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Abstract

The work done in this thesis is focused on the development of a framework that empowers an UAV with the capability
of going from a start to a destination while simultaneously avoiding static and dynamic obstacles during its course. The
framework was developed with the intention of running onboard of an UAV the associated computational limitations.

The framework is composed of a real-time trajectory planning algorithm that is split into a two-step approach: an
Offline/Pre-Flight Path Planning and an Online/Real Time Path Replanning.

In the first step techniques are implemented to generate trajectories in a known static environment. The proposed
solution makes use of sampling-based motion planning algorithms (both the RRT-Connect and the Informed RRT* are
used) to find an initial feasible path that’s then feed into an optimization method which turns it into a feasible trajectory.
This optimization method seeks to find smooth trajectories by minimizing the 4th derivative of position (Snap).

The second step consists of a real time avoidance module which allows the UAV to avoid dynamic obstacles in its
course by means of a local generation of a transitioning trajectory around them. A pragmatic approach is used to tackle
this problem that leverages the quick generation of trajectories provided by the aforementioned optimization method.

The algorithm was developed under the assumption that the UAV surroundings are modeled in the form of an
Octomap.

To test and validate the capabilities of the developed framework, simple simulations were designed and Software-
in-the-loop tests were carried out using PX4 and Gazebo as simulation tools.
Keywords: onboard, RRT-Connect, Informed RRT*, Replanning, smooth, Snap, Octomap, Software-in-the-Loop, PX4,
Gazebo

1. Introduction
An Unmanned aerial vehicle (UAV) is a type of aircraft
which can be classified according to its degree of au-
tomation as autonomous if able to fly preplanned routes
with no human intervention or non-autonomous if re-
motely piloted. The recent ascension of UAV hardware
as a mean of fulfilling the requirements of civilian, com-
mercial, military and aerospace applications (due to the
versatility they offer) coupled with the technological de-
velopment in areas such as computation hardware and
software and also Artificial Intelligence (AI) has led to
a shift from non-autonomous to autonomous UAV use.
While full automation has yet to be achieved, there are
studies that shown the potential market for tasks per-
formed by autonomous UAVs [16]. To achieve any de-
gree of automation a number of competences are re-
quired: Self-Localization, the ability of an agent to de-
termine its own position and orientation within a cer-
tain frame; Map-Building, capability of representing the
map of the environment through information acquired
by sensing equipment such as cameras or radar; Path
Planning, for creating the necessary path configurations
that allow hypothetical movement from a start point to
a goal destination while satisfying the constraints of the
UAV’s own performance expectation and the environ-
ment; Sense and Avoid (S&A) technology, necessary for
preventing collisions with dynamic obstacles. The path
planning problem can be split into two different prob-
lems in regards to reachability [9] as Global Planning
and Local Planning. The first deals with finding a prelim-
inary (global) feasible and optimal path based on the a
priori environmental information obtained. Global Plan-
ning cannot deal with real-time problems and is a type of

static programming. Meanwhile, Local Planning makes
use of newly acquired sensorial information to correct
the initial path planning assumptions made (in the event
of a possible collision with a detected static or dynamic
obstacle). Unlike the former, it is applicable in real-time
(a type of dynamic programming).

Figure 1: Local path (green) generated to correct collision in tracking of
global path (red). Taken directly from []

