.74 94.40 98.33 95.97 95.48 2.7633
5 7 140 95.98 90.18 94.90 92.53 87.38 92.19 3.1306 92.95 99.85 89.90 88.33 94.96 93.20 4.0513
6 8 160 96.53 99.95 94.95 97.09 94.67 96.64 1.8939 90.81 95.03 99.82 94.79 92.90 94.67 2.9887
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Table A.3: Haberman’s Survival Dataset: Accuracy (%) of archive solutions for each run, and average and standard deviation of all runs for 100 and 200
generations for original and gaussian transformation.

Generations
100 200

Run Mean SD Run Mean SD

O
ri

gi
na

l

Formulation Variables N 1 2 3 4 5 1 2 3 4 5
1 5 100 65.57 65.63 56.89 62.08 66.72 63.37 3.6062 78.50 64.96 68.76 53.97 60.64 65.37 8.2017
2 4 80 70.50 67.21 54.10 55.74 75.41 64.59 8.3339 67.21 73.77 72.13 60.66 55.74 65.90 6.8304
3 6 120 80.08 66.07 68.36 69.37 64.60 69.70 5.4575 69.79 71.43 69.03 69.53 66.12 69.18 1.7316
4 6 120 75.70 65.97 69.42 81.09 68.31 72.10 5.5328 70.94 71.70 81.31 69.35 71.15 72.89 4.2815
5 4 80 55.81 66.98 80.33 67.26 73.77 68.83 8.1508 59.08 68.78 81.94 72.13 73.89 71.17 7.4315
6 5 100 67.36 74.14 78.00 74.73 72.83 73.41 3.4715 71.10 79.31 72.40 66.50 69.77 71.82 4.2295

G
au

ss
ia

n

1 7 140 61.33 64.97 73.99 67.31 79.77 69.51 6.6618 71.83 57.09 55.90 65.43 65.50 63.15 5.9226
2 6 120 63.65 59.27 68.82 54.94 64.64 92.26 4.6574 61.37 66.36 63.55 51.74 67.94 62.19 5.6920
3 8 160 93.99 64.51 75.61 66.50 66.21 67.37 4.2309 80.16 72.35 71.57 60.48 74.50 71.81 6.4129
4 8 160 78.17 64.28 62.63 71.26 72.61 69.79 5.6901 75.00 64.89 69.52 70.20 70.00 69.63 3.2034
5 6 120 70.52 68.39 73.20 71.74 73.89 71.55 1.9648 72.05 72.13 70.24 71.42 72.10 71.59 0.7218
6 7 140 77.66 66.64 69.18 75.75 70.78 72.00 4.1078 78.27 65.99 79.19 69.62 71.07 72.83 5.1015
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Table A.4: Wisconsin Breast Cancer Dataset: Accuracy (%) of archive solutions for each run, and average and standard deviation of all runs for 100 and 200
generations for original and gaussian transformation.

Generations
100 200

Run Mean SD Run Mean SD

O
ri

gi
na

l

Formulation Variables N 1 2 3 4 5 1 2 3 4 5
1 11 220 86.54 70.07 76.20 62.64 86.86 76.46 9.3985 79.60 83.96 81.28 72.27 72.99 78.02 4.6195
2 10 200 73.72 59.85 72.26 62.04 69.34 67.44 5.5326 72.26 75.18 81.02 62.77 70.07 72.26 6.0014
3 12 240 92.61 93.31 91.10 91.83 90.96 91.96 0.8946 94.98 91.97 94.60 90.36 94.57 93.30 1.8187
4 12 240 96.93 97.14 97.27 97.71 96.10 97.03 0.5305 97.96 94.96 95.79 96.27 93.69 95.72 1.5826
5 10 200 95.71 91.97 95.62 86.72 93.52 92.71 3.3031 96.35 96.42 95.62 94.16 94.16 95.34 1.0050
6 11 220 94.09 97.68 93.90 97.00 94.80 95.49 1.5539 94.42 96.24 94.00 98.25 96.46 95.87 1.5312

G
au

ss
ia

n

1 13 260 89.11 90.48 92.70 90.94 95.07 91.66 2.0571 90.60 90.36 92.79 93.29 94.50 92.31 1.5933
2 12 240 89.67 80.33 92.99 76.76 93.27 86.61 6.7933 95.98 94.89 80.51 93.28 88.21 90.57 5.9601
3 14 280 97.74 95.64 96.39 94.61 98.54 96.58 1.4128 94.87 95.27 95.18 95.35 94.91 95.12 0.1920
4 14 280 97.61 96.98 95.96 98.17 93.80 96.51 1.5377 97.16 97.99 96.70 93.47 97.33 96.53 1.5827
5 12 240 93.92 94.67 97.44 96.86 96.13 95.80 1.3211 96.57 94.40 93.05 96.58 94.14 94.95 1.4038
6 13 260 98.19 94.65 93.70 97.14 97.13 96.16 1.6965 96.53 97.18 97.58 93.97 97.84 96.62 1.3957
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