On the subject of path planning, the main approaches
followed include graph-based and biologically inspired
algorithms. The first group includes several methods
such as Rapid Exploring Random Tree method (RRT),
directed graph-based method, A* search algorithms, ar-
tificial potential field method (APF) among others. How-
ever, they present difficulties addressing motion con-
straints. The second group includes the Ant Colony Op-
timization (ACO) method, Particle Swarm Optimization
(PSO) and Genetic algorithm. These algorithms present
some advantages regarding reduced complexity and di-
mensions. In order to tackle the above mentioned chal-
lenges, a framework was developed where a strategy
of global planning (defined as Offline/Pre-Flight Plan-
ning) followed by a dynamic local planning (referred to as
Online/Real-time Path Replanning) to deal, respectively,
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with static and dynamic obstacles (referred to as intrud-
ers). Both planning components follow a similar con-
struction by employing RRT based methods to generate
paths which are sub-sequentially fed to an optimization
method which seeks to minimize the fourth derivative
of position (snap) in order to transform the initial paths
to flyable smooth trajectories. The framework starts by
building an occupancy grid in the form of an octomap
[1], a type of occupancy grid, from the initial informa-
tion about the environment. The Offline/Pre-Flight com-
ponent is then activated and it generates a first trajec-
tory which is fed to the UAV. After initiating the flight, the
Online/Real-time component is activated and seeks peri-
odically for potential disturbances to the intended trajec-
tory in the form of collision from dynamic obstacles (re-
ferred to as intruders). To simulate a real instance of de-
tection, the intruders are assumed to be detected within
a radius of influence. If there is a potential collision, a
transitioning trajectory is generated between safe points
in the original trajectory or a new trajectory is generated
from an exit point in the original trajectory. The main con-
tribution is the development of a framework targeted to-
wards the capability of being employed onboard a small
quadrotor using a computationally limited integrated pro-
cessor such as the Raspberry Pi. The remaining part of
the paper is organized as follows. Background relevant
work is introduced in Section 2 followed by the proposed
framework and implementation in Section 3. Experimen-
tal results along with interpretation are presented in Sec-
tion 4. In Section 5, a brief summary is presented with
remarks about future work.

2. Background
A general overview on quadrotor dynamics and its im-
portance in the overall autonomous navigation problem
is now considered.

2.1. Quadrotor Dynamics and Control

Figure 2: Quadrotor model body frame (subscript B) and earth fixed
frame (subscript E). Taken directly from [13]

Using the information from the previous figure, the
rigid body equations of a quadrotor can be written as:

Where (m) is the quadrotor mass, (J) is the quadro-
tor inertia matrix in with respect to B-frame, ω is the
angular velocity with respect to the B-frame, (e3) =
[0, 0, 1]T is the third vector of the canonical basis of R3,
[Tz, Tφ, Tθ, Tψ] are the inputs of the quadrotor represent-
ing the collective force, roll torque, pitch torque, yaw
torque, respectively, (ωi) is the speed of the ith motor in ,
(k) is the thrust factor, (d) is the drag factor, (l) is the dis-
tance between the center of the quadrotor and the center
of a propeller, (R) is the rotation matrix needed to map
the orientation of a vector from B-frame to W-frame. The
rank of the input matrix (rankF (q) = 4) is lower than the
dimension of the configuration vector (dim(q) = 6) the

system is said to be underactuated and cannot follow an
arbitrary trajectory. However, in [13] the authors prove
that a quadrotor is a differential flat system meaning we
can find a set of outputs (equal in number to the number
of inputs) such that we can express all states and inputs
in terms of those outputs and their derivatives. In a for-
mal way this means that in a non-linear system such as
the quadrotor system:

q̇ = f(q, u) (1)

j = h(q) (2)

where q represents the configuration vector and u, the
control input, is differentially flat if it is possible to find
outputs k:

k = ζ(q, u, u̇, ...., zl) (3)

such that,

q = q(k, k̇, ...., kl) (4)

u = u(k, k̇, ...., kl) (5)

q are the tracking outputs and k the flat outputs.
The authors of [] choose as flat outputs:

q = (x, y, z, ψ) (6)

and proved they could be written as q and it is deriva-
tives. This result is of particular importance since the
method utilized in computing feasible trajectories in this
work makes use of it as it will be detailed ahead.

2.2. Map Representation
Among the 3D world building approaches, octrees stand
out as a viable option by providing an efficient way of
storing and representing multi-resolution maps.

In this hierarchical data structure, each node stores
the information of a cubic voxel in the occupancy grid
and is subdivided into eight smaller voxels until a given
minimum voxel size is reached (resolution of the octree).
In this method if a certain measured volume within an
environment is occupied then the node corresponding to
that volume is set to occupied. Free volumes can be rep-
resented as free nodes and any uninitialized volume or
subvolume is set as unknown. This allows for a reduc-
tion in the number of subvolumes of the environment that
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Figure 3: Example of an octree storing free (shaded white) and occu-
pied (black) cells (a), the corresponding tree representation (b), and the
corresponding bitstream for compact storage in a file (c). Taken directly
from [1])

actually need to be explicitly represented. However, oc-
tree based approaches pose additional problems such
as map update, overconfidence and compression.

2.3. Global Planning
In the context of the two-stepped approach outlined in
this work, the planning methods are presented according
to the global or local nature of their application.

RRT-based methods: Rapid Exploring Random Tree
(RRT) is one of the most used methods in literature
which works by trying to connect sampled nodes from
the search space. A graph is initialized only with the
initial state as a node and at each step a random sam-
ple from the search space is attempted to be connected
to the nearest node on the graph and if the connection
is successful (the path between is collision free), then
the node is added to the graph and the process repeats
itself until the goal state is added to the graph. Vari-
ants of this basic implementation such as the RRT* [7]
which guarantees asymptotic optimallity by applying two
different concepts which are called near neighbor search
and rewiring tree operations and the Informed RRT* [5]
where an heuristic informed search strategy is imple-
mented in RRT* in order to shrink the planning problem
to subsets after finding an initial solution have been fea-
tured in several literature works in path planning prob-
lems as in [3] where the authors developed a planning
system for dynamic obstacle avoidance in a cluttered
3D environment by taking advantage of the fast conver-
gence of the former method coupled with real-time feed-
back of the UAV and obstacles poses obtained from mo-
tion tracking cameras and showed the ability to handle
multiple obstacles in real-time. While the Informed RRT*
is considered to be a global method, it was successfully
adapted to deal with the necessities of local planning.
Another variant of the RRT was developed to be fully ap-
plicable to dynamic path planning in 2015 [2] called Real-
Time RRT* (RT-RRT*) by means of an online rewiring
of the path which can be summarized in the figure be-
low. Artificial Neural Network: A neural network con-
sists of a collection of methods that employ mathemati-
cal models to mimic the neural network of organisms, in
other words the goal is to find underlying relationships
between input data in a similar way to which our brain
operates under outside stimulus. Neural networks have
been applied to path planning problems such as in [11]
where a method called DeepSarsa was used to tackle
the problem. This method gains information and rewards
from the environment and helps UAV to avoid dynamic
obstacles as well as finds a path to a target based on a

deep neural network. Tested in a ROS-Gazebo environ-
ment and it showed impressive results when compared
to other algorithms.

2.4. Local Planning
Potential field (PF): Artificial Potential Field (APF)
based algorithms have been applied in local planning
as part of reactive obstacle avoidance. APF model the
world by a force field with obstacles acting as repul-
sive poles and defined goals as attractive poles therefore
there is an attractive force that increases towards the
goal and repulsive forces that increase towards obsta-
cles. In APF the robot is modeled as a charged particle
moving through this world where these potential fields
can ”drive” the robot away from static and dynamic ob-
stacles. These algorithms are low in computational re-
quirements and provide smooth paths while not offering
guarantees of optimality or completeness since one of
the main drawbacks is that they tend to become trapped
in local minima, preventing the robot from reaching its
goal. One recent example to mitigate this drawback was
developed in [6] where an improved APF algorithm was
proposed for autonomous obstacle avoidance planning
of a quadrotor. The novelty introduced in this approach is
that the algorithm can now calculate in real-time the dif-
ferent potential field at each instance. Model Predictive
Control (MPC): It consists of a nonlinear control tech-
nique that uses a dynamic model of a plant and past con-
trol history to optimize future states over a defined time
period and subject to a cost function, therefore the tra-
jectory optimization problem is solved through feedback
control. For an UAV, the dynamic model corresponds to
the UAV and the response to external and internal forces,
while the cost function is generally a combination of vari-
ables like distance, velocity or acceleration to be mini-
mized. A recent use of this method has been made in
[10], where the dynamics of multiple obstacles are an-
ticipated through the use of active set algorithms that
only consider obstacles that affect the UAV, reducing the
computational burden of the algorithm. The authors also
employed orientable ellipsoids to model the obstacles in
order to improve the smoothness of avoidance maneu-
vers. Results in two real-time implementations showed
the algorithms capability to avoid dynamic obstacles.

3. Methodology
3.1. Proposed Solution
The developed framework consists of a two-phased
planning:

• Offline/Pre-Flight Path Planning In the first phase,
from the start position and with full knowledge of
the current state of the environment, a global path
planning strategy is employed to generate a feasible
collision-free optimal (length) trajectory to lead the
UAV to the chosen destination.

• Online/Real-time Path Replanning From the in-
stance in which the UAV starts tracking the desired
trajectory, the dynamic environment is checked pe-
riodically for possible collisions with moving obsta-
cles. In case of a collision, replanning protocols are
activated in order to generate a new collision-free
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trajectory towards the destination. At this point the
optimality guarantee is sacrificed to ensure collision
avoidance.

Figure 4: Simplified architecture of proposed implementation

3.2. Map Representation
The choice of environment representation in this work
fell on octomap representation.

Figure 5: Multiple resolutions of the same map from a higher resolution
on the left to a progressively lesser one on the right. Taken directly from
[1]

An Octomap is an occupancy grid mapping approach
based on octrees and probabilistic modelling to build 3D
environments by dividing the space in cubic volumes of
equal size called voxels. The main advantages of this
method are the capability of modelling arbitrary environ-
ments (free, occupied and unknown areas), real-time en-
vironment updates (through the use of probabilistic oc-
cupancy estimation), multi-resolution and compactness
of storage. In the scope of this thesis, we are restricted
to partially known environments where the static obsta-
cles location are known a priori and dynamic obstacles
detection is simulated within the range of equipped sen-
sors. There are two different situations in which octomap
modelling is employed in the developed framework:

• Static Map contains the a priori knowledge of the
environment before the quadrotor takes flight. Only
the static obstacles are modelled;

• Dynamic Map is the designation of the Static Map
when the quadrotor is moving. When an intruder is
within a defined range of the quadrotor, the octomap
is updated periodically according to the position of
the intruder.

The octomap specific functions and data structures
are available on the open source C++ Octomap library.
The routine that allows the generation of the static map
from a file containing the description of the environment
starts by taking the boundaries of each obstacle in a de-
scription file, converting them to the appropriate mea-
surements creating for each one the corresponding node

and inserts them in the octree. Once the octree is com-
pleted, the map is saved under the corresponding oc-
tomap type and is ready to be used by the trajectory
planning algorithms. The dynamic map update can be
translated by the following pseudo code which shares
the same functioning as the previous one. It is assumed
that the quadrotor is equipped with the necessary sen-
sors to accomplish the detection and is able to continu-
ously track it as long as it stays within range of the sen-
sors. The intruder is represented using a bounded box
for simplicity. According to the size of the intruder a box is
created around it with a certain dimension and given the
boundaries of that box, we again create the necessary
measurements and nodes, inserting them in the octree
and removing them if the intruder moves to a different
position until the intruder falls out of sight. This is done
by a second algorithm allowing the update of the static
map with the position of dynamic obstacles.

3.3. Offline/Pre-Flight Path Planning
A geometric path from start to goal states can be defined
by a continuous function f :

f : [0, 1]→ Cfree (7)

subject to start and goal configurations f(0) =
qstart, f(1) = qgoal, respectively. Cfree represents the
free space within the three dimensional configuration
space defined by C = {x, y, z} = R3.

A trajectory consists of the path plus the additional in-
formation on how to transverse it with respect to time.
Formally we can define a trajectory as a continuous func-
tion g:

g : [0, 1]→ Cfree (8)

[Tstart, Tgoal] 3 t→ τ ∈ [0, 1] : q(t) = γ(τ) ∈ Cfree (9)

The time parametrization (t) of each state si in our tra-
jectory implies that one or more considerations need to
be made such as:

• Position, q(t);

• Velocity of a motion, d
dt
q(t);

• Acceleration of a motion, d2

dt2
q(t);

• Jerk of a motion, d3

dt3
q(t);

• Snap of a motion, d4

dt4
q(t);

The following scheme illustrates the individual sub-
components that make up this part of the framework and
how they are interconnected.

Using a sampling based method (Informed RRT* [5]) ,
an optimal (length-wise) collision-free path is generated.
From this path, a trajectory is formed by feeding the path
waypoints to an algorithm based on a minimum-snap tra-
jectory generation [15], in which trajectories are repre-
sented as piecewise polynomials and obtained through
solving a quadratic programming(QP) problem. The gen-
erated polynomial trajectories are smooth and show con-
tinuous motion between the different UAV poses (pre-
venting control input oscillations).
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Figure 6: Offline Pre-Flight Path Planning proposed solution.

3.3.1 Informed RRT*

The informed RRT* exhibits (regarding general aspects)
a similar behaviour to the basic RRT algorithm and rep-
resents an improvement in convergence to the RRT* by
implementing a direct sampling of the ellipsoidal heuris-
tic which reduces the size of the available sampling do-
main. The following pseudo-codes illustrate the function-
ing of this sampling method. The functions mentioned
below are from the implementation in [5]. In a similar
way to the basic RRT, a newly random configuration is
sampled and we try to connect it to the nearest configu-
ration in the graph. If the connection is successful, it is
added to the vertex set V . We attempt to connect this
new vertex qnew to other vertexes already in V but lim-
ited to a defined region in space which corresponds to
the space within a ball of radius rRRT∗. However, not all
connections result in new edges being added since this
method avoids adding ”redundant” edges by employing a
rewiring of the stored tree by considering an additive cost
function cmin that keeps track of the lowest possible path
cost (in terms of length), only allowing vertexes to be
added if they lead to a lower path cost. When the algo-
rithm runs for the first time the solution set is emptyQsoln
and as convention we take its cost as infinite. Therefore,
sampling is performed as previously from an uniform dis-
tribution U . In the next iteration we have a value different
than infinity for this cost and now the sampling algorithm
starts sampling within the ellipsoidal domain, leading to a
smaller sampling domain. This progressive reduction in
the size of the sampling space greatly benefits the con-
vergence of this method relative to the RRT*.

3.3.2 Optimization Method

Due to the concept of differential flatness, control inputs
are represented as functions of some trajectory deriva-
tives which is used by the authors of [15] where a method
that allows the generation of high-quality minimum-snap
piece-wise polynomial trajectories based on jointly opti-
mizing polynomial path segments is developed. Through
this method the need for computationally expensive kin-
odynamic (where kinematics and dynamic constraints
restrict the available range of motion during sampling)
path planning is eliminated. In [4], the previous work
is further expanded to include non-linear optimization
features. The authors turn the initial linear optimization

problem as in [15] into a nonlinear optimization problem
by modifying some optimization variables. The present
work makes use of this latter extension of the method.

Formally, any polynomial P with n coefficients can be
written as:

P (x) =

n−1∑
k=0

ckx
k = cn−1x

n−1 + ...+ c1x+ c0 (10)

where c0, c1, c2..., cn−1 are constants and x is the in-
determinate or variable. The value of n − 1 defines the
order of the polynomial.

A piece-wise polynomial trajectory consists of M con-
tinuous polynomial P (x = t) segments where each in-
dividual polynomial is valid from t = 0 until the segment
duration t = Ts,i (i = 1, 2, ...,M denotes the correspond-
ing segment). Each segment is composed of D polyno-
mials where D is the number of dimensions of our con-
figuration space. The quadratic cost function for each
individual trajectory segment in a given dimension can
be written as a combination of the polynomial and asso-
ciated derivatives:

Ji,d =

∫ Ts,i

0

(c4)i,dP
(4)
i,d (t)4 dt (11)

Since we want to minimize the snap, all derivatives co-
efficients up to that derivative and with higher order are
set to zero. The quadratic cost for the whole trajectory
can now written as the sum of the cost for each segment
in each dimension:

Jtotal =

M∑
i=1

D∑
d=1

Ji,d (12)

Specific derivative values (velocity, acceleration, jerk,
snap and higher order derivatives) related to polynomial
optimization are constraints and re formulated as follows:

Ai,dci,d = di,d , Ai,d =

[
A(t = 0)
A(t = Ts,i)

]
i,d

, (13)

di,d =

[
d(t = 0)
d(t = Ts,i)

]
i,d

(14)

Ai,d is a mapping matrix consisting of row vectors
t and d

dt
t between the coefficients ci,d and derivatives

di,d at the start and endpoints of a polynomial seg-
ment. Derivative continuity between segments must be
set through all the trajectory segments since a polyno-
mial is infinitely derivable on its interval:

AT,ipi = A0,i+1pi+1 (15)

where the left side of the equation represents the con-
straints at the endpoint of segment ith and the right side
the same constraints at the beginning of the i+ 1th seg-
ment.

Given the total quadratic cost function Jtotal and all of
the imposed constraintsAtotalpM = dM , the constrained
quadratic optimization problem is transformed in [15] into
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an unconstrained quadratic optimization problem to im-
prove computational efficiency. This done by incorporat-
ing the constraints in the objective function as penaliza-
tion terms (the become ”soft” constraints):

Jtotal =

[
dF
dP

]T
CA−TQA−1CT

[
dF
dP

]
(16)

where dF are unspecified/free derivatives and dP
specified derivatives. The authors also incorporate a
new quadratic term that measures the cost of segment
times in the initial cost function:

Jnew = Jtotal + kT · (
M∑
i=1

Ts,i)
2 (17)

This new formulation aims to achieve the ideal trade-
off between smoothness and trajectory duration. kT is
a parameter that controls this trade-off (higher values
place a deeper importance in minimizing trajectory dura-
tion) and depends on the specific requirements of each
individual case (it is always a good practice to keep a
balance between both). Global constraints related to ve-
locity or acceleration are formulated as soft constraints
instead of hard constraints (they would lead to an unfea-
sible amount of this type of constraints):

Jsoft = exp(
xmax,actual − xmax

xmax · ε
· ks) (18)

xmax is the defined maximum value associated with
the constraint, ε defines the acceptable deviation from
the maximum and ks is a constant that in a similar way to
kT defines the weight of the soft constraint on the overall
cost. We can now write the full cost function to minimize
in the approach followed in this work as:

J = Jnew + Jsoft,velocity + Jsoft,acceleration (19)

where a maximum velocity v < vmax and maximum
acceleration a < amax constraints were imposed. The
use of this method was made possible through an imple-
mentation of both works available in [12].

3.4. Online/Real-time Path Replanning
The replanning component is activated immediately af-
ter the quadrotor takes flight. The Collision Detection
routine happens at each time step k and checks for the
presence of intruders, updates the configuration space
Ci and forms a collision query between the affected
states in the trajectory by the changes in the configu-
ration space. The most imminent collision is treated with
the highest priority and avoidance maneuvers in the form
of a check and repair strategy are triggered.

3.4.1 Collision Detection

At any given instance in time ti, the state of each intruder
Obsi is defined over the next k time steps by extending
the current motion from the last known location:

Obsi+k = [pobs(ti) + k · vobs(ti), vobs(ti)] (20)

This prediction implies that the velocity at that time
vobs(ti) remains the same for the defined time horizon,

Figure 7: Online Real-Time Path Replanning proposed solution.

which must be as short as possible for this assumption
to remain accurate.

Figure 8: Visual representation of potential collision situation between
an autonomous agent and an intruder (bounded by a red box). States (in
red) in the agent’s trajectory are considered to be in collision course with
the intruder, while states near the collision are signaled in orange. Green
states represent exit points and possible re-entrance points.

3.4.2 Avoidance Maneuvers

A similar trajectory generation method is employed.
However, to decrease as much possible computation
time, the non-optimal RRT-Connect coupled with a sub-
sequent path shortening recursive method is employed.
This method works like the basic RRT but now grows two
trees, one from the start configuration and the other from
the goal configuration and attempts to connect them.
The shortening algorithm works by iteratively trying to
reduce the size of the current path (while maintaining
its validity) by attempting connections between randomly
sampled points along path segments and not only the
available vertexes from the original path.

In the event of a collision (illustrated in figure 8), two
different avoidance maneuver approaches are consid-
ered:

• The first one consists of reusing part of the original
trajectory not affected by the collision. To do this we
first define an exit point and a re-entrance point in
the current trajectory and then generate a collision-
free trajectory between these points through the op-
timization method mentioned. Additional constraints
need to be specified on the exit and re-entrance
points according to the values of the derivatives in
the original trajectory. At the exit point at we have
to guarantee [v = vexit, a = aexit, j = jexit, sn =
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snexit] and at re-entrance [v = vre−entrance, a =
are−entrance, j = jre−entrance, sn = snre−entrance].

(a) (b)

Figure 9: Progression of first type of avoidance maneuver. The transi-
tioning trajectory in green and the feasible portion of the previous trajec-
tory in black.

• In the event that the first method fails to provide a
solution by exceeding a defined timeout, another
attempt to correct the collision-bound trajectory is
made. This time an exit point is chosen the same
way as before but the trajectory from this point on
is fully discarded and a new trajectory is generated
originating at the exit point and ending at the same
final state as defined in the original mission objec-
tive. As added constraints only the derivatives at
the exit point need to be imposed in the newly gen-
erated trajectory. The resulting trajectory consists
of this plus the remaining of the previous trajectory.

In both approaches, there is a guarantee of a collision
free trajectory for an immediate time horizon, but subse-
quent corrections if a new collision situation develops.

(a) (b)

Figure 10: Progression of second type of avoidance maneuver. The
transitioning trajectory in green and the feasible portion of the previous
trajectory in black.

4. Results & discussion
To validate the developed framework, simulations were
performed across various environments. They first
set are non-physics simulations where the quadrotor is
taken by its center of gravity. Subsequent robust, flexi-
ble and accurate computer physics simulations with en-
vironment and quadrotor dynamics modelling were con-
structed.

4.1. Non-Physics Simulation
The resolution of voxel grids is a critical factor for the
performance of our proposed method mainly when per-
forming collision checking between sampled points and
the environment. The following graph illustrates the de-
crease in performance when resolution increases.

At 10 cm and even 5 cm we have a good compromise
between resolution and a substantial reduction in com-
putational effort compared to the highest resolution. The
choice fell on the first.

The simulations were done on a 30 × 30 × 4m map
and the maximum velocity and acceleration limits are set

Figure 11: Collision Checking Simulation Results (averaged over 50 sim-
ulations).

as 9m/s and 9m/s2 respectively. Optimization specific
parameters were set:

Max Iterations 25000
Objective Function Threshold (frel) 5%
Optimization Variables Threshold (xrel) 10%
Time penalty (kT ) 2000
Initial Step Size 10%
Tolerance (ε) 5%
Sampling Interval (∆t) 0.1s

Table 1: Optimal parameter values for the simulations

(a) (b) (c)

(d)

Figure 12: At the moment a potential collision is detected, the first avoid-
ance maneuver approach is used and a transitioning trajectory is suc-
cessfully created. The resulting trajectory allows the quadrotor to avoid
the intruder and it continues its new trajectory towards the destination.

(a) (b)

(c)

Figure 13: At another instance in the trajectory a new collision is de-
tected. However, now there is no possible states before and after the
collision to generate a transitioning trajectory and after failing to apply
the first method, the second approach ensues by discarding the previ-
ous trajectory and generating a complete new trajectory.

The figures shown are only one instance of compa-
rable simulations tested where the relative velocity be-
tween the quadrotor and the intruder was kept within a
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reasonable range. The maximum velocity of the intruder
was of 4m/s and the avoidance success rate hovered
at around 80% when considering the application of both
avoidance approaches. When dealing with intruders with
higher velocity values than this, the success rate drops
significantly since the duration of the optimization algo-
rithm is more or less fixed for a given number of path
waypoints (figure 15).

Figure 14: Evolution in computation time of optimization algorithm with
the number of path waypoints. The results are averaged over 50 simula-
tions for each.

4.2. Physics Simulation

Figure 15: Simulation architecture diagram.

Software-In-The-Loop (SITL) simulations allow for an
accurate depiction of a real-world testing without the
need for actual hardware. Three major components
are outlined: Gazebo simulator, PX4 SITL firmware and
the MAVROS[14]/Trajectory nodes. The Trajectory Node
consists of the developed algorithms as well as some
necessary adjustments implemented running on a Rasp-
berry Pi 3B+ acting as a companion computer. We have
a desktop, where PX4 code is running in SITL mode
(simulating the flight control unit, FCU, of the quadro-
tor) while communicating directly with Gazebo simula-
tion environment [8] (simulating the environment dynam-
ics). The companion computer and the desktop are con-
nected via serial (using a USB-to-TTL cable). The Tra-
jectory node publishes trajectory data to the MAVROS
node which converts it into the appropriate MAVLink
messages and streams it via serial connection to the
simulated FCU on the desktop. The FCU receives
this, decodes and turns them into the necessary com-
mand inputs (through the simulated controllers) which
are then streamed via MAVLink to the simulated quadro-
tor in Gazebo. There is also an exchange of informa-
tion regarding the quadrotor state back to the Trajec-
tory Node. Despite having piece-wise polynomial tra-
jectories of higher degrees, a controller must be used
to drive the quadrotor current state to the desired state.
PX4 firmware provides a feedforward cascade position
and velocity controller that was used consisting of a
proportional position controller (P) and a proportional-
integral-derivative controller (PID). In the simulations,
the quadrotor used was the already mentioned 3DR Iris

which is one of the standard aircrafts already modelled in
PX4. The simulations are divided according to the evo-
lution of the framework as described in chapter 3, test-
ing first without avoidance capabilities and then inserting
them. They show the deviation error between the com-
manded position pcom that is fed to PX4 controller and
the resulting position pres that is exhibited by the quadro-
tor. The position error (which we want to keep as low and
fluctuation free as possible) allows us to check on the
potential real-world feasibility of both the trajectory gen-
eration method and the obstacle avoidance maneuvers
followed. Formally it can be written as:

Error = |pcom − pres| (21)

Figure 16: Position error evolution with time.

The first test corresponds to a simulation in which
a simple maneuver of overcoming a wall between two
points, one from each side. Both velocity and accel-
eration were set the highest values (v = 9m/s and
a = 9m/s2) in which the trajectory generation algorithm
can potentially operate according to the paper where
the method was first introduced. After setting both val-
ues without first tuning the position and velocity con-
troller from the default values, the quadrotor struggled to
keep up with the position and velocity commands which
lead to high position error translated in erratic behaviour
such as hitting the wall or spinning out of control. Af-
ter adjusting the controller parameters, the best results
were achieved in figure 16 where position error reaches
a maximum of 0.8m, an acceptable error specially in
spaced outdoor environments. There are only small os-
cillations and overall the control is smooth. This maxi-
mum error is verified when the quadrotor after ascending
upwards straight to an altitude above the wall, it suddenly
accelerates and this steep change leads to an overshoot
in position. The tuned values were kept for the following
simulations.

(a) (b)

Figure 17: (a)-(c) Maze and Obstacle course gazebo environment, re-
spectively. (b)-(d) Position error evolution with time.

The simulations continued in two distinct environ-
ments (a maze like environment and a spaced corri-
dor with obstacles, respectively) and to achieve a better
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tracking performance, acceleration was limited to 6m/2

in order to prevent high overshooting. In both instances,
the maximum position error (figure 17) is kept under
0.3m which is evidence of a good tracking. The over-
shooting verified in both instances tends to happen pri-
marily due to changes in direction when turning around
obstacles in the first environment and when cutting cor-
ners in the second. Nonetheless this is expected be-
haviour which could be further mitigated by lowering the
maximum acceleration and also by tuning optimization
parameters such as the time penalty to reduce abrupt
changes in velocity.

To test avoidance maneuvers similar simulations to
before were outlined. All of them were performed on
the spaced corridor with obstacles environment under
the same velocity and acceleration conditions.

(a) (b)

(c)

Figure 18: Position error evolution with time for three distinct simulations
(a), (b) and (c) on the same environment.

The maximum peaks of position error (figure 18) in
all three graphs correspond to situations where avoid-
ance maneuvers were taken and they exhibit a simi-
lar behaviour as the situations mentioned before when
turning corners or around obstacles. However, these
peaks tend to be of a higher magnitude since it is com-
mon that the transitioning trajectories generated in avoid-
ance maneuvers are more aggressive with more sudden
changes in direction and therefore more steep control in-
puts. Nonetheless in all cases, when limiting the velocity
of intruders to reasonable values (lower than 4m/s), the
maximum error was under 0.7m which falls within rea-
sonable values for UAV applications.

5. Conclusions
We focused more on the concept of generating flyable
smooth trajectories that require as least of a computa-
tional effort as possible. This lead to a two step approach
to deal with the problem: an Offline/Pre-Flight path plan-
ning and Online/Real Time Path Replanning. To test
the capabilities of the developed framework, several non-
physics and physics simulations were carried out which
showed the effectiveness of the approach. The next
step of performing to further validate the results should
be Hardware-In-The-Loop (HIL) simulations where ac-
tual flight controller unit are used. It would be beneficial
to further expand this work to larger quadrotors and other

multirotor aircraft. In order to improve tracking perfor-
mance, a deeper dive in control theory could be done as
well as integrating it into the current PX4 code. Integra-
tion of detection and tracking of dynamic obstacles ca-
pabilities in the real world testing of the framework could
also be explored.
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